/* arctwo.c The cipher described in rfc2268; aka Ron's Cipher 2. Copyright (C) 2004 Simon Josefsson Copyright (C) 2003 Nikos Mavroyanopoulos Copyright (C) 2004 Free Software Foundation, Inc. Copyright (C) 2004, 2014 Niels Möller This file is part of GNU Nettle. GNU Nettle is free software: you can redistribute it and/or modify it under the terms of either: * the GNU Lesser General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. or * the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. or both in parallel, as here. GNU Nettle is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received copies of the GNU General Public License and the GNU Lesser General Public License along with this program. If not, see http://www.gnu.org/licenses/. */ /* This implementation was written by Nikos Mavroyanopoulos for GNUTLS * as a Libgcrypt module (gnutls/lib/x509/rc2.c) and later adapted for * direct use by Libgcrypt by Werner Koch and later adapted for direct * use by Nettle by Simon Josefsson and Niels Möller. * * The implementation here is based on Peter Gutmann's RRC.2 paper and * RFC 2268. */ #if HAVE_CONFIG_H # include "config.h" #endif #include #include "arctwo.h" #include "macros.h" static const uint8_t arctwo_sbox[] = { 0xd9, 0x78, 0xf9, 0xc4, 0x19, 0xdd, 0xb5, 0xed, 0x28, 0xe9, 0xfd, 0x79, 0x4a, 0xa0, 0xd8, 0x9d, 0xc6, 0x7e, 0x37, 0x83, 0x2b, 0x76, 0x53, 0x8e, 0x62, 0x4c, 0x64, 0x88, 0x44, 0x8b, 0xfb, 0xa2, 0x17, 0x9a, 0x59, 0xf5, 0x87, 0xb3, 0x4f, 0x13, 0x61, 0x45, 0x6d, 0x8d, 0x09, 0x81, 0x7d, 0x32, 0xbd, 0x8f, 0x40, 0xeb, 0x86, 0xb7, 0x7b, 0x0b, 0xf0, 0x95, 0x21, 0x22, 0x5c, 0x6b, 0x4e, 0x82, 0x54, 0xd6, 0x65, 0x93, 0xce, 0x60, 0xb2, 0x1c, 0x73, 0x56, 0xc0, 0x14, 0xa7, 0x8c, 0xf1, 0xdc, 0x12, 0x75, 0xca, 0x1f, 0x3b, 0xbe, 0xe4, 0xd1, 0x42, 0x3d, 0xd4, 0x30, 0xa3, 0x3c, 0xb6, 0x26, 0x6f, 0xbf, 0x0e, 0xda, 0x46, 0x69, 0x07, 0x57, 0x27, 0xf2, 0x1d, 0x9b, 0xbc, 0x94, 0x43, 0x03, 0xf8, 0x11, 0xc7, 0xf6, 0x90, 0xef, 0x3e, 0xe7, 0x06, 0xc3, 0xd5, 0x2f, 0xc8, 0x66, 0x1e, 0xd7, 0x08, 0xe8, 0xea, 0xde, 0x80, 0x52, 0xee, 0xf7, 0x84, 0xaa, 0x72, 0xac, 0x35, 0x4d, 0x6a, 0x2a, 0x96, 0x1a, 0xd2, 0x71, 0x5a, 0x15, 0x49, 0x74, 0x4b, 0x9f, 0xd0, 0x5e, 0x04, 0x18, 0xa4, 0xec, 0xc2, 0xe0, 0x41, 0x6e, 0x0f, 0x51, 0xcb, 0xcc, 0x24, 0x91, 0xaf, 0x50, 0xa1, 0xf4, 0x70, 0x39, 0x99, 0x7c, 0x3a, 0x85, 0x23, 0xb8, 0xb4, 0x7a, 0xfc, 0x02, 0x36, 0x5b, 0x25, 0x55, 0x97, 0x31, 0x2d, 0x5d, 0xfa, 0x98, 0xe3, 0x8a, 0x92, 0xae, 0x05, 0xdf, 0x29, 0x10, 0x67, 0x6c, 0xba, 0xc9, 0xd3, 0x00, 0xe6, 0xcf, 0xe1, 0x9e, 0xa8, 0x2c, 0x63, 0x16, 0x01, 0x3f, 0x58, 0xe2, 0x89, 0xa9, 0x0d, 0x38, 0x34, 0x1b, 0xab, 0x33, 0xff, 0xb0, 0xbb, 0x48, 0x0c, 0x5f, 0xb9, 0xb1, 0xcd, 0x2e, 0xc5, 0xf3, 0xdb, 0x47, 0xe5, 0xa5, 0x9c, 0x77, 0x0a, 0xa6, 0x20, 0x68, 0xfe, 0x7f, 0xc1, 0xad }; #define rotl16(x,n) (((x) << ((uint16_t)(n))) | ((x) >> (16 - (uint16_t)(n)))) #define rotr16(x,n) (((x) >> ((uint16_t)(n))) | ((x) << (16 - (uint16_t)(n)))) void arctwo_encrypt (struct arctwo_ctx *ctx, size_t length, uint8_t *dst, const uint8_t *src) { FOR_BLOCKS (length, dst, src, ARCTWO_BLOCK_SIZE) { register unsigned i; uint16_t w0, w1, w2, w3; w0 = LE_READ_UINT16 (&src[0]); w1 = LE_READ_UINT16 (&src[2]); w2 = LE_READ_UINT16 (&src[4]); w3 = LE_READ_UINT16 (&src[6]); for (i = 0; i < 16; i++) { register unsigned j = i * 4; /* For some reason I cannot combine those steps. */ w0 += (w1 & ~w3) + (w2 & w3) + ctx->S[j]; w0 = rotl16 (w0, 1); w1 += (w2 & ~w0) + (w3 & w0) + ctx->S[j + 1]; w1 = rotl16 (w1, 2); w2 += (w3 & ~w1) + (w0 & w1) + ctx->S[j + 2]; w2 = rotl16 (w2, 3); w3 += (w0 & ~w2) + (w1 & w2) + ctx->S[j + 3]; w3 = rotl16 (w3, 5); if (i == 4 || i == 10) { w0 += ctx->S[w3 & 63]; w1 += ctx->S[w0 & 63]; w2 += ctx->S[w1 & 63]; w3 += ctx->S[w2 & 63]; } } LE_WRITE_UINT16 (&dst[0], w0); LE_WRITE_UINT16 (&dst[2], w1); LE_WRITE_UINT16 (&dst[4], w2); LE_WRITE_UINT16 (&dst[6], w3); } } void arctwo_decrypt (struct arctwo_ctx *ctx, size_t length, uint8_t *dst, const uint8_t *src) { FOR_BLOCKS (length, dst, src, ARCTWO_BLOCK_SIZE) { register unsigned i; uint16_t w0, w1, w2, w3; w0 = LE_READ_UINT16 (&src[0]); w1 = LE_READ_UINT16 (&src[2]); w2 = LE_READ_UINT16 (&src[4]); w3 = LE_READ_UINT16 (&src[6]); for (i = 16; i-- > 0; ) { register unsigned j = i * 4; w3 = rotr16 (w3, 5); w3 -= (w0 & ~w2) + (w1 & w2) + ctx->S[j + 3]; w2 = rotr16 (w2, 3); w2 -= (w3 & ~w1) + (w0 & w1) + ctx->S[j + 2]; w1 = rotr16 (w1, 2); w1 -= (w2 & ~w0) + (w3 & w0) + ctx->S[j + 1]; w0 = rotr16 (w0, 1); w0 -= (w1 & ~w3) + (w2 & w3) + ctx->S[j]; if (i == 5 || i == 11) { w3 = w3 - ctx->S[w2 & 63]; w2 = w2 - ctx->S[w1 & 63]; w1 = w1 - ctx->S[w0 & 63]; w0 = w0 - ctx->S[w3 & 63]; } } LE_WRITE_UINT16 (&dst[0], w0); LE_WRITE_UINT16 (&dst[2], w1); LE_WRITE_UINT16 (&dst[4], w2); LE_WRITE_UINT16 (&dst[6], w3); } } void arctwo_set_key_ekb (struct arctwo_ctx *ctx, size_t length, const uint8_t *key, unsigned ekb) { size_t i; /* Expanded key, treated as octets */ uint8_t S[128]; uint8_t x; assert (length >= ARCTWO_MIN_KEY_SIZE); assert (length <= ARCTWO_MAX_KEY_SIZE); assert (ekb <= 1024); for (i = 0; i < length; i++) S[i] = key[i]; /* Phase 1: Expand input key to 128 bytes */ for (i = length; i < ARCTWO_MAX_KEY_SIZE; i++) S[i] = arctwo_sbox[(S[i - length] + S[i - 1]) & 255]; S[0] = arctwo_sbox[S[0]]; /* Reduce effective key size to ekb bits, if requested by caller. */ if (ekb > 0 && ekb < 1024) { int len = (ekb + 7) >> 3; i = 128 - len; x = arctwo_sbox[S[i] & (255 >> (7 & -ekb))]; S[i] = x; while (i--) { x = arctwo_sbox[x ^ S[i + len]]; S[i] = x; } } /* Make the expanded key endian independent. */ for (i = 0; i < 64; i++) ctx->S[i] = LE_READ_UINT16(S + i * 2); } void arctwo_set_key (struct arctwo_ctx *ctx, size_t length, const uint8_t *key) { arctwo_set_key_ekb (ctx, length, key, 8 * length); } void arctwo_set_key_gutmann (struct arctwo_ctx *ctx, size_t length, const uint8_t *key) { arctwo_set_key_ekb (ctx, length, key, 0); } void arctwo40_set_key (struct arctwo_ctx *ctx, const uint8_t *key) { arctwo_set_key_ekb (ctx, 5, key, 40); } void arctwo64_set_key (struct arctwo_ctx *ctx, const uint8_t *key) { arctwo_set_key_ekb (ctx, 8, key, 64); } void arctwo128_set_key (struct arctwo_ctx *ctx, const uint8_t *key) { arctwo_set_key_ekb (ctx, 16, key, 128); } void arctwo128_set_key_gutmann (struct arctwo_ctx *ctx, const uint8_t *key) { arctwo_set_key_ekb (ctx, 16, key, 1024); }