1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
|
/* mpfr_sqr -- Floating square
Copyright 2004-2016 Free Software Foundation, Inc.
Contributed by the AriC and Caramel projects, INRIA.
This file is part of the GNU MPFR Library.
The GNU MPFR Library is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 3 of the License, or (at your
option) any later version.
The GNU MPFR Library is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
License for more details.
You should have received a copy of the GNU Lesser General Public License
along with the GNU MPFR Library; see the file COPYING.LESSER. If not, see
http://www.gnu.org/licenses/ or write to the Free Software Foundation, Inc.,
51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA. */
#include "mpfr-impl.h"
int
mpfr_sqr (mpfr_ptr a, mpfr_srcptr b, mpfr_rnd_t rnd_mode)
{
int cc, inexact;
mpfr_exp_t ax;
mp_limb_t *tmp;
mp_limb_t b1;
mpfr_prec_t bq;
mp_size_t bn, tn;
MPFR_TMP_DECL(marker);
MPFR_LOG_FUNC
(("x[%Pu]=%.*Rg rnd=%d", mpfr_get_prec (b), mpfr_log_prec, b, rnd_mode),
("y[%Pu]=%.*Rg inexact=%d",
mpfr_get_prec (a), mpfr_log_prec, a, inexact));
/* deal with special cases */
if (MPFR_UNLIKELY(MPFR_IS_SINGULAR(b)))
{
if (MPFR_IS_NAN(b))
{
MPFR_SET_NAN(a);
MPFR_RET_NAN;
}
MPFR_SET_POS (a);
if (MPFR_IS_INF(b))
MPFR_SET_INF(a);
else
( MPFR_ASSERTD(MPFR_IS_ZERO(b)), MPFR_SET_ZERO(a) );
MPFR_RET(0);
}
ax = 2 * MPFR_GET_EXP (b);
bq = MPFR_PREC(b);
MPFR_ASSERTN (2 * (mpfr_uprec_t) bq <= MPFR_PREC_MAX);
bn = MPFR_LIMB_SIZE (b); /* number of limbs of b */
tn = MPFR_PREC2LIMBS (2 * bq); /* number of limbs of square,
2*bn or 2*bn-1 */
if (MPFR_UNLIKELY(bn > MPFR_SQR_THRESHOLD))
return mpfr_mul (a, b, b, rnd_mode);
MPFR_TMP_MARK(marker);
tmp = MPFR_TMP_LIMBS_ALLOC (2 * bn);
/* Multiplies the mantissa in temporary allocated space */
mpn_sqr_n (tmp, MPFR_MANT(b), bn);
b1 = tmp[2 * bn - 1];
/* now tmp[0]..tmp[2*bn-1] contains the product of both mantissa,
with tmp[2*bn-1]>=2^(GMP_NUMB_BITS-2) */
b1 >>= GMP_NUMB_BITS - 1; /* msb from the product */
/* if the mantissas of b and c are uniformly distributed in ]1/2, 1],
then their product is in ]1/4, 1/2] with probability 2*ln(2)-1 ~ 0.386
and in [1/2, 1] with probability 2-2*ln(2) ~ 0.614 */
tmp += 2 * bn - tn; /* +0 or +1 */
if (MPFR_UNLIKELY(b1 == 0))
mpn_lshift (tmp, tmp, tn, 1); /* tn <= k, so no stack corruption */
cc = mpfr_round_raw (MPFR_MANT (a), tmp, 2 * bq, 0,
MPFR_PREC (a), rnd_mode, &inexact);
/* cc = 1 ==> result is a power of two */
if (MPFR_UNLIKELY(cc))
MPFR_MANT(a)[MPFR_LIMB_SIZE(a)-1] = MPFR_LIMB_HIGHBIT;
MPFR_TMP_FREE(marker);
{
mpfr_exp_t ax2 = ax + (mpfr_exp_t) (b1 - 1 + cc);
if (MPFR_UNLIKELY( ax2 > __gmpfr_emax))
return mpfr_overflow (a, rnd_mode, MPFR_SIGN_POS);
if (MPFR_UNLIKELY( ax2 < __gmpfr_emin))
{
/* In the rounding to the nearest mode, if the exponent of the exact
result (i.e. before rounding, i.e. without taking cc into account)
is < __gmpfr_emin - 1 or the exact result is a power of 2 (i.e. if
both arguments are powers of 2), then round to zero. */
if (rnd_mode == MPFR_RNDN &&
(ax + (mpfr_exp_t) b1 < __gmpfr_emin || mpfr_powerof2_raw (b)))
rnd_mode = MPFR_RNDZ;
return mpfr_underflow (a, rnd_mode, MPFR_SIGN_POS);
}
MPFR_SET_EXP (a, ax2);
MPFR_SET_POS (a);
}
MPFR_RET (inexact);
}
|