1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
|
/* ecc.h */
/* nettle, low-level cryptographics library
*
* Copyright (C) 2013 Niels Möller
*
* The nettle library is free software; you can redistribute it and/or modify
* it under the terms of the GNU Lesser General Public License as published by
* the Free Software Foundation; either version 2.1 of the License, or (at your
* option) any later version.
*
* The nettle library is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
* or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
* License for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with the nettle library; see the file COPYING.LIB. If not, write to
* the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston,
* MA 02111-1301, USA.
*/
/* Development of Nettle's ECC support was funded by the .SE Internet Fund. */
#ifndef NETTLE_ECC_H_INCLUDED
#define NETTLE_ECC_H_INCLUDED
#include <gmp.h>
#include "nettle-types.h"
#ifdef __cplusplus
extern "C" {
#endif
/* Name mangling */
#define ecc_point_init nettle_ecc_point_init
#define ecc_point_clear nettle_ecc_point_clear
#define ecc_point_set nettle_ecc_point_set
#define ecc_point_get nettle_ecc_point_get
#define ecc_point_mul nettle_ecc_point_mul
#define ecc_point_mul_g nettle_ecc_point_mul_g
#define ecc_scalar_init nettle_ecc_scalar_init
#define ecc_scalar_clear nettle_ecc_scalar_clear
#define ecc_scalar_set nettle_ecc_scalar_set
#define ecc_scalar_get nettle_ecc_scalar_get
#define ecc_scalar_random nettle_ecc_scalar_random
#define ecc_point_mul nettle_ecc_point_mul
#define ecc_size nettle_ecc_size
#define ecc_size_a nettle_ecc_size_a
#define ecc_size_j nettle_ecc_size_j
#define ecc_a_to_a_itch nettle_ecc_a_to_a_itch
#define ecc_a_to_a nettle_ecc_a_to_a
#define ecc_a_to_j nettle_ecc_a_to_j
#define ecc_j_to_a_itch nettle_ecc_j_to_a_itch
#define ecc_j_to_a nettle_ecc_j_to_a
#define ecc_dup_ja_itch nettle_ecc_dup_ja_itch
#define ecc_dup_ja nettle_ecc_dup_ja
#define ecc_dup_jj_itch nettle_ecc_dup_jj_itch
#define ecc_dup_jj nettle_ecc_dup_jj
#define ecc_add_jja_itch nettle_ecc_add_jja_itch
#define ecc_add_jja nettle_ecc_add_jja
#define ecc_add_jjj_itch nettle_ecc_add_jjj_itch
#define ecc_add_jjj nettle_ecc_add_jjj
#define ecc_mul_g_itch nettle_ecc_mul_g_itch
#define ecc_mul_g nettle_ecc_mul_g
#define ecc_mul_a_itch nettle_ecc_mul_a_itch
#define ecc_mul_a nettle_ecc_mul_a
struct ecc_curve;
/* High level interface, for ECDSA, DH, etc */
/* Represents a point on the ECC curve */
struct ecc_point
{
const struct ecc_curve *ecc;
/* Allocated using the same allocation function as GMP. */
mp_limb_t *p;
};
/* Represents a non-zero scalar, an element of Z_q^*, where q is the
group order of the curve. */
struct ecc_scalar
{
const struct ecc_curve *ecc;
/* Allocated using the same allocation function as GMP. */
mp_limb_t *p;
};
void
ecc_point_init (struct ecc_point *p, const struct ecc_curve *ecc);
void
ecc_point_clear (struct ecc_point *p);
/* Fails and returns zero if the point is not on the curve. */
int
ecc_point_set (struct ecc_point *p, const mpz_t x, const mpz_t y);
void
ecc_point_get (const struct ecc_point *p, mpz_t x, mpz_t y);
void
ecc_scalar_init (struct ecc_scalar *s, const struct ecc_curve *ecc);
void
ecc_scalar_clear (struct ecc_scalar *s);
/* Fails and returns zero if the scalar is not in the proper range. */
int
ecc_scalar_set (struct ecc_scalar *s, const mpz_t z);
void
ecc_scalar_get (const struct ecc_scalar *s, mpz_t z);
/* Generates a random scalar, suitable as an ECDSA private key or a
ECDH exponent. */
void
ecc_scalar_random (struct ecc_scalar *s,
void *random_ctx, nettle_random_func *random);
/* Computes r = n p */
void
ecc_point_mul (struct ecc_point *r, const struct ecc_scalar *n,
const struct ecc_point *p);
/* Computes r = n g */
void
ecc_point_mul_g (struct ecc_point *r, const struct ecc_scalar *n);
/* Low-level interface */
/* Points on a curve are represented as arrays of mp_limb_t. For some
curves, point coordinates are represented in montgomery form. We
use either affine coordinates x,y, or Jacobian coordinates X, Y, Z,
where x = X/Z^2 and y = X/Z^2.
Since we use additive notation for the groups, the infinity point
on the curve is denoted 0. The infinity point can be represented
with x = y = 0 in affine coordinates, and Z = 0 in Jacobian
coordinates. However, note that most of the ECC functions do *not*
support infinity as an input or output.
*/
/* FIXME: Also provided some compile time constants? */
/* Returns the size of a single coordinate. */
mp_size_t
ecc_size (const struct ecc_curve *ecc);
/* Size of a point, using affine coordinates x, y. */
mp_size_t
ecc_size_a (const struct ecc_curve *ecc);
/* Size of a point, using jacobian coordinates X, Y and Z. */
mp_size_t
ecc_size_j (const struct ecc_curve *ecc);
/* FIXME: Rename the low-level (and side-channel silent) functions to
_ecc_*, and provide public ecc_* functions which handle the
infinity points properly? */
/* Converts the affine coordinates of a point into montgomery form, if
used for this curve. */
mp_size_t
ecc_a_to_a_itch (const struct ecc_curve *ecc);
void
ecc_a_to_a (const struct ecc_curve *ecc,
mp_limb_t *r, const mp_limb_t *p,
mp_limb_t *scratch);
/* Converts a point P in affine coordinates into a point R in jacobian
coordinates. If INITIAL is non-zero, and the curve uses montgomery
coordinates, also convert coordinates to montgomery form. */
void
ecc_a_to_j (const struct ecc_curve *ecc,
int initial,
mp_limb_t *r, const mp_limb_t *p);
/* Converts a point P in jacobian coordinates into a point R in affine
coordinates. If FLAGS has bit 0 set, and the curve uses montgomery
coordinates, also undo the montgomery conversion. If flags has bit
1 set, produce x coordinate only. */
mp_size_t
ecc_j_to_a_itch (const struct ecc_curve *ecc);
void
ecc_j_to_a (const struct ecc_curve *ecc,
int flags,
mp_limb_t *r, const mp_limb_t *p,
mp_limb_t *scratch);
/* Group operations */
/* Point doubling, with jacobian output and affine input. Corner
cases: Correctly sets R = 0 (r_Z = 0) if p = 0 or 2p = 0. */
mp_size_t
ecc_dup_ja_itch (const struct ecc_curve *ecc);
void
ecc_dup_ja (const struct ecc_curve *ecc,
mp_limb_t *r, const mp_limb_t *p,
mp_limb_t *scratch);
/* Point doubling, with jacobian input and output. Corner cases:
Correctly sets R = 0 (r_Z = 0) if p = 0 or 2p = 0. */
mp_size_t
ecc_dup_jj_itch (const struct ecc_curve *ecc);
void
ecc_dup_jj (const struct ecc_curve *ecc,
mp_limb_t *r, const mp_limb_t *p,
mp_limb_t *scratch);
/* Point addition, with jacobian output, one jacobian input and one
affine input. Corner cases: Fails for the cases
P = Q != 0 Duplication of non-zero point
P = 0, Q != 0 or P != 0, Q = 0 One input zero
Correctly gives R = 0 if P = Q = 0 or P = -Q. */
mp_size_t
ecc_add_jja_itch (const struct ecc_curve *ecc);
void
ecc_add_jja (const struct ecc_curve *ecc,
mp_limb_t *r, const mp_limb_t *p, const mp_limb_t *q,
mp_limb_t *scratch);
/* Point addition with Jacobian input and output. */
mp_size_t
ecc_add_jjj_itch (const struct ecc_curve *ecc);
void
ecc_add_jjj (const struct ecc_curve *ecc,
mp_limb_t *r, const mp_limb_t *p, const mp_limb_t *q,
mp_limb_t *scratch);
/* Computes N * the group generator. N is an array of ecc_size()
limbs. It must be in the range 0 < N < group order, then R != 0,
and the algorithm can work without any intermediate values getting
to zero. */
mp_size_t
ecc_mul_g_itch (const struct ecc_curve *ecc);
void
ecc_mul_g (const struct ecc_curve *ecc, mp_limb_t *r,
const mp_limb_t *np, mp_limb_t *scratch);
/* Computes N * P. The scalar N is the same as for ecc_mul_g. P is a
non-zero point on the curve, in affine coordinates. Pass a non-zero
INITIAL if the point coordinates have not previously been converted
to Montgomery representation. Output R is a non-zero point, in
Jacobian coordinates. */
mp_size_t
ecc_mul_a_itch (const struct ecc_curve *ecc);
void
ecc_mul_a (const struct ecc_curve *ecc,
int initial, mp_limb_t *r,
const mp_limb_t *np, const mp_limb_t *p,
mp_limb_t *scratch);
#ifdef __cplusplus
}
#endif
#endif /* NETTLE_ECC_H_INCLUDED */
|