1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
|
/* Test file for mpfr_can_round and mpfr_round_p.
Copyright 1999, 2001-2016 Free Software Foundation, Inc.
Contributed by the AriC and Caramel projects, INRIA.
This file is part of the GNU MPFR Library.
The GNU MPFR Library is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 3 of the License, or (at your
option) any later version.
The GNU MPFR Library is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
License for more details.
You should have received a copy of the GNU Lesser General Public License
along with the GNU MPFR Library; see the file COPYING.LESSER. If not, see
http://www.gnu.org/licenses/ or write to the Free Software Foundation, Inc.,
51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA. */
#include "mpfr-test.h"
#define MAX_LIMB_SIZE 100
static void
check_round_p (void)
{
mp_limb_t buf[MAX_LIMB_SIZE];
mp_size_t n, i;
mpfr_prec_t p;
mpfr_exp_t err;
int r1, r2;
for (n = 2 ; n <= MAX_LIMB_SIZE ; n++)
{
/* avoid mpn_random which leaks memory */
for (i = 0; i < n; i++)
buf[i] = randlimb ();
/* force the number to be normalized */
buf[n - 1] |= MPFR_LIMB_HIGHBIT;
p = randlimb() % ((n-1) * GMP_NUMB_BITS) + MPFR_PREC_MIN;
err = p + randlimb () % GMP_NUMB_BITS;
r1 = mpfr_round_p (buf, n, err, p);
r2 = mpfr_can_round_raw (buf, n, MPFR_SIGN_POS, err,
MPFR_RNDN, MPFR_RNDZ, p);
if (r1 != r2)
{
printf ("mpfr_round_p(%d) != mpfr_can_round(%d)!\n"
"bn = %ld, err0 = %ld, prec = %lu\nbp = ",
r1, r2, n, (long) err, (unsigned long) p);
#ifndef MPFR_USE_MINI_GMP
gmp_printf ("%NX\n", buf, n);
#endif
exit (1);
}
}
}
/* check x=2^i with precision px, error at most 1, and target precision prec */
static void
test_pow2 (mpfr_exp_t i, mpfr_prec_t px, mpfr_rnd_t r1, mpfr_rnd_t r2,
mpfr_prec_t prec)
{
mpfr_t x;
int b, expected_b, b2;
mpfr_init2 (x, px);
mpfr_set_ui_2exp (x, 1, i, MPFR_RNDN);
b = !!mpfr_can_round (x, i+1, r1, r2, prec);
/* Note: If mpfr_can_round succeeds for both
(r1,r2) = (MPFR_RNDD,MPFR_RNDN) and
(r1,r2) = (MPFR_RNDU,MPFR_RNDN), then it should succeed for
(r1,r2) = (MPFR_RNDN,MPFR_RNDN). So, the condition on prec below
for r1 = MPFR_RNDN should be the most restrictive between those
for r1 = any directed rounding mode.
For r1 like MPFR_RNDA, the unrounded, unknown number may be anyone
in [2^i-1,i]. As both 2^i-1 and 2^i fit on i bits, one cannot round
in any precision >= i bits, hence the condition prec < i; prec = i-1
will work here for r2 = MPFR_RNDN thanks to the even-rounding rule
(and also with rounding ties away from zero). */
expected_b =
MPFR_IS_LIKE_RNDD (r1, MPFR_SIGN_POS) ?
(MPFR_IS_LIKE_RNDU (r2, MPFR_SIGN_POS) ? 0 : prec <= i) :
MPFR_IS_LIKE_RNDU (r1, MPFR_SIGN_POS) ?
(MPFR_IS_LIKE_RNDD (r2, MPFR_SIGN_POS) ? 0 : prec < i) :
(r2 != MPFR_RNDN ? 0 : prec < i);
/* We only require mpfr_can_round to return 1 when we can really
round, it is allowed to return 0 in some rare boundary cases,
for example when x = 2^k and the error is 0.25 ulp.
Note: if this changes in the future, the test could be improved by
removing the "&& expected_b == 0" below. */
if (b != expected_b && expected_b == 0)
{
printf ("Error for x=2^%d, px=%lu, err=%d, r1=%s, r2=%s, prec=%d\n",
(int) i, (unsigned long) px, (int) i+1,
mpfr_print_rnd_mode ((mpfr_rnd_t) r1),
mpfr_print_rnd_mode ((mpfr_rnd_t) r2), (int) prec);
printf ("Expected %d, got %d\n", expected_b, b);
exit (1);
}
if (r1 == MPFR_RNDN && r2 == MPFR_RNDZ)
{
/* Similar test to the one done in src/round_p.c
for MPFR_WANT_ASSERT >= 2. */
b2 = !!mpfr_round_p (MPFR_MANT(x), MPFR_LIMB_SIZE(x), i+1, prec);
if (b2 != b)
{
printf ("Error for x=2^%d, px=%lu, err=%d, prec=%d\n",
(int) i, (unsigned long) px, (int) i+1, (int) prec);
printf ("mpfr_can_round gave %d, mpfr_round_p gave %d\n", b, b2);
exit (1);
}
}
mpfr_clear (x);
}
int
main (void)
{
mpfr_t x;
mpfr_prec_t i, j, k;
int r1, r2;
int n;
tests_start_mpfr ();
/* checks that rounds to nearest sets the last
bit to zero in case of equal distance */
mpfr_init2 (x, 59);
mpfr_set_str_binary (x, "-0.10010001010111000011110010111010111110000000111101100111111E663");
if (mpfr_can_round (x, 54, MPFR_RNDZ, MPFR_RNDZ, 53))
{
printf ("Error (1) in mpfr_can_round\n");
exit (1);
}
mpfr_set_str_binary (x, "-Inf");
if (mpfr_can_round (x, 2000, MPFR_RNDZ, MPFR_RNDZ, 2000))
{
printf ("Error (2) in mpfr_can_round\n");
exit (1);
}
mpfr_set_prec (x, 64);
mpfr_set_str_binary (x, "0.1011001000011110000110000110001111101011000010001110011000000000");
if (mpfr_can_round (x, 65, MPFR_RNDN, MPFR_RNDN, 54))
{
printf ("Error (3) in mpfr_can_round\n");
exit (1);
}
mpfr_set_prec (x, 137);
mpfr_set_str_binary (x, "-0.10111001101001010110011000110100111010011101101010010100101100001110000100111111011101010110001010111100100101110111100001000010000000000E-97");
if (! mpfr_can_round (x, 132, MPFR_RNDU, MPFR_RNDZ, 128))
{
printf ("Error (4) in mpfr_can_round\n");
exit (1);
}
/* in the following, we can round but cannot determine the inexact flag */
mpfr_set_prec (x, 86);
mpfr_set_str_binary (x, "-0.11100100010011001111011010100111101010011000000000000000000000000000000000000000000000E-80");
if (! mpfr_can_round (x, 81, MPFR_RNDU, MPFR_RNDZ, 44))
{
printf ("Error (5) in mpfr_can_round\n");
exit (1);
}
mpfr_set_prec (x, 62);
mpfr_set_str (x, "0.ff4ca619c76ba69", 16, MPFR_RNDZ);
for (i = 30; i < 99; i++)
for (j = 30; j < 99; j++)
for (r1 = 0; r1 < MPFR_RND_MAX ; r1++)
for (r2 = 0; r2 < MPFR_RND_MAX ; r2++)
mpfr_can_round (x, i, (mpfr_rnd_t) r1, (mpfr_rnd_t) r2, j); /* test for assertions */
test_pow2 (32, 32, MPFR_RNDN, MPFR_RNDN, 32);
test_pow2 (174, 174, MPFR_RNDN, MPFR_RNDN, 174);
test_pow2 (174, 174, MPFR_RNDU, MPFR_RNDN, 174);
test_pow2 (176, 129, MPFR_RNDU, MPFR_RNDU, 174);
test_pow2 (176, 2, MPFR_RNDZ, MPFR_RNDZ, 174);
test_pow2 (176, 2, MPFR_RNDU, MPFR_RNDU, 176);
/* Tests for x = 2^i (E(x) = i+1) with error at most 1 = 2^0. */
for (n = 0; n < 100; n++)
{
i = (randlimb() % 200) + 4;
for (j = i - 2; j < i + 2; j++)
for (r1 = 0; r1 < MPFR_RND_MAX ; r1++)
for (r2 = 0; r2 < MPFR_RND_MAX ; r2++)
for (k = MPFR_PREC_MIN; k <= i + 2; k++)
test_pow2 (i, k, r1, r2, j);
}
mpfr_clear (x);
check_round_p ();
tests_end_mpfr ();
return 0;
}
|