/* sha256-compress-n.c The compression function of the sha256 hash function. Copyright (C) 2001, 2010, 2022 Niels Möller This file is part of GNU Nettle. GNU Nettle is free software: you can redistribute it and/or modify it under the terms of either: * the GNU Lesser General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. or * the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. or both in parallel, as here. GNU Nettle is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received copies of the GNU General Public License and the GNU Lesser General Public License along with this program. If not, see http://www.gnu.org/licenses/. */ #if HAVE_CONFIG_H # include "config.h" #endif #ifndef SHA256_DEBUG # define SHA256_DEBUG 0 #endif #if SHA256_DEBUG # include # define DEBUG(i) \ fprintf(stderr, "%2d: %8x %8x %8x %8x %8x %8x %8x %8x\n", \ i, A, B, C, D ,E, F, G, H) #else # define DEBUG(i) #endif #include #include #include #include "sha2.h" #include "sha2-internal.h" #include "macros.h" /* A block, treated as a sequence of 32-bit words. */ #define SHA256_DATA_LENGTH 16 /* The SHA256 functions. The Choice function is the same as the SHA1 function f1, and the majority function is the same as the SHA1 f3 function. They can be optimized to save one boolean operation each - thanks to Rich Schroeppel, rcs@cs.arizona.edu for discovering this */ /* #define Choice(x,y,z) ( ( (x) & (y) ) | ( ~(x) & (z) ) ) */ #define Choice(x,y,z) ( (z) ^ ( (x) & ( (y) ^ (z) ) ) ) /* #define Majority(x,y,z) ( ((x) & (y)) ^ ((x) & (z)) ^ ((y) & (z)) ) */ #define Majority(x,y,z) ( ((x) & (y)) ^ ((z) & ((x) ^ (y))) ) #define S0(x) (ROTL32(30,(x)) ^ ROTL32(19,(x)) ^ ROTL32(10,(x))) #define S1(x) (ROTL32(26,(x)) ^ ROTL32(21,(x)) ^ ROTL32(7,(x))) #define s0(x) (ROTL32(25,(x)) ^ ROTL32(14,(x)) ^ ((x) >> 3)) #define s1(x) (ROTL32(15,(x)) ^ ROTL32(13,(x)) ^ ((x) >> 10)) /* The initial expanding function. The hash function is defined over an 64-word expanded input array W, where the first 16 are copies of the input data, and the remaining 64 are defined by W[ t ] = s1(W[t-2]) + W[t-7] + s0(W[i-15]) + W[i-16] This implementation generates these values on the fly in a circular buffer - thanks to Colin Plumb, colin@nyx10.cs.du.edu for this optimization. */ #define EXPAND(W,i) \ ( W[(i) & 15 ] += (s1(W[((i)-2) & 15]) + W[((i)-7) & 15] + s0(W[((i)-15) & 15])) ) /* The prototype SHA sub-round. The fundamental sub-round is: T1 = h + S1(e) + Choice(e,f,g) + K[t] + W[t] T2 = S0(a) + Majority(a,b,c) a' = T1+T2 b' = a c' = b d' = c e' = d + T1 f' = e g' = f h' = g but this is implemented by unrolling the loop 8 times and renaming the variables ( h, a, b, c, d, e, f, g ) = ( a, b, c, d, e, f, g, h ) each iteration. */ /* It's crucial that DATA is only used once, as that argument will * have side effects. */ #define ROUND(a,b,c,d,e,f,g,h,k,data) do { \ h += S1(e) + Choice(e,f,g) + k + data; \ d += h; \ h += S0(a) + Majority(a,b,c); \ } while (0) /* For fat builds */ #if HAVE_NATIVE_sha256_compress_n const uint8_t * _nettle_sha256_compress_n_c(uint32_t *state, const uint32_t *table, size_t blocks, const uint8_t *input); #define _nettle_sha256_compress_n _nettle_sha256_compress_n_c #endif const uint8_t * _nettle_sha256_compress_n(uint32_t *state, const uint32_t *table, size_t blocks, const uint8_t *input) { uint32_t A, B, C, D, E, F, G, H; /* Local vars */ A = state[0]; B = state[1]; C = state[2]; D = state[3]; E = state[4]; F = state[5]; G = state[6]; H = state[7]; for (; blocks > 0; blocks--) { uint32_t data[SHA256_DATA_LENGTH]; unsigned i; const uint32_t *k; uint32_t *d; for (i = 0; i < SHA256_DATA_LENGTH; i++, input+= 4) { data[i] = READ_UINT32(input); } /* Heavy mangling */ /* First 16 subrounds that act on the original data */ DEBUG(-1); for (i = 0, d = data, k = table; i<16; i+=8, k += 8, d+= 8) { ROUND(A, B, C, D, E, F, G, H, k[0], d[0]); DEBUG(i); ROUND(H, A, B, C, D, E, F, G, k[1], d[1]); DEBUG(i+1); ROUND(G, H, A, B, C, D, E, F, k[2], d[2]); ROUND(F, G, H, A, B, C, D, E, k[3], d[3]); ROUND(E, F, G, H, A, B, C, D, k[4], d[4]); ROUND(D, E, F, G, H, A, B, C, k[5], d[5]); ROUND(C, D, E, F, G, H, A, B, k[6], d[6]); DEBUG(i+6); ROUND(B, C, D, E, F, G, H, A, k[7], d[7]); DEBUG(i+7); } for (; i<64; i += 16, k+= 16) { ROUND(A, B, C, D, E, F, G, H, k[ 0], EXPAND(data, 0)); DEBUG(i); ROUND(H, A, B, C, D, E, F, G, k[ 1], EXPAND(data, 1)); DEBUG(i+1); ROUND(G, H, A, B, C, D, E, F, k[ 2], EXPAND(data, 2)); DEBUG(i+2); ROUND(F, G, H, A, B, C, D, E, k[ 3], EXPAND(data, 3)); DEBUG(i+3); ROUND(E, F, G, H, A, B, C, D, k[ 4], EXPAND(data, 4)); DEBUG(i+4); ROUND(D, E, F, G, H, A, B, C, k[ 5], EXPAND(data, 5)); DEBUG(i+5); ROUND(C, D, E, F, G, H, A, B, k[ 6], EXPAND(data, 6)); DEBUG(i+6); ROUND(B, C, D, E, F, G, H, A, k[ 7], EXPAND(data, 7)); DEBUG(i+7); ROUND(A, B, C, D, E, F, G, H, k[ 8], EXPAND(data, 8)); DEBUG(i+8); ROUND(H, A, B, C, D, E, F, G, k[ 9], EXPAND(data, 9)); DEBUG(i+9); ROUND(G, H, A, B, C, D, E, F, k[10], EXPAND(data, 10)); DEBUG(i+10); ROUND(F, G, H, A, B, C, D, E, k[11], EXPAND(data, 11)); DEBUG(i+11); ROUND(E, F, G, H, A, B, C, D, k[12], EXPAND(data, 12)); DEBUG(i+12); ROUND(D, E, F, G, H, A, B, C, k[13], EXPAND(data, 13)); DEBUG(i+13); ROUND(C, D, E, F, G, H, A, B, k[14], EXPAND(data, 14)); DEBUG(i+14); ROUND(B, C, D, E, F, G, H, A, k[15], EXPAND(data, 15)); DEBUG(i+15); } /* Update state */ state[0] = A = state[0] + A; state[1] = B = state[1] + B; state[2] = C = state[2] + C; state[3] = D = state[3] + D; state[4] = E = state[4] + E; state[5] = F = state[5] + F; state[6] = G = state[6] + G; state[7] = H = state[7] + H; #if SHA256_DEBUG fprintf(stderr, "99: %8x %8x %8x %8x %8x %8x %8x %8x\n", state[0], state[1], state[2], state[3], state[4], state[5], state[6], state[7]); #endif } return input; }