1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
|
/* mpfr_y0, mpfr_y1, mpfr_yn -- Bessel functions of 2nd kind, integer order.
http://www.opengroup.org/onlinepubs/009695399/functions/y0.html
Copyright 2007, 2008, 2009 Free Software Foundation, Inc.
Contributed by the Arenaire and Cacao projects, INRIA.
This file is part of the GNU MPFR Library.
The GNU MPFR Library is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 3 of the License, or (at your
option) any later version.
The GNU MPFR Library is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
License for more details.
You should have received a copy of the GNU Lesser General Public License
along with the GNU MPFR Library; see the file COPYING.LESSER. If not, see
http://www.gnu.org/licenses/ or write to the Free Software Foundation, Inc.,
51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA. */
#define MPFR_NEED_LONGLONG_H
#include "mpfr-impl.h"
static int mpfr_yn_asympt (mpfr_ptr, long, mpfr_srcptr, mpfr_rnd_t);
int
mpfr_y0 (mpfr_ptr res, mpfr_srcptr z, mpfr_rnd_t r)
{
return mpfr_yn (res, 0, z, r);
}
int
mpfr_y1 (mpfr_ptr res, mpfr_srcptr z, mpfr_rnd_t r)
{
return mpfr_yn (res, 1, z, r);
}
/* compute in s an approximation of S1 = sum((n-k)!/k!*y^k,k=0..n)
return e >= 0 the exponent difference between the maximal value of |s|
during the for loop and the final value of |s|.
*/
static mp_exp_t
mpfr_yn_s1 (mpfr_ptr s, mpfr_srcptr y, unsigned long n)
{
unsigned long k;
mpz_t f;
mp_exp_t e, emax;
mpz_init_set_ui (f, 1);
/* we compute n!*S1 = sum(a[k]*y^k,k=0..n) where a[k] = n!*(n-k)!/k!,
a[0] = (n!)^2, a[1] = n!*(n-1)!, ..., a[n-1] = n, a[n] = 1 */
mpfr_set_ui (s, 1, MPFR_RNDN); /* a[n] */
emax = MPFR_EXP(s);
for (k = n; k-- > 0;)
{
/* a[k]/a[k+1] = (n-k)!/k!/(n-(k+1))!*(k+1)! = (k+1)*(n-k) */
mpfr_mul (s, s, y, MPFR_RNDN);
mpz_mul_ui (f, f, n - k);
mpz_mul_ui (f, f, k + 1);
/* invariant: f = a[k] */
mpfr_add_z (s, s, f, MPFR_RNDN);
e = MPFR_EXP(s);
if (e > emax)
emax = e;
}
/* now we have f = (n!)^2 */
mpz_sqrt (f, f);
mpfr_div_z (s, s, f, MPFR_RNDN);
mpz_clear (f);
return emax - MPFR_EXP(s);
}
/* compute in s an approximation of
S3 = c*sum((h(k)+h(n+k))*y^k/k!/(n+k)!,k=0..infinity)
where h(k) = 1 + 1/2 + ... + 1/k
k=0: h(n)
k=1: 1+h(n+1)
k=2: 3/2+h(n+2)
Returns e such that the error is bounded by 2^e ulp(s).
*/
static mp_exp_t
mpfr_yn_s3 (mpfr_ptr s, mpfr_srcptr y, mpfr_srcptr c, unsigned long n)
{
unsigned long k, zz;
mpfr_t t, u;
mpz_t p, q; /* p/q will store h(k)+h(n+k) */
mp_exp_t exps, expU;
zz = mpfr_get_ui (y, MPFR_RNDU); /* y = z^2/4 */
MPFR_ASSERTN (zz < ULONG_MAX - 2);
zz += 2; /* z^2 <= 2^zz */
mpz_init_set_ui (p, 0);
mpz_init_set_ui (q, 1);
/* initialize p/q to h(n) */
for (k = 1; k <= n; k++)
{
/* p/q + 1/k = (k*p+q)/(q*k) */
mpz_mul_ui (p, p, k);
mpz_add (p, p, q);
mpz_mul_ui (q, q, k);
}
mpfr_init2 (t, MPFR_PREC(s));
mpfr_init2 (u, MPFR_PREC(s));
mpfr_fac_ui (t, n, MPFR_RNDN);
mpfr_div (t, c, t, MPFR_RNDN); /* c/n! */
mpfr_mul_z (u, t, p, MPFR_RNDN);
mpfr_div_z (s, u, q, MPFR_RNDN);
exps = MPFR_EXP (s);
expU = exps;
for (k = 1; ;k ++)
{
/* update t */
mpfr_mul (t, t, y, MPFR_RNDN);
mpfr_div_ui (t, t, k, MPFR_RNDN);
mpfr_div_ui (t, t, n + k, MPFR_RNDN);
/* update p/q:
p/q + 1/k + 1/(n+k) = [p*k*(n+k) + q*(n+k) + q*k]/(q*k*(n+k)) */
mpz_mul_ui (p, p, k);
mpz_mul_ui (p, p, n + k);
mpz_addmul_ui (p, q, n + 2 * k);
mpz_mul_ui (q, q, k);
mpz_mul_ui (q, q, n + k);
mpfr_mul_z (u, t, p, MPFR_RNDN);
mpfr_div_z (u, u, q, MPFR_RNDN);
exps = MPFR_EXP (u);
if (exps > expU)
expU = exps;
mpfr_add (s, s, u, MPFR_RNDN);
exps = MPFR_EXP (s);
if (exps > expU)
expU = exps;
if (MPFR_EXP (u) + (mp_exp_t) MPFR_PREC (u) < MPFR_EXP (s) &&
zz / (2 * k) < k + n)
break;
}
mpfr_clear (t);
mpfr_clear (u);
mpz_clear (p);
mpz_clear (q);
exps = expU - MPFR_EXP (s);
/* the error is bounded by (6k^2+33/2k+11) 2^exps ulps
<= 8*(k+2)^2 2^exps ulps */
return 3 + 2 * MPFR_INT_CEIL_LOG2(k + 2) + exps;
}
int
mpfr_yn (mpfr_ptr res, long n, mpfr_srcptr z, mpfr_rnd_t r)
{
int inex;
unsigned long absn;
MPFR_LOG_FUNC (("x[%#R]=%R n=%d rnd=%d", z, z, n, r),
("y[%#R]=%R", res, res));
absn = SAFE_ABS (unsigned long, n);
if (MPFR_UNLIKELY (MPFR_IS_SINGULAR (z)))
{
if (MPFR_IS_NAN (z))
{
MPFR_SET_NAN (res); /* y(n,NaN) = NaN */
MPFR_RET_NAN;
}
/* y(n,z) tends to zero when z goes to +Inf, oscillating around
0. We choose to return +0 in that case. */
else if (MPFR_IS_INF (z))
{
if (MPFR_SIGN(z) > 0)
return mpfr_set_ui (res, 0, r);
else /* y(n,-Inf) = NaN */
{
MPFR_SET_NAN (res);
MPFR_RET_NAN;
}
}
else /* y(n,z) tends to -Inf for n >= 0 or n even, to +Inf otherwise,
when z goes to zero */
{
MPFR_SET_INF(res);
if (n >= 0 || (n & 1) == 0)
MPFR_SET_NEG(res);
else
MPFR_SET_POS(res);
MPFR_RET(0);
}
}
/* for z < 0, y(n,z) is imaginary except when j(n,|z|) = 0, which we
assume does not happen for a rational z. */
if (MPFR_SIGN(z) < 0)
{
MPFR_SET_NAN (res);
MPFR_RET_NAN;
}
/* now z is not singular, and z > 0 */
/* Deal with tiny arguments. We have:
y0(z) = 2 log(z)/Pi + 2 (euler - log(2))/Pi + O(log(z)*z^2), more
precisely for 0 <= z <= 1/2, with g(z) = 2/Pi + 2(euler-log(2))/Pi/log(z),
g(z) - 0.41*z^2 < y0(z)/log(z) < g(z)
thus since log(z) is negative:
g(z)*log(z) < y0(z) < (g(z) - z^2/2)*log(z)
and since |g(z)| >= 0.63 for 0 <= z <= 1/2, the relative error on
y0(z)/log(z) is bounded by 0.41*z^2/0.63 <= 0.66*z^2.
Note: we use both the main term in log(z) and the constant term, because
otherwise the relative error would be only in 1/log(|log(z)|).
*/
if (n == 0 && MPFR_EXP(z) < - (mp_exp_t) (MPFR_PREC(res) / 2))
{
mpfr_t l, h, t, logz;
mp_prec_t prec;
int ok, inex2;
prec = MPFR_PREC(res) + 10;
mpfr_init2 (l, prec);
mpfr_init2 (h, prec);
mpfr_init2 (t, prec);
mpfr_init2 (logz, prec);
/* first enclose log(z) + euler - log(2) = log(z/2) + euler */
mpfr_log (logz, z, MPFR_RNDD); /* lower bound of log(z) */
mpfr_set (h, logz, MPFR_RNDU); /* exact */
mpfr_nextabove (h); /* upper bound of log(z) */
mpfr_const_euler (t, MPFR_RNDD); /* lower bound of euler */
mpfr_add (l, logz, t, MPFR_RNDD); /* lower bound of log(z) + euler */
mpfr_nextabove (t); /* upper bound of euler */
mpfr_add (h, h, t, MPFR_RNDU); /* upper bound of log(z) + euler */
mpfr_const_log2 (t, MPFR_RNDU); /* upper bound of log(2) */
mpfr_sub (l, l, t, MPFR_RNDD); /* lower bound of log(z/2) + euler */
mpfr_nextbelow (t); /* lower bound of log(2) */
mpfr_sub (h, h, t, MPFR_RNDU); /* upper bound of log(z/2) + euler */
mpfr_const_pi (t, MPFR_RNDU); /* upper bound of Pi */
mpfr_div (l, l, t, MPFR_RNDD); /* lower bound of (log(z/2)+euler)/Pi */
mpfr_nextbelow (t); /* lower bound of Pi */
mpfr_div (h, h, t, MPFR_RNDD); /* upper bound of (log(z/2)+euler)/Pi */
mpfr_mul_2ui (l, l, 1, MPFR_RNDD); /* lower bound on g(z)*log(z) */
mpfr_mul_2ui (h, h, 1, MPFR_RNDU); /* upper bound on g(z)*log(z) */
/* we now have l <= g(z)*log(z) <= h, and we need to add -z^2/2*log(z)
to h */
mpfr_mul (t, z, z, MPFR_RNDU); /* upper bound on z^2 */
/* since logz is negative, a lower bound corresponds to an upper bound
for its absolute value */
mpfr_neg (t, t, MPFR_RNDD);
mpfr_div_2ui (t, t, 1, MPFR_RNDD);
mpfr_mul (t, t, logz, MPFR_RNDU); /* upper bound on z^2/2*log(z) */
/* an underflow may happen in the above instructions, clear flag */
mpfr_clear_underflow ();
mpfr_add (h, h, t, MPFR_RNDU);
inex = mpfr_prec_round (l, MPFR_PREC(res), r);
inex2 = mpfr_prec_round (h, MPFR_PREC(res), r);
/* we need h=l and inex=inex2 */
ok = (inex == inex2) && (mpfr_cmp (l, h) == 0);
if (ok)
mpfr_set (res, h, r); /* exact */
mpfr_clear (l);
mpfr_clear (h);
mpfr_clear (t);
mpfr_clear (logz);
if (ok)
return inex;
}
/* small argument check for y1(z) = -2/Pi/z + O(log(z)):
for 0 <= z <= 1, |y1(z) + 2/Pi/z| <= 0.25 */
if (n == 1 && MPFR_EXP(z) + 1 < - (mp_exp_t) MPFR_PREC(res))
{
mpfr_t y;
mp_prec_t prec;
mp_exp_t err1;
int ok;
MPFR_BLOCK_DECL (flags);
/* since 2/Pi > 0.5, and |y1(z)| >= |2/Pi/z|, if z <= 2^(-emax-1),
then |y1(z)| > 2^emax */
prec = MPFR_PREC(res) + 10;
mpfr_init2 (y, prec);
mpfr_const_pi (y, MPFR_RNDU); /* Pi*(1+u)^2, where here and below u
represents a quantity <= 1/2^prec */
mpfr_mul (y, y, z, MPFR_RNDU); /* Pi*z * (1+u)^4, upper bound */
MPFR_BLOCK (flags, mpfr_ui_div (y, 2, y, MPFR_RNDZ));
/* 2/Pi/z * (1+u)^6, lower bound, with possible overflow */
if (MPFR_OVERFLOW (flags))
{
mpfr_clear (y);
return mpfr_overflow (res, r, -1);
}
mpfr_neg (y, y, MPFR_RNDN);
/* (1+u)^6 can be written 1+7u [for another value of u], thus the
error on 2/Pi/z is less than 7ulp(y). The truncation error is less
than 1/4, thus if ulp(y)>=1/4, the total error is less than 8ulp(y),
otherwise it is less than 1/4+7/8 <= 2. */
if (MPFR_EXP(y) + 2 >= MPFR_PREC(y)) /* ulp(y) >= 1/4 */
err1 = 3;
else /* ulp(y) <= 1/8 */
err1 = (mp_exp_t) MPFR_PREC(y) - MPFR_EXP(y) + 1;
ok = MPFR_CAN_ROUND (y, prec - err1, MPFR_PREC(res), r);
if (ok)
inex = mpfr_set (res, y, r);
mpfr_clear (y);
if (ok)
return inex;
}
/* we can use the asymptotic expansion as soon as z > p log(2)/2,
but to get some margin we use it for z > p/2 */
if (mpfr_cmp_ui (z, MPFR_PREC(res) / 2 + 3) > 0)
{
inex = mpfr_yn_asympt (res, n, z, r);
if (inex != 0)
return inex;
}
/* General case */
{
mp_prec_t prec;
mp_exp_t err1, err2, err3;
mpfr_t y, s1, s2, s3;
MPFR_ZIV_DECL (loop);
mpfr_init (y);
mpfr_init (s1);
mpfr_init (s2);
mpfr_init (s3);
prec = MPFR_PREC(res) + 2 * MPFR_INT_CEIL_LOG2 (MPFR_PREC (res)) + 13;
MPFR_ZIV_INIT (loop, prec);
for (;;)
{
mpfr_set_prec (y, prec);
mpfr_set_prec (s1, prec);
mpfr_set_prec (s2, prec);
mpfr_set_prec (s3, prec);
mpfr_mul (y, z, z, MPFR_RNDN);
mpfr_div_2ui (y, y, 2, MPFR_RNDN); /* z^2/4 */
/* store (z/2)^n temporarily in s2 */
mpfr_pow_ui (s2, z, absn, MPFR_RNDN);
mpfr_div_2si (s2, s2, absn, MPFR_RNDN);
/* compute S1 * (z/2)^(-n) */
if (n == 0)
{
mpfr_set_ui (s1, 0, MPFR_RNDN);
err1 = 0;
}
else
err1 = mpfr_yn_s1 (s1, y, absn - 1);
mpfr_div (s1, s1, s2, MPFR_RNDN); /* (z/2)^(-n) * S1 */
/* See algorithms.tex: the relative error on s1 is bounded by
(3n+3)*2^(e+1-prec). */
err1 = MPFR_INT_CEIL_LOG2 (3 * absn + 3) + err1 + 1;
/* rel_err(s1) <= 2^(err1-prec), thus err(s1) <= 2^err1 ulps */
/* compute (z/2)^n * S3 */
mpfr_neg (y, y, MPFR_RNDN); /* -z^2/4 */
err3 = mpfr_yn_s3 (s3, y, s2, absn); /* (z/2)^n * S3 */
/* the error on s3 is bounded by 2^err3 ulps */
/* add s1+s3 */
err1 += MPFR_EXP(s1);
mpfr_add (s1, s1, s3, MPFR_RNDN);
/* the error is bounded by 1/2 + 2^err1*2^(- EXP(s1))
+ 2^err3*2^(EXP(s3) - EXP(s1)) */
err3 += MPFR_EXP(s3);
err1 = (err3 > err1) ? err3 + 1 : err1 + 1;
err1 -= MPFR_EXP(s1);
err1 = (err1 >= 0) ? err1 + 1 : 1;
/* now the error on s1 is bounded by 2^err1*ulp(s1) */
/* compute S2 */
mpfr_div_2ui (s2, z, 1, MPFR_RNDN); /* z/2 */
mpfr_log (s2, s2, MPFR_RNDN); /* log(z/2) */
mpfr_const_euler (s3, MPFR_RNDN);
err2 = MPFR_EXP(s2) > MPFR_EXP(s3) ? MPFR_EXP(s2) : MPFR_EXP(s3);
mpfr_add (s2, s2, s3, MPFR_RNDN); /* log(z/2) + gamma */
err2 -= MPFR_EXP(s2);
mpfr_mul_2ui (s2, s2, 1, MPFR_RNDN); /* 2*(log(z/2) + gamma) */
mpfr_jn (s3, absn, z, MPFR_RNDN); /* Jn(z) */
mpfr_mul (s2, s2, s3, MPFR_RNDN); /* 2*(log(z/2) + gamma)*Jn(z) */
err2 += 4; /* the error on s2 is bounded by 2^err2 ulps, see
algorithms.tex */
/* add all three sums */
err1 += MPFR_EXP(s1); /* the error on s1 is bounded by 2^err1 */
err2 += MPFR_EXP(s2); /* the error on s2 is bounded by 2^err2 */
mpfr_sub (s2, s2, s1, MPFR_RNDN); /* s2 - (s1+s3) */
err2 = (err1 > err2) ? err1 + 1 : err2 + 1;
err2 -= MPFR_EXP(s2);
err2 = (err2 >= 0) ? err2 + 1 : 1;
/* now the error on s2 is bounded by 2^err2*ulp(s2) */
mpfr_const_pi (y, MPFR_RNDN); /* error bounded by 1 ulp */
mpfr_div (s2, s2, y, MPFR_RNDN); /* error bounded by
2^(err2+1)*ulp(s2) */
err2 ++;
if (MPFR_LIKELY (MPFR_CAN_ROUND (s2, prec - err2, MPFR_PREC(res), r)))
break;
MPFR_ZIV_NEXT (loop, prec);
}
MPFR_ZIV_FREE (loop);
inex = (n >= 0 || (n & 1) == 0)
? mpfr_set (res, s2, r)
: mpfr_neg (res, s2, r);
mpfr_clear (y);
mpfr_clear (s1);
mpfr_clear (s2);
mpfr_clear (s3);
}
return inex;
}
#define MPFR_YN
#include "jyn_asympt.c"
|