/* umac-set-key.c Copyright (C) 2013 Niels Möller This file is part of GNU Nettle. GNU Nettle is free software: you can redistribute it and/or modify it under the terms of either: * the GNU Lesser General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version. or * the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. or both in parallel, as here. GNU Nettle is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received copies of the GNU General Public License and the GNU Lesser General Public License along with this program. If not, see http://www.gnu.org/licenses/. */ #if HAVE_CONFIG_H # include "config.h" #endif #include #include "umac.h" #include "umac-internal.h" #include "macros.h" static void umac_kdf (struct aes128_ctx *aes, unsigned index, unsigned length, uint8_t *dst) { uint8_t block[AES_BLOCK_SIZE]; uint64_t count; WRITE_UINT64 (block, (uint64_t) index); for (count = 1; length >= AES_BLOCK_SIZE; length -= AES_BLOCK_SIZE, dst += AES_BLOCK_SIZE, count++) { WRITE_UINT64 (block + 8, count); aes128_encrypt (aes, AES_BLOCK_SIZE, dst, block); } if (length > 0) { WRITE_UINT64 (block + 8, count); aes128_encrypt (aes, AES_BLOCK_SIZE, block, block); memcpy (dst, block, length); } } #if WORDS_BIGENDIAN #define BE_SWAP32(x) x #define BE_SWAP32_N(n, x) #else #define BE_SWAP32(x) \ ((ROTL32(8, x) & 0x00FF00FFUL) | \ (ROTL32(24, x) & 0xFF00FF00UL)) #define BE_SWAP32_N(n, x) do { \ unsigned be_i; \ for (be_i = 0; be_i < n; be_i++) \ { \ uint32_t be_x = (x)[be_i]; \ (x)[be_i] = BE_SWAP32 (be_x); \ } \ } while (0) #endif void _nettle_umac_set_key (uint32_t *l1_key, uint32_t *l2_key, uint64_t *l3_key1, uint32_t *l3_key2, struct aes128_ctx *aes, const uint8_t *key, unsigned n) { unsigned size; uint8_t buffer[UMAC_KEY_SIZE]; aes128_set_encrypt_key (aes, key); size = UMAC_BLOCK_SIZE / 4 + 4*(n-1); umac_kdf (aes, 1, size * sizeof(uint32_t), (uint8_t *) l1_key); BE_SWAP32_N (size, l1_key); size = 6*n; umac_kdf (aes, 2, size * sizeof(uint32_t), (uint8_t *) l2_key); _nettle_umac_l2_init (size, l2_key); size = 8*n; umac_kdf (aes, 3, size * sizeof(uint64_t), (uint8_t *) l3_key1); _nettle_umac_l3_init (size, l3_key1); /* No need to byteswap these subkeys. */ umac_kdf (aes, 4, n * sizeof(uint32_t), (uint8_t *) l3_key2); umac_kdf (aes, 0, UMAC_KEY_SIZE, buffer); aes128_set_encrypt_key (aes, buffer); }