/* ripemd160.c RIPE-MD160 Copyright (C) 1998, 2001, 2002, 2003 Free Software Foundation, Inc. Copyright (C) 2011 Niels Möller This file is part of GNU Nettle. GNU Nettle is free software: you can redistribute it and/or modify it under the terms of either: * the GNU Lesser General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. or * the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. or both in parallel, as here. GNU Nettle is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received copies of the GNU General Public License and the GNU Lesser General Public License along with this program. If not, see http://www.gnu.org/licenses/. */ #if HAVE_CONFIG_H # include "config.h" #endif #include #include #include "ripemd160.h" #include "ripemd160-internal.h" #include "macros.h" #include "nettle-write.h" /********************************* * RIPEMD-160 is not patented, see (as of 2011-08-28) * http://www.esat.kuleuven.ac.be/~bosselae/ripemd160.html * Note that the code uses Little Endian byteorder, which is good for * 386 etc, but we must add some conversion when used on a big endian box. * * * Pseudo-code for RIPEMD-160 * * RIPEMD-160 is an iterative hash function that operates on 32-bit words. * The round function takes as input a 5-word chaining variable and a 16-word * message block and maps this to a new chaining variable. All operations are * defined on 32-bit words. Padding is identical to that of MD4. * * * RIPEMD-160: definitions * * * nonlinear functions at bit level: exor, mux, -, mux, - * * f(j, x, y, z) = x XOR y XOR z (0 <= j <= 15) * f(j, x, y, z) = (x AND y) OR (NOT(x) AND z) (16 <= j <= 31) * f(j, x, y, z) = (x OR NOT(y)) XOR z (32 <= j <= 47) * f(j, x, y, z) = (x AND z) OR (y AND NOT(z)) (48 <= j <= 63) * f(j, x, y, z) = x XOR (y OR NOT(z)) (64 <= j <= 79) * * * added constants (hexadecimal) * * K(j) = 0x00000000 (0 <= j <= 15) * K(j) = 0x5A827999 (16 <= j <= 31) int(2**30 x sqrt(2)) * K(j) = 0x6ED9EBA1 (32 <= j <= 47) int(2**30 x sqrt(3)) * K(j) = 0x8F1BBCDC (48 <= j <= 63) int(2**30 x sqrt(5)) * K(j) = 0xA953FD4E (64 <= j <= 79) int(2**30 x sqrt(7)) * K'(j) = 0x50A28BE6 (0 <= j <= 15) int(2**30 x cbrt(2)) * K'(j) = 0x5C4DD124 (16 <= j <= 31) int(2**30 x cbrt(3)) * K'(j) = 0x6D703EF3 (32 <= j <= 47) int(2**30 x cbrt(5)) * K'(j) = 0x7A6D76E9 (48 <= j <= 63) int(2**30 x cbrt(7)) * K'(j) = 0x00000000 (64 <= j <= 79) * * * selection of message word * * r(j) = j (0 <= j <= 15) * r(16..31) = 7, 4, 13, 1, 10, 6, 15, 3, 12, 0, 9, 5, 2, 14, 11, 8 * r(32..47) = 3, 10, 14, 4, 9, 15, 8, 1, 2, 7, 0, 6, 13, 11, 5, 12 * r(48..63) = 1, 9, 11, 10, 0, 8, 12, 4, 13, 3, 7, 15, 14, 5, 6, 2 * r(64..79) = 4, 0, 5, 9, 7, 12, 2, 10, 14, 1, 3, 8, 11, 6, 15, 13 * r0(0..15) = 5, 14, 7, 0, 9, 2, 11, 4, 13, 6, 15, 8, 1, 10, 3, 12 * r0(16..31)= 6, 11, 3, 7, 0, 13, 5, 10, 14, 15, 8, 12, 4, 9, 1, 2 * r0(32..47)= 15, 5, 1, 3, 7, 14, 6, 9, 11, 8, 12, 2, 10, 0, 4, 13 * r0(48..63)= 8, 6, 4, 1, 3, 11, 15, 0, 5, 12, 2, 13, 9, 7, 10, 14 * r0(64..79)= 12, 15, 10, 4, 1, 5, 8, 7, 6, 2, 13, 14, 0, 3, 9, 11 * * * amount for rotate left (rol) * * s(0..15) = 11, 14, 15, 12, 5, 8, 7, 9, 11, 13, 14, 15, 6, 7, 9, 8 * s(16..31) = 7, 6, 8, 13, 11, 9, 7, 15, 7, 12, 15, 9, 11, 7, 13, 12 * s(32..47) = 11, 13, 6, 7, 14, 9, 13, 15, 14, 8, 13, 6, 5, 12, 7, 5 * s(48..63) = 11, 12, 14, 15, 14, 15, 9, 8, 9, 14, 5, 6, 8, 6, 5, 12 * s(64..79) = 9, 15, 5, 11, 6, 8, 13, 12, 5, 12, 13, 14, 11, 8, 5, 6 * s'(0..15) = 8, 9, 9, 11, 13, 15, 15, 5, 7, 7, 8, 11, 14, 14, 12, 6 * s'(16..31)= 9, 13, 15, 7, 12, 8, 9, 11, 7, 7, 12, 7, 6, 15, 13, 11 * s'(32..47)= 9, 7, 15, 11, 8, 6, 6, 14, 12, 13, 5, 14, 13, 13, 7, 5 * s'(48..63)= 15, 5, 8, 11, 14, 14, 6, 14, 6, 9, 12, 9, 12, 5, 15, 8 * s'(64..79)= 8, 5, 12, 9, 12, 5, 14, 6, 8, 13, 6, 5, 15, 13, 11, 11 * * * initial value (hexadecimal) * * h0 = 0x67452301; h1 = 0xEFCDAB89; h2 = 0x98BADCFE; h3 = 0x10325476; * h4 = 0xC3D2E1F0; * * * RIPEMD-160: pseudo-code * * It is assumed that the message after padding consists of t 16-word blocks * that will be denoted with X[i][j], with 0 <= i <= t-1 and 0 <= j <= 15. * The symbol [+] denotes addition modulo 2**32 and rol_s denotes cyclic left * shift (rotate) over s positions. * * * for i := 0 to t-1 { * A := h0; B := h1; C := h2; D = h3; E = h4; * A' := h0; B' := h1; C' := h2; D' = h3; E' = h4; * for j := 0 to 79 { * T := rol_s(j)(A [+] f(j, B, C, D) [+] X[i][r(j)] [+] K(j)) [+] E; * A := E; E := D; D := rol_10(C); C := B; B := T; * T := rol_s'(j)(A' [+] f(79-j, B', C', D') [+] X[i][r'(j)] [+] K'(j)) [+] E'; * A' := E'; E' := D'; D' := rol_10(C'); C' := B'; B' := T; * } * T := h1 [+] C [+] D'; h1 := h2 [+] D [+] E'; h2 := h3 [+] E [+] A'; * h3 := h4 [+] A [+] B'; h4 := h0 [+] B [+] C'; h0 := T; * } */ /* Some examples: * "" 9c1185a5c5e9fc54612808977ee8f548b2258d31 * "a" 0bdc9d2d256b3ee9daae347be6f4dc835a467ffe * "abc" 8eb208f7e05d987a9b044a8e98c6b087f15a0bfc * "message digest" 5d0689ef49d2fae572b881b123a85ffa21595f36 * "a...z" f71c27109c692c1b56bbdceb5b9d2865b3708dbc * "abcdbcde...nopq" 12a053384a9c0c88e405a06c27dcf49ada62eb2b * "A...Za...z0...9" b0e20b6e3116640286ed3a87a5713079b21f5189 * 8 times "1234567890" 9b752e45573d4b39f4dbd3323cab82bf63326bfb * 1 million times "a" 52783243c1697bdbe16d37f97f68f08325dc1528 */ void ripemd160_init(struct ripemd160_ctx *ctx) { static const uint32_t iv[_RIPEMD160_DIGEST_LENGTH] = { 0x67452301, 0xEFCDAB89, 0x98BADCFE, 0x10325476, 0xC3D2E1F0, }; memcpy(ctx->state, iv, sizeof(ctx->state)); ctx->count = 0; ctx->index = 0; } #define COMPRESS(ctx, data) (_nettle_ripemd160_compress((ctx)->state, (data))) /* Update the message digest with the contents * of DATA with length LENGTH. */ void ripemd160_update(struct ripemd160_ctx *ctx, size_t length, const uint8_t *data) { MD_UPDATE(ctx, length, data, COMPRESS, ctx->count++); } void ripemd160_digest(struct ripemd160_ctx *ctx, size_t length, uint8_t *digest) { uint64_t bit_count; assert(length <= RIPEMD160_DIGEST_SIZE); MD_PAD(ctx, 8, COMPRESS); /* There are 2^9 bits in one block */ bit_count = (ctx->count << 9) | (ctx->index << 3); \ /* append the 64 bit count */ LE_WRITE_UINT64(ctx->block + 56, bit_count); _nettle_ripemd160_compress(ctx->state, ctx->block); _nettle_write_le32(length, digest, ctx->state); ripemd160_init(ctx); }