/* ecc-benchmark.c Copyright (C) 2013 Niels Möller This file is part of GNU Nettle. GNU Nettle is free software: you can redistribute it and/or modify it under the terms of either: * the GNU Lesser General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. or * the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. or both in parallel, as here. GNU Nettle is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received copies of the GNU General Public License and the GNU Lesser General Public License along with this program. If not, see http://www.gnu.org/licenses/. */ /* Development of Nettle's ECC support was funded by the .SE Internet Fund. */ #if HAVE_CONFIG_H # include "config.h" #endif #include #include #include #include #include #include #include "timing.h" #include "../ecc.h" #include "../ecc-internal.h" #include "../gmp-glue.h" #define BENCH_INTERVAL 0.1 static void * xalloc (size_t size) { void *p = malloc (size); if (!p) { fprintf (stderr, "Virtual memory exhausted\n"); abort (); } return p; } static mp_limb_t * xalloc_limbs (mp_size_t size) { return xalloc (size * sizeof(mp_limb_t)); } /* Returns second per function call */ static double time_function(void (*f)(void *arg), void *arg) { unsigned ncalls; double elapsed; /* Warm up */ f(arg); for (ncalls = 10 ;;) { unsigned i; time_start(); for (i = 0; i < ncalls; i++) f(arg); elapsed = time_end(); if (elapsed > BENCH_INTERVAL) break; else if (elapsed < BENCH_INTERVAL / 10) ncalls *= 10; else ncalls *= 2; } return elapsed / ncalls; } #if !NETTLE_USE_MINI_GMP static int modinv_gcd (const struct ecc_curve *ecc, mp_limb_t *rp, mp_limb_t *ap, mp_limb_t *tp) { mp_size_t size = ecc->p.size; mp_limb_t *up = tp; mp_limb_t *vp = tp + size+1; mp_limb_t *gp = tp + 2*(size+1); mp_limb_t *sp = tp + 3*(size+1); mp_size_t gn, sn; mpn_copyi (up, ap, size); mpn_copyi (vp, ecc->p.m, size); gn = mpn_gcdext (gp, sp, &sn, up, size, vp, size); if (gn != 1 || gp[0] != 1) return 0; if (sn < 0) mpn_sub (sp, ecc->p.m, size, sp, -sn); else if (sn < size) /* Zero-pad. */ mpn_zero (sp + sn, size - sn); mpn_copyi (rp, sp, size); return 1; } #endif struct ecc_ctx { const struct ecc_curve *ecc; mp_limb_t *rp; mp_limb_t *ap; mp_limb_t *bp; mp_limb_t *tp; }; static void bench_modp (void *p) { struct ecc_ctx *ctx = (struct ecc_ctx *) p; mpn_copyi (ctx->rp, ctx->ap, 2*ctx->ecc->p.size); ctx->ecc->p.mod (&ctx->ecc->p, ctx->rp, ctx->rp); } static void bench_reduce (void *p) { struct ecc_ctx *ctx = (struct ecc_ctx *) p; mpn_copyi (ctx->rp, ctx->ap, 2*ctx->ecc->p.size); ctx->ecc->p.reduce (&ctx->ecc->p, ctx->rp, ctx->rp); } static void bench_modq (void *p) { struct ecc_ctx *ctx = (struct ecc_ctx *) p; mpn_copyi (ctx->rp, ctx->ap, 2*ctx->ecc->p.size); ctx->ecc->q.mod(&ctx->ecc->q, ctx->rp, ctx->rp); } static void bench_modinv (void *p) { struct ecc_ctx *ctx = (struct ecc_ctx *) p; ctx->ecc->p.invert (&ctx->ecc->p, ctx->rp, ctx->ap, ctx->tp); } #if !NETTLE_USE_MINI_GMP static void bench_modinv_gcd (void *p) { struct ecc_ctx *ctx = (struct ecc_ctx *) p; mpn_copyi (ctx->rp + ctx->ecc->p.size, ctx->ap, ctx->ecc->p.size); modinv_gcd (ctx->ecc, ctx->rp, ctx->rp + ctx->ecc->p.size, ctx->tp); } #endif #ifdef mpn_sec_powm static void bench_modinv_powm (void *p) { struct ecc_ctx *ctx = (struct ecc_ctx *) p; const struct ecc_curve *ecc = ctx->ecc; mp_size_t size = ecc->p.size; mpn_sub_1 (ctx->rp + size, ecc->p.m, size, 2); mpn_sec_powm (ctx->rp, ctx->ap, size, ctx->rp + size, ecc->p.bit_size, ecc->p.m, size, ctx->tp); } #endif static void bench_dup_hh (void *p) { struct ecc_ctx *ctx = (struct ecc_ctx *) p; ctx->ecc->dup (ctx->ecc, ctx->rp, ctx->ap, ctx->tp); } static void bench_add_hh (void *p) { struct ecc_ctx *ctx = (struct ecc_ctx *) p; ctx->ecc->add_hh (ctx->ecc, ctx->rp, ctx->ap, ctx->bp, ctx->tp); } static void bench_add_hhh (void *p) { struct ecc_ctx *ctx = (struct ecc_ctx *) p; ctx->ecc->add_hhh (ctx->ecc, ctx->rp, ctx->ap, ctx->bp, ctx->tp); } static void bench_mul_g (void *p) { struct ecc_ctx *ctx = (struct ecc_ctx *) p; ctx->ecc->mul_g (ctx->ecc, ctx->rp, ctx->ap, ctx->tp); } static void bench_mul_a (void *p) { struct ecc_ctx *ctx = (struct ecc_ctx *) p; ctx->ecc->mul (ctx->ecc, ctx->rp, ctx->ap, ctx->bp, ctx->tp); } #if NETTLE_USE_MINI_GMP static void mpn_random (mp_limb_t *xp, mp_size_t n) { mp_size_t i; for (i = 0; i < n; i++) xp[i] = rand(); } #endif static void bench_curve (const struct ecc_curve *ecc) { struct ecc_ctx ctx; double modp, reduce, modq, modinv, modinv_gcd, modinv_powm, dup_hh, add_hh, add_hhh, mul_g, mul_a; mp_limb_t mask; mp_size_t itch; ctx.ecc = ecc; ctx.rp = xalloc_limbs (3*ecc->p.size); ctx.ap = xalloc_limbs (3*ecc->p.size); ctx.bp = xalloc_limbs (3*ecc->p.size); itch = ecc->mul_itch; #ifdef mpn_sec_powm { mp_size_t powm_itch = mpn_sec_powm_itch (ecc->p.size, ecc->p.bit_size, ecc->p.size); if (powm_itch > itch) itch = powm_itch; } #endif ctx.tp = xalloc_limbs (itch); mpn_random (ctx.ap, 3*ecc->p.size); mpn_random (ctx.bp, 3*ecc->p.size); mask = (~(mp_limb_t) 0) >> (ecc->p.size * GMP_NUMB_BITS - ecc->p.bit_size); ctx.ap[ecc->p.size - 1] &= mask; ctx.ap[2*ecc->p.size - 1] &= mask; ctx.ap[3*ecc->p.size - 1] &= mask; ctx.bp[ecc->p.size - 1] &= mask; ctx.bp[2*ecc->p.size - 1] &= mask; ctx.bp[3*ecc->p.size - 1] &= mask; modp = time_function (bench_modp, &ctx); reduce = time_function (bench_reduce, &ctx); modq = time_function (bench_modq, &ctx); modinv = time_function (bench_modinv, &ctx); #if !NETTLE_USE_MINI_GMP modinv_gcd = time_function (bench_modinv_gcd, &ctx); #else modinv_gcd = 0; #endif #ifdef mpn_sec_powm modinv_powm = time_function (bench_modinv_powm, &ctx); #else modinv_powm = 0; #endif dup_hh = time_function (bench_dup_hh, &ctx); add_hh = time_function (bench_add_hh, &ctx); add_hhh = time_function (bench_add_hhh, &ctx); mul_g = time_function (bench_mul_g, &ctx); mul_a = time_function (bench_mul_a, &ctx); free (ctx.rp); free (ctx.ap); free (ctx.bp); free (ctx.tp); printf ("%4d %6.4f %6.4f %6.4f %6.2f %6.3f %6.2f %6.3f %6.3f %6.3f %6.1f %6.1f\n", ecc->p.bit_size, 1e6 * modp, 1e6 * reduce, 1e6 * modq, 1e6 * modinv, 1e6 * modinv_gcd, 1e6 * modinv_powm, 1e6 * dup_hh, 1e6 * add_hh, 1e6 * add_hhh, 1e6 * mul_g, 1e6 * mul_a); } const struct ecc_curve * const curves[] = { &_nettle_secp_192r1, &_nettle_secp_224r1, &_nettle_curve25519, &_nettle_secp_256r1, &_nettle_secp_384r1, &_nettle_curve448, &_nettle_secp_521r1, &_nettle_gost_gc256b, &_nettle_gost_gc512a, }; #define numberof(x) (sizeof (x) / sizeof ((x)[0])) int main (int argc UNUSED, char **argv UNUSED) { unsigned i; time_init(); printf ("%4s %6s %6s %6s %6s %6s %6s %6s %6s %6s %6s %6s (us)\n", "size", "modp", "reduce", "modq", "modinv", "mi_gcd", "mi_pow", "dup_hh", "add_hh", "ad_hhh", "mul_g", "mul_a"); for (i = 0; i < numberof (curves); i++) bench_curve (curves[i]); return EXIT_SUCCESS; }