/* ----------------------------------------------------------------------- * * * Copyright 1996-2019 The NASM Authors - All Rights Reserved * See the file AUTHORS included with the NASM distribution for * the specific copyright holders. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following * conditions are met: * * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above * copyright notice, this list of conditions and the following * disclaimer in the documentation and/or other materials provided * with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND * CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, * INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR * OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, * EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * * ----------------------------------------------------------------------- */ /* * Common code for outelf32 and outelf64 */ #include "compiler.h" #include "nasm.h" #include "nasmlib.h" #include "error.h" #include "saa.h" #include "raa.h" #include "stdscan.h" #include "eval.h" #include "outform.h" #include "outlib.h" #include "rbtree.h" #include "hashtbl.h" #include "ver.h" #include "dwarf.h" #include "stabs.h" #include "outelf.h" #include "elf.h" #if defined(OF_ELF32) || defined(OF_ELF64) || defined(OF_ELFX32) #define SECT_DELTA 32 static struct elf_section **sects; static int nsects, sectlen; #define SHSTR_DELTA 256 static char *shstrtab; static int shstrtablen, shstrtabsize; static struct SAA *syms; static uint32_t nlocals, nglobs, ndebugs; /* Symbol counts */ static int32_t def_seg; static struct RAA *bsym; static struct SAA *symtab, *symtab_shndx; static struct SAA *strs; static uint32_t strslen; static struct RAA *section_by_index; static struct hash_table section_by_name; static struct elf_symbol *fwds; static char elf_module[FILENAME_MAX]; extern const struct ofmt of_elf32; extern const struct ofmt of_elf64; extern const struct ofmt of_elfx32; static struct ELF_SECTDATA { void *data; int64_t len; bool is_saa; } *elf_sects; static int elf_nsect, nsections; static int64_t elf_foffs; static void elf_write(void); static void elf_sect_write(struct elf_section *, const void *, size_t); static void elf_sect_writeaddr(struct elf_section *, int64_t, size_t); static void elf_section_header(int name, int type, uint64_t flags, void *data, bool is_saa, uint64_t datalen, int link, int info, uint64_t align, uint64_t entsize); static void elf_write_sections(void); static size_t elf_build_symtab(void); static int add_sectname(const char *, const char *); /* First debugging section index */ static int sec_debug; struct erel { int offset; int info; }; struct symlininfo { int offset; int section; /* index into sects[] */ int segto; /* internal section number */ char *name; /* shallow-copied pointer of section name */ }; struct linelist { struct linelist *next; struct linelist *last; struct symlininfo info; char *filename; int line; }; struct sectlist { struct SAA *psaa; int section; int line; int offset; int file; struct sectlist *next; struct sectlist *last; }; /* common debug variables */ static int currentline = 1; static int debug_immcall = 0; /* stabs debug variables */ static struct linelist *stabslines = 0; static int numlinestabs = 0; static char *stabs_filename = 0; static uint8_t *stabbuf = 0, *stabstrbuf = 0, *stabrelbuf = 0; static int stablen, stabstrlen, stabrellen; /* dwarf debug variables */ static struct linelist *dwarf_flist = 0, *dwarf_clist = 0, *dwarf_elist = 0; static struct sectlist *dwarf_fsect = 0, *dwarf_csect = 0, *dwarf_esect = 0; static int dwarf_numfiles = 0, dwarf_nsections; static uint8_t *arangesbuf = 0, *arangesrelbuf = 0, *pubnamesbuf = 0, *infobuf = 0, *inforelbuf = 0, *abbrevbuf = 0, *linebuf = 0, *linerelbuf = 0, *framebuf = 0, *locbuf = 0; static int8_t line_base = -5, line_range = 14, opcode_base = 13; static int arangeslen, arangesrellen, pubnameslen, infolen, inforellen, abbrevlen, linelen, linerellen, framelen, loclen; static int64_t dwarf_infosym, dwarf_abbrevsym, dwarf_linesym; static struct elf_symbol *lastsym; /* common debugging routines */ static void debug_typevalue(int32_t); /* stabs debugging routines */ static void stabs_linenum(const char *filename, int32_t linenumber, int32_t); static void stabs_output(int, void *); static void stabs_generate(void); static void stabs_cleanup(void); /* dwarf debugging routines */ /* This should match the order in elf_write() */ enum dwarf_sect { DWARF_ARANGES, DWARF_RELA_ARANGES, DWARF_PUBNAMES, DWARF_INFO, DWARF_RELA_INFO, DWARF_ABBREV, DWARF_LINE, DWARF_RELA_LINE, DWARF_FRAME, DWARF_LOC, DWARF_NSECT }; struct dwarf_format { uint16_t dwarf_version; uint16_t sect_version[DWARF_NSECT]; /* ... add more here to generalize further */ }; const struct dwarf_format *dwfmt; static void dwarf32_init(void); static void dwarfx32_init(void); static void dwarf64_init(void); static void dwarf_linenum(const char *filename, int32_t linenumber, int32_t); static void dwarf_output(int, void *); static void dwarf_generate(void); static void dwarf_cleanup(void); static void dwarf_findfile(const char *); static void dwarf_findsect(const int); struct elf_format_info { size_t word; /* Word size (4 or 8) */ size_t ehdr_size; /* Size of the ELF header */ size_t shdr_size; /* Size of a section header */ size_t sym_size; /* Size of a symbol */ size_t rel_size; /* Size of a reltype relocation */ size_t rela_size; /* Size of a RELA relocation */ char relpfx[8]; /* Relocation section prefix */ uint32_t reltype; /* Relocation section type */ uint16_t e_machine; /* Header e_machine field */ uint8_t ei_class; /* ELFCLASS32 or ELFCLASS64 */ bool elf64; /* 64-bit ELF */ /* Write a symbol */ void (*elf_sym)(const struct elf_symbol *); /* Build a relocation table */ struct SAA *(*elf_build_reltab)(const struct elf_reloc *); }; static const struct elf_format_info *efmt; static void elf32_sym(const struct elf_symbol *sym); static void elf64_sym(const struct elf_symbol *sym); static struct SAA *elf32_build_reltab(const struct elf_reloc *r); static struct SAA *elfx32_build_reltab(const struct elf_reloc *r); static struct SAA *elf64_build_reltab(const struct elf_reloc *r); static bool dfmt_is_stabs(void); static bool dfmt_is_dwarf(void); /* * Special NASM section numbers which are used to define ELF special * symbols. */ static int32_t elf_gotpc_sect, elf_gotoff_sect; static int32_t elf_got_sect, elf_plt_sect; static int32_t elf_sym_sect, elf_gottpoff_sect, elf_tlsie_sect; uint8_t elf_osabi = 0; /* Default OSABI = 0 (System V or Linux) */ uint8_t elf_abiver = 0; /* Current ABI version */ /* Known sections with nonstandard defaults. -n means n*pointer size. */ struct elf_known_section { const char *name; /* Name of section */ int type; /* Section type (SHT_) */ uint32_t flags; /* Section flags (SHF_) */ int align; /* Section alignment */ int entsize; /* Entry size, if applicable */ }; static const struct elf_known_section elf_known_sections[] = { { ".text", SHT_PROGBITS, SHF_ALLOC|SHF_EXECINSTR, 16, 0 }, { ".rodata", SHT_PROGBITS, SHF_ALLOC, 4, 0 }, { ".lrodata", SHT_PROGBITS, SHF_ALLOC, 4, 0 }, { ".data", SHT_PROGBITS, SHF_ALLOC|SHF_WRITE, 4, 0 }, { ".ldata", SHT_PROGBITS, SHF_ALLOC|SHF_WRITE, 4, 0 }, { ".bss", SHT_NOBITS, SHF_ALLOC|SHF_WRITE, 4, 0 }, { ".lbss", SHT_NOBITS, SHF_ALLOC|SHF_WRITE, 4, 0 }, { ".tdata", SHT_PROGBITS, SHF_ALLOC|SHF_WRITE|SHF_TLS, 4, 0 }, { ".tbss", SHT_NOBITS, SHF_ALLOC|SHF_WRITE|SHF_TLS, 4, 0 }, { ".comment", SHT_PROGBITS, 0, 1, 0 }, { ".preinit_array", SHT_PREINIT_ARRAY, SHF_ALLOC, -1, -1 }, { ".init_array", SHT_INIT_ARRAY, SHF_ALLOC, -1, -1 }, { ".fini_array", SHT_FINI_ARRAY, SHF_ALLOC, -1, -1 }, { ".note", SHT_NOTE, 0, 4, 0 }, { NULL /*default*/, SHT_PROGBITS, SHF_ALLOC, 1, 0 } }; struct size_unit { char name[8]; int bytes; int align; }; static const struct size_unit size_units[] = { { "byte", 1, 1 }, { "word", 2, 2 }, { "dword", 4, 4 }, { "qword", 8, 8 }, { "tword", 10, 2 }, { "tbyte", 10, 2 }, { "oword", 16, 16 }, { "xword", 16, 16 }, { "yword", 32, 32 }, { "zword", 64, 64 }, { "pointer", -1, -1 }, { "", 0, 0 } }; static inline size_t to_bytes(int val) { return (val >= 0) ? (size_t)val : -val * efmt->word; } /* parse section attributes */ static void elf_section_attrib(char *name, char *attr, uint32_t *flags_and, uint32_t *flags_or, uint64_t *alignp, uint64_t *entsize, int *type) { char *opt, *val, *next; uint64_t align = 0; uint64_t xalign = 0; opt = nasm_skip_spaces(attr); if (!opt || !*opt) return; while ((opt = nasm_opt_val(opt, &val, &next))) { if (!nasm_stricmp(opt, "align")) { if (!val) { nasm_nonfatal("section align without value specified"); } else { bool err; uint64_t a = readnum(val, &err); if (a && !is_power2(a)) { nasm_error(ERR_NONFATAL, "section alignment %"PRId64" is not a power of two", a); } else if (a > align) { align = a; } } } else if (!nasm_stricmp(opt, "alloc")) { *flags_and |= SHF_ALLOC; *flags_or |= SHF_ALLOC; } else if (!nasm_stricmp(opt, "noalloc")) { *flags_and |= SHF_ALLOC; *flags_or &= ~SHF_ALLOC; } else if (!nasm_stricmp(opt, "exec")) { *flags_and |= SHF_EXECINSTR; *flags_or |= SHF_EXECINSTR; } else if (!nasm_stricmp(opt, "noexec")) { *flags_and |= SHF_EXECINSTR; *flags_or &= ~SHF_EXECINSTR; } else if (!nasm_stricmp(opt, "write")) { *flags_and |= SHF_WRITE; *flags_or |= SHF_WRITE; } else if (!nasm_stricmp(opt, "nowrite") || !nasm_stricmp(opt, "readonly")) { *flags_and |= SHF_WRITE; *flags_or &= ~SHF_WRITE; } else if (!nasm_stricmp(opt, "tls")) { *flags_and |= SHF_TLS; *flags_or |= SHF_TLS; } else if (!nasm_stricmp(opt, "notls")) { *flags_and |= SHF_TLS; *flags_or &= ~SHF_TLS; } else if (!nasm_stricmp(opt, "merge")) { *flags_and |= SHF_MERGE; *flags_or |= SHF_MERGE; } else if (!nasm_stricmp(opt, "nomerge")) { *flags_and |= SHF_MERGE; *flags_or &= ~SHF_MERGE; } else if (!nasm_stricmp(opt, "strings")) { *flags_and |= SHF_STRINGS; *flags_or |= SHF_STRINGS; } else if (!nasm_stricmp(opt, "nostrings")) { *flags_and |= SHF_STRINGS; *flags_or &= ~SHF_STRINGS; } else if (!nasm_stricmp(opt, "progbits")) { *type = SHT_PROGBITS; } else if (!nasm_stricmp(opt, "nobits")) { *type = SHT_NOBITS; } else if (!nasm_stricmp(opt, "note")) { *type = SHT_NOTE; } else if (!nasm_stricmp(opt, "preinit_array")) { *type = SHT_PREINIT_ARRAY; } else if (!nasm_stricmp(opt, "init_array")) { *type = SHT_INIT_ARRAY; } else if (!nasm_stricmp(opt, "fini_array")) { *type = SHT_FINI_ARRAY; } else { uint64_t mult; size_t l; const char *a = strchr(opt, '*'); bool err; const struct size_unit *su; if (a) { l = a - opt - 1; mult = readnum(a+1, &err); } else { l = strlen(opt); mult = 1; } for (su = size_units; su->bytes; su++) { if (!nasm_strnicmp(opt, su->name, l)) break; } if (su->bytes) { *entsize = to_bytes(su->bytes) * mult; xalign = to_bytes(su->align); } else { /* Unknown attribute */ nasm_warn(WARN_OTHER, "unknown section attribute '%s' ignored on" " declaration of section `%s'", opt, name); } } opt = next; } switch (*type) { case SHT_PREINIT_ARRAY: case SHT_INIT_ARRAY: case SHT_FINI_ARRAY: if (!xalign) xalign = efmt->word; if (!*entsize) *entsize = efmt->word; break; default: break; } if (!align) align = xalign; if (!align) align = SHA_ANY; *alignp = align; } static enum directive_result elf_directive(enum directive directive, char *value) { int64_t n; bool err; char *p; switch (directive) { case D_OSABI: if (!pass_first()) /* XXX: Why? */ return DIRR_OK; n = readnum(value, &err); if (err) { nasm_nonfatal("`osabi' directive requires a parameter"); return DIRR_ERROR; } if (n < 0 || n > 255) { nasm_nonfatal("valid osabi numbers are 0 to 255"); return DIRR_ERROR; } elf_osabi = n; elf_abiver = 0; p = strchr(value,','); if (!p) return DIRR_OK; n = readnum(p + 1, &err); if (err || n < 0 || n > 255) { nasm_nonfatal("invalid ABI version number (valid: 0 to 255)"); return DIRR_ERROR; } elf_abiver = n; return DIRR_OK; default: return DIRR_UNKNOWN; } } static void elf_init(void); static void elf32_init(void) { static const struct elf_format_info ef_elf32 = { 4, sizeof(Elf32_Ehdr), sizeof(Elf32_Shdr), sizeof(Elf32_Sym), sizeof(Elf32_Rel), sizeof(Elf32_Rela), ".rel", SHT_REL, EM_386, ELFCLASS32, false, elf32_sym, elf32_build_reltab }; efmt = &ef_elf32; elf_init(); } static void elfx32_init(void) { static const struct elf_format_info ef_elfx32 = { 4, sizeof(Elf32_Ehdr), sizeof(Elf32_Shdr), sizeof(Elf32_Sym), sizeof(Elf32_Rela), sizeof(Elf32_Rela), ".rela", SHT_RELA, EM_X86_64, ELFCLASS32, false, elf32_sym, elfx32_build_reltab }; efmt = &ef_elfx32; elf_init(); } static void elf64_init(void) { static const struct elf_format_info ef_elf64 = { 8, sizeof(Elf64_Ehdr), sizeof(Elf64_Shdr), sizeof(Elf64_Sym), sizeof(Elf64_Rela), sizeof(Elf64_Rela), ".rela", SHT_RELA, EM_X86_64, ELFCLASS64, true, elf64_sym, elf64_build_reltab }; efmt = &ef_elf64; elf_init(); } static void elf_init(void) { static const char * const reserved_sections[] = { ".shstrtab", ".strtab", ".symtab", ".symtab_shndx", NULL }; const char * const *p; strlcpy(elf_module, inname, sizeof(elf_module)); sects = NULL; nsects = sectlen = 0; syms = saa_init((int32_t)sizeof(struct elf_symbol)); nlocals = nglobs = ndebugs = 0; bsym = raa_init(); strs = saa_init(1L); saa_wbytes(strs, "\0", 1L); saa_wbytes(strs, elf_module, strlen(elf_module)+1); strslen = 2 + strlen(elf_module); shstrtab = NULL; shstrtablen = shstrtabsize = 0;; add_sectname("", ""); /* SHN_UNDEF */ fwds = NULL; section_by_index = raa_init(); /* * Add reserved section names to the section hash, with NULL * as the data pointer */ for (p = reserved_sections; *p; p++) { struct hash_insert hi; hash_find(§ion_by_name, *p, &hi); hash_add(&hi, *p, NULL); } /* * FIXME: tlsie is Elf32 only and * gottpoff is Elfx32|64 only. */ elf_gotpc_sect = seg_alloc(); backend_label("..gotpc", elf_gotpc_sect + 1, 0L); elf_gotoff_sect = seg_alloc(); backend_label("..gotoff", elf_gotoff_sect + 1, 0L); elf_got_sect = seg_alloc(); backend_label("..got", elf_got_sect + 1, 0L); elf_plt_sect = seg_alloc(); backend_label("..plt", elf_plt_sect + 1, 0L); elf_sym_sect = seg_alloc(); backend_label("..sym", elf_sym_sect + 1, 0L); elf_gottpoff_sect = seg_alloc(); backend_label("..gottpoff", elf_gottpoff_sect + 1, 0L); elf_tlsie_sect = seg_alloc(); backend_label("..tlsie", elf_tlsie_sect + 1, 0L); def_seg = seg_alloc(); } static void elf_cleanup(void) { struct elf_reloc *r; int i; elf_write(); for (i = 0; i < nsects; i++) { if (sects[i]->type != SHT_NOBITS) saa_free(sects[i]->data); if (sects[i]->rel) saa_free(sects[i]->rel); while (sects[i]->head) { r = sects[i]->head; sects[i]->head = sects[i]->head->next; nasm_free(r); } } hash_free(§ion_by_name); raa_free(section_by_index); nasm_free(sects); saa_free(syms); raa_free(bsym); saa_free(strs); dfmt->cleanup(); } /* * Add entry to the elf .shstrtab section and increment nsections. * Returns the section index for this new section. * * IMPORTANT: this needs to match the order the section headers are * emitted. */ static int add_sectname(const char *firsthalf, const char *secondhalf) { int l1 = strlen(firsthalf); int l2 = strlen(secondhalf); while (shstrtablen + l1 + l2 + 1 > shstrtabsize) shstrtab = nasm_realloc(shstrtab, (shstrtabsize += SHSTR_DELTA)); memcpy(shstrtab + shstrtablen, firsthalf, l1); shstrtablen += l1; memcpy(shstrtab + shstrtablen, secondhalf, l2+1); shstrtablen += l2 + 1; return nsections++; } static struct elf_section * elf_make_section(char *name, int type, int flags, uint64_t align) { struct elf_section *s; s = nasm_zalloc(sizeof(*s)); if (type != SHT_NOBITS) s->data = saa_init(1L); s->tail = &s->head; if (!strcmp(name, ".text")) s->index = def_seg; else s->index = seg_alloc(); s->name = nasm_strdup(name); s->type = type; s->flags = flags; s->align = align; s->shndx = add_sectname("", name); if (nsects >= sectlen) sects = nasm_realloc(sects, (sectlen += SECT_DELTA) * sizeof(*sects)); sects[nsects++] = s; return s; } static int32_t elf_section_names(char *name, int *bits) { char *p; uint32_t flags, flags_and, flags_or; uint64_t align, entsize; void **hp; struct elf_section *s; struct hash_insert hi; int type; if (!name) { *bits = ofmt->maxbits; return def_seg; } p = nasm_skip_word(name); if (*p) *p++ = '\0'; flags_and = flags_or = type = align = entsize = 0; elf_section_attrib(name, p, &flags_and, &flags_or, &align, &entsize, &type); hp = hash_find(§ion_by_name, name, &hi); if (hp) { s = *hp; if (!s) { nasm_nonfatal("attempt to redefine reserved section name `%s'", name); return NO_SEG; } } else { const struct elf_known_section *ks = elf_known_sections; while (ks->name) { if (!strcmp(name, ks->name)) break; ks++; } type = type ? type : ks->type; if (!align) align = to_bytes(ks->align); if (!entsize) entsize = to_bytes(ks->entsize); flags = (ks->flags & ~flags_and) | flags_or; s = elf_make_section(name, type, flags, align); hash_add(&hi, s->name, s); section_by_index = raa_write_ptr(section_by_index, s->index >> 1, s); } if ((type && s->type != type) || ((s->flags & flags_and) != flags_or) || (entsize && s->entsize && entsize != s->entsize)) { nasm_warn(WARN_OTHER, "incompatible section attributes ignored on" " redeclaration of section `%s'", name); } if (align > s->align) s->align = align; if (entsize && !s->entsize) s->entsize = entsize; if ((flags_or & SHF_MERGE) && s->entsize == 0) { if (!(s->flags & SHF_STRINGS)) nasm_nonfatal("section attribute merge specified without an entry size or `strings'"); s->entsize = 1; } return s->index; } static inline bool sym_type_local(int type) { return ELF32_ST_BIND(type) == STB_LOCAL; } static void elf_deflabel(char *name, int32_t segment, int64_t offset, int is_global, char *special) { int pos = strslen; struct elf_symbol *sym; const char *spcword = nasm_skip_spaces(special); int bind, type; /* st_info components */ const struct elf_section *sec = NULL; if (debug_level(2)) { nasm_debug(" elf_deflabel: %s, seg=%"PRIx32", off=%"PRIx64", is_global=%d, %s\n", name, segment, offset, is_global, special); } if (name[0] == '.' && name[1] == '.' && name[2] != '@') { /* * This is a NASM special symbol. We never allow it into * the ELF symbol table, even if it's a valid one. If it * _isn't_ a valid one, we should barf immediately. * * FIXME: tlsie is Elf32 only, and gottpoff is Elfx32|64 only. */ if (strcmp(name, "..gotpc") && strcmp(name, "..gotoff") && strcmp(name, "..got") && strcmp(name, "..plt") && strcmp(name, "..sym") && strcmp(name, "..gottpoff") && strcmp(name, "..tlsie")) nasm_nonfatal("unrecognised special symbol `%s'", name); return; } if (is_global == 3) { struct elf_symbol **s; /* * Fix up a forward-reference symbol size from the first * pass. */ for (s = &fwds; *s; s = &(*s)->nextfwd) if (!strcmp((*s)->name, name)) { struct tokenval tokval; expr *e; char *p = nasm_skip_spaces(nasm_skip_word(special)); stdscan_reset(); stdscan_set(p); tokval.t_type = TOKEN_INVALID; e = evaluate(stdscan, NULL, &tokval, NULL, 1, NULL); if (e) { if (!is_simple(e)) nasm_nonfatal("cannot use relocatable" " expression as symbol size"); else (*s)->size = reloc_value(e); } /* * Remove it from the list of unresolved sizes. */ nasm_free((*s)->name); *s = (*s)->nextfwd; return; } return; /* it wasn't an important one */ } saa_wbytes(strs, name, (int32_t)(1 + strlen(name))); strslen += 1 + strlen(name); lastsym = sym = saa_wstruct(syms); memset(&sym->symv, 0, sizeof(struct rbtree)); sym->strpos = pos; bind = is_global ? STB_GLOBAL : STB_LOCAL; type = STT_NOTYPE; sym->other = STV_DEFAULT; sym->size = 0; if (segment == NO_SEG) { sym->section = XSHN_ABS; } else { sym->section = XSHN_UNDEF; if (segment == def_seg) { /* we have to be sure at least text section is there */ int tempint; if (segment != elf_section_names(".text", &tempint)) nasm_panic("strange segment conditions in ELF driver"); } sec = raa_read_ptr(section_by_index, segment >> 1); if (sec) sym->section = sec->shndx; } if (is_global == 2) { sym->size = offset; sym->symv.key = 0; sym->section = XSHN_COMMON; /* * We have a common variable. Check the special text to see * if it's a valid number and power of two; if so, store it * as the alignment for the common variable. * * XXX: this should allow an expression. */ if (spcword) { bool err; sym->symv.key = readnum(spcword, &err); if (err) nasm_nonfatal("alignment constraint `%s' is not a" " valid number", special); else if (!is_power2(sym->symv.key)) nasm_nonfatal("alignment constraint `%s' is not a" " power of two", special); spcword = nasm_skip_spaces(nasm_skip_word(spcword)); } } else { sym->symv.key = (sym->section == XSHN_UNDEF ? 0 : offset); } if (spcword && *spcword) { const char *wend; bool ok = true; while (ok) { size_t wlen; wend = nasm_skip_word(spcword); wlen = wend - spcword; switch (wlen) { case 4: if (!nasm_strnicmp(spcword, "data", wlen)) type = STT_OBJECT; else if (!nasm_strnicmp(spcword, "weak", wlen)) bind = STB_WEAK; else ok = false; break; case 6: if (!nasm_strnicmp(spcword, "notype", wlen)) type = STT_NOTYPE; else if (!nasm_strnicmp(spcword, "object", wlen)) type = STT_OBJECT; else if (!nasm_strnicmp(spcword, "hidden", wlen)) sym->other = STV_HIDDEN; else if (!nasm_strnicmp(spcword, "strong", wlen)) bind = STB_GLOBAL; else ok = false; break; case 7: if (!nasm_strnicmp(spcword, "default", wlen)) sym->other = STV_DEFAULT; else ok = false; break; case 8: if (!nasm_strnicmp(spcword, "function", wlen)) type = STT_FUNC; else if (!nasm_stricmp(spcword, "internal")) sym->other = STV_INTERNAL; else ok = false; break; case 9: if (!nasm_strnicmp(spcword, "protected", wlen)) sym->other = STV_PROTECTED; else ok = false; break; default: ok = false; break; } if (ok) spcword = nasm_skip_spaces(wend); } if (!is_global && bind != STB_LOCAL) { nasm_nonfatal("weak and strong only applies to global symbols"); bind = STB_LOCAL; } if (spcword && *spcword) { struct tokenval tokval; expr *e; int fwd = 0; char *saveme = stdscan_get(); /* * We have a size expression; attempt to * evaluate it. */ stdscan_reset(); stdscan_set((char *)spcword); tokval.t_type = TOKEN_INVALID; e = evaluate(stdscan, NULL, &tokval, &fwd, 0, NULL); if (fwd) { sym->nextfwd = fwds; fwds = sym; sym->name = nasm_strdup(name); } else if (e) { if (!is_simple(e)) nasm_nonfatal("cannot use relocatable" " expression as symbol size"); else sym->size = reloc_value(e); } stdscan_set(saveme); } } /* * If it is in a TLS segment, mark symbol accordingly. */ if (sec && (sec->flags & SHF_TLS)) type = STT_TLS; /* Note: ELF32_ST_INFO() and ELF64_ST_INFO() are identical */ sym->type = ELF32_ST_INFO(bind, type); if (sym_type_local(sym->type)) { nlocals++; } else { /* * If sym->section == SHN_ABS, then the first line of the * else section would cause a core dump, because its a reference * beyond the end of the section array. * This behaviour is exhibited by this code: * GLOBAL crash_nasm * crash_nasm equ 0 * To avoid such a crash, such requests are silently discarded. * This may not be the best solution. */ if (sym->section == XSHN_UNDEF || sym->section == XSHN_COMMON) { bsym = raa_write(bsym, segment, nglobs); } else if (sym->section != XSHN_ABS) { /* * This is a global symbol; so we must add it to the rbtree * of global symbols in its section. * * In addition, we check the special text for symbol * type and size information. */ sects[sym->section-1]->gsyms = rb_insert(sects[sym->section-1]->gsyms, &sym->symv); } sym->globnum = nglobs; nglobs++; } } static void elf_add_reloc(struct elf_section *sect, int32_t segment, int64_t offset, int type) { struct elf_reloc *r; r = *sect->tail = nasm_zalloc(sizeof(struct elf_reloc)); sect->tail = &r->next; r->address = sect->len; r->offset = offset; if (segment != NO_SEG) { const struct elf_section *s; s = raa_read_ptr(section_by_index, segment >> 1); if (s) r->symbol = s->shndx + 1; else r->symbol = GLOBAL_TEMP_BASE + raa_read(bsym, segment); } r->type = type; sect->nrelocs++; } /* * This routine deals with ..got and ..sym relocations: the more * complicated kinds. In shared-library writing, some relocations * with respect to global symbols must refer to the precise symbol * rather than referring to an offset from the base of the section * _containing_ the symbol. Such relocations call to this routine, * which searches the symbol list for the symbol in question. * * R_386_GOT32 | R_X86_64_GOT32 references require the _exact_ symbol address to be * used; R_386_32 | R_X86_64_32 references can be at an offset from the symbol. * The boolean argument `exact' tells us this. * * Return value is the adjusted value of `addr', having become an * offset from the symbol rather than the section. Should always be * zero when returning from an exact call. * * Limitation: if you define two symbols at the same place, * confusion will occur. * * Inefficiency: we search, currently, using a linked list which * isn't even necessarily sorted. */ static int64_t elf_add_gsym_reloc(struct elf_section *sect, int32_t segment, uint64_t offset, int64_t pcrel, int type, bool exact) { struct elf_reloc *r; struct elf_section *s; struct elf_symbol *sym; struct rbtree *srb; /* * First look up the segment/offset pair and find a global * symbol corresponding to it. If it's not one of our segments, * then it must be an external symbol, in which case we're fine * doing a normal elf_add_reloc after first sanity-checking * that the offset from the symbol is zero. */ s = raa_read_ptr(section_by_index, segment >> 1); if (!s) { if (exact && offset) nasm_nonfatal("invalid access to an external symbol"); else elf_add_reloc(sect, segment, offset - pcrel, type); return 0; } srb = rb_search(s->gsyms, offset); if (!srb || (exact && srb->key != offset)) { nasm_nonfatal("unable to find a suitable global symbol" " for this reference"); return 0; } sym = container_of(srb, struct elf_symbol, symv); r = *sect->tail = nasm_malloc(sizeof(struct elf_reloc)); sect->tail = &r->next; r->next = NULL; r->address = sect->len; r->offset = offset - pcrel - sym->symv.key; r->symbol = GLOBAL_TEMP_BASE + sym->globnum; r->type = type; sect->nrelocs++; return r->offset; } static void elf32_out(int32_t segto, const void *data, enum out_type type, uint64_t size, int32_t segment, int32_t wrt) { struct elf_section *s; int64_t addr; int reltype, bytes; static struct symlininfo sinfo; /* * handle absolute-assembly (structure definitions) */ if (segto == NO_SEG) { if (type != OUT_RESERVE) nasm_nonfatal("attempt to assemble code in [ABSOLUTE] space"); return; } s = raa_read_ptr(section_by_index, segto >> 1); if (!s) { int tempint; /* ignored */ if (segto != elf_section_names(".text", &tempint)) nasm_panic("strange segment conditions in ELF driver"); else s = sects[nsects - 1]; } /* again some stabs debugging stuff */ sinfo.offset = s->len; /* Adjust to an index of the section table. */ sinfo.section = s->shndx - 1; sinfo.segto = segto; sinfo.name = s->name; dfmt->debug_output(TY_DEBUGSYMLIN, &sinfo); /* end of debugging stuff */ if (s->type == SHT_NOBITS && type != OUT_RESERVE) { nasm_warn(WARN_OTHER, "attempt to initialize memory in" " BSS section `%s': ignored", s->name); s->len += realsize(type, size); return; } switch (type) { case OUT_RESERVE: if (s->type != SHT_NOBITS) { nasm_warn(WARN_ZEROING, "uninitialized space declared in" " non-BSS section `%s': zeroing", s->name); elf_sect_write(s, NULL, size); } else s->len += size; break; case OUT_RAWDATA: elf_sect_write(s, data, size); break; case OUT_ADDRESS: { bool err = false; int asize = abs((int)size); addr = *(int64_t *)data; if (segment != NO_SEG) { if (segment & 1) { nasm_nonfatal("ELF format does not support" " segment base references"); } else { if (wrt == NO_SEG) { /* * The if() is a hack to deal with compilers which * don't handle switch() statements with 64-bit * expressions. */ switch (asize) { case 1: elf_add_reloc(s, segment, 0, R_386_8); break; case 2: elf_add_reloc(s, segment, 0, R_386_16); break; case 4: elf_add_reloc(s, segment, 0, R_386_32); break; default: /* Error issued further down */ err = true; break; } } else if (wrt == elf_gotpc_sect + 1) { /* * The user will supply GOT relative to $$. ELF * will let us have GOT relative to $. So we * need to fix up the data item by $-$$. */ err = asize != 4; addr += s->len; elf_add_reloc(s, segment, 0, R_386_GOTPC); } else if (wrt == elf_gotoff_sect + 1) { err = asize != 4; elf_add_reloc(s, segment, 0, R_386_GOTOFF); } else if (wrt == elf_tlsie_sect + 1) { err = asize != 4; addr = elf_add_gsym_reloc(s, segment, addr, 0, R_386_TLS_IE, true); } else if (wrt == elf_got_sect + 1) { err = asize != 4; addr = elf_add_gsym_reloc(s, segment, addr, 0, R_386_GOT32, true); } else if (wrt == elf_sym_sect + 1) { switch (asize) { case 1: addr = elf_add_gsym_reloc(s, segment, addr, 0, R_386_8, false); break; case 2: addr = elf_add_gsym_reloc(s, segment, addr, 0, R_386_16, false); break; case 4: addr = elf_add_gsym_reloc(s, segment, addr, 0, R_386_32, false); break; default: err = true; break; } } else if (wrt == elf_plt_sect + 1) { nasm_nonfatal("ELF format cannot produce non-PC-" "relative PLT references"); } else { nasm_nonfatal("ELF format does not support this" " use of WRT"); wrt = NO_SEG; /* we can at least _try_ to continue */ } } } if (err) { nasm_nonfatal("Unsupported %d-bit ELF relocation", asize << 3); } elf_sect_writeaddr(s, addr, asize); break; } case OUT_REL1ADR: reltype = R_386_PC8; bytes = 1; goto rel12adr; case OUT_REL2ADR: reltype = R_386_PC16; bytes = 2; goto rel12adr; rel12adr: addr = *(int64_t *)data - size; nasm_assert(segment != segto); if (segment != NO_SEG && (segment & 1)) { nasm_nonfatal("ELF format does not support" " segment base references"); } else { if (wrt == NO_SEG) { elf_add_reloc(s, segment, 0, reltype); } else { nasm_nonfatal("Unsupported %d-bit ELF relocation", bytes << 3); } } elf_sect_writeaddr(s, addr, bytes); break; case OUT_REL4ADR: addr = *(int64_t *)data - size; if (segment == segto) nasm_panic("intra-segment OUT_REL4ADR"); if (segment != NO_SEG && (segment & 1)) { nasm_nonfatal("ELF format does not support" " segment base references"); } else { if (wrt == NO_SEG) { elf_add_reloc(s, segment, 0, R_386_PC32); } else if (wrt == elf_plt_sect + 1) { elf_add_reloc(s, segment, 0, R_386_PLT32); } else if (wrt == elf_gotpc_sect + 1 || wrt == elf_gotoff_sect + 1 || wrt == elf_got_sect + 1) { nasm_nonfatal("ELF format cannot produce PC-" "relative GOT references"); } else { nasm_nonfatal("ELF format does not support this" " use of WRT"); wrt = NO_SEG; /* we can at least _try_ to continue */ } } elf_sect_writeaddr(s, addr, 4); break; case OUT_REL8ADR: nasm_nonfatal("32-bit ELF format does not support 64-bit relocations"); addr = 0; elf_sect_writeaddr(s, addr, 8); break; default: panic(); } } static void elf64_out(int32_t segto, const void *data, enum out_type type, uint64_t size, int32_t segment, int32_t wrt) { struct elf_section *s; int64_t addr; int reltype, bytes; static struct symlininfo sinfo; /* * handle absolute-assembly (structure definitions) */ if (segto == NO_SEG) { if (type != OUT_RESERVE) nasm_nonfatal("attempt to assemble code in [ABSOLUTE] space"); return; } s = raa_read_ptr(section_by_index, segto >> 1); if (!s) { int tempint; /* ignored */ if (segto != elf_section_names(".text", &tempint)) nasm_panic("strange segment conditions in ELF driver"); else s = sects[nsects - 1]; } /* again some stabs debugging stuff */ sinfo.offset = s->len; /* Adjust to an index of the section table. */ sinfo.section = s->shndx - 1; sinfo.segto = segto; sinfo.name = s->name; dfmt->debug_output(TY_DEBUGSYMLIN, &sinfo); /* end of debugging stuff */ if (s->type == SHT_NOBITS && type != OUT_RESERVE) { nasm_warn(WARN_OTHER, "attempt to initialize memory in" " BSS section `%s': ignored", s->name); s->len += realsize(type, size); return; } switch (type) { case OUT_RESERVE: if (s->type != SHT_NOBITS) { nasm_warn(WARN_ZEROING, "uninitialized space declared in" " non-BSS section `%s': zeroing", s->name); elf_sect_write(s, NULL, size); } else s->len += size; break; case OUT_RAWDATA: if (segment != NO_SEG) nasm_panic("OUT_RAWDATA with other than NO_SEG"); elf_sect_write(s, data, size); break; case OUT_ADDRESS: { int isize = (int)size; int asize = abs((int)size); addr = *(int64_t *)data; if (segment == NO_SEG) { /* Do nothing */ } else if (segment & 1) { nasm_nonfatal("ELF format does not support" " segment base references"); } else { if (wrt == NO_SEG) { switch (isize) { case 1: case -1: elf_add_reloc(s, segment, addr, R_X86_64_8); break; case 2: case -2: elf_add_reloc(s, segment, addr, R_X86_64_16); break; case 4: elf_add_reloc(s, segment, addr, R_X86_64_32); break; case -4: elf_add_reloc(s, segment, addr, R_X86_64_32S); break; case 8: case -8: elf_add_reloc(s, segment, addr, R_X86_64_64); break; default: nasm_panic("internal error elf64-hpa-871"); break; } addr = 0; } else if (wrt == elf_gotpc_sect + 1) { /* * The user will supply GOT relative to $$. ELF * will let us have GOT relative to $. So we * need to fix up the data item by $-$$. */ addr += s->len; elf_add_reloc(s, segment, addr, R_X86_64_GOTPC32); addr = 0; } else if (wrt == elf_gotoff_sect + 1) { if (asize != 8) { nasm_nonfatal("ELF64 requires ..gotoff " "references to be qword"); } else { elf_add_reloc(s, segment, addr, R_X86_64_GOTOFF64); addr = 0; } } else if (wrt == elf_got_sect + 1) { switch (asize) { case 4: elf_add_gsym_reloc(s, segment, addr, 0, R_X86_64_GOT32, true); addr = 0; break; case 8: elf_add_gsym_reloc(s, segment, addr, 0, R_X86_64_GOT64, true); addr = 0; break; default: nasm_nonfatal("invalid ..got reference"); break; } } else if (wrt == elf_sym_sect + 1) { switch (isize) { case 1: case -1: elf_add_gsym_reloc(s, segment, addr, 0, R_X86_64_8, false); addr = 0; break; case 2: case -2: elf_add_gsym_reloc(s, segment, addr, 0, R_X86_64_16, false); addr = 0; break; case 4: elf_add_gsym_reloc(s, segment, addr, 0, R_X86_64_32, false); addr = 0; break; case -4: elf_add_gsym_reloc(s, segment, addr, 0, R_X86_64_32S, false); addr = 0; break; case 8: case -8: elf_add_gsym_reloc(s, segment, addr, 0, R_X86_64_64, false); addr = 0; break; default: nasm_panic("internal error elf64-hpa-903"); break; } } else if (wrt == elf_plt_sect + 1) { nasm_nonfatal("ELF format cannot produce non-PC-" "relative PLT references"); } else { nasm_nonfatal("ELF format does not support this" " use of WRT"); } } elf_sect_writeaddr(s, addr, asize); break; } case OUT_REL1ADR: reltype = R_X86_64_PC8; bytes = 1; goto rel12adr; case OUT_REL2ADR: reltype = R_X86_64_PC16; bytes = 2; goto rel12adr; rel12adr: addr = *(int64_t *)data - size; if (segment == segto) nasm_panic("intra-segment OUT_REL1ADR"); if (segment == NO_SEG) { /* Do nothing */ } else if (segment & 1) { nasm_nonfatal("ELF format does not support" " segment base references"); } else { if (wrt == NO_SEG) { elf_add_reloc(s, segment, addr, reltype); addr = 0; } else { nasm_nonfatal("Unsupported %d-bit ELF relocation", bytes << 3); } } elf_sect_writeaddr(s, addr, bytes); break; case OUT_REL4ADR: addr = *(int64_t *)data - size; if (segment == segto) nasm_panic("intra-segment OUT_REL4ADR"); if (segment == NO_SEG) { /* Do nothing */ } else if (segment & 1) { nasm_nonfatal("ELF64 format does not support" " segment base references"); } else { if (wrt == NO_SEG) { elf_add_reloc(s, segment, addr, R_X86_64_PC32); addr = 0; } else if (wrt == elf_plt_sect + 1) { elf_add_gsym_reloc(s, segment, addr+size, size, R_X86_64_PLT32, true); addr = 0; } else if (wrt == elf_gotpc_sect + 1 || wrt == elf_got_sect + 1) { elf_add_gsym_reloc(s, segment, addr+size, size, R_X86_64_GOTPCREL, true); addr = 0; } else if (wrt == elf_gotoff_sect + 1 || wrt == elf_got_sect + 1) { nasm_nonfatal("ELF64 requires ..gotoff references to be " "qword absolute"); } else if (wrt == elf_gottpoff_sect + 1) { elf_add_gsym_reloc(s, segment, addr+size, size, R_X86_64_GOTTPOFF, true); addr = 0; } else { nasm_nonfatal("ELF64 format does not support this" " use of WRT"); } } elf_sect_writeaddr(s, addr, 4); break; case OUT_REL8ADR: addr = *(int64_t *)data - size; if (segment == segto) nasm_panic("intra-segment OUT_REL8ADR"); if (segment == NO_SEG) { /* Do nothing */ } else if (segment & 1) { nasm_nonfatal("ELF64 format does not support" " segment base references"); } else { if (wrt == NO_SEG) { elf_add_reloc(s, segment, addr, R_X86_64_PC64); addr = 0; } else if (wrt == elf_gotpc_sect + 1 || wrt == elf_got_sect + 1) { elf_add_gsym_reloc(s, segment, addr+size, size, R_X86_64_GOTPCREL64, true); addr = 0; } else if (wrt == elf_gotoff_sect + 1 || wrt == elf_got_sect + 1) { nasm_nonfatal("ELF64 requires ..gotoff references to be " "absolute"); } else if (wrt == elf_gottpoff_sect + 1) { nasm_nonfatal("ELF64 requires ..gottpoff references to be " "dword"); } else { nasm_nonfatal("ELF64 format does not support this" " use of WRT"); } } elf_sect_writeaddr(s, addr, 8); break; default: panic(); } } static void elfx32_out(int32_t segto, const void *data, enum out_type type, uint64_t size, int32_t segment, int32_t wrt) { struct elf_section *s; int64_t addr; int reltype, bytes; static struct symlininfo sinfo; /* * handle absolute-assembly (structure definitions) */ if (segto == NO_SEG) { if (type != OUT_RESERVE) nasm_nonfatal("attempt to assemble code in [ABSOLUTE] space"); return; } s = raa_read_ptr(section_by_index, segto >> 1); if (!s) { int tempint; /* ignored */ if (segto != elf_section_names(".text", &tempint)) nasm_panic("strange segment conditions in ELF driver"); else s = sects[nsects - 1]; } /* again some stabs debugging stuff */ sinfo.offset = s->len; /* Adjust to an index of the section table. */ sinfo.section = s->shndx - 1; sinfo.segto = segto; sinfo.name = s->name; dfmt->debug_output(TY_DEBUGSYMLIN, &sinfo); /* end of debugging stuff */ if (s->type == SHT_NOBITS && type != OUT_RESERVE) { nasm_warn(WARN_OTHER, "attempt to initialize memory in" " BSS section `%s': ignored", s->name); s->len += realsize(type, size); return; } switch (type) { case OUT_RESERVE: if (s->type != SHT_NOBITS) { nasm_warn(WARN_ZEROING, "uninitialized space declared in" " non-BSS section `%s': zeroing", s->name); elf_sect_write(s, NULL, size); } else s->len += size; break; case OUT_RAWDATA: if (segment != NO_SEG) nasm_panic("OUT_RAWDATA with other than NO_SEG"); elf_sect_write(s, data, size); break; case OUT_ADDRESS: { int isize = (int)size; int asize = abs((int)size); addr = *(int64_t *)data; if (segment == NO_SEG) { /* Do nothing */ } else if (segment & 1) { nasm_nonfatal("ELF format does not support" " segment base references"); } else { if (wrt == NO_SEG) { switch (isize) { case 1: case -1: elf_add_reloc(s, segment, addr, R_X86_64_8); break; case 2: case -2: elf_add_reloc(s, segment, addr, R_X86_64_16); break; case 4: elf_add_reloc(s, segment, addr, R_X86_64_32); break; case -4: elf_add_reloc(s, segment, addr, R_X86_64_32S); break; case 8: case -8: elf_add_reloc(s, segment, addr, R_X86_64_64); break; default: nasm_panic("internal error elfx32-hpa-871"); break; } addr = 0; } else if (wrt == elf_gotpc_sect + 1) { /* * The user will supply GOT relative to $$. ELF * will let us have GOT relative to $. So we * need to fix up the data item by $-$$. */ addr += s->len; elf_add_reloc(s, segment, addr, R_X86_64_GOTPC32); addr = 0; } else if (wrt == elf_gotoff_sect + 1) { nasm_nonfatal("ELFX32 doesn't support " "R_X86_64_GOTOFF64"); } else if (wrt == elf_got_sect + 1) { switch (asize) { case 4: elf_add_gsym_reloc(s, segment, addr, 0, R_X86_64_GOT32, true); addr = 0; break; default: nasm_nonfatal("invalid ..got reference"); break; } } else if (wrt == elf_sym_sect + 1) { switch (isize) { case 1: case -1: elf_add_gsym_reloc(s, segment, addr, 0, R_X86_64_8, false); addr = 0; break; case 2: case -2: elf_add_gsym_reloc(s, segment, addr, 0, R_X86_64_16, false); addr = 0; break; case 4: elf_add_gsym_reloc(s, segment, addr, 0, R_X86_64_32, false); addr = 0; break; case -4: elf_add_gsym_reloc(s, segment, addr, 0, R_X86_64_32S, false); addr = 0; break; case 8: case -8: elf_add_gsym_reloc(s, segment, addr, 0, R_X86_64_64, false); addr = 0; break; default: nasm_panic("internal error elfx32-hpa-903"); break; } } else if (wrt == elf_plt_sect + 1) { nasm_nonfatal("ELF format cannot produce non-PC-" "relative PLT references"); } else { nasm_nonfatal("ELF format does not support this" " use of WRT"); } } elf_sect_writeaddr(s, addr, asize); break; } case OUT_REL1ADR: reltype = R_X86_64_PC8; bytes = 1; goto rel12adr; case OUT_REL2ADR: reltype = R_X86_64_PC16; bytes = 2; goto rel12adr; rel12adr: addr = *(int64_t *)data - size; if (segment == segto) nasm_panic("intra-segment OUT_REL1ADR"); if (segment == NO_SEG) { /* Do nothing */ } else if (segment & 1) { nasm_nonfatal("ELF format does not support" " segment base references"); } else { if (wrt == NO_SEG) { elf_add_reloc(s, segment, addr, reltype); addr = 0; } else { nasm_nonfatal("unsupported %d-bit ELF relocation", bytes << 3); } } elf_sect_writeaddr(s, addr, bytes); break; case OUT_REL4ADR: addr = *(int64_t *)data - size; if (segment == segto) nasm_panic("intra-segment OUT_REL4ADR"); if (segment == NO_SEG) { /* Do nothing */ } else if (segment & 1) { nasm_nonfatal("ELFX32 format does not support" " segment base references"); } else { if (wrt == NO_SEG) { elf_add_reloc(s, segment, addr, R_X86_64_PC32); addr = 0; } else if (wrt == elf_plt_sect + 1) { elf_add_gsym_reloc(s, segment, addr+size, size, R_X86_64_PLT32, true); addr = 0; } else if (wrt == elf_gotpc_sect + 1 || wrt == elf_got_sect + 1) { elf_add_gsym_reloc(s, segment, addr+size, size, R_X86_64_GOTPCREL, true); addr = 0; } else if (wrt == elf_gotoff_sect + 1 || wrt == elf_got_sect + 1) { nasm_nonfatal("invalid ..gotoff reference"); } else if (wrt == elf_gottpoff_sect + 1) { elf_add_gsym_reloc(s, segment, addr+size, size, R_X86_64_GOTTPOFF, true); addr = 0; } else { nasm_nonfatal("ELFX32 format does not support this use of WRT"); } } elf_sect_writeaddr(s, addr, 4); break; case OUT_REL8ADR: nasm_nonfatal("32-bit ELF format does not support 64-bit relocations"); addr = 0; elf_sect_writeaddr(s, addr, 8); break; default: panic(); } } /* * Section index/count with a specified overflow value (usually SHN_INDEX, * but 0 for e_shnum. */ static inline uint16_t elf_shndx(int section, uint16_t overflow) { return cpu_to_le16(section < (int)SHN_LORESERVE ? section : overflow); } struct ehdr_common { uint8_t e_ident[EI_NIDENT]; uint16_t e_type; uint16_t e_machine; uint32_t e_version; }; union ehdr { Elf32_Ehdr ehdr32; Elf64_Ehdr ehdr64; struct ehdr_common com; }; static void elf_write(void) { int align; char *p; int i; size_t symtablocal; int sec_shstrtab, sec_symtab, sec_strtab; union ehdr ehdr; /* * Add any sections we don't already have: * rel/rela sections for the user sections, debug sections, and * the ELF special sections. */ sec_debug = nsections; if (dfmt_is_stabs()) { /* in case the debug information is wanted, just add these three sections... */ add_sectname("", ".stab"); add_sectname("", ".stabstr"); add_sectname(efmt->relpfx, ".stab"); } else if (dfmt_is_dwarf()) { /* the dwarf debug standard specifies the following ten sections, not all of which are currently implemented, although all of them are defined. */ add_sectname("", ".debug_aranges"); add_sectname(".rela", ".debug_aranges"); add_sectname("", ".debug_pubnames"); add_sectname("", ".debug_info"); add_sectname(".rela", ".debug_info"); add_sectname("", ".debug_abbrev"); add_sectname("", ".debug_line"); add_sectname(".rela", ".debug_line"); add_sectname("", ".debug_frame"); add_sectname("", ".debug_loc"); } sec_shstrtab = add_sectname("", ".shstrtab"); sec_symtab = add_sectname("", ".symtab"); sec_strtab = add_sectname("", ".strtab"); /* * Build the symbol table and relocation tables. */ symtablocal = elf_build_symtab(); /* Do we need an .symtab_shndx section? */ if (symtab_shndx) add_sectname("", ".symtab_shndx"); for (i = 0; i < nsects; i++) { if (sects[i]->head) { add_sectname(efmt->relpfx, sects[i]->name); sects[i]->rel = efmt->elf_build_reltab(sects[i]->head); } } /* * Output the ELF header. */ nasm_zero(ehdr); /* These fields are in the same place for 32 and 64 bits */ memcpy(&ehdr.com.e_ident[EI_MAG0], ELFMAG, SELFMAG); ehdr.com.e_ident[EI_CLASS] = efmt->ei_class; ehdr.com.e_ident[EI_DATA] = ELFDATA2LSB; ehdr.com.e_ident[EI_VERSION] = EV_CURRENT; ehdr.com.e_ident[EI_OSABI] = elf_osabi; ehdr.com.e_ident[EI_ABIVERSION] = elf_abiver; ehdr.com.e_type = cpu_to_le16(ET_REL); ehdr.com.e_machine = cpu_to_le16(efmt->e_machine); ehdr.com.e_version = cpu_to_le16(EV_CURRENT); if (!efmt->elf64) { ehdr.ehdr32.e_shoff = cpu_to_le32(sizeof ehdr); ehdr.ehdr32.e_ehsize = cpu_to_le16(sizeof(Elf32_Ehdr)); ehdr.ehdr32.e_shentsize = cpu_to_le16(sizeof(Elf32_Shdr)); ehdr.ehdr32.e_shnum = elf_shndx(nsections, 0); ehdr.ehdr32.e_shstrndx = elf_shndx(sec_shstrtab, SHN_XINDEX); } else { ehdr.ehdr64.e_shoff = cpu_to_le64(sizeof ehdr); ehdr.ehdr64.e_ehsize = cpu_to_le16(sizeof(Elf64_Ehdr)); ehdr.ehdr64.e_shentsize = cpu_to_le16(sizeof(Elf64_Shdr)); ehdr.ehdr64.e_shnum = elf_shndx(nsections, 0); ehdr.ehdr64.e_shstrndx = elf_shndx(sec_shstrtab, SHN_XINDEX); } nasm_write(&ehdr, sizeof(ehdr), ofile); elf_foffs = sizeof ehdr + efmt->shdr_size * nsections; /* * Now output the section header table. */ align = ALIGN(elf_foffs, SEC_FILEALIGN) - elf_foffs; elf_foffs += align; elf_nsect = 0; elf_sects = nasm_malloc(sizeof(*elf_sects) * nsections); /* SHN_UNDEF */ elf_section_header(0, SHT_NULL, 0, NULL, false, nsections > (int)SHN_LORESERVE ? nsections : 0, sec_shstrtab >= (int)SHN_LORESERVE ? sec_shstrtab : 0, 0, 0, 0); p = shstrtab + 1; /* The normal sections */ for (i = 0; i < nsects; i++) { elf_section_header(p - shstrtab, sects[i]->type, sects[i]->flags, sects[i]->data, true, sects[i]->len, 0, 0, sects[i]->align, sects[i]->entsize); p += strlen(p) + 1; } /* The debugging sections */ if (dfmt_is_stabs()) { /* for debugging information, create the last three sections which are the .stab , .stabstr and .rel.stab sections respectively */ /* this function call creates the stab sections in memory */ stabs_generate(); if (stabbuf && stabstrbuf && stabrelbuf) { elf_section_header(p - shstrtab, SHT_PROGBITS, 0, stabbuf, false, stablen, sec_stabstr, 0, 4, 12); p += strlen(p) + 1; elf_section_header(p - shstrtab, SHT_STRTAB, 0, stabstrbuf, false, stabstrlen, 0, 0, 4, 0); p += strlen(p) + 1; /* link -> symtable info -> section to refer to */ elf_section_header(p - shstrtab, efmt->reltype, 0, stabrelbuf, false, stabrellen, sec_symtab, sec_stab, efmt->word, efmt->rel_size); p += strlen(p) + 1; } } else if (dfmt_is_dwarf()) { /* for dwarf debugging information, create the ten dwarf sections */ /* this function call creates the dwarf sections in memory */ if (dwarf_fsect) dwarf_generate(); elf_section_header(p - shstrtab, SHT_PROGBITS, 0, arangesbuf, false, arangeslen, 0, 0, 1, 0); p += strlen(p) + 1; elf_section_header(p - shstrtab, SHT_RELA, 0, arangesrelbuf, false, arangesrellen, sec_symtab, sec_debug_aranges, efmt->word, efmt->rela_size); p += strlen(p) + 1; elf_section_header(p - shstrtab, SHT_PROGBITS, 0, pubnamesbuf, false, pubnameslen, 0, 0, 1, 0); p += strlen(p) + 1; elf_section_header(p - shstrtab, SHT_PROGBITS, 0, infobuf, false, infolen, 0, 0, 1, 0); p += strlen(p) + 1; elf_section_header(p - shstrtab, SHT_RELA, 0, inforelbuf, false, inforellen, sec_symtab, sec_debug_info, efmt->word, efmt->rela_size); p += strlen(p) + 1; elf_section_header(p - shstrtab, SHT_PROGBITS, 0, abbrevbuf, false, abbrevlen, 0, 0, 1, 0); p += strlen(p) + 1; elf_section_header(p - shstrtab, SHT_PROGBITS, 0, linebuf, false, linelen, 0, 0, 1, 0); p += strlen(p) + 1; elf_section_header(p - shstrtab, SHT_RELA, 0, linerelbuf, false, linerellen, sec_symtab, sec_debug_line, efmt->word, efmt->rela_size); p += strlen(p) + 1; elf_section_header(p - shstrtab, SHT_PROGBITS, 0, framebuf, false, framelen, 0, 0, 8, 0); p += strlen(p) + 1; elf_section_header(p - shstrtab, SHT_PROGBITS, 0, locbuf, false, loclen, 0, 0, 1, 0); p += strlen(p) + 1; } /* .shstrtab */ elf_section_header(p - shstrtab, SHT_STRTAB, 0, shstrtab, false, shstrtablen, 0, 0, 1, 0); p += strlen(p) + 1; /* .symtab */ elf_section_header(p - shstrtab, SHT_SYMTAB, 0, symtab, true, symtab->datalen, sec_strtab, symtablocal, efmt->word, efmt->sym_size); p += strlen(p) + 1; /* .strtab */ elf_section_header(p - shstrtab, SHT_STRTAB, 0, strs, true, strslen, 0, 0, 1, 0); p += strlen(p) + 1 ; /* .symtab_shndx */ if (symtab_shndx) { elf_section_header(p - shstrtab, SHT_SYMTAB_SHNDX, 0, symtab_shndx, true, symtab_shndx->datalen, sec_symtab, 0, 1, 0); p += strlen(p) + 1; } /* The relocation sections */ for (i = 0; i < nsects; i++) { if (sects[i]->rel) { elf_section_header(p - shstrtab, efmt->reltype, 0, sects[i]->rel, true, sects[i]->rel->datalen, sec_symtab, sects[i]->shndx, efmt->word, efmt->rel_size); p += strlen(p) + 1; } } fwritezero(align, ofile); /* * Now output the sections. */ elf_write_sections(); nasm_free(elf_sects); saa_free(symtab); if (symtab_shndx) saa_free(symtab_shndx); } static size_t nsyms; static void elf_sym(const struct elf_symbol *sym) { int shndx = sym->section; /* * Careful here. This relies on sym->section being signed; for * special section indicies this value needs to be cast to * (int16_t) so that it sign-extends, however, here SHN_LORESERVE * is used as an unsigned constant. */ if (shndx >= (int)SHN_LORESERVE) { if (unlikely(!symtab_shndx)) { /* Create symtab_shndx and fill previous entries with zero */ symtab_shndx = saa_init(1); saa_wbytes(symtab_shndx, NULL, nsyms << 2); } } else { shndx = 0; /* Section index table always write zero */ } if (symtab_shndx) saa_write32(symtab_shndx, shndx); efmt->elf_sym(sym); nsyms++; } static void elf32_sym(const struct elf_symbol *sym) { Elf32_Sym sym32; sym32.st_name = cpu_to_le32(sym->strpos); sym32.st_value = cpu_to_le32(sym->symv.key); sym32.st_size = cpu_to_le32(sym->size); sym32.st_info = sym->type; sym32.st_other = sym->other; sym32.st_shndx = elf_shndx(sym->section, SHN_XINDEX); saa_wbytes(symtab, &sym32, sizeof sym32); } static void elf64_sym(const struct elf_symbol *sym) { Elf64_Sym sym64; sym64.st_name = cpu_to_le32(sym->strpos); sym64.st_value = cpu_to_le64(sym->symv.key); sym64.st_size = cpu_to_le64(sym->size); sym64.st_info = sym->type; sym64.st_other = sym->other; sym64.st_shndx = elf_shndx(sym->section, SHN_XINDEX); saa_wbytes(symtab, &sym64, sizeof sym64); } static size_t elf_build_symtab(void) { struct elf_symbol *sym, xsym; size_t nlocal; int i; symtab = saa_init(1); symtab_shndx = NULL; /* * Zero symbol first as required by spec. */ nasm_zero(xsym); elf_sym(&xsym); /* * Next, an entry for the file name. */ nasm_zero(xsym); xsym.strpos = 1; xsym.type = ELF32_ST_INFO(STB_LOCAL, STT_FILE); xsym.section = XSHN_ABS; elf_sym(&xsym); /* * Now some standard symbols defining the segments, for relocation * purposes. */ nasm_zero(xsym); for (i = 1; i <= nsects; i++) { xsym.type = ELF64_ST_INFO(STB_LOCAL, STT_SECTION); xsym.section = i; elf_sym(&xsym); } /* * dwarf needs symbols for debug sections * which are relocation targets. */ if (dfmt_is_dwarf()) { dwarf_infosym = nsyms; xsym.section = sec_debug_info; elf_sym(&xsym); dwarf_abbrevsym = nsyms; xsym.section = sec_debug_abbrev; elf_sym(&xsym); dwarf_linesym = nsyms; xsym.section = sec_debug_line; elf_sym(&xsym); } /* * Now the other local symbols. */ saa_rewind(syms); while ((sym = saa_rstruct(syms))) { if (!sym_type_local(sym->type)) continue; elf_sym(sym); } nlocal = nsyms; /* * Now the global symbols. */ saa_rewind(syms); while ((sym = saa_rstruct(syms))) { if (sym_type_local(sym->type)) continue; elf_sym(sym); } return nlocal; } static struct SAA *elf32_build_reltab(const struct elf_reloc *r) { struct SAA *s; int32_t global_offset; Elf32_Rel rel32; if (!r) return NULL; s = saa_init(1L); /* * How to onvert from a global placeholder to a real symbol index; * the +2 refers to the two special entries, the null entry and * the filename entry. */ global_offset = -GLOBAL_TEMP_BASE + nsects + nlocals + ndebugs + 2; while (r) { int32_t sym = r->symbol; if (sym >= GLOBAL_TEMP_BASE) sym += global_offset; rel32.r_offset = cpu_to_le32(r->address); rel32.r_info = cpu_to_le32(ELF32_R_INFO(sym, r->type)); saa_wbytes(s, &rel32, sizeof rel32); r = r->next; } return s; } static struct SAA *elfx32_build_reltab(const struct elf_reloc *r) { struct SAA *s; int32_t global_offset; Elf32_Rela rela32; if (!r) return NULL; s = saa_init(1L); /* * How to onvert from a global placeholder to a real symbol index; * the +2 refers to the two special entries, the null entry and * the filename entry. */ global_offset = -GLOBAL_TEMP_BASE + nsects + nlocals + ndebugs + 2; while (r) { int32_t sym = r->symbol; if (sym >= GLOBAL_TEMP_BASE) sym += global_offset; rela32.r_offset = cpu_to_le32(r->address); rela32.r_info = cpu_to_le32(ELF32_R_INFO(sym, r->type)); rela32.r_addend = cpu_to_le32(r->offset); saa_wbytes(s, &rela32, sizeof rela32); r = r->next; } return s; } static struct SAA *elf64_build_reltab(const struct elf_reloc *r) { struct SAA *s; int32_t global_offset; Elf64_Rela rela64; if (!r) return NULL; s = saa_init(1L); /* * How to onvert from a global placeholder to a real symbol index; * the +2 refers to the two special entries, the null entry and * the filename entry. */ global_offset = -GLOBAL_TEMP_BASE + nsects + nlocals + ndebugs + 2; while (r) { int32_t sym = r->symbol; if (sym >= GLOBAL_TEMP_BASE) sym += global_offset; rela64.r_offset = cpu_to_le64(r->address); rela64.r_info = cpu_to_le64(ELF64_R_INFO(sym, r->type)); rela64.r_addend = cpu_to_le64(r->offset); saa_wbytes(s, &rela64, sizeof rela64); r = r->next; } return s; } static void elf_section_header(int name, int type, uint64_t flags, void *data, bool is_saa, uint64_t datalen, int link, int info, uint64_t align, uint64_t entsize) { elf_sects[elf_nsect].data = data; elf_sects[elf_nsect].len = datalen; elf_sects[elf_nsect].is_saa = is_saa; elf_nsect++; if (!efmt->elf64) { Elf32_Shdr shdr; shdr.sh_name = cpu_to_le32(name); shdr.sh_type = cpu_to_le32(type); shdr.sh_flags = cpu_to_le32(flags); shdr.sh_addr = 0; shdr.sh_offset = cpu_to_le32(type == SHT_NULL ? 0 : elf_foffs); shdr.sh_size = cpu_to_le32(datalen); if (data) elf_foffs += ALIGN(datalen, SEC_FILEALIGN); shdr.sh_link = cpu_to_le32(link); shdr.sh_info = cpu_to_le32(info); shdr.sh_addralign = cpu_to_le32(align); shdr.sh_entsize = cpu_to_le32(entsize); nasm_write(&shdr, sizeof shdr, ofile); } else { Elf64_Shdr shdr; shdr.sh_name = cpu_to_le32(name); shdr.sh_type = cpu_to_le32(type); shdr.sh_flags = cpu_to_le64(flags); shdr.sh_addr = 0; shdr.sh_offset = cpu_to_le64(type == SHT_NULL ? 0 : elf_foffs); shdr.sh_size = cpu_to_le64(datalen); if (data) elf_foffs += ALIGN(datalen, SEC_FILEALIGN); shdr.sh_link = cpu_to_le32(link); shdr.sh_info = cpu_to_le32(info); shdr.sh_addralign = cpu_to_le64(align); shdr.sh_entsize = cpu_to_le64(entsize); nasm_write(&shdr, sizeof shdr, ofile); } } static void elf_write_sections(void) { int i; for (i = 0; i < elf_nsect; i++) if (elf_sects[i].data) { int32_t len = elf_sects[i].len; int32_t reallen = ALIGN(len, SEC_FILEALIGN); int32_t align = reallen - len; if (elf_sects[i].is_saa) saa_fpwrite(elf_sects[i].data, ofile); else nasm_write(elf_sects[i].data, len, ofile); fwritezero(align, ofile); } } static void elf_sect_write(struct elf_section *sect, const void *data, size_t len) { saa_wbytes(sect->data, data, len); sect->len += len; } static void elf_sect_writeaddr(struct elf_section *sect, int64_t data, size_t len) { saa_writeaddr(sect->data, data, len); sect->len += len; } static void elf_sectalign(int32_t seg, unsigned int value) { struct elf_section *s; s = raa_read_ptr(section_by_index, seg >> 1); if (!s || !is_power2(value)) return; if (value > s->align) s->align = value; } extern macros_t elf_stdmac[]; /* Claim "elf" as a pragma namespace, for the future */ static const struct pragma_facility elf_pragma_list[] = { { "elf", NULL }, { NULL, NULL } /* Implements the canonical output name */ }; static const struct dfmt elf32_df_dwarf = { "ELF32 (i386) dwarf (newer)", "dwarf", dwarf32_init, dwarf_linenum, null_debug_deflabel, null_debug_directive, debug_typevalue, dwarf_output, dwarf_cleanup, NULL /* pragma list */ }; static const struct dfmt elf32_df_stabs = { "ELF32 (i386) stabs (older)", "stabs", null_debug_init, stabs_linenum, null_debug_deflabel, null_debug_directive, debug_typevalue, stabs_output, stabs_cleanup, NULL /* pragma list */ }; static const struct dfmt * const elf32_debugs_arr[3] = { &elf32_df_dwarf, &elf32_df_stabs, NULL }; const struct ofmt of_elf32 = { "ELF32 (i386) (Linux, most Unix variants)", "elf32", ".o", 0, 32, elf32_debugs_arr, &elf32_df_dwarf, elf_stdmac, elf32_init, null_reset, nasm_do_legacy_output, elf32_out, elf_deflabel, elf_section_names, NULL, elf_sectalign, null_segbase, elf_directive, elf_cleanup, elf_pragma_list, }; static const struct dfmt elf64_df_dwarf = { "ELF64 (x86-64) dwarf (newer)", "dwarf", dwarf64_init, dwarf_linenum, null_debug_deflabel, null_debug_directive, debug_typevalue, dwarf_output, dwarf_cleanup, NULL /* pragma list */ }; static const struct dfmt elf64_df_stabs = { "ELF64 (x86-64) stabs (older)", "stabs", null_debug_init, stabs_linenum, null_debug_deflabel, null_debug_directive, debug_typevalue, stabs_output, stabs_cleanup, NULL /* pragma list */ }; static const struct dfmt * const elf64_debugs_arr[3] = { &elf64_df_dwarf, &elf64_df_stabs, NULL }; const struct ofmt of_elf64 = { "ELF64 (x86-64) (Linux, most Unix variants)", "elf64", ".o", 0, 64, elf64_debugs_arr, &elf64_df_dwarf, elf_stdmac, elf64_init, null_reset, nasm_do_legacy_output, elf64_out, elf_deflabel, elf_section_names, NULL, elf_sectalign, null_segbase, elf_directive, elf_cleanup, elf_pragma_list, }; static const struct dfmt elfx32_df_dwarf = { "ELFx32 (x86-64) dwarf (newer)", "dwarf", dwarfx32_init, dwarf_linenum, null_debug_deflabel, null_debug_directive, debug_typevalue, dwarf_output, dwarf_cleanup, NULL /* pragma list */ }; static const struct dfmt elfx32_df_stabs = { "ELFx32 (x86-64) stabs (older)", "stabs", null_debug_init, stabs_linenum, null_debug_deflabel, null_debug_directive, debug_typevalue, stabs_output, stabs_cleanup, elf_pragma_list, }; static const struct dfmt * const elfx32_debugs_arr[3] = { &elfx32_df_dwarf, &elfx32_df_stabs, NULL }; const struct ofmt of_elfx32 = { "ELFx32 (ELF32 for x86-64) (Linux)", "elfx32", ".o", 0, 64, elfx32_debugs_arr, &elfx32_df_dwarf, elf_stdmac, elfx32_init, null_reset, nasm_do_legacy_output, elfx32_out, elf_deflabel, elf_section_names, NULL, elf_sectalign, null_segbase, elf_directive, elf_cleanup, NULL /* pragma list */ }; static bool is_elf64(void) { return ofmt == &of_elf64; } static bool is_elf32(void) { return ofmt == &of_elf32; } static bool is_elfx32(void) { return ofmt == &of_elfx32; } static bool dfmt_is_stabs(void) { return dfmt == &elf32_df_stabs || dfmt == &elfx32_df_stabs || dfmt == &elf64_df_stabs; } static bool dfmt_is_dwarf(void) { return dfmt == &elf32_df_dwarf || dfmt == &elfx32_df_dwarf || dfmt == &elf64_df_dwarf; } /* common debugging routines */ static void debug_typevalue(int32_t type) { int32_t stype, ssize; switch (TYM_TYPE(type)) { case TY_LABEL: ssize = 0; stype = STT_NOTYPE; break; case TY_BYTE: ssize = 1; stype = STT_OBJECT; break; case TY_WORD: ssize = 2; stype = STT_OBJECT; break; case TY_DWORD: ssize = 4; stype = STT_OBJECT; break; case TY_FLOAT: ssize = 4; stype = STT_OBJECT; break; case TY_QWORD: ssize = 8; stype = STT_OBJECT; break; case TY_TBYTE: ssize = 10; stype = STT_OBJECT; break; case TY_OWORD: ssize = 16; stype = STT_OBJECT; break; case TY_YWORD: ssize = 32; stype = STT_OBJECT; break; case TY_ZWORD: ssize = 64; stype = STT_OBJECT; break; case TY_COMMON: ssize = 0; stype = STT_COMMON; break; case TY_SEG: ssize = 0; stype = STT_SECTION; break; case TY_EXTERN: ssize = 0; stype = STT_NOTYPE; break; case TY_EQU: ssize = 0; stype = STT_NOTYPE; break; default: ssize = 0; stype = STT_NOTYPE; break; } if (stype == STT_OBJECT && lastsym && !lastsym->type) { lastsym->size = ssize; lastsym->type = stype; } } /* stabs debugging routines */ static void stabs_linenum(const char *filename, int32_t linenumber, int32_t segto) { (void)segto; if (!stabs_filename) { stabs_filename = nasm_malloc(strlen(filename) + 1); strcpy(stabs_filename, filename); } else { if (strcmp(stabs_filename, filename)) { /* yep, a memory leak...this program is one-shot anyway, so who cares... in fact, this leak comes in quite handy to maintain a list of files encountered so far in the symbol lines... */ /* why not nasm_free(stabs_filename); we're done with the old one */ stabs_filename = nasm_malloc(strlen(filename) + 1); strcpy(stabs_filename, filename); } } debug_immcall = 1; currentline = linenumber; } static void stabs_output(int type, void *param) { struct symlininfo *s; struct linelist *el; if (type == TY_DEBUGSYMLIN) { if (debug_immcall) { s = (struct symlininfo *)param; if (!(sects[s->section]->flags & SHF_EXECINSTR)) return; /* line info is only collected for executable sections */ numlinestabs++; el = nasm_malloc(sizeof(struct linelist)); el->info.offset = s->offset; el->info.section = s->section; el->info.name = s->name; el->line = currentline; el->filename = stabs_filename; el->next = 0; if (stabslines) { stabslines->last->next = el; stabslines->last = el; } else { stabslines = el; stabslines->last = el; } } } debug_immcall = 0; } /* for creating the .stab , .stabstr and .rel.stab sections in memory */ static void stabs_generate(void) { int i, numfiles, strsize, numstabs = 0, currfile, mainfileindex; uint8_t *sbuf, *ssbuf, *rbuf, *sptr, *rptr; char **allfiles; int *fileidx; struct linelist *ptr; ptr = stabslines; allfiles = nasm_zalloc(numlinestabs * sizeof(char *)); numfiles = 0; while (ptr) { if (numfiles == 0) { allfiles[0] = ptr->filename; numfiles++; } else { for (i = 0; i < numfiles; i++) { if (!strcmp(allfiles[i], ptr->filename)) break; } if (i >= numfiles) { allfiles[i] = ptr->filename; numfiles++; } } ptr = ptr->next; } strsize = 1; fileidx = nasm_malloc(numfiles * sizeof(int)); for (i = 0; i < numfiles; i++) { fileidx[i] = strsize; strsize += strlen(allfiles[i]) + 1; } currfile = mainfileindex = 0; for (i = 0; i < numfiles; i++) { if (!strcmp(allfiles[i], elf_module)) { currfile = mainfileindex = i; break; } } /* * worst case size of the stab buffer would be: * the sourcefiles changes each line, which would mean 1 SOL, 1 SYMLIN per line * plus one "ending" entry */ sbuf = nasm_malloc((numlinestabs * 2 + 4) * sizeof(struct stabentry)); ssbuf = nasm_malloc(strsize); rbuf = nasm_malloc(numlinestabs * (is_elf64() ? 16 : 8) * (2 + 3)); rptr = rbuf; for (i = 0; i < numfiles; i++) strcpy((char *)ssbuf + fileidx[i], allfiles[i]); ssbuf[0] = 0; stabstrlen = strsize; /* set global variable for length of stab strings */ sptr = sbuf; ptr = stabslines; numstabs = 0; if (ptr) { /* * this is the first stab, its strx points to the filename of the * the source-file, the n_desc field should be set to the number * of remaining stabs */ WRITE_STAB(sptr, fileidx[0], 0, 0, 0, stabstrlen); /* this is the stab for the main source file */ WRITE_STAB(sptr, fileidx[mainfileindex], N_SO, 0, 0, 0); /* relocation table entry */ /* * Since the symbol table has two entries before * the section symbols, the index in the info.section * member must be adjusted by adding 2 */ if (is_elf32()) { WRITELONG(rptr, (sptr - sbuf) - 4); WRITELONG(rptr, ((ptr->info.section + 2) << 8) | R_386_32); } else if (is_elfx32()) { WRITELONG(rptr, (sptr - sbuf) - 4); WRITELONG(rptr, ((ptr->info.section + 2) << 8) | R_X86_64_32); WRITELONG(rptr, 0); } else { nasm_assert(is_elf64()); WRITEDLONG(rptr, (int64_t)(sptr - sbuf) - 4); WRITELONG(rptr, R_X86_64_32); WRITELONG(rptr, ptr->info.section + 2); WRITEDLONG(rptr, 0); } numstabs++; } if (is_elf32()) { while (ptr) { if (strcmp(allfiles[currfile], ptr->filename)) { /* oops file has changed... */ for (i = 0; i < numfiles; i++) if (!strcmp(allfiles[i], ptr->filename)) break; currfile = i; WRITE_STAB(sptr, fileidx[currfile], N_SOL, 0, 0, ptr->info.offset); numstabs++; /* relocation table entry */ WRITELONG(rptr, (sptr - sbuf) - 4); WRITELONG(rptr, ((ptr->info.section + 2) << 8) | R_386_32); } WRITE_STAB(sptr, 0, N_SLINE, 0, ptr->line, ptr->info.offset); numstabs++; /* relocation table entry */ WRITELONG(rptr, (sptr - sbuf) - 4); WRITELONG(rptr, ((ptr->info.section + 2) << 8) | R_386_32); ptr = ptr->next; } } else if (is_elfx32()) { while (ptr) { if (strcmp(allfiles[currfile], ptr->filename)) { /* oops file has changed... */ for (i = 0; i < numfiles; i++) if (!strcmp(allfiles[i], ptr->filename)) break; currfile = i; WRITE_STAB(sptr, fileidx[currfile], N_SOL, 0, 0, ptr->info.offset); numstabs++; /* relocation table entry */ WRITELONG(rptr, (sptr - sbuf) - 4); WRITELONG(rptr, ((ptr->info.section + 2) << 8) | R_X86_64_32); WRITELONG(rptr, ptr->info.offset); } WRITE_STAB(sptr, 0, N_SLINE, 0, ptr->line, ptr->info.offset); numstabs++; /* relocation table entry */ WRITELONG(rptr, (sptr - sbuf) - 4); WRITELONG(rptr, ((ptr->info.section + 2) << 8) | R_X86_64_32); WRITELONG(rptr, ptr->info.offset); ptr = ptr->next; } } else { nasm_assert(is_elf64()); while (ptr) { if (strcmp(allfiles[currfile], ptr->filename)) { /* oops file has changed... */ for (i = 0; i < numfiles; i++) if (!strcmp(allfiles[i], ptr->filename)) break; currfile = i; WRITE_STAB(sptr, fileidx[currfile], N_SOL, 0, 0, ptr->info.offset); numstabs++; /* relocation table entry */ WRITEDLONG(rptr, (int64_t)(sptr - sbuf) - 4); WRITELONG(rptr, R_X86_64_32); WRITELONG(rptr, ptr->info.section + 2); WRITEDLONG(rptr, ptr->info.offset); } WRITE_STAB(sptr, 0, N_SLINE, 0, ptr->line, ptr->info.offset); numstabs++; /* relocation table entry */ WRITEDLONG(rptr, (int64_t)(sptr - sbuf) - 4); WRITELONG(rptr, R_X86_64_32); WRITELONG(rptr, ptr->info.section + 2); WRITEDLONG(rptr, ptr->info.offset); ptr = ptr->next; } } /* this is an "ending" token */ WRITE_STAB(sptr, 0, N_SO, 0, 0, 0); numstabs++; ((struct stabentry *)sbuf)->n_desc = numstabs; nasm_free(allfiles); nasm_free(fileidx); stablen = (sptr - sbuf); stabrellen = (rptr - rbuf); stabrelbuf = rbuf; stabbuf = sbuf; stabstrbuf = ssbuf; } static void stabs_cleanup(void) { struct linelist *ptr, *del; if (!stabslines) return; ptr = stabslines; while (ptr) { del = ptr; ptr = ptr->next; nasm_free(del); } nasm_free(stabbuf); nasm_free(stabrelbuf); nasm_free(stabstrbuf); } /* dwarf routines */ static void dwarf_init_common(const struct dwarf_format *fmt) { dwfmt = fmt; ndebugs = 3; /* 3 debug symbols */ } static void dwarf32_init(void) { static const struct dwarf_format dwfmt32 = { 2, /* DWARF 2 */ /* section version numbers: */ { 2, /* .debug_aranges */ 0, /* .rela.debug_aranges */ 2, /* .debug_pubnames */ 2, /* .debug_info */ 0, /* .rela.debug_info */ 0, /* .debug_abbrev */ 2, /* .debug_line */ 0, /* .rela.debug_line */ 1, /* .debug_frame */ 0 } /* .debug_loc */ }; dwarf_init_common(&dwfmt32); } static void dwarfx32_init(void) { static const struct dwarf_format dwfmtx32 = { 3, /* DWARF 3 */ /* section version numbers: */ { 2, /* .debug_aranges */ 0, /* .rela.debug_aranges */ 2, /* .debug_pubnames */ 3, /* .debug_info */ 0, /* .rela.debug_info */ 0, /* .debug_abbrev */ 3, /* .debug_line */ 0, /* .rela.debug_line */ 3, /* .debug_frame */ 0 } /* .debug_loc */ }; dwarf_init_common(&dwfmtx32); } static void dwarf64_init(void) { static const struct dwarf_format dwfmt64 = { 3, /* DWARF 3 */ /* section version numbers: */ { 2, /* .debug_aranges */ 0, /* .rela.debug_aranges */ 2, /* .debug_pubnames */ 3, /* .debug_info */ 0, /* .rela.debug_info */ 0, /* .debug_abbrev */ 3, /* .debug_line */ 0, /* .rela.debug_line */ 3, /* .debug_frame */ 0 } /* .debug_loc */ }; dwarf_init_common(&dwfmt64); } static void dwarf_linenum(const char *filename, int32_t linenumber, int32_t segto) { (void)segto; dwarf_findfile(filename); debug_immcall = 1; currentline = linenumber; } /* called from elf_out with type == TY_DEBUGSYMLIN */ static void dwarf_output(int type, void *param) { int ln, aa, inx, maxln, soc; struct symlininfo *s; struct SAA *plinep; (void)type; s = (struct symlininfo *)param; /* line number info is only gathered for executable sections */ if (!(sects[s->section]->flags & SHF_EXECINSTR)) return; /* Check if section index has changed */ if (!(dwarf_csect && (dwarf_csect->section) == (s->section))) dwarf_findsect(s->section); /* do nothing unless line or file has changed */ if (!debug_immcall) return; ln = currentline - dwarf_csect->line; aa = s->offset - dwarf_csect->offset; inx = dwarf_clist->line; plinep = dwarf_csect->psaa; /* check for file change */ if (!(inx == dwarf_csect->file)) { saa_write8(plinep,DW_LNS_set_file); saa_write8(plinep,inx); dwarf_csect->file = inx; } /* check for line change */ if (ln) { /* test if in range of special op code */ maxln = line_base + line_range; soc = (ln - line_base) + (line_range * aa) + opcode_base; if (ln >= line_base && ln < maxln && soc < 256) { saa_write8(plinep,soc); } else { saa_write8(plinep,DW_LNS_advance_line); saa_wleb128s(plinep,ln); if (aa) { saa_write8(plinep,DW_LNS_advance_pc); saa_wleb128u(plinep,aa); } saa_write8(plinep,DW_LNS_copy); } dwarf_csect->line = currentline; dwarf_csect->offset = s->offset; } /* show change handled */ debug_immcall = 0; } static void dwarf_generate(void) { uint8_t *pbuf; int indx; struct linelist *ftentry; struct SAA *paranges, *ppubnames, *pinfo, *pabbrev, *plines, *plinep; struct SAA *parangesrel, *plinesrel, *pinforel; struct sectlist *psect; size_t saalen, linepoff, totlen, highaddr; if (is_elf32()) { /* write epilogues for each line program range */ /* and build aranges section */ paranges = saa_init(1L); parangesrel = saa_init(1L); saa_write16(paranges, dwfmt->sect_version[DWARF_ARANGES]); saa_write32(parangesrel, paranges->datalen+4); saa_write32(parangesrel, (dwarf_infosym << 8) + R_386_32); /* reloc to info */ saa_write32(parangesrel, 0); saa_write32(paranges,0); /* offset into info */ saa_write8(paranges,4); /* pointer size */ saa_write8(paranges,0); /* not segmented */ saa_write32(paranges,0); /* padding */ /* iterate though sectlist entries */ psect = dwarf_fsect; totlen = 0; highaddr = 0; for (indx = 0; indx < dwarf_nsections; indx++) { plinep = psect->psaa; /* Line Number Program Epilogue */ saa_write8(plinep,2); /* std op 2 */ saa_write8(plinep,(sects[psect->section]->len)-psect->offset); saa_write8(plinep,DW_LNS_extended_op); saa_write8(plinep,1); /* operand length */ saa_write8(plinep,DW_LNE_end_sequence); totlen += plinep->datalen; /* range table relocation entry */ saa_write32(parangesrel, paranges->datalen + 4); saa_write32(parangesrel, ((uint32_t) (psect->section + 2) << 8) + R_386_32); saa_write32(parangesrel, (uint32_t) 0); /* range table entry */ saa_write32(paranges,0x0000); /* range start */ saa_write32(paranges,sects[psect->section]->len); /* range length */ highaddr += sects[psect->section]->len; /* done with this entry */ psect = psect->next; } saa_write32(paranges,0); /* null address */ saa_write32(paranges,0); /* null length */ saalen = paranges->datalen; arangeslen = saalen + 4; arangesbuf = pbuf = nasm_malloc(arangeslen); WRITELONG(pbuf,saalen); /* initial length */ saa_rnbytes(paranges, pbuf, saalen); saa_free(paranges); } else if (is_elfx32()) { /* write epilogues for each line program range */ /* and build aranges section */ paranges = saa_init(1L); parangesrel = saa_init(1L); saa_write16(paranges, dwfmt->sect_version[DWARF_ARANGES]); saa_write32(parangesrel, paranges->datalen+4); saa_write32(parangesrel, (dwarf_infosym << 8) + R_X86_64_32); /* reloc to info */ saa_write32(parangesrel, 0); saa_write32(paranges,0); /* offset into info */ saa_write8(paranges,4); /* pointer size */ saa_write8(paranges,0); /* not segmented */ saa_write32(paranges,0); /* padding */ /* iterate though sectlist entries */ psect = dwarf_fsect; totlen = 0; highaddr = 0; for (indx = 0; indx < dwarf_nsections; indx++) { plinep = psect->psaa; /* Line Number Program Epilogue */ saa_write8(plinep,2); /* std op 2 */ saa_write8(plinep,(sects[psect->section]->len)-psect->offset); saa_write8(plinep,DW_LNS_extended_op); saa_write8(plinep,1); /* operand length */ saa_write8(plinep,DW_LNE_end_sequence); totlen += plinep->datalen; /* range table relocation entry */ saa_write32(parangesrel, paranges->datalen + 4); saa_write32(parangesrel, ((uint32_t) (psect->section + 2) << 8) + R_X86_64_32); saa_write32(parangesrel, (uint32_t) 0); /* range table entry */ saa_write32(paranges,0x0000); /* range start */ saa_write32(paranges,sects[psect->section]->len); /* range length */ highaddr += sects[psect->section]->len; /* done with this entry */ psect = psect->next; } saa_write32(paranges,0); /* null address */ saa_write32(paranges,0); /* null length */ saalen = paranges->datalen; arangeslen = saalen + 4; arangesbuf = pbuf = nasm_malloc(arangeslen); WRITELONG(pbuf,saalen); /* initial length */ saa_rnbytes(paranges, pbuf, saalen); saa_free(paranges); } else { nasm_assert(is_elf64()); /* write epilogues for each line program range */ /* and build aranges section */ paranges = saa_init(1L); parangesrel = saa_init(1L); saa_write16(paranges, dwfmt->sect_version[DWARF_ARANGES]); saa_write64(parangesrel, paranges->datalen+4); saa_write64(parangesrel, (dwarf_infosym << 32) + R_X86_64_32); /* reloc to info */ saa_write64(parangesrel, 0); saa_write32(paranges,0); /* offset into info */ saa_write8(paranges,8); /* pointer size */ saa_write8(paranges,0); /* not segmented */ saa_write32(paranges,0); /* padding */ /* iterate though sectlist entries */ psect = dwarf_fsect; totlen = 0; highaddr = 0; for (indx = 0; indx < dwarf_nsections; indx++) { plinep = psect->psaa; /* Line Number Program Epilogue */ saa_write8(plinep,2); /* std op 2 */ saa_write8(plinep,(sects[psect->section]->len)-psect->offset); saa_write8(plinep,DW_LNS_extended_op); saa_write8(plinep,1); /* operand length */ saa_write8(plinep,DW_LNE_end_sequence); totlen += plinep->datalen; /* range table relocation entry */ saa_write64(parangesrel, paranges->datalen + 4); saa_write64(parangesrel, ((uint64_t) (psect->section + 2) << 32) + R_X86_64_64); saa_write64(parangesrel, (uint64_t) 0); /* range table entry */ saa_write64(paranges,0x0000); /* range start */ saa_write64(paranges,sects[psect->section]->len); /* range length */ highaddr += sects[psect->section]->len; /* done with this entry */ psect = psect->next; } saa_write64(paranges,0); /* null address */ saa_write64(paranges,0); /* null length */ saalen = paranges->datalen; arangeslen = saalen + 4; arangesbuf = pbuf = nasm_malloc(arangeslen); WRITELONG(pbuf,saalen); /* initial length */ saa_rnbytes(paranges, pbuf, saalen); saa_free(paranges); } /* build rela.aranges section */ arangesrellen = saalen = parangesrel->datalen; arangesrelbuf = pbuf = nasm_malloc(arangesrellen); saa_rnbytes(parangesrel, pbuf, saalen); saa_free(parangesrel); /* build pubnames section */ if (0) { ppubnames = saa_init(1L); saa_write16(ppubnames,dwfmt->sect_version[DWARF_PUBNAMES]); saa_write32(ppubnames,0); /* offset into info */ saa_write32(ppubnames,0); /* space used in info */ saa_write32(ppubnames,0); /* end of list */ saalen = ppubnames->datalen; pubnameslen = saalen + 4; pubnamesbuf = pbuf = nasm_malloc(pubnameslen); WRITELONG(pbuf,saalen); /* initial length */ saa_rnbytes(ppubnames, pbuf, saalen); saa_free(ppubnames); } else { /* Don't write a section without actual information */ pubnameslen = 0; } if (is_elf32()) { /* build info section */ pinfo = saa_init(1L); pinforel = saa_init(1L); saa_write16(pinfo, dwfmt->sect_version[DWARF_INFO]); saa_write32(pinforel, pinfo->datalen + 4); saa_write32(pinforel, (dwarf_abbrevsym << 8) + R_386_32); /* reloc to abbrev */ saa_write32(pinforel, 0); saa_write32(pinfo,0); /* offset into abbrev */ saa_write8(pinfo,4); /* pointer size */ saa_write8(pinfo,1); /* abbrviation number LEB128u */ saa_write32(pinforel, pinfo->datalen + 4); saa_write32(pinforel, ((dwarf_fsect->section + 2) << 8) + R_386_32); saa_write32(pinforel, 0); saa_write32(pinfo,0); /* DW_AT_low_pc */ saa_write32(pinforel, pinfo->datalen + 4); saa_write32(pinforel, ((dwarf_fsect->section + 2) << 8) + R_386_32); saa_write32(pinforel, 0); saa_write32(pinfo,highaddr); /* DW_AT_high_pc */ saa_write32(pinforel, pinfo->datalen + 4); saa_write32(pinforel, (dwarf_linesym << 8) + R_386_32); /* reloc to line */ saa_write32(pinforel, 0); saa_write32(pinfo,0); /* DW_AT_stmt_list */ saa_wbytes(pinfo, elf_module, strlen(elf_module)+1); saa_wbytes(pinfo, nasm_signature(), nasm_signature_len()+1); saa_write16(pinfo,DW_LANG_Mips_Assembler); saa_write8(pinfo,2); /* abbrviation number LEB128u */ saa_write32(pinforel, pinfo->datalen + 4); saa_write32(pinforel, ((dwarf_fsect->section + 2) << 8) + R_386_32); saa_write32(pinforel, 0); saa_write32(pinfo,0); /* DW_AT_low_pc */ saa_write32(pinfo,0); /* DW_AT_frame_base */ saa_write8(pinfo,0); /* end of entries */ saalen = pinfo->datalen; infolen = saalen + 4; infobuf = pbuf = nasm_malloc(infolen); WRITELONG(pbuf,saalen); /* initial length */ saa_rnbytes(pinfo, pbuf, saalen); saa_free(pinfo); } else if (is_elfx32()) { /* build info section */ pinfo = saa_init(1L); pinforel = saa_init(1L); saa_write16(pinfo, dwfmt->sect_version[DWARF_INFO]); saa_write32(pinforel, pinfo->datalen + 4); saa_write32(pinforel, (dwarf_abbrevsym << 8) + R_X86_64_32); /* reloc to abbrev */ saa_write32(pinforel, 0); saa_write32(pinfo,0); /* offset into abbrev */ saa_write8(pinfo,4); /* pointer size */ saa_write8(pinfo,1); /* abbrviation number LEB128u */ saa_write32(pinforel, pinfo->datalen + 4); saa_write32(pinforel, ((dwarf_fsect->section + 2) << 8) + R_X86_64_32); saa_write32(pinforel, 0); saa_write32(pinfo,0); /* DW_AT_low_pc */ saa_write32(pinforel, pinfo->datalen + 4); saa_write32(pinforel, ((dwarf_fsect->section + 2) << 8) + R_X86_64_32); saa_write32(pinforel, 0); saa_write32(pinfo,highaddr); /* DW_AT_high_pc */ saa_write32(pinforel, pinfo->datalen + 4); saa_write32(pinforel, (dwarf_linesym << 8) + R_X86_64_32); /* reloc to line */ saa_write32(pinforel, 0); saa_write32(pinfo,0); /* DW_AT_stmt_list */ saa_wbytes(pinfo, elf_module, strlen(elf_module)+1); saa_wbytes(pinfo, nasm_signature(), nasm_signature_len()+1); saa_write16(pinfo,DW_LANG_Mips_Assembler); saa_write8(pinfo,2); /* abbrviation number LEB128u */ saa_write32(pinforel, pinfo->datalen + 4); saa_write32(pinforel, ((dwarf_fsect->section + 2) << 8) + R_X86_64_32); saa_write32(pinforel, 0); saa_write32(pinfo,0); /* DW_AT_low_pc */ saa_write32(pinfo,0); /* DW_AT_frame_base */ saa_write8(pinfo,0); /* end of entries */ saalen = pinfo->datalen; infolen = saalen + 4; infobuf = pbuf = nasm_malloc(infolen); WRITELONG(pbuf,saalen); /* initial length */ saa_rnbytes(pinfo, pbuf, saalen); saa_free(pinfo); } else { nasm_assert(is_elf64()); /* build info section */ pinfo = saa_init(1L); pinforel = saa_init(1L); saa_write16(pinfo, dwfmt->sect_version[DWARF_INFO]); saa_write64(pinforel, pinfo->datalen + 4); saa_write64(pinforel, (dwarf_abbrevsym << 32) + R_X86_64_32); /* reloc to abbrev */ saa_write64(pinforel, 0); saa_write32(pinfo,0); /* offset into abbrev */ saa_write8(pinfo,8); /* pointer size */ saa_write8(pinfo,1); /* abbrviation number LEB128u */ saa_write64(pinforel, pinfo->datalen + 4); saa_write64(pinforel, ((uint64_t)(dwarf_fsect->section + 2) << 32) + R_X86_64_64); saa_write64(pinforel, 0); saa_write64(pinfo,0); /* DW_AT_low_pc */ saa_write64(pinforel, pinfo->datalen + 4); saa_write64(pinforel, ((uint64_t)(dwarf_fsect->section + 2) << 32) + R_X86_64_64); saa_write64(pinforel, 0); saa_write64(pinfo,highaddr); /* DW_AT_high_pc */ saa_write64(pinforel, pinfo->datalen + 4); saa_write64(pinforel, (dwarf_linesym << 32) + R_X86_64_32); /* reloc to line */ saa_write64(pinforel, 0); saa_write32(pinfo,0); /* DW_AT_stmt_list */ saa_wbytes(pinfo, elf_module, strlen(elf_module)+1); saa_wbytes(pinfo, nasm_signature(), nasm_signature_len()+1); saa_write16(pinfo,DW_LANG_Mips_Assembler); saa_write8(pinfo,2); /* abbrviation number LEB128u */ saa_write64(pinforel, pinfo->datalen + 4); saa_write64(pinforel, ((uint64_t)(dwarf_fsect->section + 2) << 32) + R_X86_64_64); saa_write64(pinforel, 0); saa_write64(pinfo,0); /* DW_AT_low_pc */ saa_write64(pinfo,0); /* DW_AT_frame_base */ saa_write8(pinfo,0); /* end of entries */ saalen = pinfo->datalen; infolen = saalen + 4; infobuf = pbuf = nasm_malloc(infolen); WRITELONG(pbuf,saalen); /* initial length */ saa_rnbytes(pinfo, pbuf, saalen); saa_free(pinfo); } /* build rela.info section */ inforellen = saalen = pinforel->datalen; inforelbuf = pbuf = nasm_malloc(inforellen); saa_rnbytes(pinforel, pbuf, saalen); saa_free(pinforel); /* build abbrev section */ pabbrev = saa_init(1L); saa_write8(pabbrev,1); /* entry number LEB128u */ saa_write8(pabbrev,DW_TAG_compile_unit); /* tag LEB128u */ saa_write8(pabbrev,1); /* has children */ /* the following attributes and forms are all LEB128u values */ saa_write8(pabbrev,DW_AT_low_pc); saa_write8(pabbrev,DW_FORM_addr); saa_write8(pabbrev,DW_AT_high_pc); saa_write8(pabbrev,DW_FORM_addr); saa_write8(pabbrev,DW_AT_stmt_list); saa_write8(pabbrev,DW_FORM_data4); saa_write8(pabbrev,DW_AT_name); saa_write8(pabbrev,DW_FORM_string); saa_write8(pabbrev,DW_AT_producer); saa_write8(pabbrev,DW_FORM_string); saa_write8(pabbrev,DW_AT_language); saa_write8(pabbrev,DW_FORM_data2); saa_write16(pabbrev,0); /* end of entry */ /* LEB128u usage same as above */ saa_write8(pabbrev,2); /* entry number */ saa_write8(pabbrev,DW_TAG_subprogram); saa_write8(pabbrev,0); /* no children */ saa_write8(pabbrev,DW_AT_low_pc); saa_write8(pabbrev,DW_FORM_addr); saa_write8(pabbrev,DW_AT_frame_base); saa_write8(pabbrev,DW_FORM_data4); saa_write16(pabbrev,0); /* end of entry */ /* Terminal zero entry */ saa_write8(pabbrev,0); abbrevlen = saalen = pabbrev->datalen; abbrevbuf = pbuf = nasm_malloc(saalen); saa_rnbytes(pabbrev, pbuf, saalen); saa_free(pabbrev); /* build line section */ /* prolog */ plines = saa_init(1L); saa_write8(plines,1); /* Minimum Instruction Length */ saa_write8(plines,1); /* Initial value of 'is_stmt' */ saa_write8(plines,line_base); /* Line Base */ saa_write8(plines,line_range); /* Line Range */ saa_write8(plines,opcode_base); /* Opcode Base */ /* standard opcode lengths (# of LEB128u operands) */ saa_write8(plines,0); /* Std opcode 1 length */ saa_write8(plines,1); /* Std opcode 2 length */ saa_write8(plines,1); /* Std opcode 3 length */ saa_write8(plines,1); /* Std opcode 4 length */ saa_write8(plines,1); /* Std opcode 5 length */ saa_write8(plines,0); /* Std opcode 6 length */ saa_write8(plines,0); /* Std opcode 7 length */ saa_write8(plines,0); /* Std opcode 8 length */ saa_write8(plines,1); /* Std opcode 9 length */ saa_write8(plines,0); /* Std opcode 10 length */ saa_write8(plines,0); /* Std opcode 11 length */ saa_write8(plines,1); /* Std opcode 12 length */ /* Directory Table */ saa_write8(plines,0); /* End of table */ /* File Name Table */ ftentry = dwarf_flist; for (indx = 0; indx < dwarf_numfiles; indx++) { saa_wbytes(plines, ftentry->filename, (int32_t)(strlen(ftentry->filename) + 1)); saa_write8(plines,0); /* directory LEB128u */ saa_write8(plines,0); /* time LEB128u */ saa_write8(plines,0); /* size LEB128u */ ftentry = ftentry->next; } saa_write8(plines,0); /* End of table */ linepoff = plines->datalen; linelen = linepoff + totlen + 10; linebuf = pbuf = nasm_malloc(linelen); WRITELONG(pbuf,linelen-4); /* initial length */ WRITESHORT(pbuf,dwfmt->sect_version[DWARF_LINE]); WRITELONG(pbuf,linepoff); /* offset to line number program */ /* write line header */ saalen = linepoff; saa_rnbytes(plines, pbuf, saalen); /* read a given no. of bytes */ pbuf += linepoff; saa_free(plines); /* concatonate line program ranges */ linepoff += 13; plinesrel = saa_init(1L); psect = dwarf_fsect; if (is_elf32()) { for (indx = 0; indx < dwarf_nsections; indx++) { saa_write32(plinesrel, linepoff); saa_write32(plinesrel, ((uint32_t) (psect->section + 2) << 8) + R_386_32); saa_write32(plinesrel, (uint32_t) 0); plinep = psect->psaa; saalen = plinep->datalen; saa_rnbytes(plinep, pbuf, saalen); pbuf += saalen; linepoff += saalen; saa_free(plinep); /* done with this entry */ psect = psect->next; } } else if (is_elfx32()) { for (indx = 0; indx < dwarf_nsections; indx++) { saa_write32(plinesrel, linepoff); saa_write32(plinesrel, ((psect->section + 2) << 8) + R_X86_64_32); saa_write32(plinesrel, 0); plinep = psect->psaa; saalen = plinep->datalen; saa_rnbytes(plinep, pbuf, saalen); pbuf += saalen; linepoff += saalen; saa_free(plinep); /* done with this entry */ psect = psect->next; } } else { nasm_assert(is_elf64()); for (indx = 0; indx < dwarf_nsections; indx++) { saa_write64(plinesrel, linepoff); saa_write64(plinesrel, ((uint64_t) (psect->section + 2) << 32) + R_X86_64_64); saa_write64(plinesrel, (uint64_t) 0); plinep = psect->psaa; saalen = plinep->datalen; saa_rnbytes(plinep, pbuf, saalen); pbuf += saalen; linepoff += saalen; saa_free(plinep); /* done with this entry */ psect = psect->next; } } /* build rela.lines section */ linerellen =saalen = plinesrel->datalen; linerelbuf = pbuf = nasm_malloc(linerellen); saa_rnbytes(plinesrel, pbuf, saalen); saa_free(plinesrel); /* build .debug_frame section */ if (0) { framelen = 4; framebuf = pbuf = nasm_malloc(framelen); WRITELONG(pbuf,framelen-4); /* initial length */ } else { /* Leave .debug_frame empty if not used! */ framelen = 0; } /* build .debug_loc section */ if (0) { loclen = 16; locbuf = pbuf = nasm_malloc(loclen); if (is_elf32() || is_elfx32()) { WRITELONG(pbuf,0); /* null beginning offset */ WRITELONG(pbuf,0); /* null ending offset */ } else { nasm_assert(is_elf64()); WRITEDLONG(pbuf,0); /* null beginning offset */ WRITEDLONG(pbuf,0); /* null ending offset */ } } else { /* Leave .debug_frame empty if not used! */ loclen = 0; } } static void dwarf_cleanup(void) { nasm_free(arangesbuf); nasm_free(arangesrelbuf); nasm_free(pubnamesbuf); nasm_free(infobuf); nasm_free(inforelbuf); nasm_free(abbrevbuf); nasm_free(linebuf); nasm_free(linerelbuf); nasm_free(framebuf); nasm_free(locbuf); } static void dwarf_findfile(const char * fname) { int finx; struct linelist *match; /* return if fname is current file name */ if (dwarf_clist && !(strcmp(fname, dwarf_clist->filename))) return; /* search for match */ match = 0; if (dwarf_flist) { match = dwarf_flist; for (finx = 0; finx < dwarf_numfiles; finx++) { if (!(strcmp(fname, match->filename))) { dwarf_clist = match; return; } match = match->next; } } /* add file name to end of list */ dwarf_clist = nasm_malloc(sizeof(struct linelist)); dwarf_numfiles++; dwarf_clist->line = dwarf_numfiles; dwarf_clist->filename = nasm_malloc(strlen(fname) + 1); strcpy(dwarf_clist->filename,fname); dwarf_clist->next = 0; if (!dwarf_flist) { /* if first entry */ dwarf_flist = dwarf_elist = dwarf_clist; dwarf_clist->last = 0; } else { /* chain to previous entry */ dwarf_elist->next = dwarf_clist; dwarf_elist = dwarf_clist; } } static void dwarf_findsect(const int index) { int sinx; struct sectlist *match; struct SAA *plinep; /* return if index is current section index */ if (dwarf_csect && (dwarf_csect->section == index)) return; /* search for match */ match = 0; if (dwarf_fsect) { match = dwarf_fsect; for (sinx = 0; sinx < dwarf_nsections; sinx++) { if (match->section == index) { dwarf_csect = match; return; } match = match->next; } } /* add entry to end of list */ dwarf_csect = nasm_malloc(sizeof(struct sectlist)); dwarf_nsections++; dwarf_csect->psaa = plinep = saa_init(1L); dwarf_csect->line = 1; dwarf_csect->offset = 0; dwarf_csect->file = 1; dwarf_csect->section = index; dwarf_csect->next = 0; /* set relocatable address at start of line program */ saa_write8(plinep,DW_LNS_extended_op); saa_write8(plinep,is_elf64() ? 9 : 5); /* operand length */ saa_write8(plinep,DW_LNE_set_address); if (is_elf64()) saa_write64(plinep,0); /* Start Address */ else saa_write32(plinep,0); /* Start Address */ if (!dwarf_fsect) { /* if first entry */ dwarf_fsect = dwarf_esect = dwarf_csect; dwarf_csect->last = 0; } else { /* chain to previous entry */ dwarf_esect->next = dwarf_csect; dwarf_esect = dwarf_csect; } } #endif /* defined(OF_ELF32) || defined(OF_ELF64) || defined(OF_ELFX32) */