/** * Navit, a modular navigation system. * Copyright (C) 2005-2015 Navit Team * * This program is free software; you can redistribute it and/or * modify it under the terms of the GNU General Public License * version 2 as published by the Free Software Foundation. * * This program is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program; if not, write to the * Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, * Boston, MA 02110-1301, USA. */ #include #include #include #include #include #include #include "debug.h" #include "profile.h" #include "navigation.h" #include "coord.h" #include "item.h" #include "xmlconfig.h" #include "route.h" #include "transform.h" #include "mapset.h" #include "projection.h" #include "map.h" #include "navit.h" #include "event.h" #include "callback.h" #include "speech.h" #include "vehicleprofile.h" #include "plugin.h" #include "navit_nls.h" #include "util.h" #include "linguistics.h" /* #define DEBUG */ static int roundabout_extra_length=50; /* TODO: find out if this is being used elsewhere and, if so, move this definition somewhere more generic */ static int invalid_angle = 361; /** Minimum absolute delta for a turn. * Maneuvers whose absolute delta is less than this will be considered straight */ static int min_turn_limit = 25; /* FIXME: revisit these limits. IMHO (mvglasow): * * 0 degrees = perfect straight road * 90 degrees = perfect turn * 180 degrees = perfect U turn * * Then, by interpolation: * 45 degrees = perfect "light turn" * 135 degrees = perfect "sharp turn" * * This also agrees with the angles depicted in the maneuver icons. * * Thresholds should be roughly halfway between them. * 25 degrees for min_turn_limit is probably OK (would be 22.5 by the above definition), * but maybe the rest should be somewhat closer to 67.5-117.5-157.5 instead of 45-105-165. * * robotaxi: * suggested limits derived from 'simple turn rules' in bugfix/enhancement #1095: * 25-45-110-165. * taken over from here: 25 (straight limit) and 165 (u-turn-limit used for very strong turn) */ /** Minimum absolute delta for a turn of "normal" strength (which is always just announced as "turn left/right" even when strength is required). * Maneuvers whose absolute delta is less than this will be announced as "turn easily left/right" when strength is required. */ static int turn_2_limit = 45; /** Minimum absolute delta for a sharp turn. * Maneuvers whose absolute delta is equal to or greater than this will be announced as "turn sharply left/right" when strength is required. */ static int sharp_turn_limit = 110; /** Minimum absolute delta for a U turn. * Maneuvers whose absolute delta is less than this (but at least {@code min_turn_limit}) will always be announced as turns. * Note that, depending on other conditions, even maneuvers whose delta exceeds the threshold may still be announced as (sharp) turns. */ static int u_turn_limit = 165; /** Enum that defines the different states in announcing a turn. * These states are dependent on the current distance to the turn; * the distances are configured in navit.xml for every type of highway. */ enum announcement_level { level_connect = -2, level_error = -1, level_now = 0, level_meters = 1, level_soon = 2, level_follow = 3 }; enum gender {unknown, masculine, feminine, neuter}; struct suffix { char *fullname; char *abbrev; int gender; } suffixes[]= { /* DE */ {"weg", NULL, masculine}, /* {"platz", "pl.", masculine}, collides with Lithuanian "plentas" (which is more frequent) */ {"platz", NULL, masculine}, {"ring", NULL, masculine}, {"bogen", NULL, masculine}, {"allee", NULL, feminine}, {"gasse", NULL, feminine}, {"straße", "str.", feminine}, /* EN */ {"street", NULL, masculine}, {"drive", NULL, masculine}, /* FR */ {"boulevard", NULL, masculine}, {"chemin", NULL, neuter}, {"rue", NULL, feminine}, /* LT, as per http://wiki.openstreetmap.org/wiki/WikiProject_Lithuania */ {"gatvė", "g.", feminine}, {"plentas", "pl.", masculine}, {"prospektas", "pr.", masculine}, {"alėja", "al.", feminine}, {"skersgatvis", "skg.", masculine}, {"aikštė", "a.", feminine}, /* NL */ {"straat", NULL, neuter}, /* {"weg", NULL, neuter}, doubles-up with German */ {"baan", NULL, neuter}, {"laan", NULL, neuter}, {"wegel", NULL, neuter}, }; enum nav_status_int { status_none = 0, status_busy = 1, status_has_ritem = 2, status_has_sitem = 4 }; struct navigation { NAVIT_OBJECT struct route *route; struct map *map; struct item_hash *hash; struct vehicleprofile *vehicleprofile; struct navigation_itm *first; struct navigation_itm *last; struct navigation_command *cmd_first; struct navigation_command *cmd_last; struct callback_list *callback_speech; struct callback_list *callback; struct navit *navit; struct speech *speech; int level_last; struct item item_last; int turn_around; int turn_around_limit; int distance_turn; struct callback *route_cb; int announce[route_item_last-route_item_first+1][3]; int tell_street_name; int delay; int curr_delay; int turn_around_count; int flags; struct map_rect *route_mr; /**< Map rect on the route map, used for maneuver generation */ enum nav_status_int status_int; /**< Internal status information used during maneuver generation */ struct callback *idle_cb; /**< Idle callback to process the route map */ struct event_idle *idle_ev; /**< The pointer to the idle event */ int nav_status; /**< Status of the navigation engine */ }; /** @brief Set of simplified distance values that are easy to be pronounced. * Used for the 'vocabulary_distances' configuration. */ int distances[]={1,2,3,4,5,10,25,50,75,100,150,200,250,300,400,500,750,-1}; /* Allowed values for navigation_maneuver.merge_or_exit * The numeric values are chosen in such a way that they can be interpreted as flags: * 1=merge, 2=exit, 4=interchange, 8=right, 16=left * Identifiers were chosen over flags to enforce certain rules * (merge/exit/interchange and left/right are mutually exclusive, left/right requires merge or exit). */ /** Not merging into or exiting from a motorway_like road */ #define mex_none 0 /** Merging into a motorway-like road, direction undefined. * This value is not intended to be set directly but can be used for * comparisons, e.g. {@code merge_or_exit & mex_merge}. */ #define mex_merge 1 /** Exiting from a motorway-like road, direction undefined. * This should only be used for ramps leading to a non-motorway road. * For interchanges, use {@code mex_interchange} instead. * This value is not intended to be set directly but can be used for * comparisons, e.g. {@code merge_or_exit & mex_exit}. */ #define mex_exit 2 /** Motorway-like road splits in two. * This should be used for all cases in which ramps lead to another motorway-like road. */ #define mex_interchange 4 /** Merging into a motorway-like road to the right (coming from the left) */ #define mex_merge_right 9 /** Exiting from a motorway-like road to the right. * See {@code mex_exit} for usage. */ #define mex_exit_right 10 /** Merging into a motorway-like road to the left (coming from the right) */ #define mex_merge_left 17 /** Exiting from a motorway-like road to the left. * See {@code mex_exit} for usage. */ #define mex_exit_left 18 /** * @brief Holds information about a navigation maneuver. * * This structure is populated when a navigation maneuver is first analyzed. Its members contain all information * needed to decide whether or not to announce the maneuver, what type of maneuver it is and the information that * was used to determine the former two. */ struct navigation_maneuver { enum item_type type; /**< The type of maneuver to perform. Any {@code nav_*} item is permitted here, with one exception: merge or exit maneuvers are indicated by the {@code merge_or_exit} member. The {@code item_type} for such maneuvers should be a turn instruction in cases where the maneuver is ambiguous, or {@code nav_none} for cases in which we would expect the driver to perform this maneuver even without being instructed to do so. **/ int delta; /**< Bearing difference (the angle the driver has to steer) for the maneuver */ int merge_or_exit; /**< Whether we are merging into or exiting from a motorway_like road or we are at an interchange */ int is_complex_t_junction; /**< Whether we are coming from the "stem" of a T junction whose "bar" is a dual-carriageway road and crossing the opposite lane of the "bar" first (i.e. turning left in countries that drive on the right, or turning right in countries that drive on the left). For these maneuvers {@code num_options} is 1 (which means we normally wouldn't announce the maneuver) but drivers would expect an announcement in such cases. */ int num_options; /**< Number of permitted candidate ways, i.e. ways which we may enter (based on access flags of the way but without considering turn restrictions). Permitted candidate ways include the route. */ int num_new_motorways; /**< Number of permitted candidate ways that are motorway-like. Numbers greater then one should be interpreted as "more than one", not as a precise number. */ int num_other_ways; /**< Number of permitted candidate ways that are neither ramps nor motorway-like */ int old_cat; /**< Maneuver category of the way leading to the maneuver */ int new_cat; /**< Maneuver category of the selected way after the maneuver */ int max_cat; /**< Highest maneuver category of any permitted candidate way other than the route */ int num_similar_ways; /**< Number of candidate ways (including the route) that have a {@code maneuver_category()} similar to {@code old_cat}. See {@code maneuver_required2()} for definition of "similar". */ int left; /**< Minimum bearing delta of any candidate way left of the route, -180 for none */ int right; /**< Minimum bearing delta of any candidate way right of the route, 180 for none */ int is_unambiguous; /**< Whether the maneuver is unambiguous. A maneuver is unambiguous if, despite multiple candidate way being available, we can reasonable expect the driver to continue on the route without being told to do so. This is typically the case when the route stays on the main road and goes straight, while all other candidate ways are minor roads and involve a significant turn. */ int is_same_street; /**< Whether the street keeps its name after the maneuver. */ }; /** * @brief Holds information about a command for a navigation maneuver. * * An instance of this structure is generated for each navigation maneuver that is to be announced. */ struct navigation_command { struct navigation_itm *itm; /**< The navigation item following the maneuver */ struct navigation_command *next; /**< next command in the list */ struct navigation_command *prev; /**< previous command in the list */ int delta; /**< bearing change at maneuver */ int roundabout_delta; /**< if we are leaving a roundabout, effective bearing change (between entry and exit) with some corrections applied */ int length; /**< if the maneuver is a roundabout, distance between entry and exit (plus penalty), else 0 */ struct navigation_maneuver *maneuver; /**< Details on the maneuver to perform */ }; /* * @brief Holds a way that one could possibly drive from a navigation item * */ struct navigation_way { struct navigation_way *next; /**< Pointer to a linked-list of all navigation_ways from this navigation item */ short dir; /**< The direction -1 or 1 of the way */ short angle2; /**< The bearing at the start or the way (0 = north, 90 =east etc.) */ int flags; /**< The flags of the way */ struct item item; /**< The item of the way */ char *name; /**< The street name ({@code street_name} attribute) */ char *name_systematic; /**< The road number ({@code street_name_systematic} attribute, OSM: {@code ref}) */ char *exit_ref; /**< Exit_ref if found on the first node of the way*/ char *exit_label; /**< Exit_label if found on the first node of the way*/ struct street_destination *destination; /**< The destination this way leads to (OSM: {@code destination}) */ }; struct navigation_itm { struct navigation_way way; int angle_end; /**< The bearing at the end of {@code way} */ struct coord start,end; int time; int length; int speed; int dest_time; int dest_length; int told; /**< Indicates if this item's announcement has been told earlier and should not be told again*/ int streetname_told; /**< Indicates if this item's streetname has been told in speech navigation*/ int dest_count; struct navigation_itm *next; struct navigation_itm *prev; }; /** * @brief A linked list containing the destination of the road * * Holds the destination info from the road, that is the place * you drive to if you keep following the road as found on * traffic sign's (ex. Paris, Senlis ...) */ struct street_destination { struct street_destination *next; char *destination; int rank; }; static void navigation_flush(struct navigation *this_); /** * @brief Calculates the delta between two angles * * The return value is to be interpreted as follows: *
    *
  • -179..-1: {@code angle2} is left of {@code angle1}
  • *
  • 0: Both angles are identical
  • *
  • 1..179: {@code angle2} is right of {@code angle1}
  • *
  • 180: {@code angle1} is opposite of {@code angle2}
  • *
* @param angle1 The first angle * @param angle2 The second angle * @return The difference between the angles, see description */ static int angle_delta(int angle1, int angle2) { int delta=angle2-angle1; if (delta <= -180) delta+=360; if (delta > 180) delta-=360; return delta; } static int angle_median(int angle1, int angle2) { int delta=angle_delta(angle1, angle2); int ret=angle1+delta/2; if (ret < 0) ret+=360; if (ret > 360) ret-=360; return ret; } static int angle_opposite(int angle) { return ((angle+180)%360); } /** * @brief Checks if two navigation items are on the same street * * This function checks if two navigation items are on the same street. It returns * true if either their name or their "systematic name" (e.g. "A6" or "B256") are the * same. * * @param old_name The name of the first item to be checked * @param old_name_systematic The systematic name of the first item to be checked * @param new_name The name of the second item to be checked * @param new_name_systematic The systematic name of the second item to be checked * @return True if both old and new are on the same street */ static int is_same_street2(char *old_name, char *old_name_systematic, char *new_name, char *new_name_systematic) { if (old_name && new_name && !strcmp(old_name, new_name)) { dbg(lvl_debug,"is_same_street: '%s' '%s' vs '%s' '%s' yes (1.)\n", old_name_systematic, new_name_systematic, old_name, new_name); return 1; } if (old_name_systematic && new_name_systematic && !strcmp(old_name_systematic, new_name_systematic)) { dbg(lvl_debug,"is_same_street: '%s' '%s' vs '%s' '%s' yes (2.)\n", old_name_systematic, new_name_systematic, old_name, new_name); return 1; } dbg(lvl_debug,"is_same_street: '%s' '%s' vs '%s' '%s' no\n", old_name_systematic, new_name_systematic, old_name, new_name); return 0; } /** * @brief Checks if two ways are identical * * This function checks if two {@code navigation_way}s are likely to represent the same way on the ground. * It does this by comparing the {@code name}, {@code name_systematic}, {@code angle2} and {@code item.type} * members of both ways and returning {@code true} if all of them match. * * Names are compared by calling {@code is_same_street()}. * * ID attributes (such as OSM IDs) are not used for comparison, which allows the function to handle even * overlapping maps for the same area created from different versions of OSM data, in which IDs may have * changed as a result of ways being merged or split. As long as the above attributes match, the ways will * still be considered equal. * * Note that way geometry (other than {@code angle2}) is not compared. If necessary, the caller needs to * make geometry-related comparisons separately. */ static int is_same_way(struct navigation_way * w1, struct navigation_way * w2) { if (!is_same_street2(w1->name, w1->name_systematic, w2->name, w2->name_systematic)) return 0; if ((w1->angle2 == w2->angle2) && (w1->item.type == w2->item.type)) return 1; else return 0; } /** * @brief Frees a list as constructed with split_string_to_list() * * @param list the list to be freed */ static void free_list(struct street_destination *list) { if (list){ struct street_destination *clist; while (list){ clist = list->next; g_free(list->destination); g_free(list); list = clist; } list = NULL; } } /** * @brief Splits a string into a list, and sets their initial rank to 0 * * The separator to split on can be any character. Preceding whitespace * characters will be removed. * * @param way a navigation_way holding the list to be filled up * @param raw_string a string to split * @param sep a char to be used as separator to split the raw_string * @return the number of entries in the list */ static int split_string_to_list(struct navigation_way *way, char* raw_string, char sep) { struct street_destination *new_street_destination = NULL; struct street_destination *next_street_destination_remember = NULL; char *pos1 = raw_string; char *pos2; int count = 0; free_list(way->destination); /*in case this is a retry with a different separator.*/ dbg(lvl_debug,"raw_string=%s split with %c\n",raw_string, sep); if (strlen(raw_string)>0) { count = 1; while (pos1) { new_street_destination = g_new(struct street_destination, 1); new_street_destination->next = next_street_destination_remember; next_street_destination_remember = new_street_destination ; if ((pos2 = strrchr(pos1, sep)) != NULL) { *pos2 = '\0' ; while (isspace(pos2[1])) pos2++; new_street_destination->destination = g_strdup(pos2+1); new_street_destination->rank=0; dbg(lvl_debug,"splitted_off_string=%s\n",new_street_destination->destination); count++; } else { while (isspace(pos1[0])) pos1++; new_street_destination->destination = g_strdup(pos1); new_street_destination->rank=0; pos1 = NULL; dbg(lvl_debug,"head_of_string=%s\n",new_street_destination->destination); } way->destination = next_street_destination_remember; } } return count; } /** * @brief Returns the first destination with a rank higher than zero. * * If all items in the list have a zero rank, the first one will be returned. */ static struct street_destination * get_bestranked(struct street_destination *street_destination) { struct street_destination *selected_street_destination; selected_street_destination = street_destination; while (selected_street_destination) { if (selected_street_destination->rank > 0) return selected_street_destination; selected_street_destination = selected_street_destination->next; } return street_destination; } /** * @brief Assigns a high rank to a matching destination in the next * command having destination info, and reset existing ranks to zero * * @param street destination to be given a high rank * @param command * @return 1 if successful, zero otherwise */ static int set_highrank(struct street_destination *street_destination, struct navigation_command *command) { struct street_destination *future_street_destination = NULL; struct navigation_command *next_command; char* destination_string; int success = 0; destination_string = street_destination->destination; if (command->next) { next_command=command->next; while (next_command) { if (next_command->itm->way.destination) break; if (!next_command->next) break; next_command=next_command->next; } if (next_command->itm->way.destination) future_street_destination = next_command->itm->way.destination; else future_street_destination = NULL; } while (future_street_destination) { if ((strcmp(destination_string,future_street_destination->destination)==0)) { future_street_destination->rank=99; success =1; } else future_street_destination->rank=0; future_street_destination=future_street_destination->next; } return success; } /** @brief Selects the destination-names for the next announcement from the * destination-names that are registered in the following command items. * * The aim of this function is to find the destination-name entry that has the most hits in the following * command items so that the destination name has a relevance over several announcements. If there is no 'winner' * the entry is selected that is at top of the destination. */ static char* select_announced_destinations(struct navigation_command *current_command) { struct street_destination *current_destination = NULL; /* the list pointer of the destination_names of the current command. */ struct street_destination *search_destination = NULL; /* the list pointer of the destination_names of the respective search_command. */ struct navigation_command *search_command = NULL; #define MAX_LOOPS 10 /* limits the number of next command items to investigate over */ #define MAX_DESTINATIONS 10 /* limits the number of destination entries to investigate */ int destination_count[MAX_DESTINATIONS]; /* contains the hits of identical destinations over all */ /* investigated command items - a 'high score' of destination names */ int destination_index = 0; int search_command_counter = 0; int i, max_hits=0, max_hit_index; /* search over every following command for seeking identical destination_names */ if (current_command->itm->way.destination) { /* can we investigate over the following commands? */ if (current_command->next) { /* loop over every destination of the current command, as far as there are not more than MAX_DESTINATIONS entries. */ destination_index = 0; /* start with the first destination */ current_destination = current_command->itm->way.destination; while (current_destination && (destination_index < MAX_DESTINATIONS)) { /* initialize the search command */ search_command = current_command->next; search_command_counter = 0; destination_count[destination_index]=0; while (search_command && (search_command_counter < MAX_LOOPS)) { if (search_command->itm && search_command->itm->way.destination) { /* has the search command any destinations ? */ search_destination = search_command->itm->way.destination; while (search_destination) { /* Search this name in the destination list of the current command. */ if (0 == strcmp(current_destination->destination, search_destination->destination)) { /* enter the destination_name in the investigation list*/ destination_count[destination_index]++; search_destination = NULL; /* break condition */ } else search_destination = search_destination->next; } } search_command_counter++; search_command = search_command->next; } destination_index++; current_destination = current_destination->next; } /* search for the best candidate */ max_hits = 0; max_hit_index = 0; for (i = 0; i < destination_index; i++) { if (destination_count[i] > max_hits) { max_hits = destination_count[i]; max_hit_index = i; } } /* jump to the corresponding destination_name */ current_destination = current_command->itm->way.destination; for (i = 0; i < max_hit_index; i++) { current_destination = current_destination->next; } dbg(lvl_debug,"%s, max hits =%i\n",current_destination->destination,max_hits); set_highrank(current_destination,current_command); } } /* return the best candidate, if there is any.*/ if (max_hits) return g_strdup(current_destination->destination); return g_strdup(current_destination ? get_bestranked(current_destination)->destination:NULL); } /** * @brief Converts navigation status to human-readable text. * * @param The status. This must be one of the values for {@code enum nav_status}. * * @return A string which corresponds to the constant value. The caller is responsible for calling * {@code g_free()} when the result is no longer needed. */ char *nav_status_to_text(int status) { char *ret; switch (status) { case status_invalid: ret = g_strdup("status_invalid"); break; case status_no_route: ret = g_strdup("status_no_route"); break; case status_no_destination: ret = g_strdup("status_no_destination"); break; case status_position_wait: ret = g_strdup("status_position_wait"); break; case status_calculating: ret = g_strdup("status_calculating"); break; case status_recalculating: ret = g_strdup("status_recalculating"); break; case status_routing: ret = g_strdup("status_routing"); break; default: ret = g_strdup_printf("status_unknown_%d)", status); } return ret; } int navigation_get_attr(struct navigation *this_, enum attr_type type, struct attr *attr, struct attr_iter *iter) { struct map_rect *mr; struct item *item; dbg(lvl_debug,"enter %s\n", attr_to_name(type)); switch (type) { case attr_map: attr->u.map=this_->map; break; case attr_item_type: case attr_length: case attr_navigation_speech: case attr_street_name: case attr_street_name_systematic: case attr_street_destination: mr=map_rect_new(this_->map, NULL); while ((item=map_rect_get_item(mr))) { if (item->type != type_nav_none && item->type != type_nav_position) { if (type == attr_item_type) attr->u.item_type=item->type; else { if (!item_attr_get(item, type, attr)) item=NULL; } break; } } map_rect_destroy(mr); if (!item) return 0; break; case attr_turn_around_count: attr->u.num=this_->turn_around_count; break; case attr_nav_status: attr->u.num=this_->nav_status; break; default: return navit_object_get_attr((struct navit_object *)this_, type, attr, iter); } attr->type=type; return 1; } static void navigation_set_turnaround(struct navigation *this_, int val) { if (this_->turn_around_count != val) { struct attr attr=ATTR_INT(turn_around_count, val); this_->turn_around_count=val; navit_object_callbacks((struct navit_object *)this_, &attr); } } int navigation_set_attr(struct navigation *this_, struct attr *attr) { switch (attr->type) { case attr_speech: this_->speech=attr->u.speech; break; case attr_nav_status: this_->nav_status = attr->u.num; break; default: break; } return navit_object_set_attr((struct navit_object *)this_, attr); } struct navigation * navigation_new(struct attr *parent, struct attr **attrs) { int i,j; struct attr * attr; struct navigation *ret=(struct navigation *)navit_object_new(attrs, &navigation_func, sizeof(struct navigation)); ret->hash=item_hash_new(); ret->callback=callback_list_new(); ret->callback_speech=callback_list_new(); ret->level_last=4; ret->distance_turn=50; ret->turn_around_limit=3; ret->navit=parent->u.navit; ret->tell_street_name=1; ret->route_mr = NULL; for (j = 0 ; j <= route_item_last-route_item_first ; j++) { for (i = 0 ; i < 3 ; i++) { ret->announce[j][i]=-1; } } if ((attr=attr_search(attrs, NULL, attr_tell_street_name))) { ret->tell_street_name = attr->u.num; } if ((attr=attr_search(attrs, NULL, attr_delay))) { ret->delay = attr->u.num; } if ((attr=attr_search(attrs, NULL, attr_flags))) { ret->flags = attr->u.num; } return ret; } int navigation_set_announce(struct navigation *this_, enum item_type type, int *level) { int i; if (type < route_item_first || type > route_item_last) { dbg(lvl_debug,"street type %d out of range [%d,%d]", type, route_item_first, route_item_last); return 0; } for (i = 0 ; i < 3 ; i++) this_->announce[type-route_item_first][i]=level[i]; return 1; } static enum announcement_level navigation_get_announce_level(struct navigation *this_, enum item_type type, int dist) { enum announcement_level level; if (type < route_item_first || type > route_item_last) { dbg(lvl_error," item outside routable range\n"); return level_error; } for (level = level_now ; level < level_follow ; level++) { if (dist <= this_->announce[type-route_item_first][level]) return level; } return level; } static int is_way_allowed(struct navigation *nav, struct navigation_way *way, int mode); static enum announcement_level navigation_get_announce_level_cmd(struct navigation *this_, struct navigation_itm *itm, struct navigation_command *cmd, int distance) { enum announcement_level level2,level=navigation_get_announce_level(this_, itm->way.item.type, distance); if (this_->cmd_first->itm->prev) { level2=navigation_get_announce_level(this_, cmd->itm->prev->way.item.type, distance); if (level2 > level) { level = level2; } } return level; } /* 0=N,90=E */ /** * @brief Gets the bearing from one point to another * * @param c1 The first coordinate * @param c2 The second coordinate * @param dir The direction: if it is -1, the bearing from c2 to c1 is returned, else the bearing from c1 to c2 * * @return The bearing in degrees, {@code 0 <= result < 360}. */ static int road_angle(struct coord *c1, struct coord *c2, int dir) { int ret=transform_get_angle_delta(c1, c2, dir); dbg(lvl_debug, "road_angle(0x%x,0x%x - 0x%x,0x%x)=%d\n", c1->x, c1->y, c2->x, c2->y, ret); return ret; } static const char *get_count_str(int n) { switch (n) { case 0: /* TRANSLATORS: the following counts refer to streets */ return _("zeroth"); /* Not sure if this exists, neither if it will ever be needed */ case 1: return _("first"); case 2: return _("second"); case 3: return _("third"); case 4: return _("fourth"); case 5: return _("fifth"); case 6: return _("sixth"); default: return NULL; } } static const char *get_exit_count_str(int n) { switch (n) { case 0: /* TRANSLATORS: the following counts refer to roundabout exits */ return _("zeroth exit"); /* Not sure if this exists, neither if it will ever be needed */ case 1: return _("first exit"); case 2: return _("second exit"); case 3: return _("third exit"); case 4: return _("fourth exit"); case 5: return _("fifth exit"); case 6: return _("sixth exit"); default: return NULL; } } static int round_distance(int dist) { if (dist < 100) { dist=(dist+5)/10; return dist*10; } if (dist < 250) { dist=(dist+13)/25; return dist*25; } if (dist < 500) { dist=(dist+25)/50; return dist*50; } if (dist < 1000) { dist=(dist+50)/100; return dist*100; } if (dist < 5000) { dist=(dist+50)/100; return dist*100; } if (dist < 100000) { dist=(dist+500)/1000; return dist*1000; } dist=(dist+5000)/10000; return dist*10000; } /** @brief Returns the last element of the simplified numbers containing a distance value. * @return value with the highest distance. */ static int distance_set_last() { static int i=0; if (i == 0) { while (distances[i] > 0) i++; } return distances[i-1]; } /** @brief Restricts the distance value to a simple set of pronounceable numbers. * @param dist The distance to be processed * @return distance Simplified distance value */ static int round_distance_reduced( int dist ) { int factor = 1; if (dist > distance_set_last()) { dist=(dist+500)/1000; factor = 1000; } int i=0,d=0,m=0; while (distances[i] > 0) { if (!i || abs(distances[i]-dist) <= d) { d=abs(distances[i]-dist); m=i; } if (distances[i] > dist) break; i++; } dbg(lvl_debug,"converted %d to %d with factor %d\n",dist,distances[m],factor); return distances[m] * factor; } /** @brief Generates the distance string. * Considers the configuration of 'imperial' units and 'vocabulary_distances'. * 'imperial' if set distinguishes the distance statement between miles and feet. Maximum distance in feet is 500. * 'vocabulary_distances' if set constrains the distance values to a set of simple pronounceable numbers. * * @param nav The navigation object. * @param dist Distance in meters. * @param type The type of announcement precision. * @param is_length 1 for length statement, 0 for distance statement. * @return String with length/distance statement. */ static char * get_distance_str(struct navigation *nav, int dist_meters, enum attr_type type, int is_length) { int imperial=0,vocabulary=1; /* default configuration */ /* Get configuration */ struct attr attr; if (navit_get_attr(nav->navit, attr_imperial, &attr, NULL)) imperial=attr.u.num; if (nav->speech && speech_get_attr(nav->speech, attr_vocabulary_distances, &attr, NULL)) vocabulary=attr.u.num; /****************************/ if (imperial) { int dist_feet = dist_meters * FEET_PER_METER; if (vocabulary > 0) { /* normal statement */ if (type != attr_navigation_long_exact) dist_feet = round_distance(dist_feet); } else { /* statement with reduced vocabularies */ dist_feet = round_distance_reduced(dist_feet); } /* check for statement in feet */ if (dist_feet <= 500) { if (is_length) return g_strdup_printf(_("%d feet"), dist_feet); else return g_strdup_printf(_("in %d feet"), dist_feet); } int dist_miles = (double) dist_meters / (double)METERS_PER_MILE + 0.5; if (vocabulary == 0) { /* statement with reduced vocabularies */ dist_miles = round_distance_reduced(dist_miles); } if ((dist_meters < METERS_PER_MILE) && (vocabulary > 0)) { /* values smaller than one need extra treatment for one decimal place. For reduced vocabulary it shall remain 'one'. */ int rem = (((double)dist_meters / (double)METERS_PER_MILE) + 0.05) * 10.0; dist_miles= 0; if (is_length) return g_strdup_printf(_("%d.%d miles"), dist_miles, rem); else return g_strdup_printf(_("in %d.%d miles"), dist_miles, rem); } if (is_length) return g_strdup_printf(navit_nls_ngettext("one mile","%d miles", dist_miles), dist_miles); else return g_strdup_printf(navit_nls_ngettext("in one mile","in %d miles", dist_miles), dist_miles); } else { if (vocabulary > 0) { /* normal statement */ if (type != attr_navigation_long_exact) dist_meters = round_distance(dist_meters); } else { /* statement with reduced vocabularies */ dist_meters = round_distance_reduced(dist_meters); } if (dist_meters < 1000) { if (is_length) return g_strdup_printf(_("%d meters"), dist_meters); else return g_strdup_printf(_("in %d meters"), dist_meters); } if (dist_meters < 5000) { /* Distances below 5 km shall be announced with one decimal place. */ int rem=(dist_meters/100)%10; if (rem) { if (is_length) return g_strdup_printf(_("%d.%d kilometers"), dist_meters/1000, rem); else return g_strdup_printf(_("in %d.%d kilometers"), dist_meters/1000, rem); } } if (is_length) return g_strdup_printf(navit_nls_ngettext("one kilometer","%d kilometers", dist_meters/1000), dist_meters/1000); else return g_strdup_printf(navit_nls_ngettext("in one kilometer","in %d kilometers", dist_meters/1000), dist_meters/1000); } } /** * @brief Initializes a navigation_way * * This function analyzes the underlying map item and sets the entry bearing, names and flags for the way. * * Note that entry bearing is expressed as bearing towards the opposite end of the item. * * Note that this function is not suitable for ways on the route (created in {@code navigation_itm_new}) * as it may return incorrect coordinates for these ways. * * @param w The way to initialize. The {@code item}, {@code id_hi}, {@code id_lo} and {@code dir} * members of this struct must be set prior to calling this function. */ static void navigation_way_init(struct navigation_way *w) { struct coord cbuf[2]; struct item *realitem; struct coord c; struct map_rect *mr; struct attr attr; w->angle2 = invalid_angle; mr = map_rect_new(w->item.map, NULL); if (!mr) return; realitem = map_rect_get_item_byid(mr, w->item.id_hi, w->item.id_lo); if (!realitem) { dbg(lvl_warning,"Item from segment not found on map!\n"); map_rect_destroy(mr); return; } if (realitem->type < type_line || realitem->type >= type_area) { map_rect_destroy(mr); return; } if (item_attr_get(realitem, attr_flags, &attr)) w->flags=attr.u.num; else w->flags=0; if (item_attr_get(realitem, attr_street_name, &attr)) w->name=map_convert_string(realitem->map,attr.u.str); else w->name=NULL; if (item_attr_get(realitem, attr_street_name_systematic, &attr)) w->name_systematic=map_convert_string(realitem->map,attr.u.str); else w->name_systematic=NULL; if (w->dir < 0) { if (item_coord_get(realitem, cbuf, 2) != 2) { dbg(lvl_warning,"Using calculate_angle() with a less-than-two-coords-item?\n"); map_rect_destroy(mr); return; } while (item_coord_get(realitem, &c, 1)) { cbuf[0] = cbuf[1]; cbuf[1] = c; } } else { if (item_coord_get(realitem, cbuf, 2) != 2) { dbg(lvl_warning,"Using calculate_angle() with a less-than-two-coords-item?\n"); map_rect_destroy(mr); return; } c = cbuf[0]; cbuf[0] = cbuf[1]; cbuf[1] = c; } map_rect_destroy(mr); w->angle2=road_angle(&cbuf[1],&cbuf[0],0); } /** * @brief Returns the maximum delta between a reference bearing and any segment of a given way, up to a given distance from its start * * The return value is the maximum delta (in terms of absolute value), but the sign is preserved. If the maximum delta is encountered * more than once but with different signs, {@code dir} controls which of the two values is returned: *
    *
  • +1: Return the first maximum encountered when following the direction of the route
  • *
  • -1: Return the first maximum encountered when going against the direction of the route
  • *
* * {@code invalid_angle} will be returned if one of the following errors occurs: *
    *
  • The item is not found on the map
  • *
  • The item is not of the correct type
  • *
  • The item has fewer than 2 points
  • *
  • {@code dist} is zero
  • *
* * If {@code dist} exceeds the length of the way, the entire way is examined. * * @param pro The projection used by the map * @param w The way to examine * @param angle The reference bearing * @param dist The distance from the start of the way at which to determine bearing * @param dir Controls how to handle when the same delta is encountered multiple times but with different signs, * permissible values are either -1 or +1 * * @return The delta, {@code -180 < delta <= 180}, or {@code invalid_angle} if an error occurred. */ static int navigation_way_get_max_delta(struct navigation_way *w, enum projection pro, int angle, double dist, int dir) { double dist_left = dist; /* distance from last examined point */ int ret = invalid_angle; int tmp_delta; int eff_dir = dir * w->dir; /* effective direction: +1 to examine section from start of way, -1 from end of way */ struct coord cbuf[2]; struct item *realitem; struct coord c; struct map_rect *mr; mr = map_rect_new(w->item.map, NULL); if (!mr) return ret; realitem = map_rect_get_item_byid(mr, w->item.id_hi, w->item.id_lo); if (!realitem) { dbg(lvl_warning,"Item from segment not found on map!\n"); map_rect_destroy(mr); return ret; } if (realitem->type < type_line || realitem->type >= type_area) { map_rect_destroy(mr); return ret; } if (item_coord_get(realitem, &cbuf[1], 1) != 1) { dbg(lvl_warning,"item has no coords\n"); map_rect_destroy(mr); return ret; } if (eff_dir < 0) { /* we're going against the direction of the item: * measure its total length and set dist_left to difference of total length and distance */ dist_left = 0; while (item_coord_get(realitem, &c, 1)) { cbuf[0] = cbuf[1]; cbuf[1] = c; dist_left += transform_distance(pro, &cbuf[0], &cbuf[1]); } /* if dist is less that the distance of the way, make dist_left the distance from the other end * else set it to zero (so we'll examine the whole way) */ if (dist_left > dist) dist_left -= dist; else dist_left = 0; item_coord_rewind(realitem); if (item_coord_get(realitem, &cbuf[1], 1) != 1) { dbg(lvl_warning,"item has no more coords after rewind\n"); map_rect_destroy(mr); return ret; } } while (item_coord_get(realitem, &c, 1)) { if ((eff_dir > 0) && (dist_left <= 0)) break; cbuf[0] = cbuf[1]; cbuf[1] = c; dist_left -= transform_distance(pro, &cbuf[0], &cbuf[1]); if ((eff_dir < 0) && (dist_left > 0)) continue; tmp_delta = angle_delta(angle, road_angle(&cbuf[0], &cbuf[1], w->dir)); if ((ret == invalid_angle) || (abs(ret) < abs(tmp_delta)) || ((abs(ret) == abs(tmp_delta)) && (eff_dir < 0))) ret = tmp_delta; } map_rect_destroy(mr); return ret; } /** * @brief Clears the ways one can drive from itm * * @param itm The item that should have its ways cleared */ static void navigation_itm_ways_clear(struct navigation_itm *itm) { struct navigation_way *c,*n; c = itm->way.next; while (c) { n = c->next; map_convert_free(c->name); map_convert_free(c->name_systematic); g_free(c); c = n; } itm->way.next = NULL; } /** * @brief Updates the ways one can drive from itm * * This updates the list of possible ways to drive to from itm. The item "itm" is on * and the next navigation item are excluded. * * @param itm The item that should be updated * @param graph_map The route graph's map that these items are on */ static void navigation_itm_ways_update(struct navigation_itm *itm, struct map *graph_map) { struct map_selection coord_sel; struct map_rect *g_rect; /* Contains a map rectangle from the route graph's map */ struct item *i,*sitem; struct attr sitem_attr,direction_attr; struct navigation_way *w, *l, *h; dbg(lvl_debug, "entering for item: %s %s %s\n", item_to_name(itm->way.item.type), itm->way.name_systematic, itm->way.name); navigation_itm_ways_clear(itm); /* These values cause the code in route.c to get us only the route graph point and connected segments */ coord_sel.next = NULL; coord_sel.u.c_rect.lu = itm->start; coord_sel.u.c_rect.rl = itm->start; /* the selection's order is ignored */ g_rect = map_rect_new(graph_map, &coord_sel); i = map_rect_get_item(g_rect); if (!i || i->type != type_rg_point) { /* probably offroad? */ map_rect_destroy(g_rect); return ; } w = NULL; while (1) { i = map_rect_get_item(g_rect); if (!i) { break; } if (i->type != type_rg_segment) { continue; } if (!item_attr_get(i,attr_street_item,&sitem_attr)) { dbg(lvl_warning, "Got no street item for route graph item in entering_straight()\n"); continue; } if (!item_attr_get(i,attr_direction,&direction_attr)) { continue; } sitem = sitem_attr.u.item; if (sitem->type == type_street_turn_restriction_no || sitem->type == type_street_turn_restriction_only) continue; if (item_is_equal(itm->way.item,*sitem) || ((itm->prev) && item_is_equal(itm->prev->way.item,*sitem))) { continue; } l = w; w = g_new0(struct navigation_way, 1); w->dir = direction_attr.u.num; w->item = *sitem; w->next = l; navigation_way_init(w); /* calculate and set w->angle2 */ dbg(lvl_debug, "- retrieved way: %s %s %s\n", item_to_name(w->item.type), w->name_systematic, w->name); /* check if w is already in the list */ h = l; while (h) { if (is_same_way(w, h)) { g_free(w); w = l; dbg(lvl_debug, " - way is already in list, discarding\n"); } h = h->next; } } map_rect_destroy(g_rect); itm->way.next = w; } /** * @brief Destroys navigation items associated with a navigation object. * * This function destroys all or some of the {@code navigation_itm} instances associated with * {@code this_}, starting with the first one. Data structures associated with the items will * also be freed. * * @param this_ The navigation object whose command instances are to be destroyed * @param end The first navigation item to keep. If it is NULL or not found in the list, all items * will be destroyed. */ static void navigation_destroy_itms_cmds(struct navigation *this_, struct navigation_itm *end) { struct navigation_itm *itm; struct navigation_command *cmd; dbg(lvl_info,"enter this_=%p this_->first=%p this_->cmd_first=%p end=%p\n", this_, this_->first, this_->cmd_first, end); if (this_->cmd_first) dbg(lvl_info,"this_->cmd_first->itm=%p\n", this_->cmd_first->itm); while (this_->first && this_->first != end) { itm=this_->first; dbg(lvl_debug,"destroying %p\n", itm); item_hash_remove(this_->hash, &itm->way.item); this_->first=itm->next; if (this_->first) this_->first->prev=NULL; if (this_->cmd_first && this_->cmd_first->itm == itm->next) { cmd=this_->cmd_first; this_->cmd_first=cmd->next; if (cmd->next) { cmd->next->prev = NULL; } if (cmd->maneuver) g_free(cmd->maneuver); g_free(cmd); } map_convert_free(itm->way.name); map_convert_free(itm->way.name_systematic); map_convert_free(itm->way.exit_ref); map_convert_free(itm->way.exit_label); free_list(itm->way.destination); navigation_itm_ways_clear(itm); g_free(itm); } if (! this_->first) this_->last=NULL; if (! this_->first && end) dbg(lvl_error,"end wrong\n"); dbg(lvl_info,"ret this_->first=%p this_->cmd_first=%p\n",this_->first, this_->cmd_first); } static void navigation_itm_update(struct navigation_itm *itm, struct item *ritem) { struct attr length, time, speed; if (! item_attr_get(ritem, attr_length, &length)) { dbg(lvl_error,"no length\n"); return; } if (! item_attr_get(ritem, attr_time, &time)) { dbg(lvl_error,"no time\n"); return; } if (! item_attr_get(ritem, attr_speed, &speed)) { dbg(lvl_error,"no speed\n"); return; } dbg(lvl_debug,"length=%ld time=%ld speed=%ld\n", length.u.num, time.u.num, speed.u.num); itm->length=length.u.num; itm->time=time.u.num; itm->speed=speed.u.num; } /** * @brief Creates and adds a new navigation_itm to a linked list of such * * routeitem has an attr. streetitem, but that is only and id and a map, * allowing to fetch the actual streetitem, that will live under the same name. * * Known issue: * If a way splits in 2, exit_to info ends up on both continuations of the ramp, sometimes * leading to wrong guidance. * The case where a ramp itself splits in 2 is already covered by ignoring exit_to info * in such cases. * * @param this_ the navigation object * @param routeitem the routeitem from which to create a navigation item * @return the new navigation_itm (used nowhere) */ static struct navigation_itm * navigation_itm_new(struct navigation *this_, struct item *routeitem) { struct navigation_itm *ret=g_new0(struct navigation_itm, 1); int i=0; struct item *streetitem; struct map *graph_map = NULL; struct attr street_item,direction,route_attr; struct map_rect *mr; struct attr attr; struct coord c[5]; struct coord exitcoord; if (routeitem) { ret->streetname_told=0; if (! item_attr_get(routeitem, attr_street_item, &street_item)) { dbg(lvl_warning, "no street item\n"); g_free(ret); ret = NULL; return ret; } if (item_attr_get(routeitem, attr_direction, &direction)) ret->way.dir=direction.u.num; else ret->way.dir=0; streetitem=street_item.u.item; ret->way.item=*streetitem; item_hash_insert(this_->hash, streetitem, ret); mr=map_rect_new(streetitem->map, NULL); struct map *tmap = streetitem->map; if (! (streetitem=map_rect_get_item_byid(mr, streetitem->id_hi, streetitem->id_lo))) { g_free(ret); map_rect_destroy(mr); return NULL; } if (item_attr_get(streetitem, attr_flags, &attr)) ret->way.flags=attr.u.num; if (item_attr_get(streetitem, attr_street_name, &attr)) ret->way.name=map_convert_string(streetitem->map,attr.u.str); if (item_attr_get(streetitem, attr_street_name_systematic, &attr)) ret->way.name_systematic=map_convert_string(streetitem->map,attr.u.str); if (ret->way.flags && (ret->way.flags & AF_ONEWAY)) { if (item_attr_get(streetitem, attr_street_destination, &attr)) { char *destination_raw; destination_raw=map_convert_string(streetitem->map,attr.u.str); dbg(lvl_debug,"destination_raw =%s\n",destination_raw); split_string_to_list(&(ret->way),destination_raw, ';'); g_free(destination_raw); } } else { if (ret->way.dir == 1) { if (item_attr_get(streetitem, attr_street_destination_forward, &attr)) { char *destination_raw; destination_raw=map_convert_string(streetitem->map,attr.u.str); dbg(lvl_debug,"destination_raw forward =%s\n",destination_raw); split_string_to_list(&(ret->way),destination_raw, ';'); g_free(destination_raw); } } if (ret->way.dir == -1) { if (item_attr_get(streetitem, attr_street_destination_backward, &attr)) { char *destination_raw; destination_raw=map_convert_string(streetitem->map,attr.u.str); dbg(lvl_debug,"destination_raw backward =%s\n",destination_raw); split_string_to_list(&(ret->way),destination_raw, ';'); g_free(destination_raw); } } } navigation_itm_update(ret, routeitem); while (item_coord_get(routeitem, &c[i], 1)) { dbg(lvl_debug, "coord %d 0x%x 0x%x\n", i, c[i].x ,c[i].y); if (i < 4) i++; else { c[2]=c[3]; c[3]=c[4]; } } i--; if (i>=1) { ret->way.angle2=road_angle(&c[0], &c[1], 0); ret->angle_end=road_angle(&c[i-1], &c[i], 0); } ret->start=c[0]; ret->end=c[i]; if(item_attr_get(routeitem, attr_route, &route_attr)) graph_map = route_get_graph_map(route_attr.u.route); if (graph_map ) { if (this_->last) ret->prev=this_->last; navigation_itm_ways_update(ret,graph_map); } /* If we have a ramp, check the map for higway_exit info, * but only on the first node of the ramp. * We are doing the same for motorway-like roads because some * interchanges use motorway types for the links between two * motorways. * Ramps with nodes in reverse order and oneway=-1 are not * specifically handled, but no occurence known so far either. * If present, obtain exit_ref, exit_label and exit_to * from the map. */ if (ret->way.next && ((streetitem->type == type_ramp) || (streetitem->type == type_highway_land) || (streetitem->type == type_highway_city) || (streetitem->type == type_street_n_lanes))) { struct map_selection mselexit; struct item *rampitem; dbg(lvl_debug,"test ramp\n"); mselexit.next = NULL; mselexit.u.c_rect.lu = c[0] ; mselexit.u.c_rect.rl = c[0] ; mselexit.range = item_range_all; mselexit.order =18; map_rect_destroy(mr); mr = map_rect_new(tmap, &mselexit); while ((rampitem=map_rect_get_item(mr))) { if (rampitem->type == type_highway_exit && item_coord_get(rampitem, &exitcoord, 1) && exitcoord.x == c[0].x && exitcoord.y == c[0].y) { while (item_attr_get(rampitem, attr_any, &attr)) { if (attr.type && attr.type == attr_label) { dbg(lvl_debug,"exit_label=%s\n",attr.u.str); ret->way.exit_label= map_convert_string(tmap,attr.u.str); } if (attr.type == attr_ref) { dbg(lvl_debug,"exit_ref=%s\n",attr.u.str); ret->way.exit_ref= map_convert_string(tmap,attr.u.str); } if (attr.type == attr_exit_to) { /* use exit_to as a fall back in case : * - there is no regular destination info * - we are not coming from a ramp already */ if (attr.u.str && !ret->way.destination && (ret->way.item.type == type_ramp) && (this_->last) && (!(this_->last->way.item.type == type_ramp))) { char *destination_raw; destination_raw=map_convert_string(tmap,attr.u.str); dbg(lvl_debug,"destination_raw from exit_to =%s\n",destination_raw); if ((split_string_to_list(&(ret->way),destination_raw, ';')) < 2) /* * if a first try did not result in an actual splitting * retry with ',' as a separator because in France a bad * mapping practice exists to separate exit_to with ',' * instead of ';' */ (split_string_to_list(&(ret->way),destination_raw, ',')); g_free(destination_raw); } } } } } } dbg(lvl_debug,"i=%d start %d end %d '%s' \n", i, ret->way.angle2, ret->angle_end, ret->way.name_systematic); map_rect_destroy(mr); } else { if (this_->last) ret->start=ret->end=this_->last->end; } if (! this_->first) this_->first=ret; if (this_->last) { this_->last->next=ret; ret->prev=this_->last; } dbg(lvl_debug,"ret=%p\n", ret); this_->last=ret; return ret; } /** * @brief Counts how many times a driver could turn right/left * * This function counts how many times the driver theoretically could * turn right/left between two navigation items, not counting the final * turn itself. * * @param from The navigation item which should form the start * @param to The navigation item which should form the end * @param direction Set to < 0 to count turns to the left >= 0 for turns to the right * @return The number of possibilities to turn or -1 on error */ static int count_possible_turns(struct navigation *nav, struct navigation_itm *from, struct navigation_itm *to, int direction) { int count; struct navigation_itm *curr; struct navigation_way *w; count = 0; curr = from->next; while (curr && (curr != to)) { w = curr->way.next; while (w) { if (is_way_allowed(nav, w, 4)) { if (direction < 0) { if (angle_delta(curr->prev->angle_end, w->angle2) < 0) { count++; break; } } else { if (angle_delta(curr->prev->angle_end, w->angle2) > 0) { count++; break; } } } w = w->next; } curr = curr->next; } if (!curr) { /* from does not lead to to? */ return -1; } return count; } /** * @brief Calculates distance and time to the destination * * This function calculates the distance and the time to the destination of a * navigation. If incr is set, this is only calculated for the first navigation * item, which is a lot faster than re-calculation the whole destination, but works * only if the rest of the navigation already has been calculated. * * @param this_ The navigation whose destination / time should be calculated * @param incr Set this to true to only calculate the first item. See description. */ static void calculate_dest_distance(struct navigation *this_, int incr) { int len=0, time=0, count=0; struct navigation_itm *next,*itm=this_->last; dbg(lvl_debug, "enter this_=%p, incr=%d\n", this_, incr); if (incr) { if (itm) { dbg(lvl_info, "old values: (%p) time=%d lenght=%d\n", itm, itm->dest_length, itm->dest_time); } else { dbg(lvl_info, "old values: itm is null\n"); } itm=this_->first; next=itm->next; dbg(lvl_info, "itm values: time=%d lenght=%d\n", itm->length, itm->time); dbg(lvl_info, "next values: (%p) time=%d lenght=%d\n", next, next->dest_length, next->dest_time); itm->dest_length=next->dest_length+itm->length; itm->dest_count=next->dest_count+1; itm->dest_time=next->dest_time+itm->time; dbg(lvl_info, "new values: time=%d lenght=%d\n", itm->dest_length, itm->dest_time); return; } while (itm) { len+=itm->length; time+=itm->time; itm->dest_length=len; itm->dest_time=time; itm->dest_count=count++; itm=itm->prev; } dbg(lvl_debug,"len %d time %d\n", len, time); } static int maneuver_category(enum item_type type) { switch (type) { case type_street_0: return 1; case type_street_1_city: return 2; case type_street_2_city: return 3; case type_street_3_city: return 4; case type_street_4_city: return 5; case type_highway_city: return 7; case type_street_1_land: return 2; case type_street_2_land: return 3; case type_street_3_land: return 4; case type_street_4_land: return 5; case type_street_n_lanes: return 6; case type_highway_land: return 7; case type_ramp: return 0; case type_roundabout: return 0; case type_ferry: return 0; default: return 0; } } /** * @brief Checks whether a way is allowed * * This function checks whether a given vehicle is permitted to enter a given way by comparing the * access and one-way restrictions of the way against the settings in {@code nav->vehicleprofile}. * Turn restrictions are not taken into account. * * @param nav The navigation object * @param way The way to examine * @param mode If nonzero, oneway restrictions will be taken into account. If zero, only the vehicle type * will be taken into account. * * @return True if entry is permitted, false otherwise. If {@code nav->vehicleprofile} is null, true is returned. */ /* (jandegr) this gets called from within show_maneuver with mode=3 for roundabouts * and with mode=4 from within count_possible_turns() for the use with * 'take the manieth road to the left/right' * However over here mode is ignored, so the 'manieth' road excludes unallowed oneway's, * but IMHO it should count all drivable roads. For roundabouts it seems to be ok. * */ static int is_way_allowed(struct navigation *nav, struct navigation_way *way, int mode) { if (!nav->vehicleprofile || !way->flags) return 1; if (mode) return ((way->flags & (way->dir >= 0 ? nav->vehicleprofile->flags_forward_mask : nav->vehicleprofile->flags_reverse_mask)) == nav->vehicleprofile->flags); else return ((way->flags & nav->vehicleprofile->flags) == nav->vehicleprofile->flags); } /** * @brief Checks whether a way has motorway-like characteristics * * Motorway-like means one of the following: * * item type is highway_land or highway_city (OSM: highway=motorway) * item type is street_n_lanes (OSM: highway=trunk) and way is one-way * {@code extended} is true and item type is either ramp or street_service * * @param way The way to examine * @param extended Whether to consider ramps and service roads to be motorway-like * @return True for motorway-like, false otherwise */ static int is_motorway_like(struct navigation_way *way, int extended) { if ((way->item.type == type_highway_land) || (way->item.type == type_highway_city) || ((way->item.type == type_street_n_lanes) && (way->flags & AF_ONEWAYMASK))) return 1; if ((extended) && ((way->item.type == type_ramp) || (way->item.type == type_street_service))) return 1; return 0; } /** * @brief Checks whether a way is a ramp * * @param way The way to be examined * @return True for ramp, false otherwise */ static int is_ramp(struct navigation_way *way) { if (way->item.type == type_ramp) return 1; return 0; } /** * @brief Checks if navit has to create a maneuver to drive from old to new * * This function checks if it has to create a "maneuver" - i.e. guide the user - to drive * from "old" to "new". * * @param old The old navigation item, where we're coming from * @param new The new navigation item, where we're going to * @param maneuver Pointer to a buffer that will receive a pointer to a {@code struct navigation_maneuver} * in which detailed information on the maneuver will be stored. The buffer may receive a null pointer * for some cases that do not require a maneuver. If a non-null pointer is returned, the caller is responsible * for freeing up the buffer once it is no longer needed. * @return True if navit should guide the user, false otherwise */ static int maneuver_required2 (struct navigation *nav, struct navigation_itm *old, struct navigation_itm *new, struct navigation_maneuver **maneuver) { struct navigation_maneuver m; /* if the function returns true, this will be passed in the maneuver argument */ struct navigation_itm *ni; /* temporary navigation item used for comparisons that examine previous or subsequent maneuvers */ int ret=0; int dw; /* temporary bearing difference between old and w (way being examined) */ int dlim; /* if no other ways are within +/- dlim, the maneuver is unambiguous */ int dc; /* if new and another way are within +/-min_turn_limit and on the same side, bearing difference for the other way; else d */ char *r=NULL; /* human-legible reason for announcing or not announcing the maneuver */ struct navigation_way *w; /* temporary way to examine */ struct navigation_way *through_segment2 = NULL; /* off-route segment of through road at complex T junction */ int wcat; int junction_limit = 100; /* maximum distance between two carriageways at a junction */ int motorways_left = 0, motorways_right = 0; /* number of motorway-like roads left or right of new->way */ int coming_from_motorway = 0; /* when the maneuver changes from one ramp to another, * whether the last non-ramp road was motorway-like */ int route_leaves_motorway = 0; /* when the maneuver changes from a motorway-like road to a ramp, * whether a subsequent maneuver leaves the motorway (changing direction * is considered leaving the motorway) */ *maneuver = NULL; m.type = type_nav_none; m.delta = angle_delta(old->angle_end, new->way.angle2); m.merge_or_exit = mex_none; m.is_complex_t_junction = 0; m.num_options = 0; m.num_new_motorways = 0; m.num_other_ways = 0; m.num_similar_ways = 0; m.old_cat = maneuver_category(old->way.item.type); m.new_cat = maneuver_category(new->way.item.type); m.max_cat = -1; m.left = -180; m.right = 180; m.is_unambiguous = 1; /* Check whether the street keeps its name */ m.is_same_street = is_same_street2(old->way.name, old->way.name_systematic, new->way.name, new->way.name_systematic); dc = m.delta; dbg(lvl_debug,"enter %p %p %p\n",old, new, maneuver); #if 0 dbg(lvl_debug, "old=%s %s, new=%s %s, angle old=%d, angle new=%d, d=%i\n ", old->way.name, old->way.name_systematic, new->way.name, new->way.name_systematic, old->angle_end, new->way.angle2, d); #endif if (!new->way.next || (new->way.next && (new->way.next->angle2 == new->way.angle2) && !new->way.next->next)) { /* No announcement necessary (with extra magic to eliminate duplicate ways) */ r="no: Only one possibility"; } else if (!new->way.next->next && new->way.next->item.type == type_ramp && !is_way_allowed(nav,new->way.next,1)) { /* If the other way is only a ramp and it is one-way in the wrong direction, no announcement necessary */ r="no: Only ramp and unallowed direction "; ret=0; } if (! r) { /* Announce exit from roundabout, but not entry or staying in it */ if ((old->way.flags & AF_ROUNDABOUT) && ! (new->way.flags & AF_ROUNDABOUT)) { r="yes: leaving roundabout"; ret=1; } else if (!new->way.next->next && !(old->way.flags & AF_ROUNDABOUT) && (new->way.flags & AF_ROUNDABOUT) && (new->way.next->flags & AF_ROUNDABOUT)) { /* this rather complicated construct makes sure we suppress announcements * only when we're entering a roundabout AND there are no other options */ r="no: entering roundabout"; } else if ((old->way.flags & AF_ROUNDABOUT) && (new->way.flags & AF_ROUNDABOUT)) { r="no: staying in roundabout"; } } if (!r) { /* Analyze all options (including new->way). * Anything that iterates over the whole set of options should be done here. This avoids * looping over the entire set of ways multiple times, which aims to improve performance * and predictability (because the same filter is applied to the ways being analyzed). */ w = &(new->way); int through_segments = 0; while (w) { /* in case of overlapping ways, avoid counting the way on the route twice */ if ((w->angle2 != new->way.angle2) || (w == &(new->way))) { dw=angle_delta(old->angle_end, w->angle2); if (is_way_allowed(nav,w,1)) { dbg(lvl_debug, "- Examining allowed way: %s %s %s, delta=%i\n", item_to_name(w->item.type), w->name_systematic, w->name, dw); m.num_options++; /* ways of similar category */ if (maneuver_category(w->item.type) == m.old_cat) { /* TODO: considering a maneuver_category difference of 1 to be similar, e.g. * if (abs(maneuver_category(w->item.type) - m.old_cat) <= 1) * will improve things in some cases but also introduce some junk maneuvers, * e.g. at complex junctions. If we relax the maneuver_category requirement, * we may need some extra requirements. */ m.num_similar_ways++; } /* motorway-like ways */ if ((m.num_new_motorways < 2) && is_motorway_like(w, 0)) { /* Count all motorway-like segments: * - always count new * - if new or w have an exit_ref or exit_label, count w * - if old, new and w have the same name_systematic, do not count w * - if one of old, new and w has no name_systematic, count w * This is for handling temporary splits (e.g. at toll booths), which should * be counted as one motorway for the purpose of navigation. On the other hand, * occasionally a motorway may split at an interchange with both segments * retaining the name, in which case we want to count both motorways. */ if ((w == &(new->way)) || new->way.exit_ref || new->way.exit_label || w->exit_ref || w->exit_label || !old->way.name_systematic || !new->way.name_systematic || !w->name_systematic || strcmp(old->way.name_systematic, new->way.name_systematic) || strcmp(old->way.name_systematic, w->name_systematic)) m.num_new_motorways++; } else if (!is_motorway_like(w, 1)) { m.num_other_ways++; } if (w != &(new->way)) { /* if we're exiting from a motorway, check which side of the ramp the motorway is on */ if (is_motorway_like(w, 0) && is_motorway_like(&(old->way), 0) && new->way.item.type == type_ramp) { if (dw < m.delta) motorways_left++; else motorways_right++; } if (dw < m.delta) { if (dw > m.left) m.left=dw; } else { if (dw < m.right) m.right=dw; } /* If almost-straight ways are present, the maneuver is ambiguous. We are counting only ways having * a nonzero maneuver category (street_0 or higher), excluding ramps, service roads and anything closed * to motorized traffic. Exceptions apply when the new way itself has a maneuver category of 0. * Note that this is in addition for the dlim calculations we do further below, as they fail to * catch some ambiguous cases for very low deltas. */ if ((dw > -min_turn_limit) && (dw < min_turn_limit) && ((maneuver_category(w->item.type) != 0) || (maneuver_category(new->way.item.type) == 0))) m.is_unambiguous = 0; if (dw < 0) { if (dw > -min_turn_limit && m.delta < 0 && m.delta > -min_turn_limit) dc=dw; } else { if (dw < min_turn_limit && m.delta > 0 && m.delta < min_turn_limit) dc=dw; } wcat=maneuver_category(w->item.type); /* If any other street has the same name, we can't use the same name criterion. * Exceptions apply if we're coming from a motorway-like road and: * - the other road is motorway-like (a motorway might split up temporarily) or * - the other road is a ramp or service road (they are sometimes tagged with the name of the motorway) * The second one is really a workaround for bad tagging practice in OSM. Since entering * a ramp always creates a maneuver, we don't expect the workaround to have any unwanted * side effects. */ if (m.is_same_street && is_same_street2(old->way.name, old->way.name_systematic, w->name, w->name_systematic) && (!is_motorway_like(&(old->way), 0) || (!is_motorway_like(w, 0) && w->item.type != type_ramp)) && is_way_allowed(nav,w,2)) m.is_same_street=0; /* If the route category changes to a lower one but another road has the same route category as old, * it is not clear which of the two the driver would perceive as the "same street", hence reset is_same_street */ /* Mark if the street has a higher or the same category */ if (wcat > m.max_cat) m.max_cat=wcat; } /* if w != new->way */ /* if is_way_allowed */ } else { /* If we're merging onto a motorway, check which side of the ramp the motorway is on. * This requires examining the candidate ways which are NOT allowed. */ if (is_motorway_like(w, 0) && is_motorway_like(&(new->way), 0) && old->way.item.type == type_ramp) { if (dw < 0) motorways_left++; else motorways_right++; } /* if !is_way_allowed */ } /* if is_way_allowed || !is_way_allowed */ if (w->flags & AF_ONEWAYMASK) { /* count through_segments (even if they are not allowed) to check if we are at a complex T junction */ if (is_same_street2(new->way.name, new->way.name_systematic, w->name, w->name_systematic)) /* count segments belonging to the same street */ through_segments++; else if ((!through_segment2 && (abs(angle_delta(angle_opposite(w->angle2), new->way.angle2)) < min_turn_limit)) || (through_segment2 && (abs(angle_delta(angle_opposite(w->angle2), new->way.angle2)) < abs(angle_delta(angle_opposite(through_segment2->angle2), new->way.angle2))))) { /* also count near-straight continuations of new (the through road may change names at the junction) */ if (!through_segment2) through_segments++; through_segment2 = w; } } } /* if w is not a duplicate of way->next */ w = w->next; } /* while w */ if ((abs(m.delta) >= min_turn_limit) && (through_segments >= 2)) { /* If we have to make a considerable turn (min_turn_limit or more), * check whether we are approaching a complex T junction from the "stem" * (which would need an announcement). * Complex means that the through road is a dual-carriageway road. * This is the case only if at least 2 segments (including new) are one-way * (regardless of direction) and have the same name as new or through_segment2. * More than 2 such segments are possible e.g. where two physically separated * lanes join. * To find out if there is another carriageway, we need to analyze the previous * maneuvers. */ int hist_through_segments = 0; int hist_dist = old->length; /* distance between previous and current maneuver */ ni = old; while (ni && (hist_through_segments == 0) && (hist_dist <= junction_limit)) { /* TODO: shouldn't the condition be (hist_through_segments < 2) to catch through segments that are slightly offset?? */ struct navigation_way *w = ni->way.next; while (w) { if (is_same_street2(new->way.name, new->way.name_systematic, w->name, w->name_systematic) || (through_segment2 && is_same_street2(through_segment2->name, through_segment2->name_systematic, w->name, w->name_systematic))) hist_through_segments++; w = w->next; } ni = ni->prev; if (ni) hist_dist += ni->length; } if (hist_through_segments >= 2) { /* Require at least 2 segments (there may be more than two in cases such as * local-express lane systems or separate cycleways) */ ret=1; m.is_complex_t_junction = 1; r="yes: turning into multi-carriageway through-road of T junction"; } } } if (!r && abs(m.delta) > 75) { /* always make an announcement if you have to make a sharp turn */ r="yes: delta over 75"; ret=1; } else if (!r && abs(m.delta) >= min_turn_limit) { if ((m.new_cat >= maneuver_category(type_street_2_city)) && (m.num_similar_ways > 1)) { /* When coming from street_2_* or higher category road, check if * - we have multiple options of the same category and * - we have to make a considerable turn (at least min_turn_limit) * If both is the case, ANNOUNCE. */ ret=1; r="yes: more than one similar road and delta >= min_turn_limit"; } } if ((!r) && (m.num_options <= 1)) r="no: only one option permitted"; if (!r) { if (is_motorway_like(&(old->way), 0) && (m.num_other_ways == 0) && (m.num_new_motorways > 1) && ((m.left > -90) || (m.right < 90))) { /* If we are at a motorway interchange, ANNOUNCE * We are assuming a motorway interchange when old way and at least * two possible ways are motorway-like and allowed. * Additionally we require one way (other than the new way) within +/-90°. * This prevents the rule from essentially announcing "don't do the U turn" * at the beginning of a single-carriageway section, which is occasionally * found on motorways. * If any of the possible ways is neither motorway-like nor a ramp, * we are probably on a trunk road with level crossings and not * at a motorway interchange. */ r="yes: motorway interchange (multiple motorways)"; m.merge_or_exit = mex_interchange; ret=1; } else if (is_motorway_like(&(old->way), 0) && is_motorway_like(&(new->way), 0) && (m.num_other_ways == 0) && (!m.is_same_street)) { /* Another sign that we are at a motorway interchange is if the street name changes */ r="yes: motorway interchange (name changes)"; m.merge_or_exit = mex_interchange; ret=1; } else if ((new->way.item.type == type_ramp) && ((m.num_other_ways == 0) || (abs(m.delta) >= min_turn_limit)) && ((m.left > -90) || (m.right < 90))) { /* Motorway ramps can be confusing, therefore we need to lower the bar for announcing a maneuver. * When the new way is a ramp, we check for the following criteria: * - All available ways are either motorway-like or ramps. * This prevents this rule from firing in non-motorway settings, which is needed to avoid * superfluous maneuvers when the minor road of a complex T junction is a ramp. * - If the above is not met, the maneuver must involve a turn (min_turn_limit or more) to enter the ramp. * - Additionally, there must be one way (other than the new way) within +/-90°. * This prevents the rule from essentially announcing "don't do the U turn" where the ramps for * two opposite directions merge. * If the criteria are satisfied, announce. */ r="yes: entering ramp"; ret=1; } } if (!r) { /* get the delta limit for checking for other streets. It is lower if the street has no other streets of the same or higher category */ if (m.new_cat < m.old_cat) dlim=80; else dlim=120; /* if the street is really straight, the others might be closer to straight */ if (abs(m.delta) < 20) dlim/=2; /* if both old and new way have a category of 0, or if both ways and at least one other way are * in the same category and no other ways are higher, * dlim is 620/256 (roughly 2.5) times the delta of the maneuver */ if ((m.max_cat == m.new_cat && m.max_cat == m.old_cat) || (m.new_cat == 0 && m.old_cat == 0)) dlim=abs(m.delta)*620/256; /* if both old and new way are in higher than highest encountered category, * dlim is 128/256 times (i.e. one half) the delta of the maneuver */ else if (m.max_cat < m.new_cat && m.max_cat < m.old_cat) dlim=abs(m.delta)*128/256; /* if no other ways are within +/-dlim, the maneuver is unambiguous */ if (m.left >= -dlim || m.right <= dlim) m.is_unambiguous = 0; /* if another way is within +/-min_turn_limit and on the same side as new, the maneuver is ambiguous */ if (dc != m.delta) { dbg(lvl_debug, "m.delta %d vs dc %d\n", m.delta, dc); m.is_unambiguous=0; } if (!m.is_same_street && m.is_unambiguous < 1) { /* FIXME: why < 1? */ ret=1; r="yes: different street and ambiguous"; } /* we should have cat of the candidate within dlim * instead of testing against max_cat. * The highest cat road might be well outside dlim */ else if (m.max_cat >= m.new_cat && m.is_unambiguous < 1) { ret = 1; r="yes: ambiguous because of other candidates within dlim"; } else r="no: same street or unambiguous"; #ifdef DEBUG r=g_strdup_printf("%s: d %d left %d right %d dlim=%d cat old:%d new:%d max:%d unambiguous=%d same_street=%d", ret==1?"yes":"no", m.delta, m.left, m.right, dlim, m.old_cat, m.new_cat, m.max_cat, m.is_unambiguous, m.is_same_street); #endif } if (m.merge_or_exit == mex_none) { if (old->way.item.type == type_ramp && is_motorway_like(&(new->way), 0)) { if (motorways_left) m.merge_or_exit = mex_merge_left; else if (motorways_right) m.merge_or_exit = mex_merge_right; /* if there are no motorways on either side, we are not merging * (more likely the start of a motorway) */ if (m.merge_or_exit != mex_none) { ret=1; if (!r) r = "yes: merging onto motorway-like road"; } } else if (is_motorway_like(&(old->way), 1) && (new->way.item.type == type_ramp)) { /* Detect interchanges - if: * - we're entering a ramp, * - we're coming from a motorway-like road (directly or via ramps), * - the route is taking us onto another motorway-like road and * - none of the ways in between connects to any non-motorway roads, * set m.merge_or_exit = mex_interchange. * The last condition is to prevent direction changes (i.e. exit motorway and take * access ramp for opposite direction) from being misinterpreted as interchanges. */ ni = old; coming_from_motorway = 1; while (coming_from_motorway && ni && (ni->way.item.type == type_ramp)) { w = &(ni->way); while (coming_from_motorway && w) { coming_from_motorway = is_motorway_like(w, 1); w = w->next; } ni = ni->prev; } if (ni && coming_from_motorway) coming_from_motorway = is_motorway_like(&(ni->way), 0); ni = new->next; route_leaves_motorway = !coming_from_motorway; while (!route_leaves_motorway && ni && (ni->way.item.type == type_ramp)) { w = &(ni->way); while (!route_leaves_motorway && w) { route_leaves_motorway = !is_motorway_like(w, 1); w = w->next; } ni = ni->next; } if (ni && !route_leaves_motorway && is_motorway_like(&(ni->way), 0)) m.merge_or_exit = mex_interchange; else if (is_motorway_like(&(old->way), 0) || (coming_from_motorway && new->way.exit_ref)) { if (motorways_left && (m.left > -90)) m.merge_or_exit = mex_exit_right; else if (motorways_right && (m.right < 90)) m.merge_or_exit = mex_exit_left; /* if there are no motorways within +/-90 degrees on either side, this is not an exit * (more likely the end of a motorway) */ } if (is_motorway_like(&(old->way), 0) && (m.merge_or_exit != mex_none)) { ret=1; if (!r) r = "yes: leaving motorway-like road"; } } } if (ret) { *maneuver = g_new(struct navigation_maneuver, 1); memcpy(*maneuver, &m, sizeof(struct navigation_maneuver)); } if (r) dbg(lvl_debug, "%s %s %s -> %s %s %s: %s, delta=%i, merge_or_exit=%i\n", item_to_name(old->way.item.type), old->way.name_systematic, old->way.name, item_to_name(new->way.item.type), new->way.name_systematic, new->way.name, r, m.delta, m.merge_or_exit); return ret; } /** * @brief Adjusts a bearing delta to point in the same direction as a reference delta. * * Calculated delta results are constrained to -180 <= delta <= +180 degrees. Some heuristics, however, require values outside * that range, e.g. -190 rather than 170 degrees. Given a reference with approximately correct orientation, this function corrects * that delta to match the reference as closely as possible. This is done by adding or subtracting 360 degrees as needed. * * @param delta The delta to adjust. {@code abs(delta)} must be no greater than 180. * @param reference The reference delta. {@code abs(reference)} must be no greater then 180. * @return The adjusted delta, which is numerically within +/-180 degrees of the reference. If {@code delta} or {@code reference} * are outside of their specified range, the result is undefined. */ int adjust_delta(int delta, int reference) { if ((delta >= 0) && (delta - reference) > 180) { dbg(lvl_debug,"adjusting delta from %d to %d\n", delta, delta - 360); return delta - 360; } else if ((delta <= 0) && (reference - delta) > 180) { dbg(lvl_debug,"adjusting delta from %d to %d\n", delta, delta + 360); return delta + 360; } else return delta; } /** * @brief Analyzes a roundabout and sets maneuver information * * Exit from a roundabout requires a somewhat complex analysis of the ways involved in order to: *
    *
  • Calculate effective bearing change (between entry and exit) and store it in {@code cmd->roundabout_delta}
  • *
  • Set {@code cmd->maneuver->type} to {@code nav_roundabout_{r|l}{1..8}}, based on bearing change
  • *
  • Set {@code cmd->length}
  • *
* * Bearing change must be as close as possible to how drivers would perceive it. * Builds prior to r2017 used the difference between the last way before and the first way after the roundabout, * which tends to overestimate the angle when the ways leading towards and/or away from the roundabout split into * separate carriageways in a Y-shape. This is referred to as {@code delta1} here. * * In r2017 a different approach was introduced, which essentially distorts the roads so they enter and leave * the roundabout at a 90 degree angle. (To make calculations simpler, tangents of the roundabout at the entry * and exit points are used, with one of them reversed in direction, instead of the approach roads.) * However, this approach tends to underestimate the angle when the distance between approach roads is large. * This is referred to as {@code delta2} here. * * Combining {@code delta1} and {@code delta2}, calculating error estimates for each and using a weighted average between the * two delta estimates gives better results in many cases but fails for certain road layouts - namely, when corresponding * approach roads are connected by more than one roundabout segment, or when additional ways connect to an approach road. * These cases break error calculation and thus weight distribution. * * Project HighFive introduces a new approach, which compares bearings of ways leading towards and away from the * roundabout not immediately at entry and exit but at a certain distance from the roundabout, which is roughly proportional * to the circumference of the roundabout. Circumference is estimated using the arithmetic mean value of {@code delta1} and * {@code delta2}. This approach has produced the best results in tests. In code it is referred to as {@code delta3}. * * @param this_ The navigation object * @param cmd A {@code struct navigation_cmd}, whose {@code delta} and {@code maneuver} members must be set prior to calling * this function * @param itm The navigation item for the maneuver to exit the roundabout */ void navigation_analyze_roundabout(struct navigation *this_, struct navigation_command *cmd, struct navigation_itm *itm) { enum item_type r = type_none, l = type_none; int len = 0; /* length of roundabout segment */ int roundabout_length; /* estimated total length of roundabout */ int angle = 0; int entry_tangent; /* tangent of the roundabout at entry point, against direction of route */ int exit_tangent; /* tangent of the roundabout at exit point, in direction of route */ int entry_road_angle, exit_road_angle; /* angles before and after approach segments */ struct navigation_itm *itm2; /* items before itm to examine, up to first roundabout segment on route */ struct navigation_itm *itm3; /* items before itm2 and after itm to examine */ struct navigation_way *w; /* continuation of the roundabout after we leave it */ struct navigation_way *w2; /* segment of the roundabout leading to the point at which we enter it */ int dtsir = 0; /* delta to stay in roundabout */ int d, dmax = 0; /* when examining deltas of roundabout approaches, current and maximum encountered */ int delta1, delta2, delta3; /* for roundabout delta calculated with different approaches */ int dist_left; /* when examining ways around the roundabout to a certain threshold, the distance we have left to go */ int central_angle; /* approximate central angle for the roundabout arc that is part of the route */ int abort; /* whether a (complex) criterion for aborting a loop has been met */ /* Find continuation of roundabout after the exit. Don't simply use itm->way.next here, it will break * if a node in the roundabout is shared by more than one way */ w = itm->way.next; while (w && !(w->flags & AF_ROUNDABOUT)) w = w->next; if (w) { /* When exiting a roundabout, w should never be null, thus this * code will always be executed. Checking for the condition anyway ensures * that botched map data (roundabout ending with nowhere else to go) will not * cause a crash. For the same reason we're using dtsir with a default value of 0. */ dtsir = angle_delta(itm->prev->angle_end, w->angle2); dbg(lvl_debug,"delta to stay in roundabout %d\n", dtsir); exit_tangent = angle_median(itm->prev->angle_end, w->angle2); dbg(lvl_debug,"exit %d median from %d, %d\n", exit_tangent, itm->prev->angle_end, w->angle2); /* Move back to where we enter the roundabout, calculate length in roundabout */ itm2=itm; while (itm2->prev && (itm2->prev->way.flags & AF_ROUNDABOUT)) { itm2=itm2->prev; len+=itm2->length; angle=itm2->angle_end; } /* Find the segment of the roundabout leading up to the point at which we enter it. Again, don't simply * use itm2->way.next here, it will break if a node in the roundabout is shared by more than one way */ w2 = itm2->way.next; while (w2 && !(w2->flags & AF_ROUNDABOUT)) w2 = w2->next; /* Calculate entry angle */ if (itm2 && w2) { entry_tangent = angle_median(angle_opposite(itm2->way.angle2), w2->angle2); dbg(lvl_debug, "entry %d median from %d (%d), %d\n", entry_tangent, angle_opposite(itm2->way.angle2), itm2->way.angle2, itm2->way.next->angle2); } else { entry_tangent = angle_opposite(angle); } /* endif itm2 && w2 */ dbg(lvl_debug, "entry %d exit %d\n", entry_tangent, exit_tangent); delta2 = angle_delta(entry_tangent, exit_tangent); dbg(lvl_debug, "delta2 %d\n", delta2); if (itm2->prev) { /* If there are V-shaped approach segments and we are turning around or making a sharp turn, * delta1 may point in the wrong direction, thus we need adjust_delta() to correct this. */ delta1 = adjust_delta(angle_delta(itm2->prev->angle_end, itm->way.angle2), delta2); /* Now try to figure out the error range for delta1. Errors are caused by turns in the approach segments * just before the roundabout. We use the last segment before the approach as a reference. * We assume the approach to begin when one of the following is true: * - a way turns into a ramp * - a way turns into a one-way road * - a certain distance from the roundabout, proportional to its circumference, is exceeded * Simply comparing bearings at these points may cause confusion with certain road layouts (namely * S-shaped dual-carriageway roads), hence we examine the entire approach segment and take the largest * delta (relative to the end of the approach segment) which we encounter. * This is done for both ends of the roundabout. */ /* Approximate roundabout circumference based on len and approximate central angle of route segment. * The central angle is approximated using the unweighted average of delta1 and delta2, * which is somewhat crude but sufficient for our purposes. */ central_angle = abs((delta1 + delta2) / 2 + ((cmd->delta < dtsir) ? 180 : -180)); roundabout_length = len * 360 / central_angle; dbg(lvl_debug,"roundabout_length = %dm (for central_angle = %d degrees)\n", roundabout_length, central_angle); /* in the case of separate carriageways, approach roads become hard to identify, thus we keep a cap on distance. * Currently this is at most half the length of the roundabout, which has worked well in tests but can be tweaked * to further improve results. */ dist_left = roundabout_length / 2; dbg(lvl_debug,"examining roads for up to %dm\n", dist_left); /* examine items before roundabout */ itm3 = itm2->prev; /* last segment before roundabout */ abort = 0; while (itm3->prev) { if ((itm3->next && is_ramp(&(itm3->next->way)) && !is_ramp(&(itm3->way))) || !(itm3->way.flags & AF_ONEWAYMASK)) { dbg(lvl_debug,"items before roundabout: break because ramp or oneway ends, %dm left\n", dist_left); dist_left = 0; /* to make sure we don't examine the following way in depth */ break; } if (dist_left <= itm3->length) { dbg(lvl_debug,"items before roundabout: maximum distance reached, %dm left, item length %dm\n", dist_left, itm3->length); break; } d = navigation_way_get_max_delta(&(itm3->way), map_projection(this_->map), itm2->prev->angle_end, dist_left, -1); if ((d != invalid_angle) && (abs(d) > abs(dmax))) dmax = d; w2 = itm3->way.next; while (w2) { /* Stop examining ways at a turn maneuver (more than one way allowed and route does not follow straightest path) */ if (is_way_allowed(this_, w2, 0) && (abs(angle_delta(angle_opposite(w2->angle2), itm3->way.angle2)) <= abs(angle_delta(itm3->prev->angle_end, itm3->way.angle2)))) { /* FIXME: comparing angles probably does not work well for near-equal angles */ abort = 1; break; } w2 = w2->next; } if (abort) { dbg(lvl_debug,"items before roundabout: break because of potential turn maneuver, %dm left\n", dist_left); dist_left = itm3->length; break; } dist_left -= itm3->length; itm3 = itm3->prev; } if (dist_left == 0) { d = angle_delta(itm2->prev->angle_end, itm3->angle_end); } else if (dist_left < itm3->length) { d = navigation_way_get_max_delta(&(itm3->way), map_projection(this_->map), itm2->prev->angle_end, dist_left, -1); } else { /* not enough objects in navigation map, use most distant one * - or dist_left == itm3->length, this saves a few CPU cycles over the above */ d = angle_delta(itm2->prev->angle_end, itm3->way.angle2); } if ((d != invalid_angle) && (abs(d) > abs(dmax))) dmax = d; entry_road_angle = (itm2->prev->angle_end + dmax) % 360; dbg(lvl_debug,"entry_road_angle %d (%d + %d)\n", entry_road_angle, itm2->prev->angle_end, dmax); /* examine items after roundabout */ dmax = 0; dist_left = roundabout_length / 2; itm3 = itm; /* first segment after roundabout */ abort = 0; while (itm3->next) { if ((itm3->prev && is_ramp(&(itm3->prev->way)) && !is_ramp(&(itm3->way))) || !(itm3->way.flags & AF_ONEWAYMASK)) { dbg(lvl_debug,"items after roundabout: break because ramp or oneway ends, %dm left\n", dist_left); dist_left = 0; /* to make sure we don't examine the following way in depth */ break; } if (dist_left <= itm3->length) { dbg(lvl_debug,"items after roundabout: maximum distance reached, %dm left, item length %dm\n", dist_left, itm3->length); break; } d = navigation_way_get_max_delta(&(itm3->way), map_projection(this_->map), itm->way.angle2, dist_left, 1); if ((d != invalid_angle) && (abs(d) > abs(dmax))) dmax = d; w2 = itm3->next->way.next; while (w2) { /* Stop examining ways at a turn maneuver (more than one way allowed and route does not follow straightest path) */ if (is_way_allowed(this_, w2, 0) && (abs(angle_delta(itm3->angle_end, w2->angle2)) <= abs(angle_delta(itm3->angle_end, itm3->next->way.angle2)))) { /* FIXME: comparing angles probably does not work well for near-equal angles */ abort = 1; break; } w2 = w2->next; } if (abort) { dbg(lvl_debug,"items after roundabout: break because of potential turn maneuver, %dm left\n", dist_left); dist_left = itm3->length; break; } dist_left -= itm3->length; itm3 = itm3->next; } if (dist_left == 0) { d = angle_delta(itm->way.angle2, itm3->way.angle2); } else if (dist_left < itm3->length) { d = navigation_way_get_max_delta(&(itm3->way), map_projection(this_->map), itm->way.angle2, dist_left, 1); } else { /* not enough objects in navigation map, use most distant one * - or dist_left == itm3->length, this saves a few CPU cycles over the above */ d = angle_delta(itm->way.angle2, itm3->angle_end); } if ((d != invalid_angle) && (abs(d) > abs(dmax))) dmax = d; exit_road_angle = (itm->way.angle2 + dmax) % 360; dbg(lvl_debug,"exit_road_angle %d (%d + %d)\n", exit_road_angle, itm->way.angle2, dmax); dbg(lvl_debug,"delta1 %d\n", delta1); delta3 = adjust_delta(angle_delta(entry_road_angle, exit_road_angle), delta2); dbg(lvl_debug,"delta3 %d\n", delta3); cmd->roundabout_delta = delta3; dbg(lvl_debug,"roundabout_delta %d\n", cmd->roundabout_delta); } else { /* we don't know where we entered the roundabout, so we can't calculate delta1 */ cmd->roundabout_delta = delta2; } /* endif itm2->prev */ cmd->length=len+roundabout_extra_length; } /* if w */ /* set cmd->maneuver->type */ switch (((180 + 22) - cmd->roundabout_delta) / 45) { case 0: case 1: r = type_nav_roundabout_r1; l = type_nav_roundabout_l7; break; case 2: r = type_nav_roundabout_r2; l = type_nav_roundabout_l6; break; case 3: r = type_nav_roundabout_r3; l = type_nav_roundabout_l5; break; case 4: r = type_nav_roundabout_r4; l = type_nav_roundabout_l4; break; case 5: r = type_nav_roundabout_r5; l = type_nav_roundabout_l3; break; case 6: r = type_nav_roundabout_r6; l = type_nav_roundabout_l2; break; case 7: r = type_nav_roundabout_r7; l = type_nav_roundabout_l1; break; case 8: r = type_nav_roundabout_r8; l = type_nav_roundabout_l8; break; } dbg(lvl_debug,"delta %d\n", cmd->delta); /* if delta to leave the roundabout (cmd->delta) is less than delta to stay in roundabout (dtsir), * we're exiting to the left, so we're probably in a clockwise roundabout, and vice versa */ if (cmd->delta < dtsir) cmd->maneuver->type = l; else cmd->maneuver->type = r; dbg(lvl_debug,"type %s\n", item_to_name(cmd->maneuver->type)); } /** * @brief Creates a new {@code struct navigation_command} for a maneuver. * * This function creates a new command and inserts it into the command list of {@code this_}. * It also parses {@code maneuver} and sets its {@code type} appropriately so that other * functions can rely on that. * * @param this_ The navigation object * @param itm The navigation item following the maneuver * @param maneuver The {@code struct navigation_maneuver} returned by {@code maneuver_required2()}. For the destination, * initialize a zeroed-out {@code struct navigation_maneuver} and set its {@code type} member to {@code type_nav_destination} * prior to calling this function. * * @return The new command */ static struct navigation_command * command_new(struct navigation *this_, struct navigation_itm *itm, struct navigation_maneuver *maneuver) { struct navigation_command *ret=g_new0(struct navigation_command, 1); struct navigation_way *w; /* the way in which to turn. */ int more_ways_for_strength = 0; /* Counts the number of ways of the current node that turn to the same direction as the route way. Strengthening criterion. */ int turn_no_of_route_way = 0; /* The number of the route way of all ways that turn to the same direction. Count direction from abs(0 degree) up to abs(180 degree). Strengthening criterion. */ dbg(lvl_debug,"enter this_=%p itm=%p maneuver=%p delta=%d\n", this_, itm, maneuver, maneuver->delta); ret->maneuver = maneuver; ret->delta=maneuver->delta; ret->itm=itm; /* Possible maneuver types: * nav_none (default, change wherever we encounter it – unless the maneuver is a merge, which has only merge_or_exit) * nav_straight (set below) * nav_keep_{left|right} (set below) * nav_{right|left}_{1..3} (set below) * nav_turnaround (TODO: when we have a U turn without known direction? Needs full implementation!) * nav_turnaround_{left|right} (set below) * nav_roundabout_{r|l}{1..8} (set below, special handling) * nav_exit_{left|right} (do not set here) * nav_merge_{left|right} (do not set here) * nav_destination (if this is set, leave it) * nav_position (do not set here) */ if (ret->maneuver->type != type_nav_destination) { /* FIXME: this will not catch cases in which entry and exit share the same node and we just *touch* the roundabout */ if (itm && itm->prev && !(itm->way.flags & AF_ROUNDABOUT) && (itm->prev->way.flags & AF_ROUNDABOUT)) { navigation_analyze_roundabout(this_, ret, itm); } else { /* non-roundabout turn --> */ /* set ret->maneuver->type */ if (abs(ret->delta) >= min_turn_limit) { /* Strengthening criterion: If there are more ways in the same direction, in which the vehicle can turn, the announcement shall be more precise. I.e. the strengthening is dependent on which of the possible ways the route turn shall be. So, with the selection of one of the possible ways a certain turn angle pattern becomes active. Second criterion: the turn angle of the route way defines the strengthening of the announcement according to the pattern. */ w = itm->next->way.next; if (angle_delta(itm->next->way.angle2,itm->angle_end) < 0) { /* next turns or bends left */ while (w) { if (angle_delta(w->angle2,itm->angle_end) < -min_turn_limit) { more_ways_for_strength++; /* there is an additional way that also turns left. Note: the route turn is not contained Left means more than min_turn_limit, less is straight on */ if (angle_delta(w->angle2,itm->angle_end) < ret->delta) turn_no_of_route_way++; /* this way is on the left side of the route way */ } w = w->next; } } else { /* next turns or bends right. Same investigation, but mirrored. */ while (w) { if (angle_delta(w->angle2,itm->angle_end) > min_turn_limit) { more_ways_for_strength++; if (angle_delta(w->angle2,itm->angle_end) > ret->delta) turn_no_of_route_way++; /* this way is on the right side of the route way */ } w = w->next; } } /* Investigate the strengthening of announcement. */ switch (more_ways_for_strength) { case 0: /* Only one possibility to turn to this direction */ if (ret->delta < -sharp_turn_limit) { ret->maneuver->type = type_nav_left_3; /* strongly left */ } else if (ret->delta <= 0) { ret->maneuver->type = type_nav_left_2; /* normally left */ } else if (ret->delta <= sharp_turn_limit) { ret->maneuver->type = type_nav_right_2;/* normally right */ } else { ret->maneuver->type = type_nav_right_3;/* strongly right */ } break; case 1: /* One additional possibility to turn to the same direction */ if (turn_no_of_route_way == 0) { /* the route is less strong to turn */ if (ret->delta < -turn_2_limit) { ret->maneuver->type = type_nav_left_2; /* normally left */ } else if (ret->delta <= 0) { ret->maneuver->type = type_nav_left_1; /* easily left */ } else if (ret->delta <= turn_2_limit) { ret->maneuver->type = type_nav_right_1; /* easily right */ } else { ret->maneuver->type = type_nav_right_2; /* normally right */ } } else { if (ret->delta < -sharp_turn_limit) { ret->maneuver->type = type_nav_left_3; /* strongly left */ } else if (ret->delta <= 0) { ret->maneuver->type = type_nav_left_2; /* normally left */ } else if (ret->delta <= sharp_turn_limit) { ret->maneuver->type = type_nav_right_2; /* normally right */ } else { ret->maneuver->type = type_nav_right_3; /* strongly right */ } } break; default: /* Two or more additional possibilities to turn to the same direction. */ if (turn_no_of_route_way == 0) { if (ret->delta < -turn_2_limit) { ret->maneuver->type = type_nav_left_2; /* normally left */ } else if (ret->delta <= 0) { ret->maneuver->type = type_nav_left_1; /* easily left */ } else if (ret->delta <= turn_2_limit) { ret->maneuver->type = type_nav_right_1; /* easily right */ } else { ret->maneuver->type = type_nav_right_2; /* normally right */ } } else if (turn_no_of_route_way == 1) { if (ret->delta < -sharp_turn_limit) { ret->maneuver->type = type_nav_left_3; /* strongly left */ } else if (ret->delta <= 0) { ret->maneuver->type = type_nav_left_2; /* normally left */ } else if (ret->delta <= sharp_turn_limit) { ret->maneuver->type = type_nav_right_2; /* normally right */ } else { ret->maneuver->type = type_nav_right_3; /* strongly right */ } } else if (turn_no_of_route_way > 1) { /* if the route is the strongest of all possible turns here */ if (ret->delta < -u_turn_limit) { ret->maneuver->type = type_nav_turnaround_left; /* turn around left */ } else if (ret->delta < -sharp_turn_limit) { ret->maneuver->type = type_nav_left_3; /* strongly left */ } else if (ret->delta <= 0) { ret->maneuver->type = type_nav_left_2; /* normally left */ } else if (ret->delta <= sharp_turn_limit) { ret->maneuver->type = type_nav_right_2; /* normally right */ } else if (ret->delta <= u_turn_limit) { ret->maneuver->type = type_nav_right_3; /* strongly right */ } else { ret->maneuver->type = type_nav_turnaround_right; /* turn around right */ } } break; } } else { /* if the route goes straight: * If there's another way on one side of the route within 2 * min_turn_limit (not both - the expression below is a logical XOR), * the maneuver is "keep left" or "keep right", else it is "go straight". * Note that neighbors are not necessarily straight. * The boundary may need some tweaking, (2 * min_turn_limit) may not be ideal but it's a first shot which ensures that other straight ways * will always fulfill the neighbor criteria. */ int has_left_neighbor = (ret->maneuver->left - ret->delta > 2 * -min_turn_limit); int has_right_neighbor = (ret->maneuver->right - ret->delta < 2 * min_turn_limit); if (!(has_left_neighbor) != !(has_right_neighbor)) { if (has_left_neighbor) ret->maneuver->type = type_nav_keep_right; else ret->maneuver->type = type_nav_keep_left; } else ret->maneuver->type = type_nav_straight; } /* endif ret->delta */ } } if (this_->cmd_last) { this_->cmd_last->next=ret; ret->prev = this_->cmd_last; } this_->cmd_last=ret; if (!this_->cmd_first) this_->cmd_first=ret; return ret; } /** * @brief Creates turn instructions where needed * * @param this_ The navigation object for which to create turn instructions * @param route Not used */ static void make_maneuvers(struct navigation *this_, struct route *route) { struct navigation_itm *itm, *last=NULL, *last_itm=NULL; struct navigation_maneuver *maneuver; itm=this_->first; this_->cmd_last=NULL; this_->cmd_first=NULL; while (itm) { if (last) { if (maneuver_required2(this_, last_itm, itm, &maneuver)) { command_new(this_, itm, maneuver); } } else last=itm; last_itm=itm; itm=itm->next; } maneuver = g_new0(struct navigation_maneuver, 1); maneuver->type = type_nav_destination; command_new(this_, last_itm, maneuver); } static int contains_suffix(char *name, char *suffix) { if (!suffix) return 0; if (strlen(name) < strlen(suffix)) return 0; return !navit_utf8_strcasecmp(name+strlen(name)-strlen(suffix), suffix); } static char * replace_suffix(char *name, char *search, char *replace) { int len=strlen(name)-strlen(search); char *ret=g_malloc(len+strlen(replace)+1); strncpy(ret, name, len); strcpy(ret+len, replace); if (isupper(name[len])) { ret[len]=toupper(ret[len]); } return ret; } /** * @brief Creates a text description for the destination of a maneuver, which can be used in announcements. * * @param nav The navigation object * @param cmd The {@code navigation_command} for which to generate an announcement * @param next The current navigation item. In speech mode this should be set to the navigation * item starting at the vehicle's current position; in route description mode this should be set to * the {@code navigation_item} associated with the previous {@code navigation_command} * @param prefix A space will be added as a prefix to the string returned, or a null string for no prefix */ static char * navigation_item_destination(struct navigation *nav, struct navigation_command *cmd, struct navigation_itm *next, char *prefix) { char *ret = NULL, *name1 = NULL, *sep = "", *name2 = ""; char *name = NULL, *name_systematic=NULL; int i, gender = unknown; int vocabulary1=1; int vocabulary2=1; struct attr attr; struct navigation_itm *itm = cmd->itm; struct navigation_itm *itm_pre = NULL; struct navigation_itm *itm_post = NULL; if (! prefix) prefix=""; /* check the configuration of navit.xml */ if (nav->speech && speech_get_attr(nav->speech, attr_vocabulary_name, &attr, NULL)) vocabulary1=attr.u.num; /* shall the street name be announced? */ if (nav->speech && speech_get_attr(nav->speech, attr_vocabulary_name_systematic, &attr, NULL)) vocabulary2=attr.u.num; /* shall the systematic name be announced? */ /* On motorway links don't announce the name of the ramp as this is done by name_systematic and the street_destination. */ if (vocabulary1 && (itm->way.item.type != type_ramp)) name=itm->way.name; if (vocabulary2) name_systematic=itm->way.name_systematic; if (name) { name1 = g_strdup(name); for (i = 0; i < sizeof(suffixes)/sizeof(suffixes[0]); i++) { if (contains_suffix(name, suffixes[i].fullname)) { gender = suffixes[i].gender; g_free(name1); name1 = g_strdup(name); break; } if (contains_suffix(name, suffixes[i].abbrev)) { gender = suffixes[i].gender; g_free(name1); name1 = replace_suffix(name, suffixes[i].abbrev, suffixes[i].fullname); break; } } if (name_systematic) { name2 = name_systematic; sep=" "; } } else name1 = g_strdup(""); if (cmd->maneuver && cmd->maneuver->type && (cmd->maneuver->merge_or_exit & mex_merge)) { if (name_systematic) /* TRANSLATORS: Arguments: 1: Prefix (Space if required) 2: Systematic Street Name 3: Separator (Space if required), 4: Street Name */ ret = g_strdup_printf(_("%1$sonto the %2$s%3$s%4$s"), prefix, name_systematic, sep, name1); else if (name) switch (gender) { case unknown: /* TRANSLATORS: Arguments: 1: Prefix (Space if required) 2: Street Name */ ret = g_strdup_printf(_("%1$sonto %2$s"), prefix, name1); break; case masculine: /* TRANSLATORS: Arguments: 1: Prefix (Space if required) 2: Street Name. Masculine form. The stuff after | doesn't have to be included */ ret=g_strdup_printf(_("%1$sonto %2$s|masculine form"), prefix, name1); break; case feminine: /* TRANSLATORS: Arguments: 1: Prefix (Space if required) 2: Street Name. Feminine form. The stuff after | doesn't have to be included */ ret=g_strdup_printf(_("%1$sonto %2$s|feminine form"), prefix, name1); break; case neuter: /* TRANSLATORS: Arguments: 1: Prefix (Space if required) 2: Street Name. Neuter form. The stuff after | doesn't have to be included */ ret=g_strdup_printf(_("%1$sonto %2$s|neuter form"), prefix, name1); break; } else ret = g_strdup(""); } else if (!name && !name_systematic && itm->way.item.type == type_ramp && (!cmd->maneuver || (cmd->maneuver->merge_or_exit != mex_interchange))) { itm_pre = itm->prev; while (itm_pre && (itm_pre->way.item.type == type_ramp)) itm_pre = itm_pre->prev; itm_post = itm->next; while (itm_post && (itm_post->way.item.type == type_ramp) && (!cmd->next || (itm_post != cmd->next->itm))) itm_post = itm_post->next; if (((itm_post) && is_motorway_like(&(itm_post->way), 0)) && ((itm_pre) && !is_motorway_like(&(itm_pre->way), 0))) /* TRANSLATORS: motorway ramp refers to the slip road for entering a motorway. */ ret = g_strdup_printf("%s%s",prefix,_("onto the motorway ramp")); /* This is only announced when there is no additional info about the ramp and the ramp leads to a motorway. */ else ret = g_strdup(""); } else if (!name && !name_systematic) ret = g_strdup(""); else if (name) { switch (gender) { case unknown: /* TRANSLATORS: Arguments: 1: Prefix (Space if required) 2: Street Name 3: Separator (Space if required), 4: Systematic Street Name */ ret=g_strdup_printf(_("%sinto %s%s%s"), prefix, name, sep, name2); break; case masculine: /* TRANSLATORS: Arguments: 1: Prefix (Space if required) 2: Street Name 3: Separator (Space if required), 4: Systematic Street Name. Masculine form. The stuff after | doesn't have to be included */ ret=g_strdup_printf(_("%sinto %s%s%s|masculine form"), prefix, name1, sep, name2); break; case feminine: /* TRANSLATORS: Arguments: 1: Prefix (Space if required) 2: Street Name 3: Separator (Space if required), 4: Systematic Street Name. Feminine form. The stuff after | doesn't have to be included */ ret=g_strdup_printf(_("%sinto %s%s%s|feminine form"), prefix, name1, sep, name2); break; case neuter: /* TRANSLATORS: Arguments: 1: Prefix (Space if required) 2: Street Name 3: Separator (Space if required), 4: Systematic Street Name. Neuter form. The stuff after | doesn't have to be included */ ret=g_strdup_printf(_("%sinto %s%s%s|neuter form"), prefix, name1, sep, name2); break; } } else /* TRANSLATORS: gives the name of the next road to turn into (into the E17) */ ret=g_strdup_printf(_("%sinto the %s"),prefix,name_systematic); g_free(name1); name1=ret; while (name1 && *name1) { switch (*name1) { case '|': *name1='\0'; break; case '/': *name1++=' '; break; default: name1++; break; } } return ret; } /** * @brief Formats the exit ref and name for display and speech output * * This function takes the navigation command for a motorway maneuver (exit or interchange) and * returns a string describing the exit. * * If the exit has a name and ref and the name is different from {@code street_destination_announce}, * a string of the form "ref name" is returned. If only one of the two is different from NULL, it * is returned unchanged. * * If the name matches {@code street_destination_announce}, it is always treated as if it were NULL. * This prevents redundancy in announcements. * * No checks are done that the maneuver actually has the appropriate merge_or_exit flags set. The * caller is responsible for performing such checks prior to calling this function. * * @param this_ The navigation command * @param street_destination_announce The name of the street following the maneuver. This argument * may be NULL, in which case the exit name will not be suppressed. */ static char * navigation_cmd_get_exit_announce(struct navigation_command *this_, char *street_destination_announce) { char * ret = NULL; char *folded_exit_label=NULL; char *folded_street_destination_announce=NULL; if (this_->itm->way.exit_label) { folded_exit_label = linguistics_casefold(this_->itm->way.exit_label); if (street_destination_announce) folded_street_destination_announce = linguistics_casefold(street_destination_announce); else folded_street_destination_announce = g_strdup(""); if (!strstr(folded_street_destination_announce, folded_exit_label)) { /* No redundancy? */ if (this_->itm->way.exit_ref) ret = g_strdup_printf("%1$s %2$s", this_->itm->way.exit_ref, this_->itm->way.exit_label); else ret = g_strdup_printf("%1$s", this_->itm->way.exit_label); } else if (this_->itm->way.exit_ref) ret = g_strdup_printf("%1$s", this_->itm->way.exit_ref); } else { if (this_->itm->way.exit_ref) ret = g_strdup_printf("%1$s", this_->itm->way.exit_ref); } g_free(folded_exit_label); g_free(folded_street_destination_announce); return ret; } /** * @brief Creates turn by turn guidance sentences for the speech and for the route description * * @param nav The navigation object * @param itm The current navigation item, which is used to determine the distance to the next * maneuver. In speech mode this should be set to the navigation item starting at the vehicle's * current position; in route description mode this should be set to the {@code navigation_item} * associated with the previous {@code navigation_command} * @param cmd The {@code navigation_command} for which to generate an announcement * @param type The type of announcements to generate. Set to {@code attr_navigation_long_exact} * to avoid rounding distances, or to {@code attr_navigation_speech} to avoid announcing street * names more than once * @param connect Whether this is the second of two connected announcements, as in "turn left * in..., then turn right" */ static char * show_maneuver(struct navigation *nav, struct navigation_itm *itm, struct navigation_command *cmd, enum attr_type type, enum announcement_level level) { int distance=itm->dest_length-cmd->itm->dest_length; char *d=NULL,*ret=NULL; char *street_destination_announce=NULL; int skip_roads = 0; int count_roundabout; struct navigation_itm *cur; struct navigation_way *candidate_way; int tellstreetname = 0; char *at = NULL; /* Motorway junction name */ char *direction = NULL; /* The direction-dependent part of the maneuver */ char *destination = NULL; char *street_destination = NULL; char *instruction = NULL; char *strength = NULL; /* Strength of turn like 'easily', 'strongly', etc. */ if (type != attr_navigation_long_exact) distance=round_distance(distance); if (type == attr_navigation_speech) { if (nav->turn_around && nav->turn_around == nav->turn_around_limit) { if (level == level_connect) { return g_strdup(""); /* there is no ',then turn around' */ } else { navigation_set_turnaround(nav, nav->turn_around_count+1); return g_strdup(_("When possible, please turn around")); } } navigation_set_turnaround(nav, 0); dbg(lvl_debug,"distance=%d level=%d type=0x%x\n", distance, level, itm->way.item.type); } street_destination=select_announced_destinations(cmd); if (street_destination) if (level == level_connect) { /* for the connected announcement suppress the destination, if this is the same as in the first part of the announcement */ if (cmd->prev) { char *street_destination_previous = select_announced_destinations(cmd->prev); if (street_destination_previous && strstr(street_destination_previous, street_destination)) { /* doesn't have any new information? */ street_destination_announce=g_strdup(""); } else { /* TRANSLATORS: the argument is the destination to follow */ street_destination_announce=g_strdup_printf(_("towards %s"),street_destination); } g_free(street_destination_previous); } else { street_destination_announce=g_strdup_printf(_("towards %s"),street_destination); } } else { street_destination_announce=g_strdup_printf(_("towards %s"),street_destination); } else street_destination_announce=g_strdup(""); g_free(street_destination); if (cmd->itm->prev->way.flags & AF_ROUNDABOUT) { cur = cmd->itm->prev; count_roundabout = 0; while (cur && (cur->way.flags & AF_ROUNDABOUT)) { candidate_way=cur->next->way.next; while (candidate_way) { if (candidate_way && is_way_allowed(nav,candidate_way,3)) /* If the next segment has no exit or the exit isn't allowed, don't count it */ { count_roundabout++; /* As soon as we have an allowed one on this node, * stop further counting for this node. */ break; } candidate_way=candidate_way->next; } cur = cur->prev; } /*try to figure out if the entry node has a usable exit as well * * this will fail for left-hand driving areas */ if (cur && cur->next) { candidate_way=cur->next->way.next; while (candidate_way) { if (candidate_way && is_way_allowed(nav,candidate_way,3) /*&& (angle_delta(cur->angle_end,candidate_way->angle2) > 0) && ( angle_delta(candidate_way->angle2,cur->next->way.angle2) < 0 )*/) /*for right-hand traffic, exits should be to the right anyway to allow smooth turns, so leave this out until we find a counterexample :)*/ { count_roundabout++; /* As soon as we have an allowed one on this node, * stop further counting for this node. */ break; } candidate_way=candidate_way->next; } } switch (level) { case level_follow: d=get_distance_str(nav, distance, type, 1); return g_strdup_printf(_("Follow the road for the next %s"), d); case level_soon: return g_strdup(_("Enter the roundabout soon")); case level_meters: d = get_distance_str(nav, distance, attr_navigation_short, 0); /* TRANSLATORS: %s is the distance to the roundabout */ ret = g_strdup_printf(_("Enter the roundabout %s"), d); g_free(d); return ret; case level_connect: return g_strdup(_("then enter the roundabout")); case level_now: /* TRANSLATORS: first arg. is the manieth exit, second arg. is the destination to follow */ return g_strdup_printf(_("Leave the roundabout at the %1$s %2$s"), get_exit_count_str(count_roundabout),street_destination_announce); default : dbg(lvl_error,"unexpected announcement level %d\n", level); return g_strdup_printf("internal error"); } } if (cmd->maneuver && cmd->maneuver->type) { if (cmd->itm->next) { if(type == attr_navigation_speech) { /* In voice mode */ /* In Voice Mode only tell the street name in level_meters or in level_ if level 1 was skipped */ if (level == level_meters) { /* we are close to the intersection */ cmd->itm->streetname_told = 1; /* remember to be checked when we turn */ tellstreetname = 1; /* Ok, so we tell the name of the street */ } else if (level == level_now) { if(cmd->itm->streetname_told == 0) /* we are right at the intersection */ tellstreetname = 1; else cmd->itm->streetname_told = 0; /* reset just in case we come to the same street again */ } else if (level == level_connect) { tellstreetname = 1; } } else tellstreetname = 1; } switch (level) { case level_soon : d=g_strdup(_("soon")); break; case level_meters : d=get_distance_str(nav, distance, attr_navigation_short, 0); break; case level_now : d=g_strdup(_("now")); break; case level_connect : d=g_strdup(_("then")); break; default : d = g_strdup(""); break; } if (tellstreetname) destination=navigation_item_destination(nav, cmd, itm, " "); else destination = g_strdup(""); if (!(cmd->maneuver->merge_or_exit == mex_none )) { char *exit_announce=NULL; /* interchange or exit announcement shall be a long distance information only. But if so, exit_label shall not be announced in case it is a substring of destination info to avoid redundancy and not let the sentence become too long. Otherwise, if there is no additional destination info, just say it at level_meters. */ if ((level == level_soon) || ((level == level_meters) && (!street_destination_announce && !destination)) || (type != attr_navigation_speech)) { exit_announce = navigation_cmd_get_exit_announce(cmd, street_destination_announce); } switch (cmd->maneuver->merge_or_exit) { case mex_merge_left: case mex_merge_right: if (cmd->maneuver->merge_or_exit == mex_merge_right) { if (level == level_connect) /* TRANSLATORS: the arg. is the phrase 'onto ...'. Right merge, the stuff after | doesn't have to be included. */ instruction = g_strdup_printf(_("then merge%1$s|right"), destination); else /* TRANSLATORS: the first arg. is distance, the second is the phrase 'onto ...'. Right merge, the stuff after | doesn't have to be included. */ instruction = g_strdup_printf(_("Merge %1$s%2$s|right"), d, destination); } else { if (level == level_connect) /* TRANSLATORS: the arg. is the phrase 'onto ...'. Left merge, the stuff after | doesn't have to be included. */ instruction = g_strdup_printf(_("then merge%1$s|left"), destination); else /* TRANSLATORS: the first arg. is distance, the second is the phrase 'onto ...'. Left merge, the stuff after | doesn't have to be included. */ instruction = g_strdup_printf(_("Merge %1$s%2$s|left"), d, destination); } break; case mex_exit_left: case mex_exit_right: direction = (cmd->maneuver->merge_or_exit == mex_exit_left) ? g_strdup(_("on your left")) : g_strdup(_("on your right")); if (exit_announce) /* TRANSLATORS: the first arg. is exit ref and/or name, the second is the direction of exit and the third is distance */ instruction = g_strdup_printf(_("Take exit %1$s %2$s %3$s"), exit_announce, direction, d); else /* TRANSLATORS: the first arg. is the direction of exit, the second is distance, the third is destination */ instruction = g_strdup_printf(_("Take the exit %1$s %2$s%3$s"), direction, d, destination); break; } if (!instruction && exit_announce) { /* TRANSLATORS: as in "Keep right at interchange 42 Greenmond-West" */ at = g_strdup_printf(" %1$s %2$s", cmd->maneuver->merge_or_exit == mex_interchange ? (_("at interchange")) : (_( "at exit")), exit_announce ? exit_announce : ""); } g_free(exit_announce); } if (!instruction) { if (!at) at = g_strdup(""); switch (cmd->maneuver->type) { case type_nav_straight : if (level == level_connect) /* TRANSLATORS: the arg. is where to do the maneuver */ instruction = g_strdup_printf(_("then continue straight%1$s"), at); else /* TRANSLATORS: the first arg. is distance, the second is where to do the maneuver, the third is destination */ instruction = g_strdup_printf(_("Continue straight %1$s%2$s%3$s"), d, at, destination); break; case type_nav_keep_right : if (level == level_connect) /* TRANSLATORS: the arg. is where to do the maneuver */ instruction = g_strdup_printf(_("then keep right%1$s"), at); else /* TRANSLATORS: the first arg. is distance, the second is where to do the maneuver, the third is destination */ instruction = g_strdup_printf(_("Keep right %1$s%2$s%3$s"), d, at, destination); break; case type_nav_keep_left : if (level == level_connect) /* TRANSLATORS: the arg. is where to do the maneuver */ instruction = g_strdup_printf(_("then keep left%1$s"), at); else /* TRANSLATORS: the first arg. is distance, the second is where to do the maneuver, the third is destination */ instruction = g_strdup_printf(_("Keep left %1$s%2$s%3$s"), d, at, destination); break; case type_nav_right_1 : case type_nav_right_2 : case type_nav_right_3 : case type_nav_left_1 : case type_nav_left_2 : case type_nav_left_3 : /* generic turn case */ switch (cmd->maneuver->type) { case type_nav_right_1 : case type_nav_right_2 : case type_nav_right_3 : /* TRANSLATORS: "right" as in "turn right" */ direction = g_strdup(_("right")); if (level == level_now) skip_roads = count_possible_turns(nav, cmd->prev ? cmd->prev->itm : nav->first, cmd->itm, 90); else if (level == level_connect) /* Robotaxi: todo - must tidy up skip_roads == -1 issue */ skip_roads = count_possible_turns(nav, itm->next ? itm->next : itm, cmd->itm, 90); break; case type_nav_left_1 : case type_nav_left_2 : case type_nav_left_3 : /* TRANSLATORS: "left" as in "turn left" */ direction = g_strdup(_("left")); if (level == level_now) skip_roads = count_possible_turns(nav, cmd->prev ? cmd->prev->itm : nav->first, cmd->itm, -90); else if (level == level_connect) skip_roads = count_possible_turns(nav, itm->next ? itm->next : itm, cmd->itm, -90); break; default: direction = g_strdup(""); break; } switch (cmd->maneuver->type) { case type_nav_right_1 : case type_nav_left_1 : /* TRANSLATORS: as in "turn easily right" */ strength = g_strdup(_("easily ")); break; case type_nav_right_3 : case type_nav_left_3 : /* TRANSLATORS: as in "turn strongly right" */ strength = g_strdup(_("strongly ")); break; default: strength = g_strdup(""); break; } /* Robotaxi: todo - must tidy up skip_roads == -1 issue */ if (skip_roads > 0) { if (skip_roads < 6) { if (level == level_connect) instruction = g_strdup_printf(_("then take the %1$s road to the %2$s"), get_count_str(skip_roads+1), direction); else instruction = g_strdup_printf(_("Take the %1$s road to the %2$s"), get_count_str(skip_roads+1), direction); /*and preserve skip_roads to signal that we already have an instruction*/ } else { g_free(d); d=g_strdup_printf(_("after %i roads"),skip_roads); skip_roads = 0; /*signal an instruction still has to be created*/ } } /* cave: no else - may come from 'if (skip_roads)' above ! */ if (skip_roads <= 0) { /* TRANSLATORS: the first arg. is strength, the second is direction, the third is distance, the fourth is destination */ instruction = g_strdup_printf(_("Turn %1$s%2$s %3$s%4$s"), strength, direction, d, destination); } break; case type_nav_turnaround_left: if (level == level_connect) /* TRANSLATORS: Left U-turn, the stuff after | doesn't have to be included. */ instruction = g_strdup(_("then make a U-turn|left")); else /* TRANSLATORS: the arg. is distance. Left U-turn, the stuff after | doesn't have to be included. */ instruction = g_strdup_printf(_("Make a U-turn %1$s|left"), d); break; case type_nav_turnaround_right: if (level == level_connect) /* TRANSLATORS: Right U-turn, the stuff after | doesn't have to be included. */ instruction = g_strdup(_("then make a U-turn|right")); else /* TRANSLATORS: the arg. is distance. Right U-turn, the stuff after | doesn't have to be included. */ instruction = g_strdup_printf(_("Make a U-turn %1$s|right"), d); break; case type_nav_none: /*An empty placeholder that we can use in the future for * some motorway commands that are now suppressed but we * can in some cases make it say here : * 'follow destination blabla' without any further driving instructions, * in cases where relevant destination info is available. * Even if there is no driving command to be announced, in some cases * there is an overhead roadsign in preparation of an upcoming road-split, * and then we can give useful info to the driver. * * UNTESTED ! * */ instruction = g_strdup(_("follow")); break; case type_nav_destination: /* the old code used to clear the route destination when this was the only * instruction left. Was that useful ? * Should be tested with the old code what happens if the driver * 'overshoots' the destination and the route destination is already cleared. * I suppose it will now keep guiding the user to destination untill another one * is set or a 'stop navigation' action is done using the gui. */ if (level == level_connect) instruction=g_strdup(_("then you have reached your destination.")); else /* TRANSLATORS: the arg. is distance */ instruction=g_strdup_printf(_("You have reached your destination %s"), d); break; default: dbg(lvl_error,"unhandled instruction\n"); break; } } } switch (level) { case level_follow: d=get_distance_str(nav, distance, type, 1); ret=g_strdup_printf(_("Follow the road for the next %s"), d); break; case level_soon: if (at) /* 'at' contains interchange or exit information that shall not be combined with street_destination_announce */ ret= g_strdup_printf(("%1$s %2$s"),instruction,""); else ret= g_strdup_printf(("%1$s %2$s"),instruction,street_destination_announce); break; case level_meters: case level_connect: case level_now: ret= g_strdup_printf(("%1$s %2$s"),instruction,street_destination_announce); break; default : ret= g_strdup_printf(("%1$s %2$s"),instruction,street_destination_announce); dbg(lvl_error,"unexpected announcement level %d\n", level); break; } g_free(at); g_free(d); g_free(destination); g_free(direction); g_free(instruction); g_free(street_destination_announce); g_free(strength); return ret; } /** * @brief Creates announcements for maneuvers, plus maneuvers immediately following the next maneuver * * This function creates an announcement for the current maneuver and for maneuvers * immediately following that maneuver, if these are very close and we're in speech navigation. * The actual announcements are created by calling {@code show_maneuver()}. * * @param nav The navigation object * @param itm The current navigation item, which is used to determine the distance to the next * maneuver. In speech mode this should be set to the navigation item starting at the vehicle's * current position; in route description mode this should be set to the {@code navigation_item} * associated with the previous {@code navigation_command} * @param cmd The {@code navigation_command} for which to generate an announcement * @param type The type of announcements to generate. If set to {@code attr_navigation_speech}, * maneuvers will be grouped ("turn left, then turn right") if we are close to the first maneuver * and the second maneuver is within a short distance from the first. This parameter is passed to * {@code show_maneuver()}, where it is evaluated again. See {@code show_maneuver()} for details. * * @return An announcement that should be made */ static char * show_next_maneuvers(struct navigation *nav, struct navigation_itm *itm, struct navigation_command *cmd, enum attr_type type) { int distance = itm->dest_length-cmd->itm->dest_length; /* distance from e.g. current GPS position to next announced turn position */ enum announcement_level level; char *ret,*buf,*next; if (type != attr_navigation_speech) { return show_maneuver(nav, itm, cmd, type, level_meters); /* We only accumulate maneuvers in speech navigation */ } level = navigation_get_announce_level_cmd(nav, itm, cmd, distance-cmd->length); if (level > level_soon) { /* suppress the 'follow the road..' announcement, if the next 'soon' announcement is just a few meters away, so just quit */ if ((distance - cmd->length) < (nav->announce[itm->way.item.type - route_item_first][2] + 2 * nav->announce[itm->way.item.type - route_item_first][0])) { /* a few meters away is defined by two times the distance of the 'now'-distance. */ return g_strdup(""); } } else if ((level == level_soon) && (itm->told == 1)) { /* suppress the 'soon' announcement, if the last announcement already concatenated this, so just quit */ return g_strdup(""); } else if ((level == level_meters) && (itm->told == 1)) { /* suppress the 'in xx meters..' announcement, if the 'soon' announcement is just a few meters away, so just quit */ if ((distance - cmd->length) < (nav->announce[itm->way.item.type - route_item_first][1] + 2 * nav->announce[itm->way.item.type - route_item_first][0])) { /* a few meters away is defined by two times the distance of the 'now'-distance. */ return g_strdup(""); } } ret = show_maneuver(nav, itm, cmd, type, level); if (level > level_meters) { return ret; /* We only concatenate maneuvers that are close each other, so quit here */ } if (cmd->next && cmd->itm) { /* determine the level of the command that comes immediately after that. */ enum announcement_level nextlevel = navigation_get_announce_level(nav, cmd->itm->way.item.type, cmd->itm->dest_length - cmd->next->itm->dest_length); /* If this level starts with 1 or 0 concatenate the following announcement to the current: */ if (nextlevel <= level_soon) { next = show_maneuver(nav, cmd->itm, cmd->next, type, level_connect); if (*next != '\0') /* is the second announcement not an empty string? */ { cmd->itm->told = 1; buf = ret; ret = g_strdup_printf("%s, %s", buf, next); /* concatenate both announcements */ g_free(buf); } g_free(next); } } return ret; } static void navigation_call_callbacks(struct navigation *this_, int force_speech) { int distance, level = 0; void *p=this_; if (!this_->cmd_first) return; callback_list_call(this_->callback, 1, &p); dbg(lvl_debug,"force_speech=%d turn_around=%d turn_around_limit=%d\n", force_speech, this_->turn_around, this_->turn_around_limit); distance=this_->first->dest_length-this_->cmd_first->itm->dest_length; if (this_->turn_around_limit && this_->turn_around == this_->turn_around_limit) { dbg(lvl_debug,"distance=%d distance_turn=%d\n", distance, this_->distance_turn); while (distance > this_->distance_turn) { this_->level_last=4; level=4; force_speech=2; if (this_->distance_turn >= 500) this_->distance_turn*=2; else this_->distance_turn=500; } } else if (!this_->turn_around_limit || this_->turn_around == -this_->turn_around_limit+1) { this_->distance_turn=50; distance-=this_->cmd_first->length; level=navigation_get_announce_level_cmd(this_, this_->first, this_->cmd_first, distance); if (level < this_->level_last) { /* only tell if the level is valid for more than 3 seconds */ int speed_distance=this_->first->speed*30/36; if (distance < speed_distance || navigation_get_announce_level_cmd(this_, this_->first, this_->cmd_first, distance-speed_distance) == level) { dbg(lvl_debug,"distance %d speed_distance %d\n",distance,speed_distance); dbg(lvl_debug,"level %d < %d\n", level, this_->level_last); this_->level_last=level; force_speech=3; } } if (!item_is_equal(this_->cmd_first->itm->way.item, this_->item_last)) { this_->item_last=this_->cmd_first->itm->way.item; if (this_->delay) this_->curr_delay=this_->delay; else force_speech=5; } else { if (this_->curr_delay) { this_->curr_delay--; if (!this_->curr_delay) force_speech=4; } } } if (force_speech) { this_->level_last=level; this_->curr_delay=0; dbg(lvl_debug,"force_speech=%d distance=%d level=%d type=0x%x\n", force_speech, distance, level, this_->first->way.item.type); callback_list_call(this_->callback_speech, 1, &p); } } /** * @brief Cleans up and initiates maneuver creation. * * This function is called by {@link navigation_update_idle(struct navigation *)} * after it has retrieved all objects from the route map. * * It will reset the navigation object's idle event/callback, deallocate some temporary objects and * reset the {@code busy} flag. Arguments correspond to those of * {@link navigation_update_idle(struct navigation *)}. * * @param this_ Points to the navigation object. After the function returns, its {@code map_rect} * member will no longer be valid. * @param cancel If true, only cleanup (deallocation of objects) will be done and no maneuvers will be generated. * If false, maneuvers will be generated. */ static void navigation_update_done(struct navigation *this_, int cancel) { int incr = 0; struct map_rect *mr = this_->route_mr; struct attr nav_status; if (this_->idle_ev) event_remove_idle(this_->idle_ev); if (this_->idle_cb) callback_destroy(this_->idle_cb); this_->idle_ev=NULL; this_->idle_cb=NULL; if (!cancel) { nav_status.type = attr_nav_status; nav_status.u.num = status_routing; if (!(this_->status_int & status_has_sitem)) navigation_destroy_itms_cmds(this_, NULL); else { if (!(this_->status_int & status_has_ritem)) { navigation_itm_new(this_, NULL); make_maneuvers(this_,this_->route); } calculate_dest_distance(this_, incr); profile(0,"end"); navigation_call_callbacks(this_, FALSE); } navigation_set_attr(this_, &nav_status); } /* * In order to ensure that route_mr holds either NULL or a valid pointer at any given time, * always pass a copy of it to map_rect_destroy() and set route_mr to NULL prior to calling * map_rect_destroy(). The reason is that map_rect_destroy() for a route map may indirectly * call navigation_update(), which will modify the same members. For the same reason, * status_int must be reset before the call to map_rect_destroy(). */ this_->status_int = status_none; this_->route_mr = NULL; map_rect_destroy(mr); } /** * @brief Idle callback function to retrieve items from the route map. * * @param this_ Points to the navigation object. The caller is responsible for initializing its * {@code route_mr} member. After processing completes, the {@code route_mr} member will no longer * be valid. */ static void navigation_update_idle(struct navigation *this_) { int count = 100; /* Maximum number of items retrieved in one run of this function. * This should be set low enough for each pass to complete in less * than a second even on low-performance devices. */ struct item *ritem; /* Holds an item from the route map */ struct item *sitem; /* Holds the item from the actual map which corresponds to ritem */ struct attr street_item, street_direction; struct navigation_itm *itm; /* Do not use the route_path_flag_cancel flag here because it is also used whenever * destinations or waypoints change, not just when the user stops navigation altogether */ if (!route_has_graph(this_->route)) { navigation_update_done(this_, 1); return; } while (count > 0) { if (!(ritem = map_rect_get_item(this_->route_mr))) { this_->status_int &= ~(status_has_ritem); break; } this_->status_int |= status_has_ritem; if ((ritem)->type == type_route_start && this_->turn_around > -this_->turn_around_limit+1) this_->turn_around--; if ((ritem)->type == type_route_start_reverse && this_->turn_around < this_->turn_around_limit) this_->turn_around++; if ((ritem)->type != type_street_route) continue; if ((!(this_->status_int & status_has_sitem)) && item_attr_get(ritem, attr_street_item, &street_item)) { this_->status_int |= status_has_sitem; if (!item_attr_get(ritem, attr_direction, &street_direction)) street_direction.u.num = 0; sitem = street_item.u.item; dbg(lvl_debug,"sitem=%p\n", sitem); itm = item_hash_lookup(this_->hash, sitem); dbg(lvl_info,"itm for item with id (0x%x,0x%x) is %p\n", sitem->id_hi, sitem->id_lo, itm); if (itm && itm->way.dir != street_direction.u.num) { dbg(lvl_info,"wrong direction\n"); itm = NULL; } navigation_destroy_itms_cmds(this_, itm); if (itm) { navigation_itm_update(itm, ritem); break; } dbg(lvl_debug,"not on track\n"); } navigation_itm_new(this_, ritem); count--; } if (count > 0) { /* if count > 0, one of the break conditions in the loop was true and we're done */ navigation_update_done(this_, 0); return; } } /** * @brief Event handler for changes to the route. * * This function is added to the callback list of the current route. It is called whenever the * status of the route changes and will either discard the current list of maneuvers or build a new * list. * * @param this_ The navigation object * @param route The route * @param attr The route status attribute */ static void navigation_update(struct navigation *this_, struct route *route, struct attr *attr) { struct map *map; struct attr vehicleprofile; struct attr nav_status; if (attr->type != attr_route_status) return; dbg(lvl_debug,"enter\n"); nav_status.type = attr_nav_status; switch(attr->u.num) { case route_status_not_found: nav_status.u.num = status_no_route; break; case route_status_no_destination: nav_status.u.num = status_no_destination; break; case route_status_destination_set: nav_status.u.num = status_position_wait; break; case route_status_building_path: case route_status_building_graph: case route_status_path_done_new: case route_status_path_done_incremental: nav_status.u.num = (this_->nav_status >= status_recalculating) ? status_recalculating : status_calculating; } navigation_set_attr(this_, &nav_status); if (attr->u.num == route_status_no_destination || attr->u.num == route_status_not_found || attr->u.num == route_status_path_done_new) navigation_flush(this_); if (attr->u.num != route_status_path_done_new && attr->u.num != route_status_path_done_incremental) { if (this_->status_int & status_busy) { navigation_update_done(this_, 1); } return; } if (! this_->route) return; map=route_get_map(this_->route); if (! map) return; this_->route_mr = map_rect_new(map, NULL); if (! this_->route_mr) return; if (route_get_attr(route, attr_vehicleprofile, &vehicleprofile, NULL)) this_->vehicleprofile=vehicleprofile.u.vehicleprofile; else this_->vehicleprofile=NULL; dbg(lvl_debug,"enter\n"); this_->status_int = status_busy; if (route_get_flags(this_->route) & route_path_flag_async) { this_->idle_cb = callback_new_1(callback_cast(navigation_update_idle), this_); this_->idle_ev = event_add_idle(50, this_->idle_cb); } else { this_->idle_ev = NULL; this_->idle_cb = NULL; while (this_->status_int & status_busy) navigation_update_idle(this_); } } static void navigation_flush(struct navigation *this_) { navigation_destroy_itms_cmds(this_, NULL); } void navigation_destroy(struct navigation *this_) { navigation_flush(this_); item_hash_destroy(this_->hash); callback_list_destroy(this_->callback); callback_list_destroy(this_->callback_speech); g_free(this_); } /** * @brief Registers a new callback function. * * Callback functions are called whenever the attribute for which they are registered changes. * It is possible to register callbacks for {@code attr_any}, which will fire on any change. * * The {@code navigation} object has three callback lists. They differ by the arguments which are * passed to the callback function and are selected based on the attribute type: *
    *
  • Callbacks for the {@code navigation_speech} attribute are added to the * {@code callback_speech} list.
  • *
  • Callbacks for the {@code navigation_long} attribute are added to the {@code callback} list. *
  • *
  • Callbacks for any other attribute, including {@code attr_any}, are added to the list stored * in the {@code callback_list} attribute. This functionality is inherited from * {@code navit_object}.
  • *
* * @param this_ The navigation object. * @param type The attribute type * @param cb The callback function * * @return true on success, false on failure */ int navigation_register_callback(struct navigation *this_, enum attr_type type, struct callback *cb) { struct attr attr_cbl; if (type == attr_navigation_speech) callback_list_add(this_->callback_speech, cb); else if (type == attr_navigation_long) callback_list_add(this_->callback, cb); else { if (navigation_get_attr(this_, attr_callback_list, &attr_cbl, NULL)) callback_list_add(attr_cbl.u.callback_list, cb); else return 0; } return 1; } /** * @brief Unregisters a callback function. * * This function removes a previously registered callback function from the callback list to which * it was added. See the documentation on * {@link navigation_register_callback(struct navigation *, enum attr_type, struct callback *)} for * details on callback lists. * * @param this_ The navigation object. * @param type The attribute type * @param cb The callback function */ void navigation_unregister_callback(struct navigation *this_, enum attr_type type, struct callback *cb) { struct attr attr_cbl; if (type == attr_navigation_speech) callback_list_remove(this_->callback_speech, cb); else if (type == attr_navigation_long) callback_list_remove(this_->callback, cb); else if (navigation_get_attr(this_, attr_callback_list, &attr_cbl, NULL)) callback_list_remove(attr_cbl.u.callback_list, cb); } struct map * navigation_get_map(struct navigation *this_) { struct attr *attrs[5]; struct attr type,navigation,data,description; type.type=attr_type; type.u.str="navigation"; navigation.type=attr_navigation; navigation.u.navigation=this_; data.type=attr_data; data.u.str=""; description.type=attr_description; description.u.str="Navigation"; attrs[0]=&type; attrs[1]=&navigation; attrs[2]=&data; attrs[3]=&description; attrs[4]=NULL; if (! this_->map) this_->map=map_new(NULL, attrs); return this_->map; } struct map_priv { struct navigation *navigation; }; struct map_rect_priv { struct navigation *nav; struct navigation_command *cmd; struct navigation_command *cmd_next; struct navigation_itm *itm; struct navigation_itm *itm_next; struct navigation_itm *cmd_itm; struct navigation_itm *cmd_itm_next; struct item item; enum attr_type attr_next; int ccount; int debug_idx; struct navigation_way *ways; int show_all; char *str; }; static int navigation_map_item_coord_get(void *priv_data, struct coord *c, int count) { struct map_rect_priv *this=priv_data; if (this->ccount || ! count) return 0; *c=this->itm->start; this->ccount=1; return 1; } static void navigation_map_item_coord_rewind(void *priv_data) { struct map_rect_priv *this=priv_data; this->ccount=0; } static int navigation_map_item_attr_get(void *priv_data, enum attr_type attr_type, struct attr *attr) { struct map_rect_priv *this_=priv_data; struct navigation_command *cmd=this_->cmd; struct navigation_maneuver *maneuver = NULL; struct navigation_itm *itm=this_->itm; struct navigation_itm *prev=itm->prev; char *exit_announce=NULL; attr->type=attr_type; if (this_->str) { g_free(this_->str); this_->str=NULL; } if (cmd) { if (cmd->itm != itm) cmd=NULL; } if (cmd && cmd->maneuver) maneuver = cmd->maneuver; switch(attr_type) { case attr_level: if (cmd) { int distance=this_->cmd_itm->dest_length-cmd->itm->dest_length; distance=round_distance(distance); attr->u.num=navigation_get_announce_level(this_->nav, this_->cmd_itm->way.item.type, distance-cmd->length); return 1; } return 0; case attr_navigation_short: this_->attr_next=attr_navigation_long; if (cmd) { this_->str=attr->u.str=show_next_maneuvers(this_->nav, this_->cmd_itm, cmd, attr_type); return 1; } return 0; case attr_navigation_long: this_->attr_next=attr_navigation_long_exact; if (cmd) { this_->str=attr->u.str=show_next_maneuvers(this_->nav, this_->cmd_itm, cmd, attr_type); return 1; } return 0; case attr_navigation_long_exact: this_->attr_next=attr_navigation_speech; if (cmd) { this_->str=attr->u.str=show_next_maneuvers(this_->nav, this_->cmd_itm, cmd, attr_type); return 1; } return 0; case attr_navigation_speech: this_->attr_next=attr_length; if (cmd) { this_->str=attr->u.str=show_next_maneuvers(this_->nav, this_->cmd_itm, this_->cmd, attr_type); return 1; } return 0; case attr_length: this_->attr_next=attr_time; if (cmd) { attr->u.num=this_->cmd_itm->dest_length-cmd->itm->dest_length; return 1; } return 0; case attr_time: this_->attr_next=attr_destination_length; if (cmd) { attr->u.num=this_->cmd_itm->dest_time-cmd->itm->dest_time; return 1; } return 0; case attr_destination_length: attr->u.num=itm->dest_length; this_->attr_next=attr_destination_time; return 1; case attr_destination_time: attr->u.num=itm->dest_time; this_->attr_next=attr_street_name; return 1; case attr_street_name: attr->u.str=itm->way.name; this_->attr_next=attr_street_name_systematic; if (attr->u.str){ return 1;} return 0; case attr_street_name_systematic: attr->u.str=itm->way.name_systematic; this_->attr_next=attr_street_destination; if (attr->u.str){ return 1;} return 0; case attr_street_destination: this_->attr_next=attr_name; if (cmd && itm->way.destination && itm->way.destination->destination) this_->str=attr->u.str=select_announced_destinations(cmd); else attr->u.str=NULL; if (attr->u.str){ return 1;} return 0; case attr_name: /* attr_name returns exit_ref and exit_label if available, * preceded by the word 'exit' or 'interchange'. * * Otherwise it returns street name and name_systematic, if available * * FIXME should a new attr. be defined for this, and if yes, which ? */ this_->attr_next=attr_debug; attr->u.str=NULL; exit_announce = navigation_cmd_get_exit_announce(cmd, NULL); if (exit_announce && maneuver) /* TRANSLATORS: Exit as a noun, as in "Exit 43 Greenmound-East" */ this_->str=attr->u.str=g_strdup_printf("%s %s", maneuver->merge_or_exit & mex_interchange ? (_("Interchange")) : (_("Exit")), exit_announce ? exit_announce : ""); else if (itm->way.name || itm->way.name_systematic) this_->str=attr->u.str=g_strdup_printf("%s %s", itm->way.name ? itm->way.name : "",itm->way.name_systematic ? itm->way.name_systematic : ""); if (attr->u.str){ return 1;} return 0; case attr_debug: switch(this_->debug_idx) { case 0: this_->debug_idx++; this_->str=attr->u.str=g_strdup_printf("angle:%d (- %d)", itm->way.angle2, itm->angle_end); return 1; case 1: this_->debug_idx++; this_->str=attr->u.str=g_strdup_printf("item type:%s", item_to_name(itm->way.item.type)); return 1; case 2: this_->debug_idx++; if (cmd) { this_->str=attr->u.str=g_strdup_printf("delta:%d", cmd->delta); return 1; } case 3: this_->debug_idx++; if (prev) { this_->str=attr->u.str=g_strdup_printf("prev street_name:%s", prev->way.name); return 1; } case 4: this_->debug_idx++; if (prev) { this_->str=attr->u.str=g_strdup_printf("prev street_name_systematic:%s", prev->way.name_systematic); return 1; } case 5: this_->debug_idx++; if (prev) { this_->str=attr->u.str=g_strdup_printf("prev angle:(%d -) %d", prev->way.angle2, prev->angle_end); return 1; } case 6: this_->debug_idx++; this_->ways=itm->way.next; if (prev) { this_->str=attr->u.str=g_strdup_printf("prev item type:%s", item_to_name(prev->way.item.type)); return 1; } case 7: if (this_->ways && prev) { this_->str=attr->u.str=g_strdup_printf("other item angle:%d delta:%d flags:%d dir:%d type:%s id:(0x%x,0x%x)", this_->ways->angle2, angle_delta(prev->angle_end, this_->ways->angle2), this_->ways->flags, this_->ways->dir, item_to_name(this_->ways->item.type), this_->ways->item.id_hi, this_->ways->item.id_lo); this_->ways=this_->ways->next; return 1; } this_->debug_idx++; case 8: this_->debug_idx++; if (prev) { struct navigation_maneuver *maneuver = NULL; maneuver_required2(this_->nav, prev, itm, &maneuver); this_->str=attr->u.str=g_strdup_printf("type: %s, is_complex_t_junction: %d, is_same_street: %d, is_unambiguous: %d, merge_or_exit: %d, old_cat: %d, new_cat: %d, max_cat: %d, num_options: %d, num_similar_ways: %d, num_new_motorways: %d, num_other_ways: %d, left: %d, right: %d, delta: %d", item_to_name(maneuver->type), maneuver->is_complex_t_junction, maneuver->is_same_street, maneuver->is_unambiguous, maneuver->merge_or_exit, maneuver->old_cat, maneuver->new_cat, maneuver->max_cat, maneuver->num_options, maneuver->num_similar_ways, maneuver->num_new_motorways, maneuver->num_other_ways, maneuver->left, maneuver->right, maneuver->delta); return 1; } default: this_->attr_next=attr_none; return 0; } case attr_any: while (this_->attr_next != attr_none) { if (navigation_map_item_attr_get(priv_data, this_->attr_next, attr)) return 1; } return 0; default: attr->type=attr_none; return 0; } } static void navigation_map_item_attr_rewind(void *priv_data) { struct map_rect_priv *priv = priv_data; priv->debug_idx=0; priv->attr_next=attr_navigation_short; } static struct item_methods navigation_map_item_methods = { navigation_map_item_coord_rewind, navigation_map_item_coord_get, navigation_map_item_attr_rewind, navigation_map_item_attr_get, }; static void navigation_map_destroy(struct map_priv *priv) { g_free(priv); } static void navigation_map_rect_init(struct map_rect_priv *priv) { priv->cmd_next=priv->nav->cmd_first; priv->cmd_itm_next=priv->itm_next=priv->nav->first; } static struct map_rect_priv * navigation_map_rect_new(struct map_priv *priv, struct map_selection *sel) { struct navigation *nav=priv->navigation; struct map_rect_priv *ret=g_new0(struct map_rect_priv, 1); ret->nav=nav; navigation_map_rect_init(ret); ret->item.meth=&navigation_map_item_methods; ret->item.priv_data=ret; #ifdef DEBUG ret->show_all=1; #endif return ret; } static void navigation_map_rect_destroy(struct map_rect_priv *priv) { g_free(priv->str); g_free(priv); } /** * @brief Gets the next item from the navigation map. * * This function returns an item from a map rectangle on the navigation map and advances the item pointer, * so that at the next call the next item will be returned. * * The {@code type} member of the result, which indicates the type of maneuver, is generally copied over from * {@code maneuver->type}, though some exceptions apply: The first item in the map will have a type of * {@code nav_position} and the last one will have a type of {@code nav_destination}. * If {@code maneuver->merge_or_exit} indicates a merge or exit, the result will be of the corresponding * merge or exit type. * * Earlier versions of Navit had the entire logic for setting the maneuver type in this function, but this has * been moved to {@code command_new()} so that other functions can use the same results. * * @param priv The {@code struct map_rect_priv} of the map rect on the navigation map from which an item * is to be retrieved. * * @return The item, or NULL if there are no more items in the map rectangle */ static struct item * navigation_map_get_item(struct map_rect_priv *priv) { struct item *ret=&priv->item; if (!priv->itm_next) return NULL; priv->itm=priv->itm_next; priv->cmd=priv->cmd_next; priv->cmd_itm=priv->cmd_itm_next; if (!priv->cmd) return NULL; if (!priv->show_all && priv->itm->prev != NULL) priv->itm=priv->cmd->itm; priv->itm_next=priv->itm->next; if (priv->itm->prev) ret->type=type_nav_none; else ret->type=type_nav_position; if (priv->cmd->itm == priv->itm) { priv->cmd_itm_next=priv->cmd->itm; priv->cmd_next=priv->cmd->next; if (priv->cmd_itm_next && !priv->cmd_itm_next->next) ret->type=type_nav_destination; /* FIXME: do we need to set that here? The generic case should catch that now... */ else if (priv->cmd->maneuver && ((priv->cmd->maneuver->type != type_nav_none) || (priv->cmd->maneuver->merge_or_exit & (mex_merge | mex_exit)))) { /* if maneuver type or merge_or_exit is set, use these values */ /* FIXME: make decision to use merge_or_exit context-dependent */ switch (priv->cmd->maneuver->merge_or_exit) { case mex_merge_left: ret->type=type_nav_merge_left; break; case mex_merge_right: ret->type=type_nav_merge_right; break; case mex_exit_left: ret->type=type_nav_exit_left; break; case mex_exit_right: ret->type=type_nav_exit_right; break; default: /* exit or merge without a direction should never happen, * mex_intersection results in a regular instruction, * thus all these are handled by the default case, * which is to return the type field */ ret->type = priv->cmd->maneuver->type; } } /* else if priv->cmd->maneuver ... */ } /* if priv->cmd->itm == priv->itm */ navigation_map_item_coord_rewind(priv); navigation_map_item_attr_rewind(priv); ret->id_lo=priv->itm->dest_count; dbg(lvl_debug,"type=%d\n", ret->type); return ret; } /** * @brief Gets the item with the specified ID from the navigation map. * * This function returns the item with the ID specified in the arguments from a map rectangle on the * navigation map. * * Internally the function calls {@code navigation_map_get_item()}, thus the same logic applies for the * data of the item that is returned. See {@code navigation_map_get_item()} for details. * * The item pointer of the map rectangle will be moved so that a subsequent call to {@code navigation_map_get_item()} * will return the next item following the one returned by this function. * * @param priv The {@code struct map_rect_priv} of the map rect on the navigation map from which an item * is to be retrieved. * @param id_hi The high part of the ID * @param id_lo The low part of the ID * * @return The item, or NULL if an item with the ID specified was not found in the map rectangle */ static struct item * navigation_map_get_item_byid(struct map_rect_priv *priv, int id_hi, int id_lo) { struct item *ret; navigation_map_rect_init(priv); while ((ret=navigation_map_get_item(priv))) { if (ret->id_hi == id_hi && ret->id_lo == id_lo) return ret; } return NULL; } static struct map_methods navigation_map_meth = { projection_mg, "utf-8", navigation_map_destroy, navigation_map_rect_new, navigation_map_rect_destroy, navigation_map_get_item, navigation_map_get_item_byid, NULL, NULL, NULL, }; static struct map_priv * navigation_map_new(struct map_methods *meth, struct attr **attrs, struct callback_list *cbl) { struct map_priv *ret; struct attr *navigation_attr; navigation_attr=attr_search(attrs, NULL, attr_navigation); if (! navigation_attr) return NULL; ret=g_new0(struct map_priv, 1); *meth=navigation_map_meth; ret->navigation=navigation_attr->u.navigation; return ret; } void navigation_set_route(struct navigation *this_, struct route *route) { struct attr callback; if (!this_->route_cb) this_->route_cb=callback_new_attr_1(callback_cast(navigation_update), attr_route_status, this_); callback.type=attr_callback; callback.u.callback=this_->route_cb; if (this_->route) route_remove_attr(this_->route, &callback); this_->route=route; if (this_->route) { struct attr route_status; route_add_attr(this_->route, &callback); if (route_get_attr(this_->route, attr_route_status, &route_status, NULL)) navigation_update(this_, this_->route, &route_status); } } void navigation_init(void) { plugin_register_map_type("navigation", navigation_map_new); } struct object_func navigation_func = { attr_navigation, (object_func_new)navigation_new, (object_func_get_attr)navigation_get_attr, (object_func_iter_new)navit_object_attr_iter_new, (object_func_iter_destroy)navit_object_attr_iter_destroy, (object_func_set_attr)navigation_set_attr, (object_func_add_attr)navit_object_add_attr, (object_func_remove_attr)navit_object_remove_attr, (object_func_init)NULL, (object_func_destroy)navigation_destroy, (object_func_dup)NULL, (object_func_ref)navit_object_ref, (object_func_unref)navit_object_unref, };