/* sha1-compress.c * * The compression function of the sha1 hash function. */ /* nettle, low-level cryptographics library * * Copyright (C) 2001, 2004 Peter Gutmann, Andrew Kuchling, Niels Möller * * The nettle library is free software; you can redistribute it and/or modify * it under the terms of the GNU Lesser General Public License as published by * the Free Software Foundation; either version 2.1 of the License, or (at your * option) any later version. * * The nettle library is distributed in the hope that it will be useful, but * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public * License for more details. * * You should have received a copy of the GNU Lesser General Public License * along with the nettle library; see the file COPYING.LIB. If not, write to * the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, * MA 02111-1301, USA. */ /* Here's the first paragraph of Peter Gutmann's posting, * <30ajo5$oe8@ccu2.auckland.ac.nz>: * * The following is my SHA (FIPS 180) code updated to allow use of the "fixed" * SHA, thanks to Jim Gillogly and an anonymous contributor for the information on * what's changed in the new version. The fix is a simple change which involves * adding a single rotate in the initial expansion function. It is unknown * whether this is an optimal solution to the problem which was discovered in the * SHA or whether it's simply a bandaid which fixes the problem with a minimum of * effort (for example the reengineering of a great many Capstone chips). */ #if HAVE_CONFIG_H # include "config.h" #endif #ifndef SHA1_DEBUG # define SHA1_DEBUG 0 #endif #if SHA1_DEBUG # include # define DEBUG(i) \ fprintf(stderr, "%2d: %8x %8x %8x %8x %8x\n", i, A, B, C, D ,E) #else # define DEBUG(i) #endif #include #include #include #include "sha1.h" #include "macros.h" /* A block, treated as a sequence of 32-bit words. */ #define SHA1_DATA_LENGTH 16 /* The SHA f()-functions. The f1 and f3 functions can be optimized to save one boolean operation each - thanks to Rich Schroeppel, rcs@cs.arizona.edu for discovering this */ /* FIXME: Can save a temporary in f3 by using ( (x & y) + (z & (x ^ y)) ), and then, in the round, compute one of the terms and add it into the destination word before computing the second term. Credits to George Spelvin for pointing this out. Unfortunately, gcc doesn't seem to be smart enough to take advantage of this. */ /* #define f1(x,y,z) ( ( x & y ) | ( ~x & z ) ) Rounds 0-19 */ #define f1(x,y,z) ( z ^ ( x & ( y ^ z ) ) ) /* Rounds 0-19 */ #define f2(x,y,z) ( x ^ y ^ z ) /* Rounds 20-39 */ /* #define f3(x,y,z) ( ( x & y ) | ( x & z ) | ( y & z ) ) Rounds 40-59 */ #define f3(x,y,z) ( ( x & y ) | ( z & ( x | y ) ) ) /* Rounds 40-59 */ #define f4 f2 /* The SHA Mysterious Constants */ #define K1 0x5A827999L /* Rounds 0-19 */ #define K2 0x6ED9EBA1L /* Rounds 20-39 */ #define K3 0x8F1BBCDCL /* Rounds 40-59 */ #define K4 0xCA62C1D6L /* Rounds 60-79 */ /* The initial expanding function. The hash function is defined over an 80-word expanded input array W, where the first 16 are copies of the input data, and the remaining 64 are defined by W[ i ] = W[ i - 16 ] ^ W[ i - 14 ] ^ W[ i - 8 ] ^ W[ i - 3 ] This implementation generates these values on the fly in a circular buffer - thanks to Colin Plumb, colin@nyx10.cs.du.edu for this optimization. The updated SHA changes the expanding function by adding a rotate of 1 bit. Thanks to Jim Gillogly, jim@rand.org, and an anonymous contributor for this information */ #define expand(W,i) ( W[ i & 15 ] = \ ROTL32( 1, ( W[ i & 15 ] ^ W[ (i - 14) & 15 ] ^ \ W[ (i - 8) & 15 ] ^ W[ (i - 3) & 15 ] ) ) ) /* The prototype SHA sub-round. The fundamental sub-round is: a' = e + ROTL32( 5, a ) + f( b, c, d ) + k + data; b' = a; c' = ROTL32( 30, b ); d' = c; e' = d; but this is implemented by unrolling the loop 5 times and renaming the variables ( e, a, b, c, d ) = ( a', b', c', d', e' ) each iteration. This code is then replicated 20 times for each of the 4 functions, using the next 20 values from the W[] array each time */ #define subRound(a, b, c, d, e, f, k, data) \ ( e += ROTL32( 5, a ) + f( b, c, d ) + k + data, b = ROTL32( 30, b ) ) /* Perform the SHA transformation. Note that this code, like MD5, seems to break some optimizing compilers due to the complexity of the expressions and the size of the basic block. It may be necessary to split it into sections, e.g. based on the four subrounds. */ void _nettle_sha1_compress(uint32_t *state, const uint8_t *input) { uint32_t data[SHA1_DATA_LENGTH]; uint32_t A, B, C, D, E; /* Local vars */ int i; for (i = 0; i < SHA1_DATA_LENGTH; i++, input+= 4) { data[i] = READ_UINT32(input); } /* Set up first buffer and local data buffer */ A = state[0]; B = state[1]; C = state[2]; D = state[3]; E = state[4]; DEBUG(-1); /* Heavy mangling, in 4 sub-rounds of 20 interations each. */ subRound( A, B, C, D, E, f1, K1, data[ 0] ); DEBUG(0); subRound( E, A, B, C, D, f1, K1, data[ 1] ); DEBUG(1); subRound( D, E, A, B, C, f1, K1, data[ 2] ); subRound( C, D, E, A, B, f1, K1, data[ 3] ); subRound( B, C, D, E, A, f1, K1, data[ 4] ); subRound( A, B, C, D, E, f1, K1, data[ 5] ); subRound( E, A, B, C, D, f1, K1, data[ 6] ); subRound( D, E, A, B, C, f1, K1, data[ 7] ); subRound( C, D, E, A, B, f1, K1, data[ 8] ); subRound( B, C, D, E, A, f1, K1, data[ 9] ); subRound( A, B, C, D, E, f1, K1, data[10] ); subRound( E, A, B, C, D, f1, K1, data[11] ); subRound( D, E, A, B, C, f1, K1, data[12] ); subRound( C, D, E, A, B, f1, K1, data[13] ); subRound( B, C, D, E, A, f1, K1, data[14] ); subRound( A, B, C, D, E, f1, K1, data[15] ); DEBUG(15); subRound( E, A, B, C, D, f1, K1, expand( data, 16 ) ); DEBUG(16); subRound( D, E, A, B, C, f1, K1, expand( data, 17 ) ); DEBUG(17); subRound( C, D, E, A, B, f1, K1, expand( data, 18 ) ); DEBUG(18); subRound( B, C, D, E, A, f1, K1, expand( data, 19 ) ); DEBUG(19); subRound( A, B, C, D, E, f2, K2, expand( data, 20 ) ); DEBUG(20); subRound( E, A, B, C, D, f2, K2, expand( data, 21 ) ); DEBUG(21); subRound( D, E, A, B, C, f2, K2, expand( data, 22 ) ); subRound( C, D, E, A, B, f2, K2, expand( data, 23 ) ); subRound( B, C, D, E, A, f2, K2, expand( data, 24 ) ); subRound( A, B, C, D, E, f2, K2, expand( data, 25 ) ); subRound( E, A, B, C, D, f2, K2, expand( data, 26 ) ); subRound( D, E, A, B, C, f2, K2, expand( data, 27 ) ); subRound( C, D, E, A, B, f2, K2, expand( data, 28 ) ); subRound( B, C, D, E, A, f2, K2, expand( data, 29 ) ); subRound( A, B, C, D, E, f2, K2, expand( data, 30 ) ); subRound( E, A, B, C, D, f2, K2, expand( data, 31 ) ); subRound( D, E, A, B, C, f2, K2, expand( data, 32 ) ); subRound( C, D, E, A, B, f2, K2, expand( data, 33 ) ); subRound( B, C, D, E, A, f2, K2, expand( data, 34 ) ); subRound( A, B, C, D, E, f2, K2, expand( data, 35 ) ); subRound( E, A, B, C, D, f2, K2, expand( data, 36 ) ); subRound( D, E, A, B, C, f2, K2, expand( data, 37 ) ); subRound( C, D, E, A, B, f2, K2, expand( data, 38 ) ); DEBUG(38); subRound( B, C, D, E, A, f2, K2, expand( data, 39 ) ); DEBUG(39); subRound( A, B, C, D, E, f3, K3, expand( data, 40 ) ); DEBUG(40); subRound( E, A, B, C, D, f3, K3, expand( data, 41 ) ); DEBUG(41); subRound( D, E, A, B, C, f3, K3, expand( data, 42 ) ); subRound( C, D, E, A, B, f3, K3, expand( data, 43 ) ); subRound( B, C, D, E, A, f3, K3, expand( data, 44 ) ); subRound( A, B, C, D, E, f3, K3, expand( data, 45 ) ); subRound( E, A, B, C, D, f3, K3, expand( data, 46 ) ); subRound( D, E, A, B, C, f3, K3, expand( data, 47 ) ); subRound( C, D, E, A, B, f3, K3, expand( data, 48 ) ); subRound( B, C, D, E, A, f3, K3, expand( data, 49 ) ); subRound( A, B, C, D, E, f3, K3, expand( data, 50 ) ); subRound( E, A, B, C, D, f3, K3, expand( data, 51 ) ); subRound( D, E, A, B, C, f3, K3, expand( data, 52 ) ); subRound( C, D, E, A, B, f3, K3, expand( data, 53 ) ); subRound( B, C, D, E, A, f3, K3, expand( data, 54 ) ); subRound( A, B, C, D, E, f3, K3, expand( data, 55 ) ); subRound( E, A, B, C, D, f3, K3, expand( data, 56 ) ); subRound( D, E, A, B, C, f3, K3, expand( data, 57 ) ); subRound( C, D, E, A, B, f3, K3, expand( data, 58 ) ); DEBUG(58); subRound( B, C, D, E, A, f3, K3, expand( data, 59 ) ); DEBUG(59); subRound( A, B, C, D, E, f4, K4, expand( data, 60 ) ); DEBUG(60); subRound( E, A, B, C, D, f4, K4, expand( data, 61 ) ); DEBUG(61); subRound( D, E, A, B, C, f4, K4, expand( data, 62 ) ); subRound( C, D, E, A, B, f4, K4, expand( data, 63 ) ); subRound( B, C, D, E, A, f4, K4, expand( data, 64 ) ); subRound( A, B, C, D, E, f4, K4, expand( data, 65 ) ); subRound( E, A, B, C, D, f4, K4, expand( data, 66 ) ); subRound( D, E, A, B, C, f4, K4, expand( data, 67 ) ); subRound( C, D, E, A, B, f4, K4, expand( data, 68 ) ); subRound( B, C, D, E, A, f4, K4, expand( data, 69 ) ); subRound( A, B, C, D, E, f4, K4, expand( data, 70 ) ); subRound( E, A, B, C, D, f4, K4, expand( data, 71 ) ); subRound( D, E, A, B, C, f4, K4, expand( data, 72 ) ); subRound( C, D, E, A, B, f4, K4, expand( data, 73 ) ); subRound( B, C, D, E, A, f4, K4, expand( data, 74 ) ); subRound( A, B, C, D, E, f4, K4, expand( data, 75 ) ); subRound( E, A, B, C, D, f4, K4, expand( data, 76 ) ); subRound( D, E, A, B, C, f4, K4, expand( data, 77 ) ); subRound( C, D, E, A, B, f4, K4, expand( data, 78 ) ); DEBUG(78); subRound( B, C, D, E, A, f4, K4, expand( data, 79 ) ); DEBUG(79); /* Build message digest */ state[0] += A; state[1] += B; state[2] += C; state[3] += D; state[4] += E; #if SHA1_DEBUG fprintf(stderr, "99: %8x %8x %8x %8x %8x\n", state[0], state[1], state[2], state[3], state[4]); #endif }