/* md5.c * * The md5 hash function. */ /* nettle, low-level cryptographics library * * Copyright (C) 2001 Niels Möller * * The nettle library is free software; you can redistribute it and/or modify * it under the terms of the GNU Lesser General Public License as published by * the Free Software Foundation; either version 2.1 of the License, or (at your * option) any later version. * * The nettle library is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public * License for more details. * * You should have received a copy of the GNU Lesser General Public License * along with the nettle library; see the file COPYING.LIB. If not, write to * the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, * MA 02111-1307, USA. */ /* Based on public domain code hacked by Colin Plumb, Andrew Kuchling, and * Niels Möller. */ #include "md5.h" #include "macros.h" #include #include /* A block, treated as a sequence of 32-bit words. */ #define MD5_DATA_LENGTH 16 static void md5_transform(uint32_t *digest, const uint32_t *data); static void md5_block(struct md5_ctx *ctx, const uint8_t *block); void md5_init(struct md5_ctx *ctx) { ctx->digest[0] = 0x67452301; ctx->digest[1] = 0xefcdab89; ctx->digest[2] = 0x98badcfe; ctx->digest[3] = 0x10325476; ctx->count_l = ctx->count_h = 0; ctx->index = 0; } void md5_update(struct md5_ctx *ctx, unsigned length, const uint8_t *data) { if (ctx->index) { /* Try to fill partial block */ unsigned left = MD5_DATA_SIZE - ctx->index; if (length < left) { memcpy(ctx->block + ctx->index, data, length); ctx->index += length; return; /* Finished */ } else { memcpy(ctx->block + ctx->index, data, left); md5_block(ctx, ctx->block); data += left; length -= left; } } while (length >= MD5_DATA_SIZE) { md5_block(ctx, data); data += MD5_DATA_SIZE; length -= MD5_DATA_SIZE; } if ((ctx->index = length)) /* This assignment is intended */ /* Buffer leftovers */ memcpy(ctx->block, data, length); } /* Final wrapup - pad to MD5_DATA_SIZE-byte boundary with the bit * pattern 1 0* (64-bit count of bits processed, LSB-first) */ static void md5_final(struct md5_ctx *ctx) { uint32_t data[MD5_DATA_LENGTH]; unsigned i; unsigned words; i = ctx->index; /* Set the first char of padding to 0x80. This is safe since there * is always at least one byte free */ assert(i < MD5_DATA_SIZE); ctx->block[i++] = 0x80; /* Fill rest of word */ for( ; i & 3; i++) ctx->block[i] = 0; /* i is now a multiple of the word size 4 */ words = i >> 2; for (i = 0; i < words; i++) data[i] = LE_READ_UINT32(ctx->block + 4*i); if (words > (MD5_DATA_LENGTH-2)) { /* No room for length in this block. Process it and * pad with another one */ for (i = words ; i < MD5_DATA_LENGTH; i++) data[i] = 0; md5_transform(ctx->digest, data); for (i = 0; i < (MD5_DATA_LENGTH-2); i++) data[i] = 0; } else for (i = words ; i < MD5_DATA_LENGTH - 2; i++) data[i] = 0; /* There are 512 = 2^9 bits in one block * Little-endian order => Least significant word first */ data[MD5_DATA_LENGTH-1] = (ctx->count_h << 9) | (ctx->count_l >> 23); data[MD5_DATA_LENGTH-2] = (ctx->count_l << 9) | (ctx->index << 3); md5_transform(ctx->digest, data); } void md5_digest(struct md5_ctx *ctx, unsigned length, uint8_t *digest) { unsigned i; unsigned words; unsigned leftover; assert(length <= MD5_DIGEST_SIZE); md5_final(ctx); words = length / 4; leftover = length % 4; /* Little endian order */ for (i = 0; i < words; i++, digest += 4) LE_WRITE_UINT32(digest, ctx->digest[i]); if (leftover) { uint32_t word; unsigned j; assert(i < _MD5_DIGEST_LENGTH); /* Still least significant byte first. */ for (word = ctx->digest[i], j = 0; j < leftover; j++, word >>= 8) digest[j] = word & 0xff; } md5_init(ctx); } /* MD5 functions */ #define F1(x, y, z) (z ^ (x & (y ^ z))) #define F2(x, y, z) F1(z, x, y) #define F3(x, y, z) (x ^ y ^ z) #define F4(x, y, z) (y ^ (x | ~z)) #define ROUND(f, w, x, y, z, data, s) \ ( w += f(x, y, z) + data, w = w<>(32-s), w += x ) /* Perform the MD5 transformation on one full block of 16 32-bit * words. * * Compresses 20 (_MD5_DIGEST_LENGTH + MD5_DATA_LENGTH) words into 4 * (_MD5_DIGEST_LENGTH) words. */ static void md5_transform(uint32_t *digest, const uint32_t *data) { uint32_t a, b, c, d; a = digest[0]; b = digest[1]; c = digest[2]; d = digest[3]; ROUND(F1, a, b, c, d, data[ 0] + 0xd76aa478, 7); ROUND(F1, d, a, b, c, data[ 1] + 0xe8c7b756, 12); ROUND(F1, c, d, a, b, data[ 2] + 0x242070db, 17); ROUND(F1, b, c, d, a, data[ 3] + 0xc1bdceee, 22); ROUND(F1, a, b, c, d, data[ 4] + 0xf57c0faf, 7); ROUND(F1, d, a, b, c, data[ 5] + 0x4787c62a, 12); ROUND(F1, c, d, a, b, data[ 6] + 0xa8304613, 17); ROUND(F1, b, c, d, a, data[ 7] + 0xfd469501, 22); ROUND(F1, a, b, c, d, data[ 8] + 0x698098d8, 7); ROUND(F1, d, a, b, c, data[ 9] + 0x8b44f7af, 12); ROUND(F1, c, d, a, b, data[10] + 0xffff5bb1, 17); ROUND(F1, b, c, d, a, data[11] + 0x895cd7be, 22); ROUND(F1, a, b, c, d, data[12] + 0x6b901122, 7); ROUND(F1, d, a, b, c, data[13] + 0xfd987193, 12); ROUND(F1, c, d, a, b, data[14] + 0xa679438e, 17); ROUND(F1, b, c, d, a, data[15] + 0x49b40821, 22); ROUND(F2, a, b, c, d, data[ 1] + 0xf61e2562, 5); ROUND(F2, d, a, b, c, data[ 6] + 0xc040b340, 9); ROUND(F2, c, d, a, b, data[11] + 0x265e5a51, 14); ROUND(F2, b, c, d, a, data[ 0] + 0xe9b6c7aa, 20); ROUND(F2, a, b, c, d, data[ 5] + 0xd62f105d, 5); ROUND(F2, d, a, b, c, data[10] + 0x02441453, 9); ROUND(F2, c, d, a, b, data[15] + 0xd8a1e681, 14); ROUND(F2, b, c, d, a, data[ 4] + 0xe7d3fbc8, 20); ROUND(F2, a, b, c, d, data[ 9] + 0x21e1cde6, 5); ROUND(F2, d, a, b, c, data[14] + 0xc33707d6, 9); ROUND(F2, c, d, a, b, data[ 3] + 0xf4d50d87, 14); ROUND(F2, b, c, d, a, data[ 8] + 0x455a14ed, 20); ROUND(F2, a, b, c, d, data[13] + 0xa9e3e905, 5); ROUND(F2, d, a, b, c, data[ 2] + 0xfcefa3f8, 9); ROUND(F2, c, d, a, b, data[ 7] + 0x676f02d9, 14); ROUND(F2, b, c, d, a, data[12] + 0x8d2a4c8a, 20); ROUND(F3, a, b, c, d, data[ 5] + 0xfffa3942, 4); ROUND(F3, d, a, b, c, data[ 8] + 0x8771f681, 11); ROUND(F3, c, d, a, b, data[11] + 0x6d9d6122, 16); ROUND(F3, b, c, d, a, data[14] + 0xfde5380c, 23); ROUND(F3, a, b, c, d, data[ 1] + 0xa4beea44, 4); ROUND(F3, d, a, b, c, data[ 4] + 0x4bdecfa9, 11); ROUND(F3, c, d, a, b, data[ 7] + 0xf6bb4b60, 16); ROUND(F3, b, c, d, a, data[10] + 0xbebfbc70, 23); ROUND(F3, a, b, c, d, data[13] + 0x289b7ec6, 4); ROUND(F3, d, a, b, c, data[ 0] + 0xeaa127fa, 11); ROUND(F3, c, d, a, b, data[ 3] + 0xd4ef3085, 16); ROUND(F3, b, c, d, a, data[ 6] + 0x04881d05, 23); ROUND(F3, a, b, c, d, data[ 9] + 0xd9d4d039, 4); ROUND(F3, d, a, b, c, data[12] + 0xe6db99e5, 11); ROUND(F3, c, d, a, b, data[15] + 0x1fa27cf8, 16); ROUND(F3, b, c, d, a, data[ 2] + 0xc4ac5665, 23); ROUND(F4, a, b, c, d, data[ 0] + 0xf4292244, 6); ROUND(F4, d, a, b, c, data[ 7] + 0x432aff97, 10); ROUND(F4, c, d, a, b, data[14] + 0xab9423a7, 15); ROUND(F4, b, c, d, a, data[ 5] + 0xfc93a039, 21); ROUND(F4, a, b, c, d, data[12] + 0x655b59c3, 6); ROUND(F4, d, a, b, c, data[ 3] + 0x8f0ccc92, 10); ROUND(F4, c, d, a, b, data[10] + 0xffeff47d, 15); ROUND(F4, b, c, d, a, data[ 1] + 0x85845dd1, 21); ROUND(F4, a, b, c, d, data[ 8] + 0x6fa87e4f, 6); ROUND(F4, d, a, b, c, data[15] + 0xfe2ce6e0, 10); ROUND(F4, c, d, a, b, data[ 6] + 0xa3014314, 15); ROUND(F4, b, c, d, a, data[13] + 0x4e0811a1, 21); ROUND(F4, a, b, c, d, data[ 4] + 0xf7537e82, 6); ROUND(F4, d, a, b, c, data[11] + 0xbd3af235, 10); ROUND(F4, c, d, a, b, data[ 2] + 0x2ad7d2bb, 15); ROUND(F4, b, c, d, a, data[ 9] + 0xeb86d391, 21); digest[0] += a; digest[1] += b; digest[2] += c; digest[3] += d; } static void md5_block(struct md5_ctx *ctx, const uint8_t *block) { uint32_t data[MD5_DATA_LENGTH]; unsigned i; /* Update block count */ if (!++ctx->count_l) ++ctx->count_h; /* Endian independent conversion */ for (i = 0; i<16; i++, block += 4) data[i] = LE_READ_UINT32(block); md5_transform(ctx->digest, data); }