/* ecc-non-sec-add-jjj.c Copyright (C) 2013, 2022 Niels Möller This file is part of GNU Nettle. GNU Nettle is free software: you can redistribute it and/or modify it under the terms of either: * the GNU Lesser General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. or * the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. or both in parallel, as here. GNU Nettle is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received copies of the GNU General Public License and the GNU Lesser General Public License along with this program. If not, see http://www.gnu.org/licenses/. */ /* Development of Nettle's ECC support was funded by the .SE Internet Fund. */ #if HAVE_CONFIG_H # include "config.h" #endif #include "ecc.h" #include "ecc-internal.h" /* Similar to ecc_add_jjj, but checks if x coordinates are equal (H = 0) below, and if so, performs doubling if also y coordinates are equal, or returns 0 (failure) indicating that the result is the infinity point. */ int ecc_nonsec_add_jjj (const struct ecc_curve *ecc, mp_limb_t *r, const mp_limb_t *p, const mp_limb_t *q, mp_limb_t *scratch) { #define x1 p #define y1 (p + ecc->p.size) #define z1 (p + 2*ecc->p.size) #define x2 q #define y2 (q + ecc->p.size) #define z2 (q + 2*ecc->p.size) #define x3 r #define y3 (r + ecc->p.size) #define z3 (r + 2*ecc->p.size) /* Formulas, from djb, http://www.hyperelliptic.org/EFD/g1p/auto-shortw-jacobian-3.html#addition-add-2007-bl: Computation Operation Live variables Z1Z1 = Z1^2 sqr Z1Z1 Z2Z2 = Z2^2 sqr Z1Z1, Z2Z2 U1 = X1*Z2Z2 mul Z1Z1, Z2Z2, U1 U2 = X2*Z1Z1 mul Z1Z1, Z2Z2, U1, U2 H = U2-U1 Z1Z1, Z2Z2, U1, H Z3 = ((Z1+Z2)^2-Z1Z1-Z2Z2)*H sqr, mul Z1Z1, Z2Z2, U1, H S1 = Y1*Z2*Z2Z2 mul, mul Z1Z1, U1, H, S1 S2 = Y2*Z1*Z1Z1 mul, mul U1, H, S1, S2 W = 2*(S2-S1) (djb: r) U1, H, S1, W I = (2*H)^2 sqr U1, H, S1, W, I J = H*I mul U1, S1, W, J, V V = U1*I mul S1, W, J, V X3 = W^2-J-2*V sqr S1, W, J, V Y3 = W*(V-X3)-2*S1*J mul, mul */ #define h scratch #define z1z1 (scratch + ecc->p.size) #define z2z2 z1z1 #define z1z2 (scratch + 2*ecc->p.size) #define w (scratch + ecc->p.size) #define i (scratch + 2*ecc->p.size) #define j h #define v i #define tp (scratch + 3*ecc->p.size) ecc_mod_sqr (&ecc->p, z2z2, z2, tp); /* z2z2 */ /* Store u1 at x3 */ ecc_mod_mul (&ecc->p, x3, x1, z2z2, tp); /* z2z2 */ ecc_mod_add (&ecc->p, z1z2, z1, z2); /* z2z2, z1z2 */ ecc_mod_sqr (&ecc->p, z1z2, z1z2, tp); ecc_mod_sub (&ecc->p, z1z2, z1z2, z2z2); /* z2z2, z1z2 */ /* Do s1 early, store at y3 */ ecc_mod_mul (&ecc->p, z2z2, z2z2, z2, tp); /* z2z2, z1z2 */ ecc_mod_mul (&ecc->p, y3, z2z2, y1, tp); /* z1z2 */ ecc_mod_sqr (&ecc->p, z1z1, z1, tp); /* z1z1, z1z2 */ ecc_mod_sub (&ecc->p, z1z2, z1z2, z1z1); ecc_mod_mul (&ecc->p, h, x2, z1z1, tp); /* z1z1, z1z2, h */ ecc_mod_sub (&ecc->p, h, h, x3); /* z1^3 */ ecc_mod_mul (&ecc->p, z1z1, z1z1, z1, tp); /* z3 <-- h z1 z2 delayed until now, since that may clobber z1. */ ecc_mod_mul (&ecc->p, z3, z1z2, h, tp); /* z1z1, h */ /* w = 2 (s2 - s1) */ ecc_mod_mul (&ecc->p, w, z1z1, y2, tp); /* h, w */ ecc_mod_sub (&ecc->p, w, w, y3); /* Note that use of ecc_mod_zero_p depends 0 <= h,w < 2p. */ if (ecc_mod_zero_p (&ecc->p, h)) { /* X1 == X2 */ if (ecc_mod_zero_p (&ecc->p, w)) { /* Y1 == Y2. Do point duplication. Note that q input is unclobbered, and that scratch need is smaller. Implies some unnecessary recomputation, but performance it not so important for this very unlikely corner case. */ ecc_dup_jj (ecc, r, q, scratch); return 1; } /* We must have Y1 == -Y2, and then the result is the infinity point, */ mpn_zero (r, 3*ecc->p.size); return 0; } ecc_mod_add (&ecc->p, w, w, w); /* i = (2h)^2 */ ecc_mod_add (&ecc->p, i, h, h); /* h, w, i */ ecc_mod_sqr (&ecc->p, i, i, tp); /* j and h can overlap */ ecc_mod_mul (&ecc->p, j, h, i, tp); /* j, w, i */ /* v and i can overlap */ ecc_mod_mul (&ecc->p, v, x3, i, tp); /* j, w, v */ /* x3 <-- w^2 - j - 2v */ ecc_mod_sqr (&ecc->p, x3, w, tp); ecc_mod_sub (&ecc->p, x3, x3, j); ecc_mod_submul_1 (&ecc->p, x3, v, 2); /* y3 <-- w (v - x3) - 2 s1 j */ ecc_mod_mul (&ecc->p, j, j, y3, tp); ecc_mod_sub (&ecc->p, v, v, x3); ecc_mod_mul (&ecc->p, y3, v, w, tp); ecc_mod_submul_1 (&ecc->p, y3, j, 2); return 1; }