summaryrefslogtreecommitdiff
path: root/deps/v8/src/execution/arm/simulator-arm.cc
diff options
context:
space:
mode:
authorMichaël Zasso <targos@protonmail.com>2019-08-01 08:38:30 +0200
committerMichaël Zasso <targos@protonmail.com>2019-08-01 12:53:56 +0200
commit2dcc3665abf57c3607cebffdeeca062f5894885d (patch)
tree4f560748132edcfb4c22d6f967a7e80d23d7ea2c /deps/v8/src/execution/arm/simulator-arm.cc
parent1ee47d550c6de132f06110aa13eceb7551d643b3 (diff)
downloadnode-new-2dcc3665abf57c3607cebffdeeca062f5894885d.tar.gz
deps: update V8 to 7.6.303.28
PR-URL: https://github.com/nodejs/node/pull/28016 Reviewed-By: Colin Ihrig <cjihrig@gmail.com> Reviewed-By: Refael Ackermann (רפאל פלחי) <refack@gmail.com> Reviewed-By: Rich Trott <rtrott@gmail.com> Reviewed-By: Michael Dawson <michael_dawson@ca.ibm.com> Reviewed-By: Jiawen Geng <technicalcute@gmail.com>
Diffstat (limited to 'deps/v8/src/execution/arm/simulator-arm.cc')
-rw-r--r--deps/v8/src/execution/arm/simulator-arm.cc5994
1 files changed, 5994 insertions, 0 deletions
diff --git a/deps/v8/src/execution/arm/simulator-arm.cc b/deps/v8/src/execution/arm/simulator-arm.cc
new file mode 100644
index 0000000000..0b3ebcf879
--- /dev/null
+++ b/deps/v8/src/execution/arm/simulator-arm.cc
@@ -0,0 +1,5994 @@
+// Copyright 2012 the V8 project authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+#include "src/execution/arm/simulator-arm.h"
+
+#if defined(USE_SIMULATOR)
+
+#include <stdarg.h>
+#include <stdlib.h>
+#include <cmath>
+
+#include "src/base/bits.h"
+#include "src/base/lazy-instance.h"
+#include "src/codegen/arm/constants-arm.h"
+#include "src/codegen/assembler-inl.h"
+#include "src/codegen/macro-assembler.h"
+#include "src/diagnostics/disasm.h"
+#include "src/heap/combined-heap.h"
+#include "src/objects/objects-inl.h"
+#include "src/runtime/runtime-utils.h"
+#include "src/utils/ostreams.h"
+#include "src/utils/utils.h"
+#include "src/utils/vector.h"
+
+// Only build the simulator if not compiling for real ARM hardware.
+namespace v8 {
+namespace internal {
+
+DEFINE_LAZY_LEAKY_OBJECT_GETTER(Simulator::GlobalMonitor,
+ Simulator::GlobalMonitor::Get)
+
+// This macro provides a platform independent use of sscanf. The reason for
+// SScanF not being implemented in a platform independent way through
+// ::v8::internal::OS in the same way as SNPrintF is that the
+// Windows C Run-Time Library does not provide vsscanf.
+#define SScanF sscanf // NOLINT
+
+// The ArmDebugger class is used by the simulator while debugging simulated ARM
+// code.
+class ArmDebugger {
+ public:
+ explicit ArmDebugger(Simulator* sim) : sim_(sim) {}
+
+ void Stop(Instruction* instr);
+ void Debug();
+
+ private:
+ static const Instr kBreakpointInstr =
+ (al | (7 * B25) | (1 * B24) | kBreakpoint);
+ static const Instr kNopInstr = (al | (13 * B21));
+
+ Simulator* sim_;
+
+ int32_t GetRegisterValue(int regnum);
+ double GetRegisterPairDoubleValue(int regnum);
+ double GetVFPDoubleRegisterValue(int regnum);
+ bool GetValue(const char* desc, int32_t* value);
+ bool GetVFPSingleValue(const char* desc, float* value);
+ bool GetVFPDoubleValue(const char* desc, double* value);
+
+ // Set or delete a breakpoint. Returns true if successful.
+ bool SetBreakpoint(Instruction* breakpc);
+ bool DeleteBreakpoint(Instruction* breakpc);
+
+ // Undo and redo all breakpoints. This is needed to bracket disassembly and
+ // execution to skip past breakpoints when run from the debugger.
+ void UndoBreakpoints();
+ void RedoBreakpoints();
+};
+
+void ArmDebugger::Stop(Instruction* instr) {
+ // Get the stop code.
+ uint32_t code = instr->SvcValue() & kStopCodeMask;
+ // Print the stop message and code if it is not the default code.
+ if (code != kMaxStopCode) {
+ PrintF("Simulator hit stop %u\n", code);
+ } else {
+ PrintF("Simulator hit\n");
+ }
+ Debug();
+}
+
+int32_t ArmDebugger::GetRegisterValue(int regnum) {
+ if (regnum == kPCRegister) {
+ return sim_->get_pc();
+ } else {
+ return sim_->get_register(regnum);
+ }
+}
+
+double ArmDebugger::GetRegisterPairDoubleValue(int regnum) {
+ return sim_->get_double_from_register_pair(regnum);
+}
+
+double ArmDebugger::GetVFPDoubleRegisterValue(int regnum) {
+ return sim_->get_double_from_d_register(regnum).get_scalar();
+}
+
+bool ArmDebugger::GetValue(const char* desc, int32_t* value) {
+ int regnum = Registers::Number(desc);
+ if (regnum != kNoRegister) {
+ *value = GetRegisterValue(regnum);
+ return true;
+ } else {
+ if (strncmp(desc, "0x", 2) == 0) {
+ return SScanF(desc + 2, "%x", reinterpret_cast<uint32_t*>(value)) == 1;
+ } else {
+ return SScanF(desc, "%u", reinterpret_cast<uint32_t*>(value)) == 1;
+ }
+ }
+ return false;
+}
+
+bool ArmDebugger::GetVFPSingleValue(const char* desc, float* value) {
+ bool is_double;
+ int regnum = VFPRegisters::Number(desc, &is_double);
+ if (regnum != kNoRegister && !is_double) {
+ *value = sim_->get_float_from_s_register(regnum).get_scalar();
+ return true;
+ }
+ return false;
+}
+
+bool ArmDebugger::GetVFPDoubleValue(const char* desc, double* value) {
+ bool is_double;
+ int regnum = VFPRegisters::Number(desc, &is_double);
+ if (regnum != kNoRegister && is_double) {
+ *value = sim_->get_double_from_d_register(regnum).get_scalar();
+ return true;
+ }
+ return false;
+}
+
+bool ArmDebugger::SetBreakpoint(Instruction* breakpc) {
+ // Check if a breakpoint can be set. If not return without any side-effects.
+ if (sim_->break_pc_ != nullptr) {
+ return false;
+ }
+
+ // Set the breakpoint.
+ sim_->break_pc_ = breakpc;
+ sim_->break_instr_ = breakpc->InstructionBits();
+ // Not setting the breakpoint instruction in the code itself. It will be set
+ // when the debugger shell continues.
+ return true;
+}
+
+bool ArmDebugger::DeleteBreakpoint(Instruction* breakpc) {
+ if (sim_->break_pc_ != nullptr) {
+ sim_->break_pc_->SetInstructionBits(sim_->break_instr_);
+ }
+
+ sim_->break_pc_ = nullptr;
+ sim_->break_instr_ = 0;
+ return true;
+}
+
+void ArmDebugger::UndoBreakpoints() {
+ if (sim_->break_pc_ != nullptr) {
+ sim_->break_pc_->SetInstructionBits(sim_->break_instr_);
+ }
+}
+
+void ArmDebugger::RedoBreakpoints() {
+ if (sim_->break_pc_ != nullptr) {
+ sim_->break_pc_->SetInstructionBits(kBreakpointInstr);
+ }
+}
+
+void ArmDebugger::Debug() {
+ intptr_t last_pc = -1;
+ bool done = false;
+
+#define COMMAND_SIZE 63
+#define ARG_SIZE 255
+
+#define STR(a) #a
+#define XSTR(a) STR(a)
+
+ char cmd[COMMAND_SIZE + 1];
+ char arg1[ARG_SIZE + 1];
+ char arg2[ARG_SIZE + 1];
+ char* argv[3] = {cmd, arg1, arg2};
+
+ // make sure to have a proper terminating character if reaching the limit
+ cmd[COMMAND_SIZE] = 0;
+ arg1[ARG_SIZE] = 0;
+ arg2[ARG_SIZE] = 0;
+
+ // Undo all set breakpoints while running in the debugger shell. This will
+ // make them invisible to all commands.
+ UndoBreakpoints();
+
+ while (!done && !sim_->has_bad_pc()) {
+ if (last_pc != sim_->get_pc()) {
+ disasm::NameConverter converter;
+ disasm::Disassembler dasm(converter);
+ // use a reasonably large buffer
+ v8::internal::EmbeddedVector<char, 256> buffer;
+ dasm.InstructionDecode(buffer, reinterpret_cast<byte*>(sim_->get_pc()));
+ PrintF(" 0x%08x %s\n", sim_->get_pc(), buffer.begin());
+ last_pc = sim_->get_pc();
+ }
+ char* line = ReadLine("sim> ");
+ if (line == nullptr) {
+ break;
+ } else {
+ char* last_input = sim_->last_debugger_input();
+ if (strcmp(line, "\n") == 0 && last_input != nullptr) {
+ line = last_input;
+ } else {
+ // Ownership is transferred to sim_;
+ sim_->set_last_debugger_input(line);
+ }
+ // Use sscanf to parse the individual parts of the command line. At the
+ // moment no command expects more than two parameters.
+ int argc = SScanF(line,
+ "%" XSTR(COMMAND_SIZE) "s "
+ "%" XSTR(ARG_SIZE) "s "
+ "%" XSTR(ARG_SIZE) "s",
+ cmd, arg1, arg2);
+ if ((strcmp(cmd, "si") == 0) || (strcmp(cmd, "stepi") == 0)) {
+ sim_->InstructionDecode(reinterpret_cast<Instruction*>(sim_->get_pc()));
+ } else if ((strcmp(cmd, "c") == 0) || (strcmp(cmd, "cont") == 0)) {
+ // Execute the one instruction we broke at with breakpoints disabled.
+ sim_->InstructionDecode(reinterpret_cast<Instruction*>(sim_->get_pc()));
+ // Leave the debugger shell.
+ done = true;
+ } else if ((strcmp(cmd, "p") == 0) || (strcmp(cmd, "print") == 0)) {
+ if (argc == 2 || (argc == 3 && strcmp(arg2, "fp") == 0)) {
+ int32_t value;
+ float svalue;
+ double dvalue;
+ if (strcmp(arg1, "all") == 0) {
+ for (int i = 0; i < kNumRegisters; i++) {
+ value = GetRegisterValue(i);
+ PrintF("%3s: 0x%08x %10d", RegisterName(Register::from_code(i)),
+ value, value);
+ if ((argc == 3 && strcmp(arg2, "fp") == 0) && i < 8 &&
+ (i % 2) == 0) {
+ dvalue = GetRegisterPairDoubleValue(i);
+ PrintF(" (%f)\n", dvalue);
+ } else {
+ PrintF("\n");
+ }
+ }
+ for (int i = 0; i < DwVfpRegister::NumRegisters(); i++) {
+ dvalue = GetVFPDoubleRegisterValue(i);
+ uint64_t as_words = bit_cast<uint64_t>(dvalue);
+ PrintF("%3s: %f 0x%08x %08x\n", VFPRegisters::Name(i, true),
+ dvalue, static_cast<uint32_t>(as_words >> 32),
+ static_cast<uint32_t>(as_words & 0xFFFFFFFF));
+ }
+ } else {
+ if (GetValue(arg1, &value)) {
+ PrintF("%s: 0x%08x %d \n", arg1, value, value);
+ } else if (GetVFPSingleValue(arg1, &svalue)) {
+ uint32_t as_word = bit_cast<uint32_t>(svalue);
+ PrintF("%s: %f 0x%08x\n", arg1, svalue, as_word);
+ } else if (GetVFPDoubleValue(arg1, &dvalue)) {
+ uint64_t as_words = bit_cast<uint64_t>(dvalue);
+ PrintF("%s: %f 0x%08x %08x\n", arg1, dvalue,
+ static_cast<uint32_t>(as_words >> 32),
+ static_cast<uint32_t>(as_words & 0xFFFFFFFF));
+ } else {
+ PrintF("%s unrecognized\n", arg1);
+ }
+ }
+ } else {
+ PrintF("print <register>\n");
+ }
+ } else if ((strcmp(cmd, "po") == 0) ||
+ (strcmp(cmd, "printobject") == 0)) {
+ if (argc == 2) {
+ int32_t value;
+ StdoutStream os;
+ if (GetValue(arg1, &value)) {
+ Object obj(value);
+ os << arg1 << ": \n";
+#ifdef DEBUG
+ obj.Print(os);
+ os << "\n";
+#else
+ os << Brief(obj) << "\n";
+#endif
+ } else {
+ os << arg1 << " unrecognized\n";
+ }
+ } else {
+ PrintF("printobject <value>\n");
+ }
+ } else if (strcmp(cmd, "stack") == 0 || strcmp(cmd, "mem") == 0) {
+ int32_t* cur = nullptr;
+ int32_t* end = nullptr;
+ int next_arg = 1;
+
+ if (strcmp(cmd, "stack") == 0) {
+ cur = reinterpret_cast<int32_t*>(sim_->get_register(Simulator::sp));
+ } else { // "mem"
+ int32_t value;
+ if (!GetValue(arg1, &value)) {
+ PrintF("%s unrecognized\n", arg1);
+ continue;
+ }
+ cur = reinterpret_cast<int32_t*>(value);
+ next_arg++;
+ }
+
+ int32_t words;
+ if (argc == next_arg) {
+ words = 10;
+ } else {
+ if (!GetValue(argv[next_arg], &words)) {
+ words = 10;
+ }
+ }
+ end = cur + words;
+
+ while (cur < end) {
+ PrintF(" 0x%08" V8PRIxPTR ": 0x%08x %10d",
+ reinterpret_cast<intptr_t>(cur), *cur, *cur);
+ Object obj(*cur);
+ Heap* current_heap = sim_->isolate_->heap();
+ if (obj.IsSmi() ||
+ IsValidHeapObject(current_heap, HeapObject::cast(obj))) {
+ PrintF(" (");
+ if (obj.IsSmi()) {
+ PrintF("smi %d", Smi::ToInt(obj));
+ } else {
+ obj.ShortPrint();
+ }
+ PrintF(")");
+ }
+ PrintF("\n");
+ cur++;
+ }
+ } else if (strcmp(cmd, "disasm") == 0 || strcmp(cmd, "di") == 0) {
+ disasm::NameConverter converter;
+ disasm::Disassembler dasm(converter);
+ // use a reasonably large buffer
+ v8::internal::EmbeddedVector<char, 256> buffer;
+
+ byte* prev = nullptr;
+ byte* cur = nullptr;
+ byte* end = nullptr;
+
+ if (argc == 1) {
+ cur = reinterpret_cast<byte*>(sim_->get_pc());
+ end = cur + (10 * kInstrSize);
+ } else if (argc == 2) {
+ int regnum = Registers::Number(arg1);
+ if (regnum != kNoRegister || strncmp(arg1, "0x", 2) == 0) {
+ // The argument is an address or a register name.
+ int32_t value;
+ if (GetValue(arg1, &value)) {
+ cur = reinterpret_cast<byte*>(value);
+ // Disassemble 10 instructions at <arg1>.
+ end = cur + (10 * kInstrSize);
+ }
+ } else {
+ // The argument is the number of instructions.
+ int32_t value;
+ if (GetValue(arg1, &value)) {
+ cur = reinterpret_cast<byte*>(sim_->get_pc());
+ // Disassemble <arg1> instructions.
+ end = cur + (value * kInstrSize);
+ }
+ }
+ } else {
+ int32_t value1;
+ int32_t value2;
+ if (GetValue(arg1, &value1) && GetValue(arg2, &value2)) {
+ cur = reinterpret_cast<byte*>(value1);
+ end = cur + (value2 * kInstrSize);
+ }
+ }
+
+ while (cur < end) {
+ prev = cur;
+ cur += dasm.InstructionDecode(buffer, cur);
+ PrintF(" 0x%08" V8PRIxPTR " %s\n", reinterpret_cast<intptr_t>(prev),
+ buffer.begin());
+ }
+ } else if (strcmp(cmd, "gdb") == 0) {
+ PrintF("relinquishing control to gdb\n");
+ v8::base::OS::DebugBreak();
+ PrintF("regaining control from gdb\n");
+ } else if (strcmp(cmd, "break") == 0) {
+ if (argc == 2) {
+ int32_t value;
+ if (GetValue(arg1, &value)) {
+ if (!SetBreakpoint(reinterpret_cast<Instruction*>(value))) {
+ PrintF("setting breakpoint failed\n");
+ }
+ } else {
+ PrintF("%s unrecognized\n", arg1);
+ }
+ } else {
+ PrintF("break <address>\n");
+ }
+ } else if (strcmp(cmd, "del") == 0) {
+ if (!DeleteBreakpoint(nullptr)) {
+ PrintF("deleting breakpoint failed\n");
+ }
+ } else if (strcmp(cmd, "flags") == 0) {
+ PrintF("N flag: %d; ", sim_->n_flag_);
+ PrintF("Z flag: %d; ", sim_->z_flag_);
+ PrintF("C flag: %d; ", sim_->c_flag_);
+ PrintF("V flag: %d\n", sim_->v_flag_);
+ PrintF("INVALID OP flag: %d; ", sim_->inv_op_vfp_flag_);
+ PrintF("DIV BY ZERO flag: %d; ", sim_->div_zero_vfp_flag_);
+ PrintF("OVERFLOW flag: %d; ", sim_->overflow_vfp_flag_);
+ PrintF("UNDERFLOW flag: %d; ", sim_->underflow_vfp_flag_);
+ PrintF("INEXACT flag: %d;\n", sim_->inexact_vfp_flag_);
+ } else if (strcmp(cmd, "stop") == 0) {
+ int32_t value;
+ intptr_t stop_pc = sim_->get_pc() - kInstrSize;
+ Instruction* stop_instr = reinterpret_cast<Instruction*>(stop_pc);
+ if ((argc == 2) && (strcmp(arg1, "unstop") == 0)) {
+ // Remove the current stop.
+ if (sim_->isStopInstruction(stop_instr)) {
+ stop_instr->SetInstructionBits(kNopInstr);
+ } else {
+ PrintF("Not at debugger stop.\n");
+ }
+ } else if (argc == 3) {
+ // Print information about all/the specified breakpoint(s).
+ if (strcmp(arg1, "info") == 0) {
+ if (strcmp(arg2, "all") == 0) {
+ PrintF("Stop information:\n");
+ for (uint32_t i = 0; i < sim_->kNumOfWatchedStops; i++) {
+ sim_->PrintStopInfo(i);
+ }
+ } else if (GetValue(arg2, &value)) {
+ sim_->PrintStopInfo(value);
+ } else {
+ PrintF("Unrecognized argument.\n");
+ }
+ } else if (strcmp(arg1, "enable") == 0) {
+ // Enable all/the specified breakpoint(s).
+ if (strcmp(arg2, "all") == 0) {
+ for (uint32_t i = 0; i < sim_->kNumOfWatchedStops; i++) {
+ sim_->EnableStop(i);
+ }
+ } else if (GetValue(arg2, &value)) {
+ sim_->EnableStop(value);
+ } else {
+ PrintF("Unrecognized argument.\n");
+ }
+ } else if (strcmp(arg1, "disable") == 0) {
+ // Disable all/the specified breakpoint(s).
+ if (strcmp(arg2, "all") == 0) {
+ for (uint32_t i = 0; i < sim_->kNumOfWatchedStops; i++) {
+ sim_->DisableStop(i);
+ }
+ } else if (GetValue(arg2, &value)) {
+ sim_->DisableStop(value);
+ } else {
+ PrintF("Unrecognized argument.\n");
+ }
+ }
+ } else {
+ PrintF("Wrong usage. Use help command for more information.\n");
+ }
+ } else if ((strcmp(cmd, "t") == 0) || strcmp(cmd, "trace") == 0) {
+ ::v8::internal::FLAG_trace_sim = !::v8::internal::FLAG_trace_sim;
+ PrintF("Trace of executed instructions is %s\n",
+ ::v8::internal::FLAG_trace_sim ? "on" : "off");
+ } else if ((strcmp(cmd, "h") == 0) || (strcmp(cmd, "help") == 0)) {
+ PrintF("cont\n");
+ PrintF(" continue execution (alias 'c')\n");
+ PrintF("stepi\n");
+ PrintF(" step one instruction (alias 'si')\n");
+ PrintF("print <register>\n");
+ PrintF(" print register content (alias 'p')\n");
+ PrintF(" use register name 'all' to print all registers\n");
+ PrintF(" add argument 'fp' to print register pair double values\n");
+ PrintF("printobject <register>\n");
+ PrintF(" print an object from a register (alias 'po')\n");
+ PrintF("flags\n");
+ PrintF(" print flags\n");
+ PrintF("stack [<words>]\n");
+ PrintF(" dump stack content, default dump 10 words)\n");
+ PrintF("mem <address> [<words>]\n");
+ PrintF(" dump memory content, default dump 10 words)\n");
+ PrintF("disasm [<instructions>]\n");
+ PrintF("disasm [<address/register>]\n");
+ PrintF("disasm [[<address/register>] <instructions>]\n");
+ PrintF(" disassemble code, default is 10 instructions\n");
+ PrintF(" from pc (alias 'di')\n");
+ PrintF("gdb\n");
+ PrintF(" enter gdb\n");
+ PrintF("break <address>\n");
+ PrintF(" set a break point on the address\n");
+ PrintF("del\n");
+ PrintF(" delete the breakpoint\n");
+ PrintF("trace (alias 't')\n");
+ PrintF(" toogle the tracing of all executed statements\n");
+ PrintF("stop feature:\n");
+ PrintF(" Description:\n");
+ PrintF(" Stops are debug instructions inserted by\n");
+ PrintF(" the Assembler::stop() function.\n");
+ PrintF(" When hitting a stop, the Simulator will\n");
+ PrintF(" stop and give control to the ArmDebugger.\n");
+ PrintF(" The first %d stop codes are watched:\n",
+ Simulator::kNumOfWatchedStops);
+ PrintF(" - They can be enabled / disabled: the Simulator\n");
+ PrintF(" will / won't stop when hitting them.\n");
+ PrintF(" - The Simulator keeps track of how many times they \n");
+ PrintF(" are met. (See the info command.) Going over a\n");
+ PrintF(" disabled stop still increases its counter. \n");
+ PrintF(" Commands:\n");
+ PrintF(" stop info all/<code> : print infos about number <code>\n");
+ PrintF(" or all stop(s).\n");
+ PrintF(" stop enable/disable all/<code> : enables / disables\n");
+ PrintF(" all or number <code> stop(s)\n");
+ PrintF(" stop unstop\n");
+ PrintF(" ignore the stop instruction at the current location\n");
+ PrintF(" from now on\n");
+ } else {
+ PrintF("Unknown command: %s\n", cmd);
+ }
+ }
+ }
+
+ // Add all the breakpoints back to stop execution and enter the debugger
+ // shell when hit.
+ RedoBreakpoints();
+
+#undef COMMAND_SIZE
+#undef ARG_SIZE
+
+#undef STR
+#undef XSTR
+}
+
+bool Simulator::ICacheMatch(void* one, void* two) {
+ DCHECK_EQ(reinterpret_cast<intptr_t>(one) & CachePage::kPageMask, 0);
+ DCHECK_EQ(reinterpret_cast<intptr_t>(two) & CachePage::kPageMask, 0);
+ return one == two;
+}
+
+static uint32_t ICacheHash(void* key) {
+ return static_cast<uint32_t>(reinterpret_cast<uintptr_t>(key)) >> 2;
+}
+
+static bool AllOnOnePage(uintptr_t start, int size) {
+ intptr_t start_page = (start & ~CachePage::kPageMask);
+ intptr_t end_page = ((start + size) & ~CachePage::kPageMask);
+ return start_page == end_page;
+}
+
+void Simulator::set_last_debugger_input(char* input) {
+ DeleteArray(last_debugger_input_);
+ last_debugger_input_ = input;
+}
+
+void Simulator::SetRedirectInstruction(Instruction* instruction) {
+ instruction->SetInstructionBits(al | (0xF * B24) | kCallRtRedirected);
+}
+
+void Simulator::FlushICache(base::CustomMatcherHashMap* i_cache,
+ void* start_addr, size_t size) {
+ intptr_t start = reinterpret_cast<intptr_t>(start_addr);
+ int intra_line = (start & CachePage::kLineMask);
+ start -= intra_line;
+ size += intra_line;
+ size = ((size - 1) | CachePage::kLineMask) + 1;
+ int offset = (start & CachePage::kPageMask);
+ while (!AllOnOnePage(start, size - 1)) {
+ int bytes_to_flush = CachePage::kPageSize - offset;
+ FlushOnePage(i_cache, start, bytes_to_flush);
+ start += bytes_to_flush;
+ size -= bytes_to_flush;
+ DCHECK_EQ(0, start & CachePage::kPageMask);
+ offset = 0;
+ }
+ if (size != 0) {
+ FlushOnePage(i_cache, start, size);
+ }
+}
+
+CachePage* Simulator::GetCachePage(base::CustomMatcherHashMap* i_cache,
+ void* page) {
+ base::HashMap::Entry* entry = i_cache->LookupOrInsert(page, ICacheHash(page));
+ if (entry->value == nullptr) {
+ CachePage* new_page = new CachePage();
+ entry->value = new_page;
+ }
+ return reinterpret_cast<CachePage*>(entry->value);
+}
+
+// Flush from start up to and not including start + size.
+void Simulator::FlushOnePage(base::CustomMatcherHashMap* i_cache,
+ intptr_t start, int size) {
+ DCHECK_LE(size, CachePage::kPageSize);
+ DCHECK(AllOnOnePage(start, size - 1));
+ DCHECK_EQ(start & CachePage::kLineMask, 0);
+ DCHECK_EQ(size & CachePage::kLineMask, 0);
+ void* page = reinterpret_cast<void*>(start & (~CachePage::kPageMask));
+ int offset = (start & CachePage::kPageMask);
+ CachePage* cache_page = GetCachePage(i_cache, page);
+ char* valid_bytemap = cache_page->ValidityByte(offset);
+ memset(valid_bytemap, CachePage::LINE_INVALID, size >> CachePage::kLineShift);
+}
+
+void Simulator::CheckICache(base::CustomMatcherHashMap* i_cache,
+ Instruction* instr) {
+ intptr_t address = reinterpret_cast<intptr_t>(instr);
+ void* page = reinterpret_cast<void*>(address & (~CachePage::kPageMask));
+ void* line = reinterpret_cast<void*>(address & (~CachePage::kLineMask));
+ int offset = (address & CachePage::kPageMask);
+ CachePage* cache_page = GetCachePage(i_cache, page);
+ char* cache_valid_byte = cache_page->ValidityByte(offset);
+ bool cache_hit = (*cache_valid_byte == CachePage::LINE_VALID);
+ char* cached_line = cache_page->CachedData(offset & ~CachePage::kLineMask);
+ if (cache_hit) {
+ // Check that the data in memory matches the contents of the I-cache.
+ CHECK_EQ(0, memcmp(reinterpret_cast<void*>(instr),
+ cache_page->CachedData(offset), kInstrSize));
+ } else {
+ // Cache miss. Load memory into the cache.
+ memcpy(cached_line, line, CachePage::kLineLength);
+ *cache_valid_byte = CachePage::LINE_VALID;
+ }
+}
+
+Simulator::Simulator(Isolate* isolate) : isolate_(isolate) {
+ // Set up simulator support first. Some of this information is needed to
+ // setup the architecture state.
+ size_t stack_size = 1 * 1024 * 1024; // allocate 1MB for stack
+ stack_ = reinterpret_cast<char*>(malloc(stack_size));
+ pc_modified_ = false;
+ icount_ = 0;
+ break_pc_ = nullptr;
+ break_instr_ = 0;
+
+ // Set up architecture state.
+ // All registers are initialized to zero to start with.
+ for (int i = 0; i < num_registers; i++) {
+ registers_[i] = 0;
+ }
+ n_flag_ = false;
+ z_flag_ = false;
+ c_flag_ = false;
+ v_flag_ = false;
+
+ // Initializing VFP registers.
+ // All registers are initialized to zero to start with
+ // even though s_registers_ & d_registers_ share the same
+ // physical registers in the target.
+ for (int i = 0; i < num_d_registers * 2; i++) {
+ vfp_registers_[i] = 0;
+ }
+ n_flag_FPSCR_ = false;
+ z_flag_FPSCR_ = false;
+ c_flag_FPSCR_ = false;
+ v_flag_FPSCR_ = false;
+ FPSCR_rounding_mode_ = RN;
+ FPSCR_default_NaN_mode_ = false;
+
+ inv_op_vfp_flag_ = false;
+ div_zero_vfp_flag_ = false;
+ overflow_vfp_flag_ = false;
+ underflow_vfp_flag_ = false;
+ inexact_vfp_flag_ = false;
+
+ // The sp is initialized to point to the bottom (high address) of the
+ // allocated stack area. To be safe in potential stack underflows we leave
+ // some buffer below.
+ registers_[sp] = reinterpret_cast<int32_t>(stack_) + stack_size - 64;
+ // The lr and pc are initialized to a known bad value that will cause an
+ // access violation if the simulator ever tries to execute it.
+ registers_[pc] = bad_lr;
+ registers_[lr] = bad_lr;
+
+ last_debugger_input_ = nullptr;
+}
+
+Simulator::~Simulator() {
+ GlobalMonitor::Get()->RemoveProcessor(&global_monitor_processor_);
+ free(stack_);
+}
+
+// Get the active Simulator for the current thread.
+Simulator* Simulator::current(Isolate* isolate) {
+ v8::internal::Isolate::PerIsolateThreadData* isolate_data =
+ isolate->FindOrAllocatePerThreadDataForThisThread();
+ DCHECK_NOT_NULL(isolate_data);
+
+ Simulator* sim = isolate_data->simulator();
+ if (sim == nullptr) {
+ // TODO(146): delete the simulator object when a thread/isolate goes away.
+ sim = new Simulator(isolate);
+ isolate_data->set_simulator(sim);
+ }
+ return sim;
+}
+
+// Sets the register in the architecture state. It will also deal with updating
+// Simulator internal state for special registers such as PC.
+void Simulator::set_register(int reg, int32_t value) {
+ DCHECK((reg >= 0) && (reg < num_registers));
+ if (reg == pc) {
+ pc_modified_ = true;
+ }
+ registers_[reg] = value;
+}
+
+// Get the register from the architecture state. This function does handle
+// the special case of accessing the PC register.
+int32_t Simulator::get_register(int reg) const {
+ DCHECK((reg >= 0) && (reg < num_registers));
+ // Stupid code added to avoid bug in GCC.
+ // See: http://gcc.gnu.org/bugzilla/show_bug.cgi?id=43949
+ if (reg >= num_registers) return 0;
+ // End stupid code.
+ return registers_[reg] + ((reg == pc) ? Instruction::kPcLoadDelta : 0);
+}
+
+double Simulator::get_double_from_register_pair(int reg) {
+ DCHECK((reg >= 0) && (reg < num_registers) && ((reg % 2) == 0));
+
+ double dm_val = 0.0;
+ // Read the bits from the unsigned integer register_[] array
+ // into the double precision floating point value and return it.
+ char buffer[2 * sizeof(vfp_registers_[0])];
+ memcpy(buffer, &registers_[reg], 2 * sizeof(registers_[0]));
+ memcpy(&dm_val, buffer, 2 * sizeof(registers_[0]));
+ return (dm_val);
+}
+
+void Simulator::set_register_pair_from_double(int reg, double* value) {
+ DCHECK((reg >= 0) && (reg < num_registers) && ((reg % 2) == 0));
+ memcpy(registers_ + reg, value, sizeof(*value));
+}
+
+void Simulator::set_dw_register(int dreg, const int* dbl) {
+ DCHECK((dreg >= 0) && (dreg < num_d_registers));
+ registers_[dreg] = dbl[0];
+ registers_[dreg + 1] = dbl[1];
+}
+
+void Simulator::get_d_register(int dreg, uint64_t* value) {
+ DCHECK((dreg >= 0) && (dreg < DwVfpRegister::NumRegisters()));
+ memcpy(value, vfp_registers_ + dreg * 2, sizeof(*value));
+}
+
+void Simulator::set_d_register(int dreg, const uint64_t* value) {
+ DCHECK((dreg >= 0) && (dreg < DwVfpRegister::NumRegisters()));
+ memcpy(vfp_registers_ + dreg * 2, value, sizeof(*value));
+}
+
+void Simulator::get_d_register(int dreg, uint32_t* value) {
+ DCHECK((dreg >= 0) && (dreg < DwVfpRegister::NumRegisters()));
+ memcpy(value, vfp_registers_ + dreg * 2, sizeof(*value) * 2);
+}
+
+void Simulator::set_d_register(int dreg, const uint32_t* value) {
+ DCHECK((dreg >= 0) && (dreg < DwVfpRegister::NumRegisters()));
+ memcpy(vfp_registers_ + dreg * 2, value, sizeof(*value) * 2);
+}
+
+template <typename T, int SIZE>
+void Simulator::get_neon_register(int reg, T (&value)[SIZE / sizeof(T)]) {
+ DCHECK(SIZE == kSimd128Size || SIZE == kDoubleSize);
+ DCHECK_LE(0, reg);
+ DCHECK_GT(SIZE == kSimd128Size ? num_q_registers : num_d_registers, reg);
+ memcpy(value, vfp_registers_ + reg * (SIZE / 4), SIZE);
+}
+
+template <typename T, int SIZE>
+void Simulator::set_neon_register(int reg, const T (&value)[SIZE / sizeof(T)]) {
+ DCHECK(SIZE == kSimd128Size || SIZE == kDoubleSize);
+ DCHECK_LE(0, reg);
+ DCHECK_GT(SIZE == kSimd128Size ? num_q_registers : num_d_registers, reg);
+ memcpy(vfp_registers_ + reg * (SIZE / 4), value, SIZE);
+}
+
+// Raw access to the PC register.
+void Simulator::set_pc(int32_t value) {
+ pc_modified_ = true;
+ registers_[pc] = value;
+}
+
+bool Simulator::has_bad_pc() const {
+ return ((registers_[pc] == bad_lr) || (registers_[pc] == end_sim_pc));
+}
+
+// Raw access to the PC register without the special adjustment when reading.
+int32_t Simulator::get_pc() const { return registers_[pc]; }
+
+// Getting from and setting into VFP registers.
+void Simulator::set_s_register(int sreg, unsigned int value) {
+ DCHECK((sreg >= 0) && (sreg < num_s_registers));
+ vfp_registers_[sreg] = value;
+}
+
+unsigned int Simulator::get_s_register(int sreg) const {
+ DCHECK((sreg >= 0) && (sreg < num_s_registers));
+ return vfp_registers_[sreg];
+}
+
+template <class InputType, int register_size>
+void Simulator::SetVFPRegister(int reg_index, const InputType& value) {
+ unsigned bytes = register_size * sizeof(vfp_registers_[0]);
+ DCHECK_EQ(sizeof(InputType), bytes);
+ DCHECK_GE(reg_index, 0);
+ if (register_size == 1) DCHECK(reg_index < num_s_registers);
+ if (register_size == 2) DCHECK(reg_index < DwVfpRegister::NumRegisters());
+
+ memcpy(&vfp_registers_[reg_index * register_size], &value, bytes);
+}
+
+template <class ReturnType, int register_size>
+ReturnType Simulator::GetFromVFPRegister(int reg_index) {
+ unsigned bytes = register_size * sizeof(vfp_registers_[0]);
+ DCHECK_EQ(sizeof(ReturnType), bytes);
+ DCHECK_GE(reg_index, 0);
+ if (register_size == 1) DCHECK(reg_index < num_s_registers);
+ if (register_size == 2) DCHECK(reg_index < DwVfpRegister::NumRegisters());
+
+ ReturnType value;
+ memcpy(&value, &vfp_registers_[register_size * reg_index], bytes);
+ return value;
+}
+
+void Simulator::SetSpecialRegister(SRegisterFieldMask reg_and_mask,
+ uint32_t value) {
+ // Only CPSR_f is implemented. Of that, only N, Z, C and V are implemented.
+ if ((reg_and_mask == CPSR_f) && ((value & ~kSpecialCondition) == 0)) {
+ n_flag_ = ((value & (1 << 31)) != 0);
+ z_flag_ = ((value & (1 << 30)) != 0);
+ c_flag_ = ((value & (1 << 29)) != 0);
+ v_flag_ = ((value & (1 << 28)) != 0);
+ } else {
+ UNIMPLEMENTED();
+ }
+}
+
+uint32_t Simulator::GetFromSpecialRegister(SRegister reg) {
+ uint32_t result = 0;
+ // Only CPSR_f is implemented.
+ if (reg == CPSR) {
+ if (n_flag_) result |= (1 << 31);
+ if (z_flag_) result |= (1 << 30);
+ if (c_flag_) result |= (1 << 29);
+ if (v_flag_) result |= (1 << 28);
+ } else {
+ UNIMPLEMENTED();
+ }
+ return result;
+}
+
+// Runtime FP routines take:
+// - two double arguments
+// - one double argument and zero or one integer arguments.
+// All are consructed here from r0-r3 or d0, d1 and r0.
+void Simulator::GetFpArgs(double* x, double* y, int32_t* z) {
+ if (use_eabi_hardfloat()) {
+ *x = get_double_from_d_register(0).get_scalar();
+ *y = get_double_from_d_register(1).get_scalar();
+ *z = get_register(0);
+ } else {
+ // Registers 0 and 1 -> x.
+ *x = get_double_from_register_pair(0);
+ // Register 2 and 3 -> y.
+ *y = get_double_from_register_pair(2);
+ // Register 2 -> z
+ *z = get_register(2);
+ }
+}
+
+// The return value is either in r0/r1 or d0.
+void Simulator::SetFpResult(const double& result) {
+ if (use_eabi_hardfloat()) {
+ char buffer[2 * sizeof(vfp_registers_[0])];
+ memcpy(buffer, &result, sizeof(buffer));
+ // Copy result to d0.
+ memcpy(vfp_registers_, buffer, sizeof(buffer));
+ } else {
+ char buffer[2 * sizeof(registers_[0])];
+ memcpy(buffer, &result, sizeof(buffer));
+ // Copy result to r0 and r1.
+ memcpy(registers_, buffer, sizeof(buffer));
+ }
+}
+
+void Simulator::TrashCallerSaveRegisters() {
+ // We don't trash the registers with the return value.
+ registers_[2] = 0x50BAD4U;
+ registers_[3] = 0x50BAD4U;
+ registers_[12] = 0x50BAD4U;
+}
+
+int Simulator::ReadW(int32_t addr) {
+ // All supported ARM targets allow unaligned accesses, so we don't need to
+ // check the alignment here.
+ base::MutexGuard lock_guard(&GlobalMonitor::Get()->mutex);
+ local_monitor_.NotifyLoad(addr);
+ intptr_t* ptr = reinterpret_cast<intptr_t*>(addr);
+ return *ptr;
+}
+
+int Simulator::ReadExW(int32_t addr) {
+ base::MutexGuard lock_guard(&GlobalMonitor::Get()->mutex);
+ local_monitor_.NotifyLoadExcl(addr, TransactionSize::Word);
+ GlobalMonitor::Get()->NotifyLoadExcl_Locked(addr, &global_monitor_processor_);
+ intptr_t* ptr = reinterpret_cast<intptr_t*>(addr);
+ return *ptr;
+}
+
+void Simulator::WriteW(int32_t addr, int value) {
+ // All supported ARM targets allow unaligned accesses, so we don't need to
+ // check the alignment here.
+ base::MutexGuard lock_guard(&GlobalMonitor::Get()->mutex);
+ local_monitor_.NotifyStore(addr);
+ GlobalMonitor::Get()->NotifyStore_Locked(addr, &global_monitor_processor_);
+ intptr_t* ptr = reinterpret_cast<intptr_t*>(addr);
+ *ptr = value;
+}
+
+int Simulator::WriteExW(int32_t addr, int value) {
+ base::MutexGuard lock_guard(&GlobalMonitor::Get()->mutex);
+ if (local_monitor_.NotifyStoreExcl(addr, TransactionSize::Word) &&
+ GlobalMonitor::Get()->NotifyStoreExcl_Locked(
+ addr, &global_monitor_processor_)) {
+ intptr_t* ptr = reinterpret_cast<intptr_t*>(addr);
+ *ptr = value;
+ return 0;
+ } else {
+ return 1;
+ }
+}
+
+uint16_t Simulator::ReadHU(int32_t addr) {
+ // All supported ARM targets allow unaligned accesses, so we don't need to
+ // check the alignment here.
+ base::MutexGuard lock_guard(&GlobalMonitor::Get()->mutex);
+ local_monitor_.NotifyLoad(addr);
+ uint16_t* ptr = reinterpret_cast<uint16_t*>(addr);
+ return *ptr;
+}
+
+int16_t Simulator::ReadH(int32_t addr) {
+ // All supported ARM targets allow unaligned accesses, so we don't need to
+ // check the alignment here.
+ base::MutexGuard lock_guard(&GlobalMonitor::Get()->mutex);
+ local_monitor_.NotifyLoad(addr);
+ int16_t* ptr = reinterpret_cast<int16_t*>(addr);
+ return *ptr;
+}
+
+uint16_t Simulator::ReadExHU(int32_t addr) {
+ base::MutexGuard lock_guard(&GlobalMonitor::Get()->mutex);
+ local_monitor_.NotifyLoadExcl(addr, TransactionSize::HalfWord);
+ GlobalMonitor::Get()->NotifyLoadExcl_Locked(addr, &global_monitor_processor_);
+ uint16_t* ptr = reinterpret_cast<uint16_t*>(addr);
+ return *ptr;
+}
+
+void Simulator::WriteH(int32_t addr, uint16_t value) {
+ // All supported ARM targets allow unaligned accesses, so we don't need to
+ // check the alignment here.
+ base::MutexGuard lock_guard(&GlobalMonitor::Get()->mutex);
+ local_monitor_.NotifyStore(addr);
+ GlobalMonitor::Get()->NotifyStore_Locked(addr, &global_monitor_processor_);
+ uint16_t* ptr = reinterpret_cast<uint16_t*>(addr);
+ *ptr = value;
+}
+
+void Simulator::WriteH(int32_t addr, int16_t value) {
+ // All supported ARM targets allow unaligned accesses, so we don't need to
+ // check the alignment here.
+ base::MutexGuard lock_guard(&GlobalMonitor::Get()->mutex);
+ local_monitor_.NotifyStore(addr);
+ GlobalMonitor::Get()->NotifyStore_Locked(addr, &global_monitor_processor_);
+ int16_t* ptr = reinterpret_cast<int16_t*>(addr);
+ *ptr = value;
+}
+
+int Simulator::WriteExH(int32_t addr, uint16_t value) {
+ base::MutexGuard lock_guard(&GlobalMonitor::Get()->mutex);
+ if (local_monitor_.NotifyStoreExcl(addr, TransactionSize::HalfWord) &&
+ GlobalMonitor::Get()->NotifyStoreExcl_Locked(
+ addr, &global_monitor_processor_)) {
+ uint16_t* ptr = reinterpret_cast<uint16_t*>(addr);
+ *ptr = value;
+ return 0;
+ } else {
+ return 1;
+ }
+}
+
+uint8_t Simulator::ReadBU(int32_t addr) {
+ base::MutexGuard lock_guard(&GlobalMonitor::Get()->mutex);
+ local_monitor_.NotifyLoad(addr);
+ uint8_t* ptr = reinterpret_cast<uint8_t*>(addr);
+ return *ptr;
+}
+
+int8_t Simulator::ReadB(int32_t addr) {
+ base::MutexGuard lock_guard(&GlobalMonitor::Get()->mutex);
+ local_monitor_.NotifyLoad(addr);
+ int8_t* ptr = reinterpret_cast<int8_t*>(addr);
+ return *ptr;
+}
+
+uint8_t Simulator::ReadExBU(int32_t addr) {
+ base::MutexGuard lock_guard(&GlobalMonitor::Get()->mutex);
+ local_monitor_.NotifyLoadExcl(addr, TransactionSize::Byte);
+ GlobalMonitor::Get()->NotifyLoadExcl_Locked(addr, &global_monitor_processor_);
+ uint8_t* ptr = reinterpret_cast<uint8_t*>(addr);
+ return *ptr;
+}
+
+void Simulator::WriteB(int32_t addr, uint8_t value) {
+ base::MutexGuard lock_guard(&GlobalMonitor::Get()->mutex);
+ local_monitor_.NotifyStore(addr);
+ GlobalMonitor::Get()->NotifyStore_Locked(addr, &global_monitor_processor_);
+ uint8_t* ptr = reinterpret_cast<uint8_t*>(addr);
+ *ptr = value;
+}
+
+void Simulator::WriteB(int32_t addr, int8_t value) {
+ base::MutexGuard lock_guard(&GlobalMonitor::Get()->mutex);
+ local_monitor_.NotifyStore(addr);
+ GlobalMonitor::Get()->NotifyStore_Locked(addr, &global_monitor_processor_);
+ int8_t* ptr = reinterpret_cast<int8_t*>(addr);
+ *ptr = value;
+}
+
+int Simulator::WriteExB(int32_t addr, uint8_t value) {
+ base::MutexGuard lock_guard(&GlobalMonitor::Get()->mutex);
+ if (local_monitor_.NotifyStoreExcl(addr, TransactionSize::Byte) &&
+ GlobalMonitor::Get()->NotifyStoreExcl_Locked(
+ addr, &global_monitor_processor_)) {
+ uint8_t* ptr = reinterpret_cast<uint8_t*>(addr);
+ *ptr = value;
+ return 0;
+ } else {
+ return 1;
+ }
+}
+
+int32_t* Simulator::ReadDW(int32_t addr) {
+ // All supported ARM targets allow unaligned accesses, so we don't need to
+ // check the alignment here.
+ base::MutexGuard lock_guard(&GlobalMonitor::Get()->mutex);
+ local_monitor_.NotifyLoad(addr);
+ int32_t* ptr = reinterpret_cast<int32_t*>(addr);
+ return ptr;
+}
+
+int32_t* Simulator::ReadExDW(int32_t addr) {
+ base::MutexGuard lock_guard(&GlobalMonitor::Get()->mutex);
+ local_monitor_.NotifyLoadExcl(addr, TransactionSize::DoubleWord);
+ GlobalMonitor::Get()->NotifyLoadExcl_Locked(addr, &global_monitor_processor_);
+ int32_t* ptr = reinterpret_cast<int32_t*>(addr);
+ return ptr;
+}
+
+void Simulator::WriteDW(int32_t addr, int32_t value1, int32_t value2) {
+ // All supported ARM targets allow unaligned accesses, so we don't need to
+ // check the alignment here.
+ base::MutexGuard lock_guard(&GlobalMonitor::Get()->mutex);
+ local_monitor_.NotifyStore(addr);
+ GlobalMonitor::Get()->NotifyStore_Locked(addr, &global_monitor_processor_);
+ int32_t* ptr = reinterpret_cast<int32_t*>(addr);
+ *ptr++ = value1;
+ *ptr = value2;
+}
+
+int Simulator::WriteExDW(int32_t addr, int32_t value1, int32_t value2) {
+ base::MutexGuard lock_guard(&GlobalMonitor::Get()->mutex);
+ if (local_monitor_.NotifyStoreExcl(addr, TransactionSize::DoubleWord) &&
+ GlobalMonitor::Get()->NotifyStoreExcl_Locked(
+ addr, &global_monitor_processor_)) {
+ intptr_t* ptr = reinterpret_cast<intptr_t*>(addr);
+ *ptr++ = value1;
+ *ptr = value2;
+ return 0;
+ } else {
+ return 1;
+ }
+}
+
+// Returns the limit of the stack area to enable checking for stack overflows.
+uintptr_t Simulator::StackLimit(uintptr_t c_limit) const {
+ // The simulator uses a separate JS stack. If we have exhausted the C stack,
+ // we also drop down the JS limit to reflect the exhaustion on the JS stack.
+ if (GetCurrentStackPosition() < c_limit) {
+ return reinterpret_cast<uintptr_t>(get_sp());
+ }
+
+ // Otherwise the limit is the JS stack. Leave a safety margin of 1024 bytes
+ // to prevent overrunning the stack when pushing values.
+ return reinterpret_cast<uintptr_t>(stack_) + 1024;
+}
+
+// Unsupported instructions use Format to print an error and stop execution.
+void Simulator::Format(Instruction* instr, const char* format) {
+ PrintF("Simulator found unsupported instruction:\n 0x%08" V8PRIxPTR ": %s\n",
+ reinterpret_cast<intptr_t>(instr), format);
+ UNIMPLEMENTED();
+}
+
+// Checks if the current instruction should be executed based on its
+// condition bits.
+bool Simulator::ConditionallyExecute(Instruction* instr) {
+ switch (instr->ConditionField()) {
+ case eq:
+ return z_flag_;
+ case ne:
+ return !z_flag_;
+ case cs:
+ return c_flag_;
+ case cc:
+ return !c_flag_;
+ case mi:
+ return n_flag_;
+ case pl:
+ return !n_flag_;
+ case vs:
+ return v_flag_;
+ case vc:
+ return !v_flag_;
+ case hi:
+ return c_flag_ && !z_flag_;
+ case ls:
+ return !c_flag_ || z_flag_;
+ case ge:
+ return n_flag_ == v_flag_;
+ case lt:
+ return n_flag_ != v_flag_;
+ case gt:
+ return !z_flag_ && (n_flag_ == v_flag_);
+ case le:
+ return z_flag_ || (n_flag_ != v_flag_);
+ case al:
+ return true;
+ default:
+ UNREACHABLE();
+ }
+ return false;
+}
+
+// Calculate and set the Negative and Zero flags.
+void Simulator::SetNZFlags(int32_t val) {
+ n_flag_ = (val < 0);
+ z_flag_ = (val == 0);
+}
+
+// Set the Carry flag.
+void Simulator::SetCFlag(bool val) { c_flag_ = val; }
+
+// Set the oVerflow flag.
+void Simulator::SetVFlag(bool val) { v_flag_ = val; }
+
+// Calculate C flag value for additions.
+bool Simulator::CarryFrom(int32_t left, int32_t right, int32_t carry) {
+ uint32_t uleft = static_cast<uint32_t>(left);
+ uint32_t uright = static_cast<uint32_t>(right);
+ uint32_t urest = 0xFFFFFFFFU - uleft;
+
+ return (uright > urest) ||
+ (carry && (((uright + 1) > urest) || (uright > (urest - 1))));
+}
+
+// Calculate C flag value for subtractions.
+bool Simulator::BorrowFrom(int32_t left, int32_t right, int32_t carry) {
+ uint32_t uleft = static_cast<uint32_t>(left);
+ uint32_t uright = static_cast<uint32_t>(right);
+
+ return (uright > uleft) ||
+ (!carry && (((uright + 1) > uleft) || (uright > (uleft - 1))));
+}
+
+// Calculate V flag value for additions and subtractions.
+bool Simulator::OverflowFrom(int32_t alu_out, int32_t left, int32_t right,
+ bool addition) {
+ bool overflow;
+ if (addition) {
+ // operands have the same sign
+ overflow = ((left >= 0 && right >= 0) || (left < 0 && right < 0))
+ // and operands and result have different sign
+ && ((left < 0 && alu_out >= 0) || (left >= 0 && alu_out < 0));
+ } else {
+ // operands have different signs
+ overflow = ((left < 0 && right >= 0) || (left >= 0 && right < 0))
+ // and first operand and result have different signs
+ && ((left < 0 && alu_out >= 0) || (left >= 0 && alu_out < 0));
+ }
+ return overflow;
+}
+
+// Support for VFP comparisons.
+void Simulator::Compute_FPSCR_Flags(float val1, float val2) {
+ if (std::isnan(val1) || std::isnan(val2)) {
+ n_flag_FPSCR_ = false;
+ z_flag_FPSCR_ = false;
+ c_flag_FPSCR_ = true;
+ v_flag_FPSCR_ = true;
+ // All non-NaN cases.
+ } else if (val1 == val2) {
+ n_flag_FPSCR_ = false;
+ z_flag_FPSCR_ = true;
+ c_flag_FPSCR_ = true;
+ v_flag_FPSCR_ = false;
+ } else if (val1 < val2) {
+ n_flag_FPSCR_ = true;
+ z_flag_FPSCR_ = false;
+ c_flag_FPSCR_ = false;
+ v_flag_FPSCR_ = false;
+ } else {
+ // Case when (val1 > val2).
+ n_flag_FPSCR_ = false;
+ z_flag_FPSCR_ = false;
+ c_flag_FPSCR_ = true;
+ v_flag_FPSCR_ = false;
+ }
+}
+
+void Simulator::Compute_FPSCR_Flags(double val1, double val2) {
+ if (std::isnan(val1) || std::isnan(val2)) {
+ n_flag_FPSCR_ = false;
+ z_flag_FPSCR_ = false;
+ c_flag_FPSCR_ = true;
+ v_flag_FPSCR_ = true;
+ // All non-NaN cases.
+ } else if (val1 == val2) {
+ n_flag_FPSCR_ = false;
+ z_flag_FPSCR_ = true;
+ c_flag_FPSCR_ = true;
+ v_flag_FPSCR_ = false;
+ } else if (val1 < val2) {
+ n_flag_FPSCR_ = true;
+ z_flag_FPSCR_ = false;
+ c_flag_FPSCR_ = false;
+ v_flag_FPSCR_ = false;
+ } else {
+ // Case when (val1 > val2).
+ n_flag_FPSCR_ = false;
+ z_flag_FPSCR_ = false;
+ c_flag_FPSCR_ = true;
+ v_flag_FPSCR_ = false;
+ }
+}
+
+void Simulator::Copy_FPSCR_to_APSR() {
+ n_flag_ = n_flag_FPSCR_;
+ z_flag_ = z_flag_FPSCR_;
+ c_flag_ = c_flag_FPSCR_;
+ v_flag_ = v_flag_FPSCR_;
+}
+
+// Addressing Mode 1 - Data-processing operands:
+// Get the value based on the shifter_operand with register.
+int32_t Simulator::GetShiftRm(Instruction* instr, bool* carry_out) {
+ ShiftOp shift = instr->ShiftField();
+ int shift_amount = instr->ShiftAmountValue();
+ int32_t result = get_register(instr->RmValue());
+ if (instr->Bit(4) == 0) {
+ // by immediate
+ if ((shift == ROR) && (shift_amount == 0)) {
+ UNIMPLEMENTED();
+ return result;
+ } else if (((shift == LSR) || (shift == ASR)) && (shift_amount == 0)) {
+ shift_amount = 32;
+ }
+ switch (shift) {
+ case ASR: {
+ if (shift_amount == 0) {
+ if (result < 0) {
+ result = 0xFFFFFFFF;
+ *carry_out = true;
+ } else {
+ result = 0;
+ *carry_out = false;
+ }
+ } else {
+ result >>= (shift_amount - 1);
+ *carry_out = (result & 1) == 1;
+ result >>= 1;
+ }
+ break;
+ }
+
+ case LSL: {
+ if (shift_amount == 0) {
+ *carry_out = c_flag_;
+ } else {
+ result <<= (shift_amount - 1);
+ *carry_out = (result < 0);
+ result <<= 1;
+ }
+ break;
+ }
+
+ case LSR: {
+ if (shift_amount == 0) {
+ result = 0;
+ *carry_out = c_flag_;
+ } else {
+ uint32_t uresult = static_cast<uint32_t>(result);
+ uresult >>= (shift_amount - 1);
+ *carry_out = (uresult & 1) == 1;
+ uresult >>= 1;
+ result = static_cast<int32_t>(uresult);
+ }
+ break;
+ }
+
+ case ROR: {
+ if (shift_amount == 0) {
+ *carry_out = c_flag_;
+ } else {
+ uint32_t left = static_cast<uint32_t>(result) >> shift_amount;
+ uint32_t right = static_cast<uint32_t>(result) << (32 - shift_amount);
+ result = right | left;
+ *carry_out = (static_cast<uint32_t>(result) >> 31) != 0;
+ }
+ break;
+ }
+
+ default: {
+ UNREACHABLE();
+ break;
+ }
+ }
+ } else {
+ // by register
+ int rs = instr->RsValue();
+ shift_amount = get_register(rs) & 0xFF;
+ switch (shift) {
+ case ASR: {
+ if (shift_amount == 0) {
+ *carry_out = c_flag_;
+ } else if (shift_amount < 32) {
+ result >>= (shift_amount - 1);
+ *carry_out = (result & 1) == 1;
+ result >>= 1;
+ } else {
+ DCHECK_GE(shift_amount, 32);
+ if (result < 0) {
+ *carry_out = true;
+ result = 0xFFFFFFFF;
+ } else {
+ *carry_out = false;
+ result = 0;
+ }
+ }
+ break;
+ }
+
+ case LSL: {
+ if (shift_amount == 0) {
+ *carry_out = c_flag_;
+ } else if (shift_amount < 32) {
+ result <<= (shift_amount - 1);
+ *carry_out = (result < 0);
+ result <<= 1;
+ } else if (shift_amount == 32) {
+ *carry_out = (result & 1) == 1;
+ result = 0;
+ } else {
+ DCHECK_GT(shift_amount, 32);
+ *carry_out = false;
+ result = 0;
+ }
+ break;
+ }
+
+ case LSR: {
+ if (shift_amount == 0) {
+ *carry_out = c_flag_;
+ } else if (shift_amount < 32) {
+ uint32_t uresult = static_cast<uint32_t>(result);
+ uresult >>= (shift_amount - 1);
+ *carry_out = (uresult & 1) == 1;
+ uresult >>= 1;
+ result = static_cast<int32_t>(uresult);
+ } else if (shift_amount == 32) {
+ *carry_out = (result < 0);
+ result = 0;
+ } else {
+ *carry_out = false;
+ result = 0;
+ }
+ break;
+ }
+
+ case ROR: {
+ if (shift_amount == 0) {
+ *carry_out = c_flag_;
+ } else {
+ uint32_t left = static_cast<uint32_t>(result) >> shift_amount;
+ uint32_t right = static_cast<uint32_t>(result) << (32 - shift_amount);
+ result = right | left;
+ *carry_out = (static_cast<uint32_t>(result) >> 31) != 0;
+ }
+ break;
+ }
+
+ default: {
+ UNREACHABLE();
+ break;
+ }
+ }
+ }
+ return result;
+}
+
+// Addressing Mode 1 - Data-processing operands:
+// Get the value based on the shifter_operand with immediate.
+int32_t Simulator::GetImm(Instruction* instr, bool* carry_out) {
+ int rotate = instr->RotateValue() * 2;
+ int immed8 = instr->Immed8Value();
+ int imm = base::bits::RotateRight32(immed8, rotate);
+ *carry_out = (rotate == 0) ? c_flag_ : (imm < 0);
+ return imm;
+}
+
+static int count_bits(int bit_vector) {
+ int count = 0;
+ while (bit_vector != 0) {
+ if ((bit_vector & 1) != 0) {
+ count++;
+ }
+ bit_vector >>= 1;
+ }
+ return count;
+}
+
+int32_t Simulator::ProcessPU(Instruction* instr, int num_regs, int reg_size,
+ intptr_t* start_address, intptr_t* end_address) {
+ int rn = instr->RnValue();
+ int32_t rn_val = get_register(rn);
+ switch (instr->PUField()) {
+ case da_x: {
+ UNIMPLEMENTED();
+ break;
+ }
+ case ia_x: {
+ *start_address = rn_val;
+ *end_address = rn_val + (num_regs * reg_size) - reg_size;
+ rn_val = rn_val + (num_regs * reg_size);
+ break;
+ }
+ case db_x: {
+ *start_address = rn_val - (num_regs * reg_size);
+ *end_address = rn_val - reg_size;
+ rn_val = *start_address;
+ break;
+ }
+ case ib_x: {
+ *start_address = rn_val + reg_size;
+ *end_address = rn_val + (num_regs * reg_size);
+ rn_val = *end_address;
+ break;
+ }
+ default: {
+ UNREACHABLE();
+ }
+ }
+ return rn_val;
+}
+
+// Addressing Mode 4 - Load and Store Multiple
+void Simulator::HandleRList(Instruction* instr, bool load) {
+ int rlist = instr->RlistValue();
+ int num_regs = count_bits(rlist);
+
+ intptr_t start_address = 0;
+ intptr_t end_address = 0;
+ int32_t rn_val =
+ ProcessPU(instr, num_regs, kPointerSize, &start_address, &end_address);
+
+ intptr_t* address = reinterpret_cast<intptr_t*>(start_address);
+ // Catch null pointers a little earlier.
+ DCHECK(start_address > 8191 || start_address < 0);
+ int reg = 0;
+ while (rlist != 0) {
+ if ((rlist & 1) != 0) {
+ if (load) {
+ set_register(reg, *address);
+ } else {
+ *address = get_register(reg);
+ }
+ address += 1;
+ }
+ reg++;
+ rlist >>= 1;
+ }
+ DCHECK(end_address == ((intptr_t)address) - 4);
+ if (instr->HasW()) {
+ set_register(instr->RnValue(), rn_val);
+ }
+}
+
+// Addressing Mode 6 - Load and Store Multiple Coprocessor registers.
+void Simulator::HandleVList(Instruction* instr) {
+ VFPRegPrecision precision =
+ (instr->SzValue() == 0) ? kSinglePrecision : kDoublePrecision;
+ int operand_size = (precision == kSinglePrecision) ? 4 : 8;
+
+ bool load = (instr->VLValue() == 0x1);
+
+ int vd;
+ int num_regs;
+ vd = instr->VFPDRegValue(precision);
+ if (precision == kSinglePrecision) {
+ num_regs = instr->Immed8Value();
+ } else {
+ num_regs = instr->Immed8Value() / 2;
+ }
+
+ intptr_t start_address = 0;
+ intptr_t end_address = 0;
+ int32_t rn_val =
+ ProcessPU(instr, num_regs, operand_size, &start_address, &end_address);
+
+ intptr_t* address = reinterpret_cast<intptr_t*>(start_address);
+ for (int reg = vd; reg < vd + num_regs; reg++) {
+ if (precision == kSinglePrecision) {
+ if (load) {
+ set_s_register_from_sinteger(reg,
+ ReadW(reinterpret_cast<int32_t>(address)));
+ } else {
+ WriteW(reinterpret_cast<int32_t>(address),
+ get_sinteger_from_s_register(reg));
+ }
+ address += 1;
+ } else {
+ if (load) {
+ int32_t data[] = {ReadW(reinterpret_cast<int32_t>(address)),
+ ReadW(reinterpret_cast<int32_t>(address + 1))};
+ set_d_register(reg, reinterpret_cast<uint32_t*>(data));
+ } else {
+ uint32_t data[2];
+ get_d_register(reg, data);
+ WriteW(reinterpret_cast<int32_t>(address), data[0]);
+ WriteW(reinterpret_cast<int32_t>(address + 1), data[1]);
+ }
+ address += 2;
+ }
+ }
+ DCHECK(reinterpret_cast<intptr_t>(address) - operand_size == end_address);
+ if (instr->HasW()) {
+ set_register(instr->RnValue(), rn_val);
+ }
+}
+
+// Calls into the V8 runtime are based on this very simple interface.
+// Note: To be able to return two values from some calls the code in runtime.cc
+// uses the ObjectPair which is essentially two 32-bit values stuffed into a
+// 64-bit value. With the code below we assume that all runtime calls return
+// 64 bits of result. If they don't, the r1 result register contains a bogus
+// value, which is fine because it is caller-saved.
+using SimulatorRuntimeCall = int64_t (*)(int32_t arg0, int32_t arg1,
+ int32_t arg2, int32_t arg3,
+ int32_t arg4, int32_t arg5,
+ int32_t arg6, int32_t arg7,
+ int32_t arg8);
+
+// These prototypes handle the four types of FP calls.
+using SimulatorRuntimeCompareCall = int64_t (*)(double darg0, double darg1);
+using SimulatorRuntimeFPFPCall = double (*)(double darg0, double darg1);
+using SimulatorRuntimeFPCall = double (*)(double darg0);
+using SimulatorRuntimeFPIntCall = double (*)(double darg0, int32_t arg0);
+
+// This signature supports direct call in to API function native callback
+// (refer to InvocationCallback in v8.h).
+using SimulatorRuntimeDirectApiCall = void (*)(int32_t arg0);
+using SimulatorRuntimeProfilingApiCall = void (*)(int32_t arg0, void* arg1);
+
+// This signature supports direct call to accessor getter callback.
+using SimulatorRuntimeDirectGetterCall = void (*)(int32_t arg0, int32_t arg1);
+using SimulatorRuntimeProfilingGetterCall = void (*)(int32_t arg0, int32_t arg1,
+ void* arg2);
+
+// Software interrupt instructions are used by the simulator to call into the
+// C-based V8 runtime.
+void Simulator::SoftwareInterrupt(Instruction* instr) {
+ int svc = instr->SvcValue();
+ switch (svc) {
+ case kCallRtRedirected: {
+ // Check if stack is aligned. Error if not aligned is reported below to
+ // include information on the function called.
+ bool stack_aligned =
+ (get_register(sp) & (::v8::internal::FLAG_sim_stack_alignment - 1)) ==
+ 0;
+ Redirection* redirection = Redirection::FromInstruction(instr);
+ int32_t arg0 = get_register(r0);
+ int32_t arg1 = get_register(r1);
+ int32_t arg2 = get_register(r2);
+ int32_t arg3 = get_register(r3);
+ int32_t* stack_pointer = reinterpret_cast<int32_t*>(get_register(sp));
+ int32_t arg4 = stack_pointer[0];
+ int32_t arg5 = stack_pointer[1];
+ int32_t arg6 = stack_pointer[2];
+ int32_t arg7 = stack_pointer[3];
+ int32_t arg8 = stack_pointer[4];
+ STATIC_ASSERT(kMaxCParameters == 9);
+
+ bool fp_call =
+ (redirection->type() == ExternalReference::BUILTIN_FP_FP_CALL) ||
+ (redirection->type() == ExternalReference::BUILTIN_COMPARE_CALL) ||
+ (redirection->type() == ExternalReference::BUILTIN_FP_CALL) ||
+ (redirection->type() == ExternalReference::BUILTIN_FP_INT_CALL);
+ // This is dodgy but it works because the C entry stubs are never moved.
+ // See comment in codegen-arm.cc and bug 1242173.
+ int32_t saved_lr = get_register(lr);
+ intptr_t external =
+ reinterpret_cast<intptr_t>(redirection->external_function());
+ if (fp_call) {
+ double dval0, dval1; // one or two double parameters
+ int32_t ival; // zero or one integer parameters
+ int64_t iresult = 0; // integer return value
+ double dresult = 0; // double return value
+ GetFpArgs(&dval0, &dval1, &ival);
+ if (::v8::internal::FLAG_trace_sim || !stack_aligned) {
+ SimulatorRuntimeCall generic_target =
+ reinterpret_cast<SimulatorRuntimeCall>(external);
+ switch (redirection->type()) {
+ case ExternalReference::BUILTIN_FP_FP_CALL:
+ case ExternalReference::BUILTIN_COMPARE_CALL:
+ PrintF("Call to host function at %p with args %f, %f",
+ reinterpret_cast<void*>(FUNCTION_ADDR(generic_target)),
+ dval0, dval1);
+ break;
+ case ExternalReference::BUILTIN_FP_CALL:
+ PrintF("Call to host function at %p with arg %f",
+ reinterpret_cast<void*>(FUNCTION_ADDR(generic_target)),
+ dval0);
+ break;
+ case ExternalReference::BUILTIN_FP_INT_CALL:
+ PrintF("Call to host function at %p with args %f, %d",
+ reinterpret_cast<void*>(FUNCTION_ADDR(generic_target)),
+ dval0, ival);
+ break;
+ default:
+ UNREACHABLE();
+ break;
+ }
+ if (!stack_aligned) {
+ PrintF(" with unaligned stack %08x\n", get_register(sp));
+ }
+ PrintF("\n");
+ }
+ CHECK(stack_aligned);
+ switch (redirection->type()) {
+ case ExternalReference::BUILTIN_COMPARE_CALL: {
+ SimulatorRuntimeCompareCall target =
+ reinterpret_cast<SimulatorRuntimeCompareCall>(external);
+ iresult = target(dval0, dval1);
+ set_register(r0, static_cast<int32_t>(iresult));
+ set_register(r1, static_cast<int32_t>(iresult >> 32));
+ break;
+ }
+ case ExternalReference::BUILTIN_FP_FP_CALL: {
+ SimulatorRuntimeFPFPCall target =
+ reinterpret_cast<SimulatorRuntimeFPFPCall>(external);
+ dresult = target(dval0, dval1);
+ SetFpResult(dresult);
+ break;
+ }
+ case ExternalReference::BUILTIN_FP_CALL: {
+ SimulatorRuntimeFPCall target =
+ reinterpret_cast<SimulatorRuntimeFPCall>(external);
+ dresult = target(dval0);
+ SetFpResult(dresult);
+ break;
+ }
+ case ExternalReference::BUILTIN_FP_INT_CALL: {
+ SimulatorRuntimeFPIntCall target =
+ reinterpret_cast<SimulatorRuntimeFPIntCall>(external);
+ dresult = target(dval0, ival);
+ SetFpResult(dresult);
+ break;
+ }
+ default:
+ UNREACHABLE();
+ break;
+ }
+ if (::v8::internal::FLAG_trace_sim || !stack_aligned) {
+ switch (redirection->type()) {
+ case ExternalReference::BUILTIN_COMPARE_CALL:
+ PrintF("Returned %08x\n", static_cast<int32_t>(iresult));
+ break;
+ case ExternalReference::BUILTIN_FP_FP_CALL:
+ case ExternalReference::BUILTIN_FP_CALL:
+ case ExternalReference::BUILTIN_FP_INT_CALL:
+ PrintF("Returned %f\n", dresult);
+ break;
+ default:
+ UNREACHABLE();
+ break;
+ }
+ }
+ } else if (redirection->type() == ExternalReference::DIRECT_API_CALL) {
+ if (::v8::internal::FLAG_trace_sim || !stack_aligned) {
+ PrintF("Call to host function at %p args %08x",
+ reinterpret_cast<void*>(external), arg0);
+ if (!stack_aligned) {
+ PrintF(" with unaligned stack %08x\n", get_register(sp));
+ }
+ PrintF("\n");
+ }
+ CHECK(stack_aligned);
+ SimulatorRuntimeDirectApiCall target =
+ reinterpret_cast<SimulatorRuntimeDirectApiCall>(external);
+ target(arg0);
+ } else if (redirection->type() == ExternalReference::PROFILING_API_CALL) {
+ if (::v8::internal::FLAG_trace_sim || !stack_aligned) {
+ PrintF("Call to host function at %p args %08x %08x",
+ reinterpret_cast<void*>(external), arg0, arg1);
+ if (!stack_aligned) {
+ PrintF(" with unaligned stack %08x\n", get_register(sp));
+ }
+ PrintF("\n");
+ }
+ CHECK(stack_aligned);
+ SimulatorRuntimeProfilingApiCall target =
+ reinterpret_cast<SimulatorRuntimeProfilingApiCall>(external);
+ target(arg0, Redirection::ReverseRedirection(arg1));
+ } else if (redirection->type() == ExternalReference::DIRECT_GETTER_CALL) {
+ if (::v8::internal::FLAG_trace_sim || !stack_aligned) {
+ PrintF("Call to host function at %p args %08x %08x",
+ reinterpret_cast<void*>(external), arg0, arg1);
+ if (!stack_aligned) {
+ PrintF(" with unaligned stack %08x\n", get_register(sp));
+ }
+ PrintF("\n");
+ }
+ CHECK(stack_aligned);
+ SimulatorRuntimeDirectGetterCall target =
+ reinterpret_cast<SimulatorRuntimeDirectGetterCall>(external);
+ target(arg0, arg1);
+ } else if (redirection->type() ==
+ ExternalReference::PROFILING_GETTER_CALL) {
+ if (::v8::internal::FLAG_trace_sim || !stack_aligned) {
+ PrintF("Call to host function at %p args %08x %08x %08x",
+ reinterpret_cast<void*>(external), arg0, arg1, arg2);
+ if (!stack_aligned) {
+ PrintF(" with unaligned stack %08x\n", get_register(sp));
+ }
+ PrintF("\n");
+ }
+ CHECK(stack_aligned);
+ SimulatorRuntimeProfilingGetterCall target =
+ reinterpret_cast<SimulatorRuntimeProfilingGetterCall>(external);
+ target(arg0, arg1, Redirection::ReverseRedirection(arg2));
+ } else {
+ // builtin call.
+ DCHECK(redirection->type() == ExternalReference::BUILTIN_CALL ||
+ redirection->type() == ExternalReference::BUILTIN_CALL_PAIR);
+ SimulatorRuntimeCall target =
+ reinterpret_cast<SimulatorRuntimeCall>(external);
+ if (::v8::internal::FLAG_trace_sim || !stack_aligned) {
+ PrintF(
+ "Call to host function at %p "
+ "args %08x, %08x, %08x, %08x, %08x, %08x, %08x, %08x, %08x",
+ reinterpret_cast<void*>(FUNCTION_ADDR(target)), arg0, arg1, arg2,
+ arg3, arg4, arg5, arg6, arg7, arg8);
+ if (!stack_aligned) {
+ PrintF(" with unaligned stack %08x\n", get_register(sp));
+ }
+ PrintF("\n");
+ }
+ CHECK(stack_aligned);
+ int64_t result =
+ target(arg0, arg1, arg2, arg3, arg4, arg5, arg6, arg7, arg8);
+ int32_t lo_res = static_cast<int32_t>(result);
+ int32_t hi_res = static_cast<int32_t>(result >> 32);
+ if (::v8::internal::FLAG_trace_sim) {
+ PrintF("Returned %08x\n", lo_res);
+ }
+ set_register(r0, lo_res);
+ set_register(r1, hi_res);
+ }
+ set_register(lr, saved_lr);
+ set_pc(get_register(lr));
+ break;
+ }
+ case kBreakpoint: {
+ ArmDebugger dbg(this);
+ dbg.Debug();
+ break;
+ }
+ // stop uses all codes greater than 1 << 23.
+ default: {
+ if (svc >= (1 << 23)) {
+ uint32_t code = svc & kStopCodeMask;
+ if (isWatchedStop(code)) {
+ IncreaseStopCounter(code);
+ }
+ // Stop if it is enabled, otherwise go on jumping over the stop
+ // and the message address.
+ if (isEnabledStop(code)) {
+ ArmDebugger dbg(this);
+ dbg.Stop(instr);
+ }
+ } else {
+ // This is not a valid svc code.
+ UNREACHABLE();
+ break;
+ }
+ }
+ }
+}
+
+float Simulator::canonicalizeNaN(float value) {
+ // Default NaN value, see "NaN handling" in "IEEE 754 standard implementation
+ // choices" of the ARM Reference Manual.
+ constexpr uint32_t kDefaultNaN = 0x7FC00000u;
+ if (FPSCR_default_NaN_mode_ && std::isnan(value)) {
+ value = bit_cast<float>(kDefaultNaN);
+ }
+ return value;
+}
+
+Float32 Simulator::canonicalizeNaN(Float32 value) {
+ // Default NaN value, see "NaN handling" in "IEEE 754 standard implementation
+ // choices" of the ARM Reference Manual.
+ constexpr Float32 kDefaultNaN = Float32::FromBits(0x7FC00000u);
+ return FPSCR_default_NaN_mode_ && value.is_nan() ? kDefaultNaN : value;
+}
+
+double Simulator::canonicalizeNaN(double value) {
+ // Default NaN value, see "NaN handling" in "IEEE 754 standard implementation
+ // choices" of the ARM Reference Manual.
+ constexpr uint64_t kDefaultNaN = uint64_t{0x7FF8000000000000};
+ if (FPSCR_default_NaN_mode_ && std::isnan(value)) {
+ value = bit_cast<double>(kDefaultNaN);
+ }
+ return value;
+}
+
+Float64 Simulator::canonicalizeNaN(Float64 value) {
+ // Default NaN value, see "NaN handling" in "IEEE 754 standard implementation
+ // choices" of the ARM Reference Manual.
+ constexpr Float64 kDefaultNaN =
+ Float64::FromBits(uint64_t{0x7FF8000000000000});
+ return FPSCR_default_NaN_mode_ && value.is_nan() ? kDefaultNaN : value;
+}
+
+// Stop helper functions.
+bool Simulator::isStopInstruction(Instruction* instr) {
+ return (instr->Bits(27, 24) == 0xF) && (instr->SvcValue() >= kStopCode);
+}
+
+bool Simulator::isWatchedStop(uint32_t code) {
+ DCHECK_LE(code, kMaxStopCode);
+ return code < kNumOfWatchedStops;
+}
+
+bool Simulator::isEnabledStop(uint32_t code) {
+ DCHECK_LE(code, kMaxStopCode);
+ // Unwatched stops are always enabled.
+ return !isWatchedStop(code) ||
+ !(watched_stops_[code].count & kStopDisabledBit);
+}
+
+void Simulator::EnableStop(uint32_t code) {
+ DCHECK(isWatchedStop(code));
+ if (!isEnabledStop(code)) {
+ watched_stops_[code].count &= ~kStopDisabledBit;
+ }
+}
+
+void Simulator::DisableStop(uint32_t code) {
+ DCHECK(isWatchedStop(code));
+ if (isEnabledStop(code)) {
+ watched_stops_[code].count |= kStopDisabledBit;
+ }
+}
+
+void Simulator::IncreaseStopCounter(uint32_t code) {
+ DCHECK_LE(code, kMaxStopCode);
+ DCHECK(isWatchedStop(code));
+ if ((watched_stops_[code].count & ~(1 << 31)) == 0x7FFFFFFF) {
+ PrintF(
+ "Stop counter for code %i has overflowed.\n"
+ "Enabling this code and reseting the counter to 0.\n",
+ code);
+ watched_stops_[code].count = 0;
+ EnableStop(code);
+ } else {
+ watched_stops_[code].count++;
+ }
+}
+
+// Print a stop status.
+void Simulator::PrintStopInfo(uint32_t code) {
+ DCHECK_LE(code, kMaxStopCode);
+ if (!isWatchedStop(code)) {
+ PrintF("Stop not watched.");
+ } else {
+ const char* state = isEnabledStop(code) ? "Enabled" : "Disabled";
+ int32_t count = watched_stops_[code].count & ~kStopDisabledBit;
+ // Don't print the state of unused breakpoints.
+ if (count != 0) {
+ if (watched_stops_[code].desc) {
+ PrintF("stop %i - 0x%x: \t%s, \tcounter = %i, \t%s\n", code, code,
+ state, count, watched_stops_[code].desc);
+ } else {
+ PrintF("stop %i - 0x%x: \t%s, \tcounter = %i\n", code, code, state,
+ count);
+ }
+ }
+ }
+}
+
+// Handle execution based on instruction types.
+
+// Instruction types 0 and 1 are both rolled into one function because they
+// only differ in the handling of the shifter_operand.
+void Simulator::DecodeType01(Instruction* instr) {
+ int type = instr->TypeValue();
+ if ((type == 0) && instr->IsSpecialType0()) {
+ // multiply instruction or extra loads and stores
+ if (instr->Bits(7, 4) == 9) {
+ if (instr->Bit(24) == 0) {
+ // Raw field decoding here. Multiply instructions have their Rd in
+ // funny places.
+ int rn = instr->RnValue();
+ int rm = instr->RmValue();
+ int rs = instr->RsValue();
+ int32_t rs_val = get_register(rs);
+ int32_t rm_val = get_register(rm);
+ if (instr->Bit(23) == 0) {
+ if (instr->Bit(21) == 0) {
+ // The MUL instruction description (A 4.1.33) refers to Rd as being
+ // the destination for the operation, but it confusingly uses the
+ // Rn field to encode it.
+ // Format(instr, "mul'cond's 'rn, 'rm, 'rs");
+ int rd = rn; // Remap the rn field to the Rd register.
+ int32_t alu_out = rm_val * rs_val;
+ set_register(rd, alu_out);
+ if (instr->HasS()) {
+ SetNZFlags(alu_out);
+ }
+ } else {
+ int rd = instr->RdValue();
+ int32_t acc_value = get_register(rd);
+ if (instr->Bit(22) == 0) {
+ // The MLA instruction description (A 4.1.28) refers to the order
+ // of registers as "Rd, Rm, Rs, Rn". But confusingly it uses the
+ // Rn field to encode the Rd register and the Rd field to encode
+ // the Rn register.
+ // Format(instr, "mla'cond's 'rn, 'rm, 'rs, 'rd");
+ int32_t mul_out = rm_val * rs_val;
+ int32_t result = acc_value + mul_out;
+ set_register(rn, result);
+ } else {
+ // Format(instr, "mls'cond's 'rn, 'rm, 'rs, 'rd");
+ int32_t mul_out = rm_val * rs_val;
+ int32_t result = acc_value - mul_out;
+ set_register(rn, result);
+ }
+ }
+ } else {
+ // The signed/long multiply instructions use the terms RdHi and RdLo
+ // when referring to the target registers. They are mapped to the Rn
+ // and Rd fields as follows:
+ // RdLo == Rd
+ // RdHi == Rn (This is confusingly stored in variable rd here
+ // because the mul instruction from above uses the
+ // Rn field to encode the Rd register. Good luck figuring
+ // this out without reading the ARM instruction manual
+ // at a very detailed level.)
+ // Format(instr, "'um'al'cond's 'rd, 'rn, 'rs, 'rm");
+ int rd_hi = rn; // Remap the rn field to the RdHi register.
+ int rd_lo = instr->RdValue();
+ int32_t hi_res = 0;
+ int32_t lo_res = 0;
+ if (instr->Bit(22) == 1) {
+ int64_t left_op = static_cast<int32_t>(rm_val);
+ int64_t right_op = static_cast<int32_t>(rs_val);
+ uint64_t result = left_op * right_op;
+ hi_res = static_cast<int32_t>(result >> 32);
+ lo_res = static_cast<int32_t>(result & 0xFFFFFFFF);
+ } else {
+ // unsigned multiply
+ uint64_t left_op = static_cast<uint32_t>(rm_val);
+ uint64_t right_op = static_cast<uint32_t>(rs_val);
+ uint64_t result = left_op * right_op;
+ hi_res = static_cast<int32_t>(result >> 32);
+ lo_res = static_cast<int32_t>(result & 0xFFFFFFFF);
+ }
+ set_register(rd_lo, lo_res);
+ set_register(rd_hi, hi_res);
+ if (instr->HasS()) {
+ UNIMPLEMENTED();
+ }
+ }
+ } else {
+ if (instr->Bits(24, 23) == 3) {
+ if (instr->Bit(20) == 1) {
+ // ldrex
+ int rt = instr->RtValue();
+ int rn = instr->RnValue();
+ int32_t addr = get_register(rn);
+ switch (instr->Bits(22, 21)) {
+ case 0: {
+ // Format(instr, "ldrex'cond 'rt, ['rn]");
+ int value = ReadExW(addr);
+ set_register(rt, value);
+ break;
+ }
+ case 1: {
+ // Format(instr, "ldrexd'cond 'rt, ['rn]");
+ int* rn_data = ReadExDW(addr);
+ set_dw_register(rt, rn_data);
+ break;
+ }
+ case 2: {
+ // Format(instr, "ldrexb'cond 'rt, ['rn]");
+ uint8_t value = ReadExBU(addr);
+ set_register(rt, value);
+ break;
+ }
+ case 3: {
+ // Format(instr, "ldrexh'cond 'rt, ['rn]");
+ uint16_t value = ReadExHU(addr);
+ set_register(rt, value);
+ break;
+ }
+ default:
+ UNREACHABLE();
+ break;
+ }
+ } else {
+ // The instruction is documented as strex rd, rt, [rn], but the
+ // "rt" register is using the rm bits.
+ int rd = instr->RdValue();
+ int rt = instr->RmValue();
+ int rn = instr->RnValue();
+ DCHECK_NE(rd, rn);
+ DCHECK_NE(rd, rt);
+ int32_t addr = get_register(rn);
+ switch (instr->Bits(22, 21)) {
+ case 0: {
+ // Format(instr, "strex'cond 'rd, 'rm, ['rn]");
+ int value = get_register(rt);
+ int status = WriteExW(addr, value);
+ set_register(rd, status);
+ break;
+ }
+ case 1: {
+ // Format(instr, "strexd'cond 'rd, 'rm, ['rn]");
+ DCHECK_EQ(rt % 2, 0);
+ int32_t value1 = get_register(rt);
+ int32_t value2 = get_register(rt + 1);
+ int status = WriteExDW(addr, value1, value2);
+ set_register(rd, status);
+ break;
+ }
+ case 2: {
+ // Format(instr, "strexb'cond 'rd, 'rm, ['rn]");
+ uint8_t value = get_register(rt);
+ int status = WriteExB(addr, value);
+ set_register(rd, status);
+ break;
+ }
+ case 3: {
+ // Format(instr, "strexh'cond 'rd, 'rm, ['rn]");
+ uint16_t value = get_register(rt);
+ int status = WriteExH(addr, value);
+ set_register(rd, status);
+ break;
+ }
+ default:
+ UNREACHABLE();
+ break;
+ }
+ }
+ } else {
+ UNIMPLEMENTED(); // Not used by V8.
+ }
+ }
+ } else {
+ // extra load/store instructions
+ int rd = instr->RdValue();
+ int rn = instr->RnValue();
+ int32_t rn_val = get_register(rn);
+ int32_t addr = 0;
+ if (instr->Bit(22) == 0) {
+ int rm = instr->RmValue();
+ int32_t rm_val = get_register(rm);
+ switch (instr->PUField()) {
+ case da_x: {
+ // Format(instr, "'memop'cond'sign'h 'rd, ['rn], -'rm");
+ DCHECK(!instr->HasW());
+ addr = rn_val;
+ rn_val -= rm_val;
+ set_register(rn, rn_val);
+ break;
+ }
+ case ia_x: {
+ // Format(instr, "'memop'cond'sign'h 'rd, ['rn], +'rm");
+ DCHECK(!instr->HasW());
+ addr = rn_val;
+ rn_val += rm_val;
+ set_register(rn, rn_val);
+ break;
+ }
+ case db_x: {
+ // Format(instr, "'memop'cond'sign'h 'rd, ['rn, -'rm]'w");
+ rn_val -= rm_val;
+ addr = rn_val;
+ if (instr->HasW()) {
+ set_register(rn, rn_val);
+ }
+ break;
+ }
+ case ib_x: {
+ // Format(instr, "'memop'cond'sign'h 'rd, ['rn, +'rm]'w");
+ rn_val += rm_val;
+ addr = rn_val;
+ if (instr->HasW()) {
+ set_register(rn, rn_val);
+ }
+ break;
+ }
+ default: {
+ // The PU field is a 2-bit field.
+ UNREACHABLE();
+ break;
+ }
+ }
+ } else {
+ int32_t imm_val = (instr->ImmedHValue() << 4) | instr->ImmedLValue();
+ switch (instr->PUField()) {
+ case da_x: {
+ // Format(instr, "'memop'cond'sign'h 'rd, ['rn], #-'off8");
+ DCHECK(!instr->HasW());
+ addr = rn_val;
+ rn_val -= imm_val;
+ set_register(rn, rn_val);
+ break;
+ }
+ case ia_x: {
+ // Format(instr, "'memop'cond'sign'h 'rd, ['rn], #+'off8");
+ DCHECK(!instr->HasW());
+ addr = rn_val;
+ rn_val += imm_val;
+ set_register(rn, rn_val);
+ break;
+ }
+ case db_x: {
+ // Format(instr, "'memop'cond'sign'h 'rd, ['rn, #-'off8]'w");
+ rn_val -= imm_val;
+ addr = rn_val;
+ if (instr->HasW()) {
+ set_register(rn, rn_val);
+ }
+ break;
+ }
+ case ib_x: {
+ // Format(instr, "'memop'cond'sign'h 'rd, ['rn, #+'off8]'w");
+ rn_val += imm_val;
+ addr = rn_val;
+ if (instr->HasW()) {
+ set_register(rn, rn_val);
+ }
+ break;
+ }
+ default: {
+ // The PU field is a 2-bit field.
+ UNREACHABLE();
+ break;
+ }
+ }
+ }
+ if (((instr->Bits(7, 4) & 0xD) == 0xD) && (instr->Bit(20) == 0)) {
+ DCHECK_EQ(rd % 2, 0);
+ if (instr->HasH()) {
+ // The strd instruction.
+ int32_t value1 = get_register(rd);
+ int32_t value2 = get_register(rd + 1);
+ WriteDW(addr, value1, value2);
+ } else {
+ // The ldrd instruction.
+ int* rn_data = ReadDW(addr);
+ set_dw_register(rd, rn_data);
+ }
+ } else if (instr->HasH()) {
+ if (instr->HasSign()) {
+ if (instr->HasL()) {
+ int16_t val = ReadH(addr);
+ set_register(rd, val);
+ } else {
+ int16_t val = get_register(rd);
+ WriteH(addr, val);
+ }
+ } else {
+ if (instr->HasL()) {
+ uint16_t val = ReadHU(addr);
+ set_register(rd, val);
+ } else {
+ uint16_t val = get_register(rd);
+ WriteH(addr, val);
+ }
+ }
+ } else {
+ // signed byte loads
+ DCHECK(instr->HasSign());
+ DCHECK(instr->HasL());
+ int8_t val = ReadB(addr);
+ set_register(rd, val);
+ }
+ return;
+ }
+ } else if ((type == 0) && instr->IsMiscType0()) {
+ if ((instr->Bits(27, 23) == 2) && (instr->Bits(21, 20) == 2) &&
+ (instr->Bits(15, 4) == 0xF00)) {
+ // MSR
+ int rm = instr->RmValue();
+ DCHECK_NE(pc, rm); // UNPREDICTABLE
+ SRegisterFieldMask sreg_and_mask =
+ instr->BitField(22, 22) | instr->BitField(19, 16);
+ SetSpecialRegister(sreg_and_mask, get_register(rm));
+ } else if ((instr->Bits(27, 23) == 2) && (instr->Bits(21, 20) == 0) &&
+ (instr->Bits(11, 0) == 0)) {
+ // MRS
+ int rd = instr->RdValue();
+ DCHECK_NE(pc, rd); // UNPREDICTABLE
+ SRegister sreg = static_cast<SRegister>(instr->BitField(22, 22));
+ set_register(rd, GetFromSpecialRegister(sreg));
+ } else if (instr->Bits(22, 21) == 1) {
+ int rm = instr->RmValue();
+ switch (instr->BitField(7, 4)) {
+ case BX:
+ set_pc(get_register(rm));
+ break;
+ case BLX: {
+ uint32_t old_pc = get_pc();
+ set_pc(get_register(rm));
+ set_register(lr, old_pc + kInstrSize);
+ break;
+ }
+ case BKPT: {
+ ArmDebugger dbg(this);
+ PrintF("Simulator hit BKPT.\n");
+ dbg.Debug();
+ break;
+ }
+ default:
+ UNIMPLEMENTED();
+ }
+ } else if (instr->Bits(22, 21) == 3) {
+ int rm = instr->RmValue();
+ int rd = instr->RdValue();
+ switch (instr->BitField(7, 4)) {
+ case CLZ: {
+ uint32_t bits = get_register(rm);
+ int leading_zeros = 0;
+ if (bits == 0) {
+ leading_zeros = 32;
+ } else {
+ while ((bits & 0x80000000u) == 0) {
+ bits <<= 1;
+ leading_zeros++;
+ }
+ }
+ set_register(rd, leading_zeros);
+ break;
+ }
+ default:
+ UNIMPLEMENTED();
+ }
+ } else {
+ PrintF("%08x\n", instr->InstructionBits());
+ UNIMPLEMENTED();
+ }
+ } else if ((type == 1) && instr->IsNopLikeType1()) {
+ if (instr->BitField(7, 0) == 0) {
+ // NOP.
+ } else if (instr->BitField(7, 0) == 20) {
+ // CSDB.
+ } else {
+ PrintF("%08x\n", instr->InstructionBits());
+ UNIMPLEMENTED();
+ }
+ } else {
+ int rd = instr->RdValue();
+ int rn = instr->RnValue();
+ int32_t rn_val = get_register(rn);
+ int32_t shifter_operand = 0;
+ bool shifter_carry_out = 0;
+ if (type == 0) {
+ shifter_operand = GetShiftRm(instr, &shifter_carry_out);
+ } else {
+ DCHECK_EQ(instr->TypeValue(), 1);
+ shifter_operand = GetImm(instr, &shifter_carry_out);
+ }
+ int32_t alu_out;
+
+ switch (instr->OpcodeField()) {
+ case AND: {
+ // Format(instr, "and'cond's 'rd, 'rn, 'shift_rm");
+ // Format(instr, "and'cond's 'rd, 'rn, 'imm");
+ alu_out = rn_val & shifter_operand;
+ set_register(rd, alu_out);
+ if (instr->HasS()) {
+ SetNZFlags(alu_out);
+ SetCFlag(shifter_carry_out);
+ }
+ break;
+ }
+
+ case EOR: {
+ // Format(instr, "eor'cond's 'rd, 'rn, 'shift_rm");
+ // Format(instr, "eor'cond's 'rd, 'rn, 'imm");
+ alu_out = rn_val ^ shifter_operand;
+ set_register(rd, alu_out);
+ if (instr->HasS()) {
+ SetNZFlags(alu_out);
+ SetCFlag(shifter_carry_out);
+ }
+ break;
+ }
+
+ case SUB: {
+ // Format(instr, "sub'cond's 'rd, 'rn, 'shift_rm");
+ // Format(instr, "sub'cond's 'rd, 'rn, 'imm");
+ alu_out = rn_val - shifter_operand;
+ set_register(rd, alu_out);
+ if (instr->HasS()) {
+ SetNZFlags(alu_out);
+ SetCFlag(!BorrowFrom(rn_val, shifter_operand));
+ SetVFlag(OverflowFrom(alu_out, rn_val, shifter_operand, false));
+ }
+ break;
+ }
+
+ case RSB: {
+ // Format(instr, "rsb'cond's 'rd, 'rn, 'shift_rm");
+ // Format(instr, "rsb'cond's 'rd, 'rn, 'imm");
+ alu_out = shifter_operand - rn_val;
+ set_register(rd, alu_out);
+ if (instr->HasS()) {
+ SetNZFlags(alu_out);
+ SetCFlag(!BorrowFrom(shifter_operand, rn_val));
+ SetVFlag(OverflowFrom(alu_out, shifter_operand, rn_val, false));
+ }
+ break;
+ }
+
+ case ADD: {
+ // Format(instr, "add'cond's 'rd, 'rn, 'shift_rm");
+ // Format(instr, "add'cond's 'rd, 'rn, 'imm");
+ alu_out = rn_val + shifter_operand;
+ set_register(rd, alu_out);
+ if (instr->HasS()) {
+ SetNZFlags(alu_out);
+ SetCFlag(CarryFrom(rn_val, shifter_operand));
+ SetVFlag(OverflowFrom(alu_out, rn_val, shifter_operand, true));
+ }
+ break;
+ }
+
+ case ADC: {
+ // Format(instr, "adc'cond's 'rd, 'rn, 'shift_rm");
+ // Format(instr, "adc'cond's 'rd, 'rn, 'imm");
+ alu_out = rn_val + shifter_operand + GetCarry();
+ set_register(rd, alu_out);
+ if (instr->HasS()) {
+ SetNZFlags(alu_out);
+ SetCFlag(CarryFrom(rn_val, shifter_operand, GetCarry()));
+ SetVFlag(OverflowFrom(alu_out, rn_val, shifter_operand, true));
+ }
+ break;
+ }
+
+ case SBC: {
+ // Format(instr, "sbc'cond's 'rd, 'rn, 'shift_rm");
+ // Format(instr, "sbc'cond's 'rd, 'rn, 'imm");
+ alu_out = (rn_val - shifter_operand) - (GetCarry() ? 0 : 1);
+ set_register(rd, alu_out);
+ if (instr->HasS()) {
+ SetNZFlags(alu_out);
+ SetCFlag(!BorrowFrom(rn_val, shifter_operand, GetCarry()));
+ SetVFlag(OverflowFrom(alu_out, rn_val, shifter_operand, false));
+ }
+ break;
+ }
+
+ case RSC: {
+ Format(instr, "rsc'cond's 'rd, 'rn, 'shift_rm");
+ Format(instr, "rsc'cond's 'rd, 'rn, 'imm");
+ break;
+ }
+
+ case TST: {
+ if (instr->HasS()) {
+ // Format(instr, "tst'cond 'rn, 'shift_rm");
+ // Format(instr, "tst'cond 'rn, 'imm");
+ alu_out = rn_val & shifter_operand;
+ SetNZFlags(alu_out);
+ SetCFlag(shifter_carry_out);
+ } else {
+ // Format(instr, "movw'cond 'rd, 'imm").
+ alu_out = instr->ImmedMovwMovtValue();
+ set_register(rd, alu_out);
+ }
+ break;
+ }
+
+ case TEQ: {
+ if (instr->HasS()) {
+ // Format(instr, "teq'cond 'rn, 'shift_rm");
+ // Format(instr, "teq'cond 'rn, 'imm");
+ alu_out = rn_val ^ shifter_operand;
+ SetNZFlags(alu_out);
+ SetCFlag(shifter_carry_out);
+ } else {
+ // Other instructions matching this pattern are handled in the
+ // miscellaneous instructions part above.
+ UNREACHABLE();
+ }
+ break;
+ }
+
+ case CMP: {
+ if (instr->HasS()) {
+ // Format(instr, "cmp'cond 'rn, 'shift_rm");
+ // Format(instr, "cmp'cond 'rn, 'imm");
+ alu_out = rn_val - shifter_operand;
+ SetNZFlags(alu_out);
+ SetCFlag(!BorrowFrom(rn_val, shifter_operand));
+ SetVFlag(OverflowFrom(alu_out, rn_val, shifter_operand, false));
+ } else {
+ // Format(instr, "movt'cond 'rd, 'imm").
+ alu_out =
+ (get_register(rd) & 0xFFFF) | (instr->ImmedMovwMovtValue() << 16);
+ set_register(rd, alu_out);
+ }
+ break;
+ }
+
+ case CMN: {
+ if (instr->HasS()) {
+ // Format(instr, "cmn'cond 'rn, 'shift_rm");
+ // Format(instr, "cmn'cond 'rn, 'imm");
+ alu_out = rn_val + shifter_operand;
+ SetNZFlags(alu_out);
+ SetCFlag(CarryFrom(rn_val, shifter_operand));
+ SetVFlag(OverflowFrom(alu_out, rn_val, shifter_operand, true));
+ } else {
+ // Other instructions matching this pattern are handled in the
+ // miscellaneous instructions part above.
+ UNREACHABLE();
+ }
+ break;
+ }
+
+ case ORR: {
+ // Format(instr, "orr'cond's 'rd, 'rn, 'shift_rm");
+ // Format(instr, "orr'cond's 'rd, 'rn, 'imm");
+ alu_out = rn_val | shifter_operand;
+ set_register(rd, alu_out);
+ if (instr->HasS()) {
+ SetNZFlags(alu_out);
+ SetCFlag(shifter_carry_out);
+ }
+ break;
+ }
+
+ case MOV: {
+ // Format(instr, "mov'cond's 'rd, 'shift_rm");
+ // Format(instr, "mov'cond's 'rd, 'imm");
+ alu_out = shifter_operand;
+ set_register(rd, alu_out);
+ if (instr->HasS()) {
+ SetNZFlags(alu_out);
+ SetCFlag(shifter_carry_out);
+ }
+ break;
+ }
+
+ case BIC: {
+ // Format(instr, "bic'cond's 'rd, 'rn, 'shift_rm");
+ // Format(instr, "bic'cond's 'rd, 'rn, 'imm");
+ alu_out = rn_val & ~shifter_operand;
+ set_register(rd, alu_out);
+ if (instr->HasS()) {
+ SetNZFlags(alu_out);
+ SetCFlag(shifter_carry_out);
+ }
+ break;
+ }
+
+ case MVN: {
+ // Format(instr, "mvn'cond's 'rd, 'shift_rm");
+ // Format(instr, "mvn'cond's 'rd, 'imm");
+ alu_out = ~shifter_operand;
+ set_register(rd, alu_out);
+ if (instr->HasS()) {
+ SetNZFlags(alu_out);
+ SetCFlag(shifter_carry_out);
+ }
+ break;
+ }
+
+ default: {
+ UNREACHABLE();
+ break;
+ }
+ }
+ }
+}
+
+void Simulator::DecodeType2(Instruction* instr) {
+ int rd = instr->RdValue();
+ int rn = instr->RnValue();
+ int32_t rn_val = get_register(rn);
+ int32_t im_val = instr->Offset12Value();
+ int32_t addr = 0;
+ switch (instr->PUField()) {
+ case da_x: {
+ // Format(instr, "'memop'cond'b 'rd, ['rn], #-'off12");
+ DCHECK(!instr->HasW());
+ addr = rn_val;
+ rn_val -= im_val;
+ set_register(rn, rn_val);
+ break;
+ }
+ case ia_x: {
+ // Format(instr, "'memop'cond'b 'rd, ['rn], #+'off12");
+ DCHECK(!instr->HasW());
+ addr = rn_val;
+ rn_val += im_val;
+ set_register(rn, rn_val);
+ break;
+ }
+ case db_x: {
+ // Format(instr, "'memop'cond'b 'rd, ['rn, #-'off12]'w");
+ rn_val -= im_val;
+ addr = rn_val;
+ if (instr->HasW()) {
+ set_register(rn, rn_val);
+ }
+ break;
+ }
+ case ib_x: {
+ // Format(instr, "'memop'cond'b 'rd, ['rn, #+'off12]'w");
+ rn_val += im_val;
+ addr = rn_val;
+ if (instr->HasW()) {
+ set_register(rn, rn_val);
+ }
+ break;
+ }
+ default: {
+ UNREACHABLE();
+ }
+ }
+ if (instr->HasB()) {
+ if (instr->HasL()) {
+ byte val = ReadBU(addr);
+ set_register(rd, val);
+ } else {
+ byte val = get_register(rd);
+ WriteB(addr, val);
+ }
+ } else {
+ if (instr->HasL()) {
+ set_register(rd, ReadW(addr));
+ } else {
+ WriteW(addr, get_register(rd));
+ }
+ }
+}
+
+void Simulator::DecodeType3(Instruction* instr) {
+ int rd = instr->RdValue();
+ int rn = instr->RnValue();
+ int32_t rn_val = get_register(rn);
+ bool shifter_carry_out = 0;
+ int32_t shifter_operand = GetShiftRm(instr, &shifter_carry_out);
+ int32_t addr = 0;
+ switch (instr->PUField()) {
+ case da_x: {
+ DCHECK(!instr->HasW());
+ Format(instr, "'memop'cond'b 'rd, ['rn], -'shift_rm");
+ UNIMPLEMENTED();
+ break;
+ }
+ case ia_x: {
+ if (instr->Bit(4) == 0) {
+ // Memop.
+ } else {
+ if (instr->Bit(5) == 0) {
+ switch (instr->Bits(22, 21)) {
+ case 0:
+ if (instr->Bit(20) == 0) {
+ if (instr->Bit(6) == 0) {
+ // Pkhbt.
+ uint32_t rn_val = get_register(rn);
+ uint32_t rm_val = get_register(instr->RmValue());
+ int32_t shift = instr->Bits(11, 7);
+ rm_val <<= shift;
+ set_register(rd, (rn_val & 0xFFFF) | (rm_val & 0xFFFF0000U));
+ } else {
+ // Pkhtb.
+ uint32_t rn_val = get_register(rn);
+ int32_t rm_val = get_register(instr->RmValue());
+ int32_t shift = instr->Bits(11, 7);
+ if (shift == 0) {
+ shift = 32;
+ }
+ rm_val >>= shift;
+ set_register(rd, (rn_val & 0xFFFF0000U) | (rm_val & 0xFFFF));
+ }
+ } else {
+ UNIMPLEMENTED();
+ }
+ break;
+ case 1:
+ UNIMPLEMENTED();
+ break;
+ case 2:
+ UNIMPLEMENTED();
+ break;
+ case 3: {
+ // Usat.
+ int32_t sat_pos = instr->Bits(20, 16);
+ int32_t sat_val = (1 << sat_pos) - 1;
+ int32_t shift = instr->Bits(11, 7);
+ int32_t shift_type = instr->Bit(6);
+ int32_t rm_val = get_register(instr->RmValue());
+ if (shift_type == 0) { // LSL
+ rm_val <<= shift;
+ } else { // ASR
+ rm_val >>= shift;
+ }
+ // If saturation occurs, the Q flag should be set in the CPSR.
+ // There is no Q flag yet, and no instruction (MRS) to read the
+ // CPSR directly.
+ if (rm_val > sat_val) {
+ rm_val = sat_val;
+ } else if (rm_val < 0) {
+ rm_val = 0;
+ }
+ set_register(rd, rm_val);
+ break;
+ }
+ }
+ } else {
+ switch (instr->Bits(22, 21)) {
+ case 0:
+ UNIMPLEMENTED();
+ break;
+ case 1:
+ if (instr->Bits(9, 6) == 1) {
+ if (instr->Bit(20) == 0) {
+ if (instr->Bits(19, 16) == 0xF) {
+ // Sxtb.
+ int32_t rm_val = get_register(instr->RmValue());
+ int32_t rotate = instr->Bits(11, 10);
+ switch (rotate) {
+ case 0:
+ break;
+ case 1:
+ rm_val = (rm_val >> 8) | (rm_val << 24);
+ break;
+ case 2:
+ rm_val = (rm_val >> 16) | (rm_val << 16);
+ break;
+ case 3:
+ rm_val = (rm_val >> 24) | (rm_val << 8);
+ break;
+ }
+ set_register(rd, static_cast<int8_t>(rm_val));
+ } else {
+ // Sxtab.
+ int32_t rn_val = get_register(rn);
+ int32_t rm_val = get_register(instr->RmValue());
+ int32_t rotate = instr->Bits(11, 10);
+ switch (rotate) {
+ case 0:
+ break;
+ case 1:
+ rm_val = (rm_val >> 8) | (rm_val << 24);
+ break;
+ case 2:
+ rm_val = (rm_val >> 16) | (rm_val << 16);
+ break;
+ case 3:
+ rm_val = (rm_val >> 24) | (rm_val << 8);
+ break;
+ }
+ set_register(rd, rn_val + static_cast<int8_t>(rm_val));
+ }
+ } else {
+ if (instr->Bits(19, 16) == 0xF) {
+ // Sxth.
+ int32_t rm_val = get_register(instr->RmValue());
+ int32_t rotate = instr->Bits(11, 10);
+ switch (rotate) {
+ case 0:
+ break;
+ case 1:
+ rm_val = (rm_val >> 8) | (rm_val << 24);
+ break;
+ case 2:
+ rm_val = (rm_val >> 16) | (rm_val << 16);
+ break;
+ case 3:
+ rm_val = (rm_val >> 24) | (rm_val << 8);
+ break;
+ }
+ set_register(rd, static_cast<int16_t>(rm_val));
+ } else {
+ // Sxtah.
+ int32_t rn_val = get_register(rn);
+ int32_t rm_val = get_register(instr->RmValue());
+ int32_t rotate = instr->Bits(11, 10);
+ switch (rotate) {
+ case 0:
+ break;
+ case 1:
+ rm_val = (rm_val >> 8) | (rm_val << 24);
+ break;
+ case 2:
+ rm_val = (rm_val >> 16) | (rm_val << 16);
+ break;
+ case 3:
+ rm_val = (rm_val >> 24) | (rm_val << 8);
+ break;
+ }
+ set_register(rd, rn_val + static_cast<int16_t>(rm_val));
+ }
+ }
+ } else if (instr->Bits(27, 16) == 0x6BF &&
+ instr->Bits(11, 4) == 0xF3) {
+ // Rev.
+ uint32_t rm_val = get_register(instr->RmValue());
+ set_register(rd, ByteReverse(rm_val));
+ } else {
+ UNREACHABLE();
+ }
+ break;
+ case 2:
+ if ((instr->Bit(20) == 0) && (instr->Bits(9, 6) == 1)) {
+ if (instr->Bits(19, 16) == 0xF) {
+ // Uxtb16.
+ uint32_t rm_val = get_register(instr->RmValue());
+ int32_t rotate = instr->Bits(11, 10);
+ switch (rotate) {
+ case 0:
+ break;
+ case 1:
+ rm_val = (rm_val >> 8) | (rm_val << 24);
+ break;
+ case 2:
+ rm_val = (rm_val >> 16) | (rm_val << 16);
+ break;
+ case 3:
+ rm_val = (rm_val >> 24) | (rm_val << 8);
+ break;
+ }
+ set_register(rd, (rm_val & 0xFF) | (rm_val & 0xFF0000));
+ } else {
+ UNIMPLEMENTED();
+ }
+ } else {
+ UNIMPLEMENTED();
+ }
+ break;
+ case 3:
+ if ((instr->Bits(9, 6) == 1)) {
+ if (instr->Bit(20) == 0) {
+ if (instr->Bits(19, 16) == 0xF) {
+ // Uxtb.
+ uint32_t rm_val = get_register(instr->RmValue());
+ int32_t rotate = instr->Bits(11, 10);
+ switch (rotate) {
+ case 0:
+ break;
+ case 1:
+ rm_val = (rm_val >> 8) | (rm_val << 24);
+ break;
+ case 2:
+ rm_val = (rm_val >> 16) | (rm_val << 16);
+ break;
+ case 3:
+ rm_val = (rm_val >> 24) | (rm_val << 8);
+ break;
+ }
+ set_register(rd, (rm_val & 0xFF));
+ } else {
+ // Uxtab.
+ uint32_t rn_val = get_register(rn);
+ uint32_t rm_val = get_register(instr->RmValue());
+ int32_t rotate = instr->Bits(11, 10);
+ switch (rotate) {
+ case 0:
+ break;
+ case 1:
+ rm_val = (rm_val >> 8) | (rm_val << 24);
+ break;
+ case 2:
+ rm_val = (rm_val >> 16) | (rm_val << 16);
+ break;
+ case 3:
+ rm_val = (rm_val >> 24) | (rm_val << 8);
+ break;
+ }
+ set_register(rd, rn_val + (rm_val & 0xFF));
+ }
+ } else {
+ if (instr->Bits(19, 16) == 0xF) {
+ // Uxth.
+ uint32_t rm_val = get_register(instr->RmValue());
+ int32_t rotate = instr->Bits(11, 10);
+ switch (rotate) {
+ case 0:
+ break;
+ case 1:
+ rm_val = (rm_val >> 8) | (rm_val << 24);
+ break;
+ case 2:
+ rm_val = (rm_val >> 16) | (rm_val << 16);
+ break;
+ case 3:
+ rm_val = (rm_val >> 24) | (rm_val << 8);
+ break;
+ }
+ set_register(rd, (rm_val & 0xFFFF));
+ } else {
+ // Uxtah.
+ uint32_t rn_val = get_register(rn);
+ uint32_t rm_val = get_register(instr->RmValue());
+ int32_t rotate = instr->Bits(11, 10);
+ switch (rotate) {
+ case 0:
+ break;
+ case 1:
+ rm_val = (rm_val >> 8) | (rm_val << 24);
+ break;
+ case 2:
+ rm_val = (rm_val >> 16) | (rm_val << 16);
+ break;
+ case 3:
+ rm_val = (rm_val >> 24) | (rm_val << 8);
+ break;
+ }
+ set_register(rd, rn_val + (rm_val & 0xFFFF));
+ }
+ }
+ } else {
+ // PU == 0b01, BW == 0b11, Bits(9, 6) != 0b0001
+ if ((instr->Bits(20, 16) == 0x1F) &&
+ (instr->Bits(11, 4) == 0xF3)) {
+ // Rbit.
+ uint32_t rm_val = get_register(instr->RmValue());
+ set_register(rd, base::bits::ReverseBits(rm_val));
+ } else {
+ UNIMPLEMENTED();
+ }
+ }
+ break;
+ }
+ }
+ return;
+ }
+ break;
+ }
+ case db_x: {
+ if (instr->Bits(22, 20) == 0x5) {
+ if (instr->Bits(7, 4) == 0x1) {
+ int rm = instr->RmValue();
+ int32_t rm_val = get_register(rm);
+ int rs = instr->RsValue();
+ int32_t rs_val = get_register(rs);
+ if (instr->Bits(15, 12) == 0xF) {
+ // SMMUL (in V8 notation matching ARM ISA format)
+ // Format(instr, "smmul'cond 'rn, 'rm, 'rs");
+ rn_val = base::bits::SignedMulHigh32(rm_val, rs_val);
+ } else {
+ // SMMLA (in V8 notation matching ARM ISA format)
+ // Format(instr, "smmla'cond 'rn, 'rm, 'rs, 'rd");
+ int rd = instr->RdValue();
+ int32_t rd_val = get_register(rd);
+ rn_val = base::bits::SignedMulHighAndAdd32(rm_val, rs_val, rd_val);
+ }
+ set_register(rn, rn_val);
+ return;
+ }
+ }
+ if (instr->Bits(5, 4) == 0x1) {
+ if ((instr->Bit(22) == 0x0) && (instr->Bit(20) == 0x1)) {
+ // (s/u)div (in V8 notation matching ARM ISA format) rn = rm/rs
+ // Format(instr, "'(s/u)div'cond'b 'rn, 'rm, 'rs);
+ int rm = instr->RmValue();
+ int32_t rm_val = get_register(rm);
+ int rs = instr->RsValue();
+ int32_t rs_val = get_register(rs);
+ int32_t ret_val = 0;
+ // udiv
+ if (instr->Bit(21) == 0x1) {
+ ret_val = bit_cast<int32_t>(base::bits::UnsignedDiv32(
+ bit_cast<uint32_t>(rm_val), bit_cast<uint32_t>(rs_val)));
+ } else {
+ ret_val = base::bits::SignedDiv32(rm_val, rs_val);
+ }
+ set_register(rn, ret_val);
+ return;
+ }
+ }
+ // Format(instr, "'memop'cond'b 'rd, ['rn, -'shift_rm]'w");
+ addr = rn_val - shifter_operand;
+ if (instr->HasW()) {
+ set_register(rn, addr);
+ }
+ break;
+ }
+ case ib_x: {
+ if (instr->HasW() && (instr->Bits(6, 4) == 0x5)) {
+ uint32_t widthminus1 = static_cast<uint32_t>(instr->Bits(20, 16));
+ uint32_t lsbit = static_cast<uint32_t>(instr->Bits(11, 7));
+ uint32_t msbit = widthminus1 + lsbit;
+ if (msbit <= 31) {
+ if (instr->Bit(22)) {
+ // ubfx - unsigned bitfield extract.
+ uint32_t rm_val =
+ static_cast<uint32_t>(get_register(instr->RmValue()));
+ uint32_t extr_val = rm_val << (31 - msbit);
+ extr_val = extr_val >> (31 - widthminus1);
+ set_register(instr->RdValue(), extr_val);
+ } else {
+ // sbfx - signed bitfield extract.
+ int32_t rm_val = get_register(instr->RmValue());
+ int32_t extr_val = rm_val << (31 - msbit);
+ extr_val = extr_val >> (31 - widthminus1);
+ set_register(instr->RdValue(), extr_val);
+ }
+ } else {
+ UNREACHABLE();
+ }
+ return;
+ } else if (!instr->HasW() && (instr->Bits(6, 4) == 0x1)) {
+ uint32_t lsbit = static_cast<uint32_t>(instr->Bits(11, 7));
+ uint32_t msbit = static_cast<uint32_t>(instr->Bits(20, 16));
+ if (msbit >= lsbit) {
+ // bfc or bfi - bitfield clear/insert.
+ uint32_t rd_val =
+ static_cast<uint32_t>(get_register(instr->RdValue()));
+ uint32_t bitcount = msbit - lsbit + 1;
+ uint32_t mask = 0xFFFFFFFFu >> (32 - bitcount);
+ rd_val &= ~(mask << lsbit);
+ if (instr->RmValue() != 15) {
+ // bfi - bitfield insert.
+ uint32_t rm_val =
+ static_cast<uint32_t>(get_register(instr->RmValue()));
+ rm_val &= mask;
+ rd_val |= rm_val << lsbit;
+ }
+ set_register(instr->RdValue(), rd_val);
+ } else {
+ UNREACHABLE();
+ }
+ return;
+ } else {
+ // Format(instr, "'memop'cond'b 'rd, ['rn, +'shift_rm]'w");
+ addr = rn_val + shifter_operand;
+ if (instr->HasW()) {
+ set_register(rn, addr);
+ }
+ }
+ break;
+ }
+ default: {
+ UNREACHABLE();
+ }
+ }
+ if (instr->HasB()) {
+ if (instr->HasL()) {
+ uint8_t byte = ReadB(addr);
+ set_register(rd, byte);
+ } else {
+ uint8_t byte = get_register(rd);
+ WriteB(addr, byte);
+ }
+ } else {
+ if (instr->HasL()) {
+ set_register(rd, ReadW(addr));
+ } else {
+ WriteW(addr, get_register(rd));
+ }
+ }
+}
+
+void Simulator::DecodeType4(Instruction* instr) {
+ DCHECK_EQ(instr->Bit(22), 0); // only allowed to be set in privileged mode
+ if (instr->HasL()) {
+ // Format(instr, "ldm'cond'pu 'rn'w, 'rlist");
+ HandleRList(instr, true);
+ } else {
+ // Format(instr, "stm'cond'pu 'rn'w, 'rlist");
+ HandleRList(instr, false);
+ }
+}
+
+void Simulator::DecodeType5(Instruction* instr) {
+ // Format(instr, "b'l'cond 'target");
+ int off = (instr->SImmed24Value() << 2);
+ intptr_t pc_address = get_pc();
+ if (instr->HasLink()) {
+ set_register(lr, pc_address + kInstrSize);
+ }
+ int pc_reg = get_register(pc);
+ set_pc(pc_reg + off);
+}
+
+void Simulator::DecodeType6(Instruction* instr) {
+ DecodeType6CoprocessorIns(instr);
+}
+
+void Simulator::DecodeType7(Instruction* instr) {
+ if (instr->Bit(24) == 1) {
+ SoftwareInterrupt(instr);
+ } else {
+ switch (instr->CoprocessorValue()) {
+ case 10: // Fall through.
+ case 11:
+ DecodeTypeVFP(instr);
+ break;
+ case 15:
+ DecodeTypeCP15(instr);
+ break;
+ default:
+ UNIMPLEMENTED();
+ }
+ }
+}
+
+// void Simulator::DecodeTypeVFP(Instruction* instr)
+// The Following ARMv7 VFPv instructions are currently supported.
+// vmov :Sn = Rt
+// vmov :Rt = Sn
+// vcvt: Dd = Sm
+// vcvt: Sd = Dm
+// vcvt.f64.s32 Dd, Dd, #<fbits>
+// Dd = vabs(Dm)
+// Sd = vabs(Sm)
+// Dd = vneg(Dm)
+// Sd = vneg(Sm)
+// Dd = vadd(Dn, Dm)
+// Sd = vadd(Sn, Sm)
+// Dd = vsub(Dn, Dm)
+// Sd = vsub(Sn, Sm)
+// Dd = vmul(Dn, Dm)
+// Sd = vmul(Sn, Sm)
+// Dd = vdiv(Dn, Dm)
+// Sd = vdiv(Sn, Sm)
+// vcmp(Dd, Dm)
+// vcmp(Sd, Sm)
+// Dd = vsqrt(Dm)
+// Sd = vsqrt(Sm)
+// vmrs
+// vdup.size Qd, Rt.
+void Simulator::DecodeTypeVFP(Instruction* instr) {
+ DCHECK((instr->TypeValue() == 7) && (instr->Bit(24) == 0x0));
+ DCHECK_EQ(instr->Bits(11, 9), 0x5);
+ // Obtain single precision register codes.
+ int m = instr->VFPMRegValue(kSinglePrecision);
+ int d = instr->VFPDRegValue(kSinglePrecision);
+ int n = instr->VFPNRegValue(kSinglePrecision);
+ // Obtain double precision register codes.
+ int vm = instr->VFPMRegValue(kDoublePrecision);
+ int vd = instr->VFPDRegValue(kDoublePrecision);
+ int vn = instr->VFPNRegValue(kDoublePrecision);
+
+ if (instr->Bit(4) == 0) {
+ if (instr->Opc1Value() == 0x7) {
+ // Other data processing instructions
+ if ((instr->Opc2Value() == 0x0) && (instr->Opc3Value() == 0x1)) {
+ // vmov register to register.
+ if (instr->SzValue() == 0x1) {
+ uint32_t data[2];
+ get_d_register(vm, data);
+ set_d_register(vd, data);
+ } else {
+ set_s_register(d, get_s_register(m));
+ }
+ } else if ((instr->Opc2Value() == 0x0) && (instr->Opc3Value() == 0x3)) {
+ // vabs
+ if (instr->SzValue() == 0x1) {
+ Float64 dm = get_double_from_d_register(vm);
+ constexpr uint64_t kSignBit64 = uint64_t{1} << 63;
+ Float64 dd = Float64::FromBits(dm.get_bits() & ~kSignBit64);
+ dd = canonicalizeNaN(dd);
+ set_d_register_from_double(vd, dd);
+ } else {
+ Float32 sm = get_float_from_s_register(m);
+ constexpr uint32_t kSignBit32 = uint32_t{1} << 31;
+ Float32 sd = Float32::FromBits(sm.get_bits() & ~kSignBit32);
+ sd = canonicalizeNaN(sd);
+ set_s_register_from_float(d, sd);
+ }
+ } else if ((instr->Opc2Value() == 0x1) && (instr->Opc3Value() == 0x1)) {
+ // vneg
+ if (instr->SzValue() == 0x1) {
+ Float64 dm = get_double_from_d_register(vm);
+ constexpr uint64_t kSignBit64 = uint64_t{1} << 63;
+ Float64 dd = Float64::FromBits(dm.get_bits() ^ kSignBit64);
+ dd = canonicalizeNaN(dd);
+ set_d_register_from_double(vd, dd);
+ } else {
+ Float32 sm = get_float_from_s_register(m);
+ constexpr uint32_t kSignBit32 = uint32_t{1} << 31;
+ Float32 sd = Float32::FromBits(sm.get_bits() ^ kSignBit32);
+ sd = canonicalizeNaN(sd);
+ set_s_register_from_float(d, sd);
+ }
+ } else if ((instr->Opc2Value() == 0x7) && (instr->Opc3Value() == 0x3)) {
+ DecodeVCVTBetweenDoubleAndSingle(instr);
+ } else if ((instr->Opc2Value() == 0x8) && (instr->Opc3Value() & 0x1)) {
+ DecodeVCVTBetweenFloatingPointAndInteger(instr);
+ } else if ((instr->Opc2Value() == 0xA) && (instr->Opc3Value() == 0x3) &&
+ (instr->Bit(8) == 1)) {
+ // vcvt.f64.s32 Dd, Dd, #<fbits>
+ int fraction_bits = 32 - ((instr->Bits(3, 0) << 1) | instr->Bit(5));
+ int fixed_value = get_sinteger_from_s_register(vd * 2);
+ double divide = 1 << fraction_bits;
+ set_d_register_from_double(vd, fixed_value / divide);
+ } else if (((instr->Opc2Value() >> 1) == 0x6) &&
+ (instr->Opc3Value() & 0x1)) {
+ DecodeVCVTBetweenFloatingPointAndInteger(instr);
+ } else if (((instr->Opc2Value() == 0x4) || (instr->Opc2Value() == 0x5)) &&
+ (instr->Opc3Value() & 0x1)) {
+ DecodeVCMP(instr);
+ } else if (((instr->Opc2Value() == 0x1)) && (instr->Opc3Value() == 0x3)) {
+ // vsqrt
+ if (instr->SzValue() == 0x1) {
+ double dm_value = get_double_from_d_register(vm).get_scalar();
+ double dd_value = std::sqrt(dm_value);
+ dd_value = canonicalizeNaN(dd_value);
+ set_d_register_from_double(vd, dd_value);
+ } else {
+ float sm_value = get_float_from_s_register(m).get_scalar();
+ float sd_value = std::sqrt(sm_value);
+ sd_value = canonicalizeNaN(sd_value);
+ set_s_register_from_float(d, sd_value);
+ }
+ } else if (instr->Opc3Value() == 0x0) {
+ // vmov immediate.
+ if (instr->SzValue() == 0x1) {
+ set_d_register_from_double(vd, instr->DoubleImmedVmov());
+ } else {
+ // Cast double to float.
+ float value = instr->DoubleImmedVmov().get_scalar();
+ set_s_register_from_float(d, value);
+ }
+ } else if (((instr->Opc2Value() == 0x6)) && (instr->Opc3Value() == 0x3)) {
+ // vrintz - truncate
+ if (instr->SzValue() == 0x1) {
+ double dm_value = get_double_from_d_register(vm).get_scalar();
+ double dd_value = trunc(dm_value);
+ dd_value = canonicalizeNaN(dd_value);
+ set_d_register_from_double(vd, dd_value);
+ } else {
+ float sm_value = get_float_from_s_register(m).get_scalar();
+ float sd_value = truncf(sm_value);
+ sd_value = canonicalizeNaN(sd_value);
+ set_s_register_from_float(d, sd_value);
+ }
+ } else {
+ UNREACHABLE(); // Not used by V8.
+ }
+ } else if (instr->Opc1Value() == 0x3) {
+ if (instr->Opc3Value() & 0x1) {
+ // vsub
+ if (instr->SzValue() == 0x1) {
+ double dn_value = get_double_from_d_register(vn).get_scalar();
+ double dm_value = get_double_from_d_register(vm).get_scalar();
+ double dd_value = dn_value - dm_value;
+ dd_value = canonicalizeNaN(dd_value);
+ set_d_register_from_double(vd, dd_value);
+ } else {
+ float sn_value = get_float_from_s_register(n).get_scalar();
+ float sm_value = get_float_from_s_register(m).get_scalar();
+ float sd_value = sn_value - sm_value;
+ sd_value = canonicalizeNaN(sd_value);
+ set_s_register_from_float(d, sd_value);
+ }
+ } else {
+ // vadd
+ if (instr->SzValue() == 0x1) {
+ double dn_value = get_double_from_d_register(vn).get_scalar();
+ double dm_value = get_double_from_d_register(vm).get_scalar();
+ double dd_value = dn_value + dm_value;
+ dd_value = canonicalizeNaN(dd_value);
+ set_d_register_from_double(vd, dd_value);
+ } else {
+ float sn_value = get_float_from_s_register(n).get_scalar();
+ float sm_value = get_float_from_s_register(m).get_scalar();
+ float sd_value = sn_value + sm_value;
+ sd_value = canonicalizeNaN(sd_value);
+ set_s_register_from_float(d, sd_value);
+ }
+ }
+ } else if ((instr->Opc1Value() == 0x2) && !(instr->Opc3Value() & 0x1)) {
+ // vmul
+ if (instr->SzValue() == 0x1) {
+ double dn_value = get_double_from_d_register(vn).get_scalar();
+ double dm_value = get_double_from_d_register(vm).get_scalar();
+ double dd_value = dn_value * dm_value;
+ dd_value = canonicalizeNaN(dd_value);
+ set_d_register_from_double(vd, dd_value);
+ } else {
+ float sn_value = get_float_from_s_register(n).get_scalar();
+ float sm_value = get_float_from_s_register(m).get_scalar();
+ float sd_value = sn_value * sm_value;
+ sd_value = canonicalizeNaN(sd_value);
+ set_s_register_from_float(d, sd_value);
+ }
+ } else if ((instr->Opc1Value() == 0x0)) {
+ // vmla, vmls
+ const bool is_vmls = (instr->Opc3Value() & 0x1);
+ if (instr->SzValue() == 0x1) {
+ const double dd_val = get_double_from_d_register(vd).get_scalar();
+ const double dn_val = get_double_from_d_register(vn).get_scalar();
+ const double dm_val = get_double_from_d_register(vm).get_scalar();
+
+ // Note: we do the mul and add/sub in separate steps to avoid getting a
+ // result with too high precision.
+ const double res = dn_val * dm_val;
+ set_d_register_from_double(vd, res);
+ if (is_vmls) {
+ set_d_register_from_double(vd, canonicalizeNaN(dd_val - res));
+ } else {
+ set_d_register_from_double(vd, canonicalizeNaN(dd_val + res));
+ }
+ } else {
+ const float sd_val = get_float_from_s_register(d).get_scalar();
+ const float sn_val = get_float_from_s_register(n).get_scalar();
+ const float sm_val = get_float_from_s_register(m).get_scalar();
+
+ // Note: we do the mul and add/sub in separate steps to avoid getting a
+ // result with too high precision.
+ const float res = sn_val * sm_val;
+ set_s_register_from_float(d, res);
+ if (is_vmls) {
+ set_s_register_from_float(d, canonicalizeNaN(sd_val - res));
+ } else {
+ set_s_register_from_float(d, canonicalizeNaN(sd_val + res));
+ }
+ }
+ } else if ((instr->Opc1Value() == 0x4) && !(instr->Opc3Value() & 0x1)) {
+ // vdiv
+ if (instr->SzValue() == 0x1) {
+ double dn_value = get_double_from_d_register(vn).get_scalar();
+ double dm_value = get_double_from_d_register(vm).get_scalar();
+ double dd_value = dn_value / dm_value;
+ div_zero_vfp_flag_ = (dm_value == 0);
+ dd_value = canonicalizeNaN(dd_value);
+ set_d_register_from_double(vd, dd_value);
+ } else {
+ float sn_value = get_float_from_s_register(n).get_scalar();
+ float sm_value = get_float_from_s_register(m).get_scalar();
+ float sd_value = sn_value / sm_value;
+ div_zero_vfp_flag_ = (sm_value == 0);
+ sd_value = canonicalizeNaN(sd_value);
+ set_s_register_from_float(d, sd_value);
+ }
+ } else {
+ UNIMPLEMENTED(); // Not used by V8.
+ }
+ } else {
+ if ((instr->VCValue() == 0x0) && (instr->VAValue() == 0x0)) {
+ DecodeVMOVBetweenCoreAndSinglePrecisionRegisters(instr);
+ } else if ((instr->VLValue() == 0x0) && (instr->VCValue() == 0x1)) {
+ if (instr->Bit(23) == 0) {
+ // vmov (ARM core register to scalar)
+ int vd = instr->VFPNRegValue(kDoublePrecision);
+ int rt = instr->RtValue();
+ int opc1_opc2 = (instr->Bits(22, 21) << 2) | instr->Bits(6, 5);
+ if ((opc1_opc2 & 0xB) == 0) {
+ // NeonS32/NeonU32
+ uint32_t data[2];
+ get_d_register(vd, data);
+ data[instr->Bit(21)] = get_register(rt);
+ set_d_register(vd, data);
+ } else {
+ uint64_t data;
+ get_d_register(vd, &data);
+ uint64_t rt_value = get_register(rt);
+ if ((opc1_opc2 & 0x8) != 0) {
+ // NeonS8 / NeonU8
+ int i = opc1_opc2 & 0x7;
+ int shift = i * kBitsPerByte;
+ const uint64_t mask = 0xFF;
+ data &= ~(mask << shift);
+ data |= (rt_value & mask) << shift;
+ set_d_register(vd, &data);
+ } else if ((opc1_opc2 & 0x1) != 0) {
+ // NeonS16 / NeonU16
+ int i = (opc1_opc2 >> 1) & 0x3;
+ int shift = i * kBitsPerByte * kShortSize;
+ const uint64_t mask = 0xFFFF;
+ data &= ~(mask << shift);
+ data |= (rt_value & mask) << shift;
+ set_d_register(vd, &data);
+ } else {
+ UNREACHABLE(); // Not used by V8.
+ }
+ }
+ } else {
+ // vdup.size Qd, Rt.
+ NeonSize size = Neon32;
+ if (instr->Bit(5) != 0)
+ size = Neon16;
+ else if (instr->Bit(22) != 0)
+ size = Neon8;
+ int vd = instr->VFPNRegValue(kSimd128Precision);
+ int rt = instr->RtValue();
+ uint32_t rt_value = get_register(rt);
+ uint32_t q_data[4];
+ switch (size) {
+ case Neon8: {
+ rt_value &= 0xFF;
+ uint8_t* dst = reinterpret_cast<uint8_t*>(q_data);
+ for (int i = 0; i < 16; i++) {
+ dst[i] = rt_value;
+ }
+ break;
+ }
+ case Neon16: {
+ // Perform pairwise op.
+ rt_value &= 0xFFFFu;
+ uint32_t rt_rt = (rt_value << 16) | (rt_value & 0xFFFFu);
+ for (int i = 0; i < 4; i++) {
+ q_data[i] = rt_rt;
+ }
+ break;
+ }
+ case Neon32: {
+ for (int i = 0; i < 4; i++) {
+ q_data[i] = rt_value;
+ }
+ break;
+ }
+ default:
+ UNREACHABLE();
+ break;
+ }
+ set_neon_register(vd, q_data);
+ }
+ } else if ((instr->VLValue() == 0x1) && (instr->VCValue() == 0x1)) {
+ // vmov (scalar to ARM core register)
+ int vn = instr->VFPNRegValue(kDoublePrecision);
+ int rt = instr->RtValue();
+ int opc1_opc2 = (instr->Bits(22, 21) << 2) | instr->Bits(6, 5);
+ uint64_t data;
+ get_d_register(vn, &data);
+ if ((opc1_opc2 & 0xB) == 0) {
+ // NeonS32 / NeonU32
+ int32_t int_data[2];
+ memcpy(int_data, &data, sizeof(int_data));
+ set_register(rt, int_data[instr->Bit(21)]);
+ } else {
+ uint64_t data;
+ get_d_register(vn, &data);
+ bool u = instr->Bit(23) != 0;
+ if ((opc1_opc2 & 0x8) != 0) {
+ // NeonS8 / NeonU8
+ int i = opc1_opc2 & 0x7;
+ int shift = i * kBitsPerByte;
+ uint32_t scalar = (data >> shift) & 0xFFu;
+ if (!u && (scalar & 0x80) != 0) scalar |= 0xFFFFFF00;
+ set_register(rt, scalar);
+ } else if ((opc1_opc2 & 0x1) != 0) {
+ // NeonS16 / NeonU16
+ int i = (opc1_opc2 >> 1) & 0x3;
+ int shift = i * kBitsPerByte * kShortSize;
+ uint32_t scalar = (data >> shift) & 0xFFFFu;
+ if (!u && (scalar & 0x8000) != 0) scalar |= 0xFFFF0000;
+ set_register(rt, scalar);
+ } else {
+ UNREACHABLE(); // Not used by V8.
+ }
+ }
+ } else if ((instr->VLValue() == 0x1) && (instr->VCValue() == 0x0) &&
+ (instr->VAValue() == 0x7) && (instr->Bits(19, 16) == 0x1)) {
+ // vmrs
+ uint32_t rt = instr->RtValue();
+ if (rt == 0xF) {
+ Copy_FPSCR_to_APSR();
+ } else {
+ // Emulate FPSCR from the Simulator flags.
+ uint32_t fpscr = (n_flag_FPSCR_ << 31) | (z_flag_FPSCR_ << 30) |
+ (c_flag_FPSCR_ << 29) | (v_flag_FPSCR_ << 28) |
+ (FPSCR_default_NaN_mode_ << 25) |
+ (inexact_vfp_flag_ << 4) | (underflow_vfp_flag_ << 3) |
+ (overflow_vfp_flag_ << 2) | (div_zero_vfp_flag_ << 1) |
+ (inv_op_vfp_flag_ << 0) | (FPSCR_rounding_mode_);
+ set_register(rt, fpscr);
+ }
+ } else if ((instr->VLValue() == 0x0) && (instr->VCValue() == 0x0) &&
+ (instr->VAValue() == 0x7) && (instr->Bits(19, 16) == 0x1)) {
+ // vmsr
+ uint32_t rt = instr->RtValue();
+ if (rt == pc) {
+ UNREACHABLE();
+ } else {
+ uint32_t rt_value = get_register(rt);
+ n_flag_FPSCR_ = (rt_value >> 31) & 1;
+ z_flag_FPSCR_ = (rt_value >> 30) & 1;
+ c_flag_FPSCR_ = (rt_value >> 29) & 1;
+ v_flag_FPSCR_ = (rt_value >> 28) & 1;
+ FPSCR_default_NaN_mode_ = (rt_value >> 25) & 1;
+ inexact_vfp_flag_ = (rt_value >> 4) & 1;
+ underflow_vfp_flag_ = (rt_value >> 3) & 1;
+ overflow_vfp_flag_ = (rt_value >> 2) & 1;
+ div_zero_vfp_flag_ = (rt_value >> 1) & 1;
+ inv_op_vfp_flag_ = (rt_value >> 0) & 1;
+ FPSCR_rounding_mode_ =
+ static_cast<VFPRoundingMode>((rt_value)&kVFPRoundingModeMask);
+ }
+ } else {
+ UNIMPLEMENTED(); // Not used by V8.
+ }
+ }
+}
+
+void Simulator::DecodeTypeCP15(Instruction* instr) {
+ DCHECK((instr->TypeValue() == 7) && (instr->Bit(24) == 0x0));
+ DCHECK_EQ(instr->CoprocessorValue(), 15);
+
+ if (instr->Bit(4) == 1) {
+ // mcr
+ int crn = instr->Bits(19, 16);
+ int crm = instr->Bits(3, 0);
+ int opc1 = instr->Bits(23, 21);
+ int opc2 = instr->Bits(7, 5);
+ if ((opc1 == 0) && (crn == 7)) {
+ // ARMv6 memory barrier operations.
+ // Details available in ARM DDI 0406C.b, B3-1750.
+ if (((crm == 10) && (opc2 == 5)) || // CP15DMB
+ ((crm == 10) && (opc2 == 4)) || // CP15DSB
+ ((crm == 5) && (opc2 == 4))) { // CP15ISB
+ // These are ignored by the simulator for now.
+ } else {
+ UNIMPLEMENTED();
+ }
+ }
+ } else {
+ UNIMPLEMENTED();
+ }
+}
+
+void Simulator::DecodeVMOVBetweenCoreAndSinglePrecisionRegisters(
+ Instruction* instr) {
+ DCHECK((instr->Bit(4) == 1) && (instr->VCValue() == 0x0) &&
+ (instr->VAValue() == 0x0));
+
+ int t = instr->RtValue();
+ int n = instr->VFPNRegValue(kSinglePrecision);
+ bool to_arm_register = (instr->VLValue() == 0x1);
+
+ if (to_arm_register) {
+ int32_t int_value = get_sinteger_from_s_register(n);
+ set_register(t, int_value);
+ } else {
+ int32_t rs_val = get_register(t);
+ set_s_register_from_sinteger(n, rs_val);
+ }
+}
+
+void Simulator::DecodeVCMP(Instruction* instr) {
+ DCHECK((instr->Bit(4) == 0) && (instr->Opc1Value() == 0x7));
+ DCHECK(((instr->Opc2Value() == 0x4) || (instr->Opc2Value() == 0x5)) &&
+ (instr->Opc3Value() & 0x1));
+ // Comparison.
+
+ VFPRegPrecision precision = kSinglePrecision;
+ if (instr->SzValue() == 0x1) {
+ precision = kDoublePrecision;
+ }
+
+ int d = instr->VFPDRegValue(precision);
+ int m = 0;
+ if (instr->Opc2Value() == 0x4) {
+ m = instr->VFPMRegValue(precision);
+ }
+
+ if (precision == kDoublePrecision) {
+ double dd_value = get_double_from_d_register(d).get_scalar();
+ double dm_value = 0.0;
+ if (instr->Opc2Value() == 0x4) {
+ dm_value = get_double_from_d_register(m).get_scalar();
+ }
+
+ // Raise exceptions for quiet NaNs if necessary.
+ if (instr->Bit(7) == 1) {
+ if (std::isnan(dd_value)) {
+ inv_op_vfp_flag_ = true;
+ }
+ }
+
+ Compute_FPSCR_Flags(dd_value, dm_value);
+ } else {
+ float sd_value = get_float_from_s_register(d).get_scalar();
+ float sm_value = 0.0;
+ if (instr->Opc2Value() == 0x4) {
+ sm_value = get_float_from_s_register(m).get_scalar();
+ }
+
+ // Raise exceptions for quiet NaNs if necessary.
+ if (instr->Bit(7) == 1) {
+ if (std::isnan(sd_value)) {
+ inv_op_vfp_flag_ = true;
+ }
+ }
+
+ Compute_FPSCR_Flags(sd_value, sm_value);
+ }
+}
+
+void Simulator::DecodeVCVTBetweenDoubleAndSingle(Instruction* instr) {
+ DCHECK((instr->Bit(4) == 0) && (instr->Opc1Value() == 0x7));
+ DCHECK((instr->Opc2Value() == 0x7) && (instr->Opc3Value() == 0x3));
+
+ VFPRegPrecision dst_precision = kDoublePrecision;
+ VFPRegPrecision src_precision = kSinglePrecision;
+ if (instr->SzValue() == 1) {
+ dst_precision = kSinglePrecision;
+ src_precision = kDoublePrecision;
+ }
+
+ int dst = instr->VFPDRegValue(dst_precision);
+ int src = instr->VFPMRegValue(src_precision);
+
+ if (dst_precision == kSinglePrecision) {
+ double val = get_double_from_d_register(src).get_scalar();
+ set_s_register_from_float(dst, static_cast<float>(val));
+ } else {
+ float val = get_float_from_s_register(src).get_scalar();
+ set_d_register_from_double(dst, static_cast<double>(val));
+ }
+}
+
+bool get_inv_op_vfp_flag(VFPRoundingMode mode, double val, bool unsigned_) {
+ DCHECK((mode == RN) || (mode == RM) || (mode == RZ));
+ double max_uint = static_cast<double>(0xFFFFFFFFu);
+ double max_int = static_cast<double>(kMaxInt);
+ double min_int = static_cast<double>(kMinInt);
+
+ // Check for NaN.
+ if (val != val) {
+ return true;
+ }
+
+ // Check for overflow. This code works because 32bit integers can be
+ // exactly represented by ieee-754 64bit floating-point values.
+ switch (mode) {
+ case RN:
+ return unsigned_ ? (val >= (max_uint + 0.5)) || (val < -0.5)
+ : (val >= (max_int + 0.5)) || (val < (min_int - 0.5));
+
+ case RM:
+ return unsigned_ ? (val >= (max_uint + 1.0)) || (val < 0)
+ : (val >= (max_int + 1.0)) || (val < min_int);
+
+ case RZ:
+ return unsigned_ ? (val >= (max_uint + 1.0)) || (val <= -1)
+ : (val >= (max_int + 1.0)) || (val <= (min_int - 1.0));
+ default:
+ UNREACHABLE();
+ }
+}
+
+// We call this function only if we had a vfp invalid exception.
+// It returns the correct saturated value.
+int VFPConversionSaturate(double val, bool unsigned_res) {
+ if (val != val) {
+ return 0;
+ } else {
+ if (unsigned_res) {
+ return (val < 0) ? 0 : 0xFFFFFFFFu;
+ } else {
+ return (val < 0) ? kMinInt : kMaxInt;
+ }
+ }
+}
+
+int32_t Simulator::ConvertDoubleToInt(double val, bool unsigned_integer,
+ VFPRoundingMode mode) {
+ // TODO(jkummerow): These casts are undefined behavior if the integral
+ // part of {val} does not fit into the destination type.
+ int32_t result =
+ unsigned_integer ? static_cast<uint32_t>(val) : static_cast<int32_t>(val);
+
+ inv_op_vfp_flag_ = get_inv_op_vfp_flag(mode, val, unsigned_integer);
+
+ double abs_diff = unsigned_integer
+ ? std::fabs(val - static_cast<uint32_t>(result))
+ : std::fabs(val - result);
+
+ inexact_vfp_flag_ = (abs_diff != 0);
+
+ if (inv_op_vfp_flag_) {
+ result = VFPConversionSaturate(val, unsigned_integer);
+ } else {
+ switch (mode) {
+ case RN: {
+ int val_sign = (val > 0) ? 1 : -1;
+ if (abs_diff > 0.5) {
+ result += val_sign;
+ } else if (abs_diff == 0.5) {
+ // Round to even if exactly halfway.
+ result = ((result % 2) == 0) ? result : result + val_sign;
+ }
+ break;
+ }
+
+ case RM:
+ result = result > val ? result - 1 : result;
+ break;
+
+ case RZ:
+ // Nothing to do.
+ break;
+
+ default:
+ UNREACHABLE();
+ }
+ }
+ return result;
+}
+
+void Simulator::DecodeVCVTBetweenFloatingPointAndInteger(Instruction* instr) {
+ DCHECK((instr->Bit(4) == 0) && (instr->Opc1Value() == 0x7) &&
+ (instr->Bits(27, 23) == 0x1D));
+ DCHECK(((instr->Opc2Value() == 0x8) && (instr->Opc3Value() & 0x1)) ||
+ (((instr->Opc2Value() >> 1) == 0x6) && (instr->Opc3Value() & 0x1)));
+
+ // Conversion between floating-point and integer.
+ bool to_integer = (instr->Bit(18) == 1);
+
+ VFPRegPrecision src_precision =
+ (instr->SzValue() == 1) ? kDoublePrecision : kSinglePrecision;
+
+ if (to_integer) {
+ // We are playing with code close to the C++ standard's limits below,
+ // hence the very simple code and heavy checks.
+ //
+ // Note:
+ // C++ defines default type casting from floating point to integer as
+ // (close to) rounding toward zero ("fractional part discarded").
+
+ int dst = instr->VFPDRegValue(kSinglePrecision);
+ int src = instr->VFPMRegValue(src_precision);
+
+ // Bit 7 in vcvt instructions indicates if we should use the FPSCR rounding
+ // mode or the default Round to Zero mode.
+ VFPRoundingMode mode = (instr->Bit(7) != 1) ? FPSCR_rounding_mode_ : RZ;
+ DCHECK((mode == RM) || (mode == RZ) || (mode == RN));
+
+ bool unsigned_integer = (instr->Bit(16) == 0);
+ bool double_precision = (src_precision == kDoublePrecision);
+
+ double val = double_precision ? get_double_from_d_register(src).get_scalar()
+ : get_float_from_s_register(src).get_scalar();
+
+ int32_t temp = ConvertDoubleToInt(val, unsigned_integer, mode);
+
+ // Update the destination register.
+ set_s_register_from_sinteger(dst, temp);
+
+ } else {
+ bool unsigned_integer = (instr->Bit(7) == 0);
+
+ int dst = instr->VFPDRegValue(src_precision);
+ int src = instr->VFPMRegValue(kSinglePrecision);
+
+ int val = get_sinteger_from_s_register(src);
+
+ if (src_precision == kDoublePrecision) {
+ if (unsigned_integer) {
+ set_d_register_from_double(
+ dst, static_cast<double>(static_cast<uint32_t>(val)));
+ } else {
+ set_d_register_from_double(dst, static_cast<double>(val));
+ }
+ } else {
+ if (unsigned_integer) {
+ set_s_register_from_float(
+ dst, static_cast<float>(static_cast<uint32_t>(val)));
+ } else {
+ set_s_register_from_float(dst, static_cast<float>(val));
+ }
+ }
+ }
+}
+
+// void Simulator::DecodeType6CoprocessorIns(Instruction* instr)
+// Decode Type 6 coprocessor instructions.
+// Dm = vmov(Rt, Rt2)
+// <Rt, Rt2> = vmov(Dm)
+// Ddst = MEM(Rbase + 4*offset).
+// MEM(Rbase + 4*offset) = Dsrc.
+void Simulator::DecodeType6CoprocessorIns(Instruction* instr) {
+ DCHECK_EQ(instr->TypeValue(), 6);
+
+ if (instr->CoprocessorValue() == 0xA) {
+ switch (instr->OpcodeValue()) {
+ case 0x8:
+ case 0xA:
+ case 0xC:
+ case 0xE: { // Load and store single precision float to memory.
+ int rn = instr->RnValue();
+ int vd = instr->VFPDRegValue(kSinglePrecision);
+ int offset = instr->Immed8Value();
+ if (!instr->HasU()) {
+ offset = -offset;
+ }
+
+ int32_t address = get_register(rn) + 4 * offset;
+ // Load and store address for singles must be at least four-byte
+ // aligned.
+ DCHECK_EQ(address % 4, 0);
+ if (instr->HasL()) {
+ // Load single from memory: vldr.
+ set_s_register_from_sinteger(vd, ReadW(address));
+ } else {
+ // Store single to memory: vstr.
+ WriteW(address, get_sinteger_from_s_register(vd));
+ }
+ break;
+ }
+ case 0x4:
+ case 0x5:
+ case 0x6:
+ case 0x7:
+ case 0x9:
+ case 0xB:
+ // Load/store multiple single from memory: vldm/vstm.
+ HandleVList(instr);
+ break;
+ default:
+ UNIMPLEMENTED(); // Not used by V8.
+ }
+ } else if (instr->CoprocessorValue() == 0xB) {
+ switch (instr->OpcodeValue()) {
+ case 0x2:
+ // Load and store double to two GP registers
+ if (instr->Bits(7, 6) != 0 || instr->Bit(4) != 1) {
+ UNIMPLEMENTED(); // Not used by V8.
+ } else {
+ int rt = instr->RtValue();
+ int rn = instr->RnValue();
+ int vm = instr->VFPMRegValue(kDoublePrecision);
+ if (instr->HasL()) {
+ uint32_t data[2];
+ get_d_register(vm, data);
+ set_register(rt, data[0]);
+ set_register(rn, data[1]);
+ } else {
+ int32_t data[] = {get_register(rt), get_register(rn)};
+ set_d_register(vm, reinterpret_cast<uint32_t*>(data));
+ }
+ }
+ break;
+ case 0x8:
+ case 0xA:
+ case 0xC:
+ case 0xE: { // Load and store double to memory.
+ int rn = instr->RnValue();
+ int vd = instr->VFPDRegValue(kDoublePrecision);
+ int offset = instr->Immed8Value();
+ if (!instr->HasU()) {
+ offset = -offset;
+ }
+ int32_t address = get_register(rn) + 4 * offset;
+ // Load and store address for doubles must be at least four-byte
+ // aligned.
+ DCHECK_EQ(address % 4, 0);
+ if (instr->HasL()) {
+ // Load double from memory: vldr.
+ int32_t data[] = {ReadW(address), ReadW(address + 4)};
+ set_d_register(vd, reinterpret_cast<uint32_t*>(data));
+ } else {
+ // Store double to memory: vstr.
+ uint32_t data[2];
+ get_d_register(vd, data);
+ WriteW(address, data[0]);
+ WriteW(address + 4, data[1]);
+ }
+ break;
+ }
+ case 0x4:
+ case 0x5:
+ case 0x6:
+ case 0x7:
+ case 0x9:
+ case 0xB:
+ // Load/store multiple double from memory: vldm/vstm.
+ HandleVList(instr);
+ break;
+ default:
+ UNIMPLEMENTED(); // Not used by V8.
+ }
+ } else {
+ UNIMPLEMENTED(); // Not used by V8.
+ }
+}
+
+// Templated operations for NEON instructions.
+template <typename T, typename U>
+U Widen(T value) {
+ static_assert(sizeof(int64_t) > sizeof(T), "T must be int32_t or smaller");
+ static_assert(sizeof(U) > sizeof(T), "T must smaller than U");
+ return static_cast<U>(value);
+}
+
+template <typename T, typename U>
+U Narrow(T value) {
+ static_assert(sizeof(int8_t) < sizeof(T), "T must be int16_t or larger");
+ static_assert(sizeof(U) < sizeof(T), "T must larger than U");
+ static_assert(std::is_unsigned<T>() == std::is_unsigned<U>(),
+ "Signed-ness of T and U must match");
+ // Make sure value can be expressed in the smaller type; otherwise, the
+ // casted result is implementation defined.
+ DCHECK_LE(std::numeric_limits<T>::min(), value);
+ DCHECK_GE(std::numeric_limits<T>::max(), value);
+ return static_cast<U>(value);
+}
+
+template <typename T>
+T Clamp(int64_t value) {
+ static_assert(sizeof(int64_t) > sizeof(T), "T must be int32_t or smaller");
+ int64_t min = static_cast<int64_t>(std::numeric_limits<T>::min());
+ int64_t max = static_cast<int64_t>(std::numeric_limits<T>::max());
+ int64_t clamped = std::max(min, std::min(max, value));
+ return static_cast<T>(clamped);
+}
+
+template <typename T, typename U>
+void Widen(Simulator* simulator, int Vd, int Vm) {
+ static const int kLanes = 8 / sizeof(T);
+ T src[kLanes];
+ U dst[kLanes];
+ simulator->get_neon_register<T, kDoubleSize>(Vm, src);
+ for (int i = 0; i < kLanes; i++) {
+ dst[i] = Widen<T, U>(src[i]);
+ }
+ simulator->set_neon_register(Vd, dst);
+}
+
+template <typename T, int SIZE>
+void Abs(Simulator* simulator, int Vd, int Vm) {
+ static const int kElems = SIZE / sizeof(T);
+ T src[kElems];
+ simulator->get_neon_register<T, SIZE>(Vm, src);
+ for (int i = 0; i < kElems; i++) {
+ src[i] = std::abs(src[i]);
+ }
+ simulator->set_neon_register<T, SIZE>(Vd, src);
+}
+
+template <typename T, int SIZE>
+void Neg(Simulator* simulator, int Vd, int Vm) {
+ static const int kElems = SIZE / sizeof(T);
+ T src[kElems];
+ simulator->get_neon_register<T, SIZE>(Vm, src);
+ for (int i = 0; i < kElems; i++) {
+ src[i] = -src[i];
+ }
+ simulator->set_neon_register<T, SIZE>(Vd, src);
+}
+
+template <typename T, typename U>
+void SaturatingNarrow(Simulator* simulator, int Vd, int Vm) {
+ static const int kLanes = 16 / sizeof(T);
+ T src[kLanes];
+ U dst[kLanes];
+ simulator->get_neon_register(Vm, src);
+ for (int i = 0; i < kLanes; i++) {
+ dst[i] = Narrow<T, U>(Clamp<U>(src[i]));
+ }
+ simulator->set_neon_register<U, kDoubleSize>(Vd, dst);
+}
+
+template <typename T>
+void AddSaturate(Simulator* simulator, int Vd, int Vm, int Vn) {
+ static const int kLanes = 16 / sizeof(T);
+ T src1[kLanes], src2[kLanes];
+ simulator->get_neon_register(Vn, src1);
+ simulator->get_neon_register(Vm, src2);
+ for (int i = 0; i < kLanes; i++) {
+ src1[i] = Clamp<T>(Widen<T, int64_t>(src1[i]) + Widen<T, int64_t>(src2[i]));
+ }
+ simulator->set_neon_register(Vd, src1);
+}
+
+template <typename T>
+void SubSaturate(Simulator* simulator, int Vd, int Vm, int Vn) {
+ static const int kLanes = 16 / sizeof(T);
+ T src1[kLanes], src2[kLanes];
+ simulator->get_neon_register(Vn, src1);
+ simulator->get_neon_register(Vm, src2);
+ for (int i = 0; i < kLanes; i++) {
+ src1[i] = Clamp<T>(Widen<T, int64_t>(src1[i]) - Widen<T, int64_t>(src2[i]));
+ }
+ simulator->set_neon_register(Vd, src1);
+}
+
+template <typename T, int SIZE>
+void Zip(Simulator* simulator, int Vd, int Vm) {
+ static const int kElems = SIZE / sizeof(T);
+ static const int kPairs = kElems / 2;
+ T src1[kElems], src2[kElems], dst1[kElems], dst2[kElems];
+ simulator->get_neon_register<T, SIZE>(Vd, src1);
+ simulator->get_neon_register<T, SIZE>(Vm, src2);
+ for (int i = 0; i < kPairs; i++) {
+ dst1[i * 2] = src1[i];
+ dst1[i * 2 + 1] = src2[i];
+ dst2[i * 2] = src1[i + kPairs];
+ dst2[i * 2 + 1] = src2[i + kPairs];
+ }
+ simulator->set_neon_register<T, SIZE>(Vd, dst1);
+ simulator->set_neon_register<T, SIZE>(Vm, dst2);
+}
+
+template <typename T, int SIZE>
+void Unzip(Simulator* simulator, int Vd, int Vm) {
+ static const int kElems = SIZE / sizeof(T);
+ static const int kPairs = kElems / 2;
+ T src1[kElems], src2[kElems], dst1[kElems], dst2[kElems];
+ simulator->get_neon_register<T, SIZE>(Vd, src1);
+ simulator->get_neon_register<T, SIZE>(Vm, src2);
+ for (int i = 0; i < kPairs; i++) {
+ dst1[i] = src1[i * 2];
+ dst1[i + kPairs] = src2[i * 2];
+ dst2[i] = src1[i * 2 + 1];
+ dst2[i + kPairs] = src2[i * 2 + 1];
+ }
+ simulator->set_neon_register<T, SIZE>(Vd, dst1);
+ simulator->set_neon_register<T, SIZE>(Vm, dst2);
+}
+
+template <typename T, int SIZE>
+void Transpose(Simulator* simulator, int Vd, int Vm) {
+ static const int kElems = SIZE / sizeof(T);
+ static const int kPairs = kElems / 2;
+ T src1[kElems], src2[kElems];
+ simulator->get_neon_register<T, SIZE>(Vd, src1);
+ simulator->get_neon_register<T, SIZE>(Vm, src2);
+ for (int i = 0; i < kPairs; i++) {
+ std::swap(src1[2 * i + 1], src2[2 * i]);
+ }
+ simulator->set_neon_register<T, SIZE>(Vd, src1);
+ simulator->set_neon_register<T, SIZE>(Vm, src2);
+}
+
+template <typename T, int SIZE>
+void Test(Simulator* simulator, int Vd, int Vm, int Vn) {
+ static const int kElems = SIZE / sizeof(T);
+ T src1[kElems], src2[kElems];
+ simulator->get_neon_register<T, SIZE>(Vn, src1);
+ simulator->get_neon_register<T, SIZE>(Vm, src2);
+ for (int i = 0; i < kElems; i++) {
+ src1[i] = (src1[i] & src2[i]) != 0 ? -1 : 0;
+ }
+ simulator->set_neon_register<T, SIZE>(Vd, src1);
+}
+
+template <typename T, int SIZE>
+void Add(Simulator* simulator, int Vd, int Vm, int Vn) {
+ static const int kElems = SIZE / sizeof(T);
+ T src1[kElems], src2[kElems];
+ simulator->get_neon_register<T, SIZE>(Vn, src1);
+ simulator->get_neon_register<T, SIZE>(Vm, src2);
+ for (int i = 0; i < kElems; i++) {
+ src1[i] += src2[i];
+ }
+ simulator->set_neon_register<T, SIZE>(Vd, src1);
+}
+
+template <typename T, int SIZE>
+void Sub(Simulator* simulator, int Vd, int Vm, int Vn) {
+ static const int kElems = SIZE / sizeof(T);
+ T src1[kElems], src2[kElems];
+ simulator->get_neon_register<T, SIZE>(Vn, src1);
+ simulator->get_neon_register<T, SIZE>(Vm, src2);
+ for (int i = 0; i < kElems; i++) {
+ src1[i] -= src2[i];
+ }
+ simulator->set_neon_register<T, SIZE>(Vd, src1);
+}
+
+template <typename T, int SIZE>
+void Mul(Simulator* simulator, int Vd, int Vm, int Vn) {
+ static const int kElems = SIZE / sizeof(T);
+ T src1[kElems], src2[kElems];
+ simulator->get_neon_register<T, SIZE>(Vn, src1);
+ simulator->get_neon_register<T, SIZE>(Vm, src2);
+ for (int i = 0; i < kElems; i++) {
+ src1[i] *= src2[i];
+ }
+ simulator->set_neon_register<T, SIZE>(Vd, src1);
+}
+
+template <typename T, int SIZE>
+void ShiftLeft(Simulator* simulator, int Vd, int Vm, int shift) {
+ static const int kElems = SIZE / sizeof(T);
+ T src[kElems];
+ simulator->get_neon_register<T, SIZE>(Vm, src);
+ for (int i = 0; i < kElems; i++) {
+ src[i] <<= shift;
+ }
+ simulator->set_neon_register<T, SIZE>(Vd, src);
+}
+
+template <typename T, int SIZE>
+void ShiftRight(Simulator* simulator, int Vd, int Vm, int shift) {
+ static const int kElems = SIZE / sizeof(T);
+ T src[kElems];
+ simulator->get_neon_register<T, SIZE>(Vm, src);
+ for (int i = 0; i < kElems; i++) {
+ src[i] >>= shift;
+ }
+ simulator->set_neon_register<T, SIZE>(Vd, src);
+}
+
+template <typename T, int SIZE>
+void ArithmeticShiftRight(Simulator* simulator, int Vd, int Vm, int shift) {
+ static const int kElems = SIZE / sizeof(T);
+ T src[kElems];
+ simulator->get_neon_register<T, SIZE>(Vm, src);
+ for (int i = 0; i < kElems; i++) {
+ src[i] = ArithmeticShiftRight(src[i], shift);
+ }
+ simulator->set_neon_register<T, SIZE>(Vd, src);
+}
+
+template <typename T, int SIZE>
+void ShiftLeftAndInsert(Simulator* simulator, int Vd, int Vm, int shift) {
+ static const int kElems = SIZE / sizeof(T);
+ T src[kElems];
+ T dst[kElems];
+ simulator->get_neon_register<T, SIZE>(Vm, src);
+ simulator->get_neon_register<T, SIZE>(Vd, dst);
+ uint64_t mask = (1llu << shift) - 1llu;
+ for (int i = 0; i < kElems; i++) {
+ dst[i] = (src[i] << shift) | (dst[i] & mask);
+ }
+ simulator->set_neon_register<T, SIZE>(Vd, dst);
+}
+
+template <typename T, int SIZE>
+void ShiftRightAndInsert(Simulator* simulator, int Vd, int Vm, int shift) {
+ static const int kElems = SIZE / sizeof(T);
+ T src[kElems];
+ T dst[kElems];
+ simulator->get_neon_register<T, SIZE>(Vm, src);
+ simulator->get_neon_register<T, SIZE>(Vd, dst);
+ uint64_t mask = ~((1llu << (kBitsPerByte * SIZE - shift)) - 1llu);
+ for (int i = 0; i < kElems; i++) {
+ dst[i] = (src[i] >> shift) | (dst[i] & mask);
+ }
+ simulator->set_neon_register<T, SIZE>(Vd, dst);
+}
+
+template <typename T, int SIZE>
+void CompareEqual(Simulator* simulator, int Vd, int Vm, int Vn) {
+ static const int kElems = SIZE / sizeof(T);
+ T src1[kElems], src2[kElems];
+ simulator->get_neon_register<T, SIZE>(Vn, src1);
+ simulator->get_neon_register<T, SIZE>(Vm, src2);
+ for (int i = 0; i < kElems; i++) {
+ src1[i] = src1[i] == src2[i] ? -1 : 0;
+ }
+ simulator->set_neon_register<T, SIZE>(Vd, src1);
+}
+
+template <typename T, int SIZE>
+void CompareGreater(Simulator* simulator, int Vd, int Vm, int Vn, bool ge) {
+ static const int kElems = SIZE / sizeof(T);
+ T src1[kElems], src2[kElems];
+ simulator->get_neon_register<T, SIZE>(Vn, src1);
+ simulator->get_neon_register<T, SIZE>(Vm, src2);
+ for (int i = 0; i < kElems; i++) {
+ if (ge)
+ src1[i] = src1[i] >= src2[i] ? -1 : 0;
+ else
+ src1[i] = src1[i] > src2[i] ? -1 : 0;
+ }
+ simulator->set_neon_register<T, SIZE>(Vd, src1);
+}
+
+float MinMax(float a, float b, bool is_min) {
+ return is_min ? JSMin(a, b) : JSMax(a, b);
+}
+template <typename T>
+T MinMax(T a, T b, bool is_min) {
+ return is_min ? std::min(a, b) : std::max(a, b);
+}
+
+template <typename T, int SIZE>
+void MinMax(Simulator* simulator, int Vd, int Vm, int Vn, bool min) {
+ static const int kElems = SIZE / sizeof(T);
+ T src1[kElems], src2[kElems];
+ simulator->get_neon_register<T, SIZE>(Vn, src1);
+ simulator->get_neon_register<T, SIZE>(Vm, src2);
+ for (int i = 0; i < kElems; i++) {
+ src1[i] = MinMax(src1[i], src2[i], min);
+ }
+ simulator->set_neon_register<T, SIZE>(Vd, src1);
+}
+
+template <typename T>
+void PairwiseMinMax(Simulator* simulator, int Vd, int Vm, int Vn, bool min) {
+ static const int kElems = kDoubleSize / sizeof(T);
+ static const int kPairs = kElems / 2;
+ T dst[kElems], src1[kElems], src2[kElems];
+ simulator->get_neon_register<T, kDoubleSize>(Vn, src1);
+ simulator->get_neon_register<T, kDoubleSize>(Vm, src2);
+ for (int i = 0; i < kPairs; i++) {
+ dst[i] = MinMax(src1[i * 2], src1[i * 2 + 1], min);
+ dst[i + kPairs] = MinMax(src2[i * 2], src2[i * 2 + 1], min);
+ }
+ simulator->set_neon_register<T, kDoubleSize>(Vd, dst);
+}
+
+template <typename T>
+void PairwiseAdd(Simulator* simulator, int Vd, int Vm, int Vn) {
+ static const int kElems = kDoubleSize / sizeof(T);
+ static const int kPairs = kElems / 2;
+ T dst[kElems], src1[kElems], src2[kElems];
+ simulator->get_neon_register<T, kDoubleSize>(Vn, src1);
+ simulator->get_neon_register<T, kDoubleSize>(Vm, src2);
+ for (int i = 0; i < kPairs; i++) {
+ dst[i] = src1[i * 2] + src1[i * 2 + 1];
+ dst[i + kPairs] = src2[i * 2] + src2[i * 2 + 1];
+ }
+ simulator->set_neon_register<T, kDoubleSize>(Vd, dst);
+}
+
+void Simulator::DecodeSpecialCondition(Instruction* instr) {
+ switch (instr->SpecialValue()) {
+ case 4: {
+ int Vd, Vm, Vn;
+ if (instr->Bit(6) == 0) {
+ Vd = instr->VFPDRegValue(kDoublePrecision);
+ Vm = instr->VFPMRegValue(kDoublePrecision);
+ Vn = instr->VFPNRegValue(kDoublePrecision);
+ } else {
+ Vd = instr->VFPDRegValue(kSimd128Precision);
+ Vm = instr->VFPMRegValue(kSimd128Precision);
+ Vn = instr->VFPNRegValue(kSimd128Precision);
+ }
+ switch (instr->Bits(11, 8)) {
+ case 0x0: {
+ if (instr->Bit(4) == 1) {
+ // vqadd.s<size> Qd, Qm, Qn.
+ NeonSize size = static_cast<NeonSize>(instr->Bits(21, 20));
+ switch (size) {
+ case Neon8:
+ AddSaturate<int8_t>(this, Vd, Vm, Vn);
+ break;
+ case Neon16:
+ AddSaturate<int16_t>(this, Vd, Vm, Vn);
+ break;
+ case Neon32:
+ AddSaturate<int32_t>(this, Vd, Vm, Vn);
+ break;
+ default:
+ UNREACHABLE();
+ break;
+ }
+ } else {
+ UNIMPLEMENTED();
+ }
+ break;
+ }
+ case 0x1: {
+ if (instr->Bits(21, 20) == 2 && instr->Bit(6) == 1 &&
+ instr->Bit(4) == 1) {
+ // vmov Qd, Qm.
+ // vorr, Qd, Qm, Qn.
+ uint32_t src1[4];
+ get_neon_register(Vm, src1);
+ if (Vm != Vn) {
+ uint32_t src2[4];
+ get_neon_register(Vn, src2);
+ for (int i = 0; i < 4; i++) {
+ src1[i] = src1[i] | src2[i];
+ }
+ }
+ set_neon_register(Vd, src1);
+ } else if (instr->Bits(21, 20) == 0 && instr->Bit(6) == 1 &&
+ instr->Bit(4) == 1) {
+ // vand Qd, Qm, Qn.
+ uint32_t src1[4], src2[4];
+ get_neon_register(Vn, src1);
+ get_neon_register(Vm, src2);
+ for (int i = 0; i < 4; i++) {
+ src1[i] = src1[i] & src2[i];
+ }
+ set_neon_register(Vd, src1);
+ } else {
+ UNIMPLEMENTED();
+ }
+ break;
+ }
+ case 0x2: {
+ if (instr->Bit(4) == 1) {
+ // vqsub.s<size> Qd, Qm, Qn.
+ NeonSize size = static_cast<NeonSize>(instr->Bits(21, 20));
+ switch (size) {
+ case Neon8:
+ SubSaturate<int8_t>(this, Vd, Vm, Vn);
+ break;
+ case Neon16:
+ SubSaturate<int16_t>(this, Vd, Vm, Vn);
+ break;
+ case Neon32:
+ SubSaturate<int32_t>(this, Vd, Vm, Vn);
+ break;
+ default:
+ UNREACHABLE();
+ break;
+ }
+ } else {
+ UNIMPLEMENTED();
+ }
+ break;
+ }
+ case 0x3: {
+ // vcge/vcgt.s<size> Qd, Qm, Qn.
+ bool ge = instr->Bit(4) == 1;
+ NeonSize size = static_cast<NeonSize>(instr->Bits(21, 20));
+ switch (size) {
+ case Neon8:
+ CompareGreater<int8_t, kSimd128Size>(this, Vd, Vm, Vn, ge);
+ break;
+ case Neon16:
+ CompareGreater<int16_t, kSimd128Size>(this, Vd, Vm, Vn, ge);
+ break;
+ case Neon32:
+ CompareGreater<int32_t, kSimd128Size>(this, Vd, Vm, Vn, ge);
+ break;
+ default:
+ UNREACHABLE();
+ break;
+ }
+ break;
+ }
+ case 0x6: {
+ // vmin/vmax.s<size> Qd, Qm, Qn.
+ NeonSize size = static_cast<NeonSize>(instr->Bits(21, 20));
+ bool min = instr->Bit(4) != 0;
+ switch (size) {
+ case Neon8:
+ MinMax<int8_t, kSimd128Size>(this, Vd, Vm, Vn, min);
+ break;
+ case Neon16:
+ MinMax<int16_t, kSimd128Size>(this, Vd, Vm, Vn, min);
+ break;
+ case Neon32:
+ MinMax<int32_t, kSimd128Size>(this, Vd, Vm, Vn, min);
+ break;
+ default:
+ UNREACHABLE();
+ break;
+ }
+ break;
+ }
+ case 0x8: {
+ // vadd/vtst
+ NeonSize size = static_cast<NeonSize>(instr->Bits(21, 20));
+ if (instr->Bit(4) == 0) {
+ // vadd.i<size> Qd, Qm, Qn.
+ switch (size) {
+ case Neon8:
+ Add<uint8_t, kSimd128Size>(this, Vd, Vm, Vn);
+ break;
+ case Neon16:
+ Add<uint16_t, kSimd128Size>(this, Vd, Vm, Vn);
+ break;
+ case Neon32:
+ Add<uint32_t, kSimd128Size>(this, Vd, Vm, Vn);
+ break;
+ default:
+ UNREACHABLE();
+ break;
+ }
+ } else {
+ // vtst.i<size> Qd, Qm, Qn.
+ switch (size) {
+ case Neon8:
+ Test<uint8_t, kSimd128Size>(this, Vd, Vm, Vn);
+ break;
+ case Neon16:
+ Test<uint16_t, kSimd128Size>(this, Vd, Vm, Vn);
+ break;
+ case Neon32:
+ Test<uint32_t, kSimd128Size>(this, Vd, Vm, Vn);
+ break;
+ default:
+ UNREACHABLE();
+ break;
+ }
+ }
+ break;
+ }
+ case 0x9: {
+ if (instr->Bit(6) == 1 && instr->Bit(4) == 1) {
+ // vmul.i<size> Qd, Qm, Qn.
+ NeonSize size = static_cast<NeonSize>(instr->Bits(21, 20));
+ switch (size) {
+ case Neon8:
+ Mul<uint8_t, kSimd128Size>(this, Vd, Vm, Vn);
+ break;
+ case Neon16:
+ Mul<uint16_t, kSimd128Size>(this, Vd, Vm, Vn);
+ break;
+ case Neon32:
+ Mul<uint32_t, kSimd128Size>(this, Vd, Vm, Vn);
+ break;
+ default:
+ UNREACHABLE();
+ break;
+ }
+ } else {
+ UNIMPLEMENTED();
+ }
+ break;
+ }
+ case 0xA: {
+ // vpmin/vpmax.s<size> Dd, Dm, Dn.
+ NeonSize size = static_cast<NeonSize>(instr->Bits(21, 20));
+ bool min = instr->Bit(4) != 0;
+ switch (size) {
+ case Neon8:
+ PairwiseMinMax<int8_t>(this, Vd, Vm, Vn, min);
+ break;
+ case Neon16:
+ PairwiseMinMax<int16_t>(this, Vd, Vm, Vn, min);
+ break;
+ case Neon32:
+ PairwiseMinMax<int32_t>(this, Vd, Vm, Vn, min);
+ break;
+ default:
+ UNREACHABLE();
+ break;
+ }
+ break;
+ }
+ case 0xB: {
+ // vpadd.i<size> Dd, Dm, Dn.
+ NeonSize size = static_cast<NeonSize>(instr->Bits(21, 20));
+ switch (size) {
+ case Neon8:
+ PairwiseAdd<int8_t>(this, Vd, Vm, Vn);
+ break;
+ case Neon16:
+ PairwiseAdd<int16_t>(this, Vd, Vm, Vn);
+ break;
+ case Neon32:
+ PairwiseAdd<int32_t>(this, Vd, Vm, Vn);
+ break;
+ default:
+ UNREACHABLE();
+ break;
+ }
+ break;
+ }
+ case 0xD: {
+ if (instr->Bit(4) == 0) {
+ float src1[4], src2[4];
+ get_neon_register(Vn, src1);
+ get_neon_register(Vm, src2);
+ for (int i = 0; i < 4; i++) {
+ if (instr->Bit(21) == 0) {
+ // vadd.f32 Qd, Qm, Qn.
+ src1[i] = src1[i] + src2[i];
+ } else {
+ // vsub.f32 Qd, Qm, Qn.
+ src1[i] = src1[i] - src2[i];
+ }
+ }
+ set_neon_register(Vd, src1);
+ } else {
+ UNIMPLEMENTED();
+ }
+ break;
+ }
+ case 0xE: {
+ if (instr->Bits(21, 20) == 0 && instr->Bit(4) == 0) {
+ // vceq.f32.
+ float src1[4], src2[4];
+ get_neon_register(Vn, src1);
+ get_neon_register(Vm, src2);
+ uint32_t dst[4];
+ for (int i = 0; i < 4; i++) {
+ dst[i] = (src1[i] == src2[i]) ? 0xFFFFFFFF : 0;
+ }
+ set_neon_register(Vd, dst);
+ } else {
+ UNIMPLEMENTED();
+ }
+ break;
+ }
+ case 0xF: {
+ if (instr->Bit(20) == 0 && instr->Bit(6) == 1) {
+ float src1[4], src2[4];
+ get_neon_register(Vn, src1);
+ get_neon_register(Vm, src2);
+ if (instr->Bit(4) == 1) {
+ if (instr->Bit(21) == 0) {
+ // vrecps.f32 Qd, Qm, Qn.
+ for (int i = 0; i < 4; i++) {
+ src1[i] = 2.0f - src1[i] * src2[i];
+ }
+ } else {
+ // vrsqrts.f32 Qd, Qm, Qn.
+ for (int i = 0; i < 4; i++) {
+ src1[i] = (3.0f - src1[i] * src2[i]) * 0.5f;
+ }
+ }
+ } else {
+ // vmin/vmax.f32 Qd, Qm, Qn.
+ bool min = instr->Bit(21) == 1;
+ for (int i = 0; i < 4; i++) {
+ src1[i] = MinMax(src1[i], src2[i], min);
+ }
+ }
+ set_neon_register(Vd, src1);
+ } else {
+ UNIMPLEMENTED();
+ }
+ break;
+ }
+ default:
+ UNIMPLEMENTED();
+ break;
+ }
+ break;
+ }
+ case 5:
+ if ((instr->Bits(18, 16) == 0) && (instr->Bits(11, 6) == 0x28) &&
+ (instr->Bit(4) == 1)) {
+ // vmovl signed
+ if ((instr->VdValue() & 1) != 0) UNIMPLEMENTED();
+ int Vd = instr->VFPDRegValue(kSimd128Precision);
+ int Vm = instr->VFPMRegValue(kDoublePrecision);
+ int imm3 = instr->Bits(21, 19);
+ switch (imm3) {
+ case 1:
+ Widen<int8_t, int16_t>(this, Vd, Vm);
+ break;
+ case 2:
+ Widen<int16_t, int32_t>(this, Vd, Vm);
+ break;
+ case 4:
+ Widen<int32_t, int64_t>(this, Vd, Vm);
+ break;
+ default:
+ UNIMPLEMENTED();
+ break;
+ }
+ } else if (instr->Bits(21, 20) == 3 && instr->Bit(4) == 0) {
+ // vext.
+ int imm4 = instr->Bits(11, 8);
+ int Vd = instr->VFPDRegValue(kSimd128Precision);
+ int Vm = instr->VFPMRegValue(kSimd128Precision);
+ int Vn = instr->VFPNRegValue(kSimd128Precision);
+ uint8_t src1[16], src2[16], dst[16];
+ get_neon_register(Vn, src1);
+ get_neon_register(Vm, src2);
+ int boundary = kSimd128Size - imm4;
+ int i = 0;
+ for (; i < boundary; i++) {
+ dst[i] = src1[i + imm4];
+ }
+ for (; i < 16; i++) {
+ dst[i] = src2[i - boundary];
+ }
+ set_neon_register(Vd, dst);
+ } else if (instr->Bits(11, 7) == 0xA && instr->Bit(4) == 1) {
+ // vshl.i<size> Qd, Qm, shift
+ int size = base::bits::RoundDownToPowerOfTwo32(instr->Bits(21, 16));
+ int shift = instr->Bits(21, 16) - size;
+ int Vd = instr->VFPDRegValue(kSimd128Precision);
+ int Vm = instr->VFPMRegValue(kSimd128Precision);
+ NeonSize ns = static_cast<NeonSize>(size / 16);
+ switch (ns) {
+ case Neon8:
+ ShiftLeft<uint8_t, kSimd128Size>(this, Vd, Vm, shift);
+ break;
+ case Neon16:
+ ShiftLeft<uint16_t, kSimd128Size>(this, Vd, Vm, shift);
+ break;
+ case Neon32:
+ ShiftLeft<uint32_t, kSimd128Size>(this, Vd, Vm, shift);
+ break;
+ default:
+ UNREACHABLE();
+ break;
+ }
+ } else if (instr->Bits(11, 7) == 0 && instr->Bit(4) == 1) {
+ // vshr.s<size> Qd, Qm, shift
+ int size = base::bits::RoundDownToPowerOfTwo32(instr->Bits(21, 16));
+ int shift = 2 * size - instr->Bits(21, 16);
+ int Vd = instr->VFPDRegValue(kSimd128Precision);
+ int Vm = instr->VFPMRegValue(kSimd128Precision);
+ NeonSize ns = static_cast<NeonSize>(size / 16);
+ switch (ns) {
+ case Neon8:
+ ArithmeticShiftRight<int8_t, kSimd128Size>(this, Vd, Vm, shift);
+ break;
+ case Neon16:
+ ArithmeticShiftRight<int16_t, kSimd128Size>(this, Vd, Vm, shift);
+ break;
+ case Neon32:
+ ArithmeticShiftRight<int32_t, kSimd128Size>(this, Vd, Vm, shift);
+ break;
+ default:
+ UNREACHABLE();
+ break;
+ }
+ } else {
+ UNIMPLEMENTED();
+ }
+ break;
+ case 6: {
+ int Vd, Vm, Vn;
+ if (instr->Bit(6) == 0) {
+ Vd = instr->VFPDRegValue(kDoublePrecision);
+ Vm = instr->VFPMRegValue(kDoublePrecision);
+ Vn = instr->VFPNRegValue(kDoublePrecision);
+ } else {
+ Vd = instr->VFPDRegValue(kSimd128Precision);
+ Vm = instr->VFPMRegValue(kSimd128Precision);
+ Vn = instr->VFPNRegValue(kSimd128Precision);
+ }
+ switch (instr->Bits(11, 8)) {
+ case 0x0: {
+ if (instr->Bit(4) == 1) {
+ // vqadd.u<size> Qd, Qm, Qn.
+ NeonSize size = static_cast<NeonSize>(instr->Bits(21, 20));
+ switch (size) {
+ case Neon8:
+ AddSaturate<uint8_t>(this, Vd, Vm, Vn);
+ break;
+ case Neon16:
+ AddSaturate<uint16_t>(this, Vd, Vm, Vn);
+ break;
+ case Neon32:
+ AddSaturate<uint32_t>(this, Vd, Vm, Vn);
+ break;
+ default:
+ UNREACHABLE();
+ break;
+ }
+ } else {
+ UNIMPLEMENTED();
+ }
+ break;
+ }
+ case 0x1: {
+ if (instr->Bits(21, 20) == 1 && instr->Bit(4) == 1) {
+ // vbsl.size Qd, Qm, Qn.
+ uint32_t dst[4], src1[4], src2[4];
+ get_neon_register(Vd, dst);
+ get_neon_register(Vn, src1);
+ get_neon_register(Vm, src2);
+ for (int i = 0; i < 4; i++) {
+ dst[i] = (dst[i] & src1[i]) | (~dst[i] & src2[i]);
+ }
+ set_neon_register(Vd, dst);
+ } else if (instr->Bits(21, 20) == 0 && instr->Bit(4) == 1) {
+ if (instr->Bit(6) == 0) {
+ // veor Dd, Dn, Dm
+ uint64_t src1, src2;
+ get_d_register(Vn, &src1);
+ get_d_register(Vm, &src2);
+ src1 ^= src2;
+ set_d_register(Vd, &src1);
+
+ } else {
+ // veor Qd, Qn, Qm
+ uint32_t src1[4], src2[4];
+ get_neon_register(Vn, src1);
+ get_neon_register(Vm, src2);
+ for (int i = 0; i < 4; i++) src1[i] ^= src2[i];
+ set_neon_register(Vd, src1);
+ }
+ } else {
+ UNIMPLEMENTED();
+ }
+ break;
+ }
+ case 0x2: {
+ if (instr->Bit(4) == 1) {
+ // vqsub.u<size> Qd, Qm, Qn.
+ NeonSize size = static_cast<NeonSize>(instr->Bits(21, 20));
+ switch (size) {
+ case Neon8:
+ SubSaturate<uint8_t>(this, Vd, Vm, Vn);
+ break;
+ case Neon16:
+ SubSaturate<uint16_t>(this, Vd, Vm, Vn);
+ break;
+ case Neon32:
+ SubSaturate<uint32_t>(this, Vd, Vm, Vn);
+ break;
+ default:
+ UNREACHABLE();
+ break;
+ }
+ } else {
+ UNIMPLEMENTED();
+ }
+ break;
+ }
+ case 0x3: {
+ // vcge/vcgt.u<size> Qd, Qm, Qn.
+ bool ge = instr->Bit(4) == 1;
+ NeonSize size = static_cast<NeonSize>(instr->Bits(21, 20));
+ switch (size) {
+ case Neon8:
+ CompareGreater<uint8_t, kSimd128Size>(this, Vd, Vm, Vn, ge);
+ break;
+ case Neon16:
+ CompareGreater<uint16_t, kSimd128Size>(this, Vd, Vm, Vn, ge);
+ break;
+ case Neon32:
+ CompareGreater<uint32_t, kSimd128Size>(this, Vd, Vm, Vn, ge);
+ break;
+ default:
+ UNREACHABLE();
+ break;
+ }
+ break;
+ }
+ case 0x6: {
+ // vmin/vmax.u<size> Qd, Qm, Qn.
+ NeonSize size = static_cast<NeonSize>(instr->Bits(21, 20));
+ bool min = instr->Bit(4) != 0;
+ switch (size) {
+ case Neon8:
+ MinMax<uint8_t, kSimd128Size>(this, Vd, Vm, Vn, min);
+ break;
+ case Neon16:
+ MinMax<uint16_t, kSimd128Size>(this, Vd, Vm, Vn, min);
+ break;
+ case Neon32:
+ MinMax<uint32_t, kSimd128Size>(this, Vd, Vm, Vn, min);
+ break;
+ default:
+ UNREACHABLE();
+ break;
+ }
+ break;
+ }
+ case 0x8: {
+ if (instr->Bit(4) == 0) {
+ // vsub.size Qd, Qm, Qn.
+ NeonSize size = static_cast<NeonSize>(instr->Bits(21, 20));
+ switch (size) {
+ case Neon8:
+ Sub<uint8_t, kSimd128Size>(this, Vd, Vm, Vn);
+ break;
+ case Neon16:
+ Sub<uint16_t, kSimd128Size>(this, Vd, Vm, Vn);
+ break;
+ case Neon32:
+ Sub<uint32_t, kSimd128Size>(this, Vd, Vm, Vn);
+ break;
+ default:
+ UNREACHABLE();
+ break;
+ }
+ } else {
+ // vceq.size Qd, Qm, Qn.
+ NeonSize size = static_cast<NeonSize>(instr->Bits(21, 20));
+ switch (size) {
+ case Neon8:
+ CompareEqual<uint8_t, kSimd128Size>(this, Vd, Vm, Vn);
+ break;
+ case Neon16:
+ CompareEqual<uint16_t, kSimd128Size>(this, Vd, Vm, Vn);
+ break;
+ case Neon32:
+ CompareEqual<uint32_t, kSimd128Size>(this, Vd, Vm, Vn);
+ break;
+ default:
+ UNREACHABLE();
+ break;
+ }
+ }
+ break;
+ }
+ case 0xA: {
+ // vpmin/vpmax.u<size> Dd, Dm, Dn.
+ NeonSize size = static_cast<NeonSize>(instr->Bits(21, 20));
+ bool min = instr->Bit(4) != 0;
+ switch (size) {
+ case Neon8:
+ PairwiseMinMax<uint8_t>(this, Vd, Vm, Vn, min);
+ break;
+ case Neon16:
+ PairwiseMinMax<uint16_t>(this, Vd, Vm, Vn, min);
+ break;
+ case Neon32:
+ PairwiseMinMax<uint32_t>(this, Vd, Vm, Vn, min);
+ break;
+ default:
+ UNREACHABLE();
+ break;
+ }
+ break;
+ }
+ case 0xD: {
+ if (instr->Bits(21, 20) == 0 && instr->Bit(6) == 1 &&
+ instr->Bit(4) == 1) {
+ // vmul.f32 Qd, Qn, Qm
+ float src1[4], src2[4];
+ get_neon_register(Vn, src1);
+ get_neon_register(Vm, src2);
+ for (int i = 0; i < 4; i++) {
+ src1[i] = src1[i] * src2[i];
+ }
+ set_neon_register(Vd, src1);
+ } else if (instr->Bits(21, 20) == 0 && instr->Bit(6) == 0 &&
+ instr->Bit(4) == 0) {
+ // vpadd.f32 Dd, Dn, Dm
+ PairwiseAdd<float>(this, Vd, Vm, Vn);
+ } else {
+ UNIMPLEMENTED();
+ }
+ break;
+ }
+ case 0xE: {
+ if (instr->Bit(20) == 0 && instr->Bit(4) == 0) {
+ // vcge/vcgt.f32 Qd, Qm, Qn
+ bool ge = instr->Bit(21) == 0;
+ float src1[4], src2[4];
+ get_neon_register(Vn, src1);
+ get_neon_register(Vm, src2);
+ uint32_t dst[4];
+ for (int i = 0; i < 4; i++) {
+ if (ge) {
+ dst[i] = src1[i] >= src2[i] ? 0xFFFFFFFFu : 0;
+ } else {
+ dst[i] = src1[i] > src2[i] ? 0xFFFFFFFFu : 0;
+ }
+ }
+ set_neon_register(Vd, dst);
+ } else {
+ UNIMPLEMENTED();
+ }
+ break;
+ }
+ default:
+ UNREACHABLE();
+ break;
+ }
+ break;
+ }
+ case 7:
+ if ((instr->Bits(18, 16) == 0) && (instr->Bits(11, 6) == 0x28) &&
+ (instr->Bit(4) == 1)) {
+ // vmovl unsigned
+ if ((instr->VdValue() & 1) != 0) UNIMPLEMENTED();
+ int Vd = instr->VFPDRegValue(kSimd128Precision);
+ int Vm = instr->VFPMRegValue(kDoublePrecision);
+ int imm3 = instr->Bits(21, 19);
+ switch (imm3) {
+ case 1:
+ Widen<uint8_t, uint16_t>(this, Vd, Vm);
+ break;
+ case 2:
+ Widen<uint16_t, uint32_t>(this, Vd, Vm);
+ break;
+ case 4:
+ Widen<uint32_t, uint64_t>(this, Vd, Vm);
+ break;
+ default:
+ UNIMPLEMENTED();
+ break;
+ }
+ } else if (instr->Opc1Value() == 7 && instr->Bit(4) == 0) {
+ if (instr->Bits(19, 16) == 0xB && instr->Bits(11, 9) == 0x3 &&
+ instr->Bit(6) == 1) {
+ // vcvt.<Td>.<Tm> Qd, Qm.
+ int Vd = instr->VFPDRegValue(kSimd128Precision);
+ int Vm = instr->VFPMRegValue(kSimd128Precision);
+ uint32_t q_data[4];
+ get_neon_register(Vm, q_data);
+ int op = instr->Bits(8, 7);
+ for (int i = 0; i < 4; i++) {
+ switch (op) {
+ case 0:
+ // f32 <- s32, round towards nearest.
+ q_data[i] = bit_cast<uint32_t>(std::round(
+ static_cast<float>(bit_cast<int32_t>(q_data[i]))));
+ break;
+ case 1:
+ // f32 <- u32, round towards nearest.
+ q_data[i] = bit_cast<uint32_t>(
+ std::round(static_cast<float>(q_data[i])));
+ break;
+ case 2:
+ // s32 <- f32, round to zero.
+ q_data[i] = static_cast<uint32_t>(
+ ConvertDoubleToInt(bit_cast<float>(q_data[i]), false, RZ));
+ break;
+ case 3:
+ // u32 <- f32, round to zero.
+ q_data[i] = static_cast<uint32_t>(
+ ConvertDoubleToInt(bit_cast<float>(q_data[i]), true, RZ));
+ break;
+ }
+ }
+ set_neon_register(Vd, q_data);
+ } else if (instr->Bits(17, 16) == 0x2 && instr->Bits(11, 7) == 0) {
+ if (instr->Bit(6) == 0) {
+ // vswp Dd, Dm.
+ uint64_t dval, mval;
+ int vd = instr->VFPDRegValue(kDoublePrecision);
+ int vm = instr->VFPMRegValue(kDoublePrecision);
+ get_d_register(vd, &dval);
+ get_d_register(vm, &mval);
+ set_d_register(vm, &dval);
+ set_d_register(vd, &mval);
+ } else {
+ // vswp Qd, Qm.
+ uint32_t dval[4], mval[4];
+ int vd = instr->VFPDRegValue(kSimd128Precision);
+ int vm = instr->VFPMRegValue(kSimd128Precision);
+ get_neon_register(vd, dval);
+ get_neon_register(vm, mval);
+ set_neon_register(vm, dval);
+ set_neon_register(vd, mval);
+ }
+ } else if (instr->Bits(11, 7) == 0x18) {
+ // vdup.<size> Dd, Dm[index].
+ // vdup.<size> Qd, Dm[index].
+ int vm = instr->VFPMRegValue(kDoublePrecision);
+ int imm4 = instr->Bits(19, 16);
+ int size = 0, index = 0, mask = 0;
+ if ((imm4 & 0x1) != 0) {
+ size = 8;
+ index = imm4 >> 1;
+ mask = 0xFFu;
+ } else if ((imm4 & 0x2) != 0) {
+ size = 16;
+ index = imm4 >> 2;
+ mask = 0xFFFFu;
+ } else {
+ size = 32;
+ index = imm4 >> 3;
+ mask = 0xFFFFFFFFu;
+ }
+ uint64_t d_data;
+ get_d_register(vm, &d_data);
+ uint32_t scalar = (d_data >> (size * index)) & mask;
+ uint32_t duped = scalar;
+ for (int i = 1; i < 32 / size; i++) {
+ scalar <<= size;
+ duped |= scalar;
+ }
+ uint32_t result[4] = {duped, duped, duped, duped};
+ if (instr->Bit(6) == 0) {
+ int vd = instr->VFPDRegValue(kDoublePrecision);
+ set_d_register(vd, result);
+ } else {
+ int vd = instr->VFPDRegValue(kSimd128Precision);
+ set_neon_register(vd, result);
+ }
+ } else if (instr->Bits(19, 16) == 0 && instr->Bits(11, 6) == 0x17) {
+ // vmvn Qd, Qm.
+ int vd = instr->VFPDRegValue(kSimd128Precision);
+ int vm = instr->VFPMRegValue(kSimd128Precision);
+ uint32_t q_data[4];
+ get_neon_register(vm, q_data);
+ for (int i = 0; i < 4; i++) q_data[i] = ~q_data[i];
+ set_neon_register(vd, q_data);
+ } else if (instr->Bits(11, 10) == 0x2) {
+ // vtb[l,x] Dd, <list>, Dm.
+ int vd = instr->VFPDRegValue(kDoublePrecision);
+ int vn = instr->VFPNRegValue(kDoublePrecision);
+ int vm = instr->VFPMRegValue(kDoublePrecision);
+ int table_len = (instr->Bits(9, 8) + 1) * kDoubleSize;
+ bool vtbx = instr->Bit(6) != 0; // vtbl / vtbx
+ uint64_t destination = 0, indices = 0, result = 0;
+ get_d_register(vd, &destination);
+ get_d_register(vm, &indices);
+ for (int i = 0; i < kDoubleSize; i++) {
+ int shift = i * kBitsPerByte;
+ int index = (indices >> shift) & 0xFF;
+ if (index < table_len) {
+ uint64_t table;
+ get_d_register(vn + index / kDoubleSize, &table);
+ result |=
+ ((table >> ((index % kDoubleSize) * kBitsPerByte)) & 0xFF)
+ << shift;
+ } else if (vtbx) {
+ result |= destination & (0xFFull << shift);
+ }
+ }
+ set_d_register(vd, &result);
+ } else if (instr->Bits(17, 16) == 0x2 && instr->Bits(11, 8) == 0x1) {
+ NeonSize size = static_cast<NeonSize>(instr->Bits(19, 18));
+ if (instr->Bit(6) == 0) {
+ int Vd = instr->VFPDRegValue(kDoublePrecision);
+ int Vm = instr->VFPMRegValue(kDoublePrecision);
+ if (instr->Bit(7) == 1) {
+ // vzip.<size> Dd, Dm.
+ switch (size) {
+ case Neon8:
+ Zip<uint8_t, kDoubleSize>(this, Vd, Vm);
+ break;
+ case Neon16:
+ Zip<uint16_t, kDoubleSize>(this, Vd, Vm);
+ break;
+ case Neon32:
+ UNIMPLEMENTED();
+ break;
+ default:
+ UNREACHABLE();
+ break;
+ }
+ } else {
+ // vuzp.<size> Dd, Dm.
+ switch (size) {
+ case Neon8:
+ Unzip<uint8_t, kDoubleSize>(this, Vd, Vm);
+ break;
+ case Neon16:
+ Unzip<uint16_t, kDoubleSize>(this, Vd, Vm);
+ break;
+ case Neon32:
+ UNIMPLEMENTED();
+ break;
+ default:
+ UNREACHABLE();
+ break;
+ }
+ }
+ } else {
+ int Vd = instr->VFPDRegValue(kSimd128Precision);
+ int Vm = instr->VFPMRegValue(kSimd128Precision);
+ if (instr->Bit(7) == 1) {
+ // vzip.<size> Qd, Qm.
+ switch (size) {
+ case Neon8:
+ Zip<uint8_t, kSimd128Size>(this, Vd, Vm);
+ break;
+ case Neon16:
+ Zip<uint16_t, kSimd128Size>(this, Vd, Vm);
+ break;
+ case Neon32:
+ Zip<uint32_t, kSimd128Size>(this, Vd, Vm);
+ break;
+ default:
+ UNREACHABLE();
+ break;
+ }
+ } else {
+ // vuzp.<size> Qd, Qm.
+ switch (size) {
+ case Neon8:
+ Unzip<uint8_t, kSimd128Size>(this, Vd, Vm);
+ break;
+ case Neon16:
+ Unzip<uint16_t, kSimd128Size>(this, Vd, Vm);
+ break;
+ case Neon32:
+ Unzip<uint32_t, kSimd128Size>(this, Vd, Vm);
+ break;
+ default:
+ UNREACHABLE();
+ break;
+ }
+ }
+ }
+ } else if (instr->Bits(17, 16) == 0 && instr->Bits(11, 9) == 0) {
+ // vrev<op>.size Qd, Qm
+ int Vd = instr->VFPDRegValue(kSimd128Precision);
+ int Vm = instr->VFPMRegValue(kSimd128Precision);
+ NeonSize size = static_cast<NeonSize>(instr->Bits(19, 18));
+ NeonSize op = static_cast<NeonSize>(static_cast<int>(Neon64) -
+ instr->Bits(8, 7));
+ switch (op) {
+ case Neon16: {
+ DCHECK_EQ(Neon8, size);
+ uint8_t src[16];
+ get_neon_register(Vm, src);
+ for (int i = 0; i < 16; i += 2) {
+ std::swap(src[i], src[i + 1]);
+ }
+ set_neon_register(Vd, src);
+ break;
+ }
+ case Neon32: {
+ switch (size) {
+ case Neon16: {
+ uint16_t src[8];
+ get_neon_register(Vm, src);
+ for (int i = 0; i < 8; i += 2) {
+ std::swap(src[i], src[i + 1]);
+ }
+ set_neon_register(Vd, src);
+ break;
+ }
+ case Neon8: {
+ uint8_t src[16];
+ get_neon_register(Vm, src);
+ for (int i = 0; i < 4; i++) {
+ std::swap(src[i * 4], src[i * 4 + 3]);
+ std::swap(src[i * 4 + 1], src[i * 4 + 2]);
+ }
+ set_neon_register(Vd, src);
+ break;
+ }
+ default:
+ UNREACHABLE();
+ break;
+ }
+ break;
+ }
+ case Neon64: {
+ switch (size) {
+ case Neon32: {
+ uint32_t src[4];
+ get_neon_register(Vm, src);
+ std::swap(src[0], src[1]);
+ std::swap(src[2], src[3]);
+ set_neon_register(Vd, src);
+ break;
+ }
+ case Neon16: {
+ uint16_t src[8];
+ get_neon_register(Vm, src);
+ for (int i = 0; i < 2; i++) {
+ std::swap(src[i * 4], src[i * 4 + 3]);
+ std::swap(src[i * 4 + 1], src[i * 4 + 2]);
+ }
+ set_neon_register(Vd, src);
+ break;
+ }
+ case Neon8: {
+ uint8_t src[16];
+ get_neon_register(Vm, src);
+ for (int i = 0; i < 4; i++) {
+ std::swap(src[i], src[7 - i]);
+ std::swap(src[i + 8], src[15 - i]);
+ }
+ set_neon_register(Vd, src);
+ break;
+ }
+ default:
+ UNREACHABLE();
+ break;
+ }
+ break;
+ }
+ default:
+ UNREACHABLE();
+ break;
+ }
+ } else if (instr->Bits(17, 16) == 0x2 && instr->Bits(11, 7) == 0x1) {
+ NeonSize size = static_cast<NeonSize>(instr->Bits(19, 18));
+ if (instr->Bit(6) == 0) {
+ int Vd = instr->VFPDRegValue(kDoublePrecision);
+ int Vm = instr->VFPMRegValue(kDoublePrecision);
+ // vtrn.<size> Dd, Dm.
+ switch (size) {
+ case Neon8:
+ Transpose<uint8_t, kDoubleSize>(this, Vd, Vm);
+ break;
+ case Neon16:
+ Transpose<uint16_t, kDoubleSize>(this, Vd, Vm);
+ break;
+ case Neon32:
+ Transpose<uint32_t, kDoubleSize>(this, Vd, Vm);
+ break;
+ default:
+ UNREACHABLE();
+ break;
+ }
+ } else {
+ int Vd = instr->VFPDRegValue(kSimd128Precision);
+ int Vm = instr->VFPMRegValue(kSimd128Precision);
+ // vtrn.<size> Qd, Qm.
+ switch (size) {
+ case Neon8:
+ Transpose<uint8_t, kSimd128Size>(this, Vd, Vm);
+ break;
+ case Neon16:
+ Transpose<uint16_t, kSimd128Size>(this, Vd, Vm);
+ break;
+ case Neon32:
+ Transpose<uint32_t, kSimd128Size>(this, Vd, Vm);
+ break;
+ default:
+ UNREACHABLE();
+ break;
+ }
+ }
+ } else if (instr->Bits(17, 16) == 0x1 && instr->Bit(11) == 0) {
+ int Vd = instr->VFPDRegValue(kSimd128Precision);
+ int Vm = instr->VFPMRegValue(kSimd128Precision);
+ NeonSize size = static_cast<NeonSize>(instr->Bits(19, 18));
+ if (instr->Bits(9, 6) == 0xD) {
+ // vabs<type>.<size> Qd, Qm
+ if (instr->Bit(10) != 0) {
+ // floating point (clear sign bits)
+ uint32_t src[4];
+ get_neon_register(Vm, src);
+ for (int i = 0; i < 4; i++) {
+ src[i] &= ~0x80000000;
+ }
+ set_neon_register(Vd, src);
+ } else {
+ // signed integer
+ switch (size) {
+ case Neon8:
+ Abs<int8_t, kSimd128Size>(this, Vd, Vm);
+ break;
+ case Neon16:
+ Abs<int16_t, kSimd128Size>(this, Vd, Vm);
+ break;
+ case Neon32:
+ Abs<int32_t, kSimd128Size>(this, Vd, Vm);
+ break;
+ default:
+ UNIMPLEMENTED();
+ break;
+ }
+ }
+ } else if (instr->Bits(9, 6) == 0xF) {
+ // vneg<type>.<size> Qd, Qm (signed integer)
+ if (instr->Bit(10) != 0) {
+ // floating point (toggle sign bits)
+ uint32_t src[4];
+ get_neon_register(Vm, src);
+ for (int i = 0; i < 4; i++) {
+ src[i] ^= 0x80000000;
+ }
+ set_neon_register(Vd, src);
+ } else {
+ // signed integer
+ switch (size) {
+ case Neon8:
+ Neg<int8_t, kSimd128Size>(this, Vd, Vm);
+ break;
+ case Neon16:
+ Neg<int16_t, kSimd128Size>(this, Vd, Vm);
+ break;
+ case Neon32:
+ Neg<int32_t, kSimd128Size>(this, Vd, Vm);
+ break;
+ default:
+ UNIMPLEMENTED();
+ break;
+ }
+ }
+ } else {
+ UNIMPLEMENTED();
+ }
+ } else if (instr->Bits(19, 18) == 0x2 && instr->Bits(11, 8) == 0x5) {
+ // vrecpe/vrsqrte.f32 Qd, Qm.
+ int Vd = instr->VFPDRegValue(kSimd128Precision);
+ int Vm = instr->VFPMRegValue(kSimd128Precision);
+ uint32_t src[4];
+ get_neon_register(Vm, src);
+ if (instr->Bit(7) == 0) {
+ for (int i = 0; i < 4; i++) {
+ float denom = bit_cast<float>(src[i]);
+ div_zero_vfp_flag_ = (denom == 0);
+ float result = 1.0f / denom;
+ result = canonicalizeNaN(result);
+ src[i] = bit_cast<uint32_t>(result);
+ }
+ } else {
+ for (int i = 0; i < 4; i++) {
+ float radicand = bit_cast<float>(src[i]);
+ float result = 1.0f / std::sqrt(radicand);
+ result = canonicalizeNaN(result);
+ src[i] = bit_cast<uint32_t>(result);
+ }
+ }
+ set_neon_register(Vd, src);
+ } else if (instr->Bits(17, 16) == 0x2 && instr->Bits(11, 8) == 0x2 &&
+ instr->Bits(7, 6) != 0) {
+ // vqmovn.<type><size> Dd, Qm.
+ int Vd = instr->VFPDRegValue(kDoublePrecision);
+ int Vm = instr->VFPMRegValue(kSimd128Precision);
+ NeonSize size = static_cast<NeonSize>(instr->Bits(19, 18));
+ bool is_unsigned = instr->Bit(6) != 0;
+ switch (size) {
+ case Neon8: {
+ if (is_unsigned) {
+ SaturatingNarrow<uint16_t, uint8_t>(this, Vd, Vm);
+ } else {
+ SaturatingNarrow<int16_t, int8_t>(this, Vd, Vm);
+ }
+ break;
+ }
+ case Neon16: {
+ if (is_unsigned) {
+ SaturatingNarrow<uint32_t, uint16_t>(this, Vd, Vm);
+ } else {
+ SaturatingNarrow<int32_t, int16_t>(this, Vd, Vm);
+ }
+ break;
+ }
+ case Neon32: {
+ if (is_unsigned) {
+ SaturatingNarrow<uint64_t, uint32_t>(this, Vd, Vm);
+ } else {
+ SaturatingNarrow<int64_t, int32_t>(this, Vd, Vm);
+ }
+ break;
+ }
+ default:
+ UNIMPLEMENTED();
+ break;
+ }
+ } else {
+ UNIMPLEMENTED();
+ }
+ } else if (instr->Bits(11, 7) == 0 && instr->Bit(4) == 1) {
+ // vshr.u<size> Qd, Qm, shift
+ int size = base::bits::RoundDownToPowerOfTwo32(instr->Bits(21, 16));
+ int shift = 2 * size - instr->Bits(21, 16);
+ int Vd = instr->VFPDRegValue(kSimd128Precision);
+ int Vm = instr->VFPMRegValue(kSimd128Precision);
+ NeonSize ns = static_cast<NeonSize>(size / 16);
+ switch (ns) {
+ case Neon8:
+ ShiftRight<uint8_t, kSimd128Size>(this, Vd, Vm, shift);
+ break;
+ case Neon16:
+ ShiftRight<uint16_t, kSimd128Size>(this, Vd, Vm, shift);
+ break;
+ case Neon32:
+ ShiftRight<uint32_t, kSimd128Size>(this, Vd, Vm, shift);
+ break;
+ default:
+ UNREACHABLE();
+ break;
+ }
+ } else if (instr->Bits(11, 8) == 0x5 && instr->Bit(6) == 0 &&
+ instr->Bit(4) == 1) {
+ // vsli.<size> Dd, Dm, shift
+ int imm7 = instr->Bits(21, 16);
+ if (instr->Bit(7) != 0) imm7 += 64;
+ int size = base::bits::RoundDownToPowerOfTwo32(imm7);
+ int shift = imm7 - size;
+ int Vd = instr->VFPDRegValue(kDoublePrecision);
+ int Vm = instr->VFPMRegValue(kDoublePrecision);
+ switch (size) {
+ case 8:
+ ShiftLeftAndInsert<uint8_t, kDoubleSize>(this, Vd, Vm, shift);
+ break;
+ case 16:
+ ShiftLeftAndInsert<uint16_t, kDoubleSize>(this, Vd, Vm, shift);
+ break;
+ case 32:
+ ShiftLeftAndInsert<uint32_t, kDoubleSize>(this, Vd, Vm, shift);
+ break;
+ case 64:
+ ShiftLeftAndInsert<uint64_t, kDoubleSize>(this, Vd, Vm, shift);
+ break;
+ default:
+ UNREACHABLE();
+ break;
+ }
+ } else if (instr->Bits(11, 8) == 0x4 && instr->Bit(6) == 0 &&
+ instr->Bit(4) == 1) {
+ // vsri.<size> Dd, Dm, shift
+ int imm7 = instr->Bits(21, 16);
+ if (instr->Bit(7) != 0) imm7 += 64;
+ int size = base::bits::RoundDownToPowerOfTwo32(imm7);
+ int shift = 2 * size - imm7;
+ int Vd = instr->VFPDRegValue(kDoublePrecision);
+ int Vm = instr->VFPMRegValue(kDoublePrecision);
+ switch (size) {
+ case 8:
+ ShiftRightAndInsert<uint8_t, kDoubleSize>(this, Vd, Vm, shift);
+ break;
+ case 16:
+ ShiftRightAndInsert<uint16_t, kDoubleSize>(this, Vd, Vm, shift);
+ break;
+ case 32:
+ ShiftRightAndInsert<uint32_t, kDoubleSize>(this, Vd, Vm, shift);
+ break;
+ case 64:
+ ShiftRightAndInsert<uint64_t, kDoubleSize>(this, Vd, Vm, shift);
+ break;
+ default:
+ UNREACHABLE();
+ break;
+ }
+ } else {
+ UNIMPLEMENTED();
+ }
+ break;
+ case 8:
+ if (instr->Bits(21, 20) == 0) {
+ // vst1
+ int Vd = (instr->Bit(22) << 4) | instr->VdValue();
+ int Rn = instr->VnValue();
+ int type = instr->Bits(11, 8);
+ int Rm = instr->VmValue();
+ int32_t address = get_register(Rn);
+ int regs = 0;
+ switch (type) {
+ case nlt_1:
+ regs = 1;
+ break;
+ case nlt_2:
+ regs = 2;
+ break;
+ case nlt_3:
+ regs = 3;
+ break;
+ case nlt_4:
+ regs = 4;
+ break;
+ default:
+ UNIMPLEMENTED();
+ break;
+ }
+ int r = 0;
+ while (r < regs) {
+ uint32_t data[2];
+ get_d_register(Vd + r, data);
+ WriteW(address, data[0]);
+ WriteW(address + 4, data[1]);
+ address += 8;
+ r++;
+ }
+ if (Rm != 15) {
+ if (Rm == 13) {
+ set_register(Rn, address);
+ } else {
+ set_register(Rn, get_register(Rn) + get_register(Rm));
+ }
+ }
+ } else if (instr->Bits(21, 20) == 2) {
+ // vld1
+ int Vd = (instr->Bit(22) << 4) | instr->VdValue();
+ int Rn = instr->VnValue();
+ int type = instr->Bits(11, 8);
+ int Rm = instr->VmValue();
+ int32_t address = get_register(Rn);
+ int regs = 0;
+ switch (type) {
+ case nlt_1:
+ regs = 1;
+ break;
+ case nlt_2:
+ regs = 2;
+ break;
+ case nlt_3:
+ regs = 3;
+ break;
+ case nlt_4:
+ regs = 4;
+ break;
+ default:
+ UNIMPLEMENTED();
+ break;
+ }
+ int r = 0;
+ while (r < regs) {
+ uint32_t data[2];
+ data[0] = ReadW(address);
+ data[1] = ReadW(address + 4);
+ set_d_register(Vd + r, data);
+ address += 8;
+ r++;
+ }
+ if (Rm != 15) {
+ if (Rm == 13) {
+ set_register(Rn, address);
+ } else {
+ set_register(Rn, get_register(Rn) + get_register(Rm));
+ }
+ }
+ } else {
+ UNIMPLEMENTED();
+ }
+ break;
+ case 0xA:
+ case 0xB:
+ if ((instr->Bits(22, 20) == 5) && (instr->Bits(15, 12) == 0xF)) {
+ // pld: ignore instruction.
+ } else if (instr->SpecialValue() == 0xA && instr->Bits(22, 20) == 7) {
+ // dsb, dmb, isb: ignore instruction for now.
+ // TODO(binji): implement
+ // Also refer to the ARMv6 CP15 equivalents in DecodeTypeCP15.
+ } else {
+ UNIMPLEMENTED();
+ }
+ break;
+ case 0x1D:
+ if (instr->Opc1Value() == 0x7 && instr->Opc3Value() == 0x1 &&
+ instr->Bits(11, 9) == 0x5 && instr->Bits(19, 18) == 0x2) {
+ if (instr->SzValue() == 0x1) {
+ int vm = instr->VFPMRegValue(kDoublePrecision);
+ int vd = instr->VFPDRegValue(kDoublePrecision);
+ double dm_value = get_double_from_d_register(vm).get_scalar();
+ double dd_value = 0.0;
+ int rounding_mode = instr->Bits(17, 16);
+ switch (rounding_mode) {
+ case 0x0: // vrinta - round with ties to away from zero
+ dd_value = round(dm_value);
+ break;
+ case 0x1: { // vrintn - round with ties to even
+ dd_value = nearbyint(dm_value);
+ break;
+ }
+ case 0x2: // vrintp - ceil
+ dd_value = ceil(dm_value);
+ break;
+ case 0x3: // vrintm - floor
+ dd_value = floor(dm_value);
+ break;
+ default:
+ UNREACHABLE(); // Case analysis is exhaustive.
+ break;
+ }
+ dd_value = canonicalizeNaN(dd_value);
+ set_d_register_from_double(vd, dd_value);
+ } else {
+ int m = instr->VFPMRegValue(kSinglePrecision);
+ int d = instr->VFPDRegValue(kSinglePrecision);
+ float sm_value = get_float_from_s_register(m).get_scalar();
+ float sd_value = 0.0;
+ int rounding_mode = instr->Bits(17, 16);
+ switch (rounding_mode) {
+ case 0x0: // vrinta - round with ties to away from zero
+ sd_value = roundf(sm_value);
+ break;
+ case 0x1: { // vrintn - round with ties to even
+ sd_value = nearbyintf(sm_value);
+ break;
+ }
+ case 0x2: // vrintp - ceil
+ sd_value = ceilf(sm_value);
+ break;
+ case 0x3: // vrintm - floor
+ sd_value = floorf(sm_value);
+ break;
+ default:
+ UNREACHABLE(); // Case analysis is exhaustive.
+ break;
+ }
+ sd_value = canonicalizeNaN(sd_value);
+ set_s_register_from_float(d, sd_value);
+ }
+ } else if ((instr->Opc1Value() == 0x4) && (instr->Bits(11, 9) == 0x5) &&
+ (instr->Bit(4) == 0x0)) {
+ if (instr->SzValue() == 0x1) {
+ int m = instr->VFPMRegValue(kDoublePrecision);
+ int n = instr->VFPNRegValue(kDoublePrecision);
+ int d = instr->VFPDRegValue(kDoublePrecision);
+ double dn_value = get_double_from_d_register(n).get_scalar();
+ double dm_value = get_double_from_d_register(m).get_scalar();
+ double dd_value;
+ if (instr->Bit(6) == 0x1) { // vminnm
+ if ((dn_value < dm_value) || std::isnan(dm_value)) {
+ dd_value = dn_value;
+ } else if ((dm_value < dn_value) || std::isnan(dn_value)) {
+ dd_value = dm_value;
+ } else {
+ DCHECK_EQ(dn_value, dm_value);
+ // Make sure that we pick the most negative sign for +/-0.
+ dd_value = std::signbit(dn_value) ? dn_value : dm_value;
+ }
+ } else { // vmaxnm
+ if ((dn_value > dm_value) || std::isnan(dm_value)) {
+ dd_value = dn_value;
+ } else if ((dm_value > dn_value) || std::isnan(dn_value)) {
+ dd_value = dm_value;
+ } else {
+ DCHECK_EQ(dn_value, dm_value);
+ // Make sure that we pick the most positive sign for +/-0.
+ dd_value = std::signbit(dn_value) ? dm_value : dn_value;
+ }
+ }
+ dd_value = canonicalizeNaN(dd_value);
+ set_d_register_from_double(d, dd_value);
+ } else {
+ int m = instr->VFPMRegValue(kSinglePrecision);
+ int n = instr->VFPNRegValue(kSinglePrecision);
+ int d = instr->VFPDRegValue(kSinglePrecision);
+ float sn_value = get_float_from_s_register(n).get_scalar();
+ float sm_value = get_float_from_s_register(m).get_scalar();
+ float sd_value;
+ if (instr->Bit(6) == 0x1) { // vminnm
+ if ((sn_value < sm_value) || std::isnan(sm_value)) {
+ sd_value = sn_value;
+ } else if ((sm_value < sn_value) || std::isnan(sn_value)) {
+ sd_value = sm_value;
+ } else {
+ DCHECK_EQ(sn_value, sm_value);
+ // Make sure that we pick the most negative sign for +/-0.
+ sd_value = std::signbit(sn_value) ? sn_value : sm_value;
+ }
+ } else { // vmaxnm
+ if ((sn_value > sm_value) || std::isnan(sm_value)) {
+ sd_value = sn_value;
+ } else if ((sm_value > sn_value) || std::isnan(sn_value)) {
+ sd_value = sm_value;
+ } else {
+ DCHECK_EQ(sn_value, sm_value);
+ // Make sure that we pick the most positive sign for +/-0.
+ sd_value = std::signbit(sn_value) ? sm_value : sn_value;
+ }
+ }
+ sd_value = canonicalizeNaN(sd_value);
+ set_s_register_from_float(d, sd_value);
+ }
+ } else {
+ UNIMPLEMENTED();
+ }
+ break;
+ case 0x1C:
+ if ((instr->Bits(11, 9) == 0x5) && (instr->Bit(6) == 0) &&
+ (instr->Bit(4) == 0)) {
+ // VSEL* (floating-point)
+ bool condition_holds;
+ switch (instr->Bits(21, 20)) {
+ case 0x0: // VSELEQ
+ condition_holds = (z_flag_ == 1);
+ break;
+ case 0x1: // VSELVS
+ condition_holds = (v_flag_ == 1);
+ break;
+ case 0x2: // VSELGE
+ condition_holds = (n_flag_ == v_flag_);
+ break;
+ case 0x3: // VSELGT
+ condition_holds = ((z_flag_ == 0) && (n_flag_ == v_flag_));
+ break;
+ default:
+ UNREACHABLE(); // Case analysis is exhaustive.
+ break;
+ }
+ if (instr->SzValue() == 0x1) {
+ int n = instr->VFPNRegValue(kDoublePrecision);
+ int m = instr->VFPMRegValue(kDoublePrecision);
+ int d = instr->VFPDRegValue(kDoublePrecision);
+ Float64 result = get_double_from_d_register(condition_holds ? n : m);
+ set_d_register_from_double(d, result);
+ } else {
+ int n = instr->VFPNRegValue(kSinglePrecision);
+ int m = instr->VFPMRegValue(kSinglePrecision);
+ int d = instr->VFPDRegValue(kSinglePrecision);
+ Float32 result = get_float_from_s_register(condition_holds ? n : m);
+ set_s_register_from_float(d, result);
+ }
+ } else {
+ UNIMPLEMENTED();
+ }
+ break;
+ default:
+ UNIMPLEMENTED();
+ break;
+ }
+}
+
+// Executes the current instruction.
+void Simulator::InstructionDecode(Instruction* instr) {
+ if (v8::internal::FLAG_check_icache) {
+ CheckICache(i_cache(), instr);
+ }
+ pc_modified_ = false;
+ if (::v8::internal::FLAG_trace_sim) {
+ disasm::NameConverter converter;
+ disasm::Disassembler dasm(converter);
+ // use a reasonably large buffer
+ v8::internal::EmbeddedVector<char, 256> buffer;
+ dasm.InstructionDecode(buffer, reinterpret_cast<byte*>(instr));
+ PrintF(" 0x%08" V8PRIxPTR " %s\n", reinterpret_cast<intptr_t>(instr),
+ buffer.begin());
+ }
+ if (instr->ConditionField() == kSpecialCondition) {
+ DecodeSpecialCondition(instr);
+ } else if (ConditionallyExecute(instr)) {
+ switch (instr->TypeValue()) {
+ case 0:
+ case 1: {
+ DecodeType01(instr);
+ break;
+ }
+ case 2: {
+ DecodeType2(instr);
+ break;
+ }
+ case 3: {
+ DecodeType3(instr);
+ break;
+ }
+ case 4: {
+ DecodeType4(instr);
+ break;
+ }
+ case 5: {
+ DecodeType5(instr);
+ break;
+ }
+ case 6: {
+ DecodeType6(instr);
+ break;
+ }
+ case 7: {
+ DecodeType7(instr);
+ break;
+ }
+ default: {
+ UNIMPLEMENTED();
+ break;
+ }
+ }
+ }
+ if (!pc_modified_) {
+ set_register(pc, reinterpret_cast<int32_t>(instr) + kInstrSize);
+ }
+}
+
+void Simulator::Execute() {
+ // Get the PC to simulate. Cannot use the accessor here as we need the
+ // raw PC value and not the one used as input to arithmetic instructions.
+ int program_counter = get_pc();
+
+ if (::v8::internal::FLAG_stop_sim_at == 0) {
+ // Fast version of the dispatch loop without checking whether the simulator
+ // should be stopping at a particular executed instruction.
+ while (program_counter != end_sim_pc) {
+ Instruction* instr = reinterpret_cast<Instruction*>(program_counter);
+ icount_++;
+ InstructionDecode(instr);
+ program_counter = get_pc();
+ }
+ } else {
+ // FLAG_stop_sim_at is at the non-default value. Stop in the debugger when
+ // we reach the particular instruction count.
+ while (program_counter != end_sim_pc) {
+ Instruction* instr = reinterpret_cast<Instruction*>(program_counter);
+ icount_++;
+ if (icount_ == ::v8::internal::FLAG_stop_sim_at) {
+ ArmDebugger dbg(this);
+ dbg.Debug();
+ } else {
+ InstructionDecode(instr);
+ }
+ program_counter = get_pc();
+ }
+ }
+}
+
+void Simulator::CallInternal(Address entry) {
+ // Adjust JS-based stack limit to C-based stack limit.
+ isolate_->stack_guard()->AdjustStackLimitForSimulator();
+
+ // Prepare to execute the code at entry
+ set_register(pc, static_cast<int32_t>(entry));
+ // Put down marker for end of simulation. The simulator will stop simulation
+ // when the PC reaches this value. By saving the "end simulation" value into
+ // the LR the simulation stops when returning to this call point.
+ set_register(lr, end_sim_pc);
+
+ // Remember the values of callee-saved registers.
+ // The code below assumes that r9 is not used as sb (static base) in
+ // simulator code and therefore is regarded as a callee-saved register.
+ int32_t r4_val = get_register(r4);
+ int32_t r5_val = get_register(r5);
+ int32_t r6_val = get_register(r6);
+ int32_t r7_val = get_register(r7);
+ int32_t r8_val = get_register(r8);
+ int32_t r9_val = get_register(r9);
+ int32_t r10_val = get_register(r10);
+ int32_t r11_val = get_register(r11);
+
+ // Set up the callee-saved registers with a known value. To be able to check
+ // that they are preserved properly across JS execution.
+ int32_t callee_saved_value = icount_;
+ set_register(r4, callee_saved_value);
+ set_register(r5, callee_saved_value);
+ set_register(r6, callee_saved_value);
+ set_register(r7, callee_saved_value);
+ set_register(r8, callee_saved_value);
+ set_register(r9, callee_saved_value);
+ set_register(r10, callee_saved_value);
+ set_register(r11, callee_saved_value);
+
+ // Start the simulation
+ Execute();
+
+ // Check that the callee-saved registers have been preserved.
+ CHECK_EQ(callee_saved_value, get_register(r4));
+ CHECK_EQ(callee_saved_value, get_register(r5));
+ CHECK_EQ(callee_saved_value, get_register(r6));
+ CHECK_EQ(callee_saved_value, get_register(r7));
+ CHECK_EQ(callee_saved_value, get_register(r8));
+ CHECK_EQ(callee_saved_value, get_register(r9));
+ CHECK_EQ(callee_saved_value, get_register(r10));
+ CHECK_EQ(callee_saved_value, get_register(r11));
+
+ // Restore callee-saved registers with the original value.
+ set_register(r4, r4_val);
+ set_register(r5, r5_val);
+ set_register(r6, r6_val);
+ set_register(r7, r7_val);
+ set_register(r8, r8_val);
+ set_register(r9, r9_val);
+ set_register(r10, r10_val);
+ set_register(r11, r11_val);
+}
+
+intptr_t Simulator::CallImpl(Address entry, int argument_count,
+ const intptr_t* arguments) {
+ // Set up arguments
+
+ // First four arguments passed in registers.
+ int reg_arg_count = std::min(4, argument_count);
+ if (reg_arg_count > 0) set_register(r0, arguments[0]);
+ if (reg_arg_count > 1) set_register(r1, arguments[1]);
+ if (reg_arg_count > 2) set_register(r2, arguments[2]);
+ if (reg_arg_count > 3) set_register(r3, arguments[3]);
+
+ // Remaining arguments passed on stack.
+ int original_stack = get_register(sp);
+ // Compute position of stack on entry to generated code.
+ int entry_stack = (original_stack - (argument_count - 4) * sizeof(int32_t));
+ if (base::OS::ActivationFrameAlignment() != 0) {
+ entry_stack &= -base::OS::ActivationFrameAlignment();
+ }
+ // Store remaining arguments on stack, from low to high memory.
+ memcpy(reinterpret_cast<intptr_t*>(entry_stack), arguments + reg_arg_count,
+ (argument_count - reg_arg_count) * sizeof(*arguments));
+ set_register(sp, entry_stack);
+
+ CallInternal(entry);
+
+ // Pop stack passed arguments.
+ CHECK_EQ(entry_stack, get_register(sp));
+ set_register(sp, original_stack);
+
+ return get_register(r0);
+}
+
+intptr_t Simulator::CallFPImpl(Address entry, double d0, double d1) {
+ if (use_eabi_hardfloat()) {
+ set_d_register_from_double(0, d0);
+ set_d_register_from_double(1, d1);
+ } else {
+ set_register_pair_from_double(0, &d0);
+ set_register_pair_from_double(2, &d1);
+ }
+ CallInternal(entry);
+ return get_register(r0);
+}
+
+uintptr_t Simulator::PushAddress(uintptr_t address) {
+ int new_sp = get_register(sp) - sizeof(uintptr_t);
+ uintptr_t* stack_slot = reinterpret_cast<uintptr_t*>(new_sp);
+ *stack_slot = address;
+ set_register(sp, new_sp);
+ return new_sp;
+}
+
+uintptr_t Simulator::PopAddress() {
+ int current_sp = get_register(sp);
+ uintptr_t* stack_slot = reinterpret_cast<uintptr_t*>(current_sp);
+ uintptr_t address = *stack_slot;
+ set_register(sp, current_sp + sizeof(uintptr_t));
+ return address;
+}
+
+Simulator::LocalMonitor::LocalMonitor()
+ : access_state_(MonitorAccess::Open),
+ tagged_addr_(0),
+ size_(TransactionSize::None) {}
+
+void Simulator::LocalMonitor::Clear() {
+ access_state_ = MonitorAccess::Open;
+ tagged_addr_ = 0;
+ size_ = TransactionSize::None;
+}
+
+void Simulator::LocalMonitor::NotifyLoad(int32_t addr) {
+ if (access_state_ == MonitorAccess::Exclusive) {
+ // A load could cause a cache eviction which will affect the monitor. As a
+ // result, it's most strict to unconditionally clear the local monitor on
+ // load.
+ Clear();
+ }
+}
+
+void Simulator::LocalMonitor::NotifyLoadExcl(int32_t addr,
+ TransactionSize size) {
+ access_state_ = MonitorAccess::Exclusive;
+ tagged_addr_ = addr;
+ size_ = size;
+}
+
+void Simulator::LocalMonitor::NotifyStore(int32_t addr) {
+ if (access_state_ == MonitorAccess::Exclusive) {
+ // It is implementation-defined whether a non-exclusive store to an address
+ // covered by the local monitor during exclusive access transitions to open
+ // or exclusive access. See ARM DDI 0406C.b, A3.4.1.
+ //
+ // However, a store could cause a cache eviction which will affect the
+ // monitor. As a result, it's most strict to unconditionally clear the
+ // local monitor on store.
+ Clear();
+ }
+}
+
+bool Simulator::LocalMonitor::NotifyStoreExcl(int32_t addr,
+ TransactionSize size) {
+ if (access_state_ == MonitorAccess::Exclusive) {
+ // It is allowed for a processor to require that the address matches
+ // exactly (A3.4.5), so this comparison does not mask addr.
+ if (addr == tagged_addr_ && size_ == size) {
+ Clear();
+ return true;
+ } else {
+ // It is implementation-defined whether an exclusive store to a
+ // non-tagged address will update memory. Behavior is unpredictable if
+ // the transaction size of the exclusive store differs from that of the
+ // exclusive load. See ARM DDI 0406C.b, A3.4.5.
+ Clear();
+ return false;
+ }
+ } else {
+ DCHECK(access_state_ == MonitorAccess::Open);
+ return false;
+ }
+}
+
+Simulator::GlobalMonitor::Processor::Processor()
+ : access_state_(MonitorAccess::Open),
+ tagged_addr_(0),
+ next_(nullptr),
+ prev_(nullptr),
+ failure_counter_(0) {}
+
+void Simulator::GlobalMonitor::Processor::Clear_Locked() {
+ access_state_ = MonitorAccess::Open;
+ tagged_addr_ = 0;
+}
+
+void Simulator::GlobalMonitor::Processor::NotifyLoadExcl_Locked(int32_t addr) {
+ access_state_ = MonitorAccess::Exclusive;
+ tagged_addr_ = addr;
+}
+
+void Simulator::GlobalMonitor::Processor::NotifyStore_Locked(
+ int32_t addr, bool is_requesting_processor) {
+ if (access_state_ == MonitorAccess::Exclusive) {
+ // It is implementation-defined whether a non-exclusive store by the
+ // requesting processor to an address covered by the global monitor
+ // during exclusive access transitions to open or exclusive access.
+ //
+ // For any other processor, the access state always transitions to open
+ // access.
+ //
+ // See ARM DDI 0406C.b, A3.4.2.
+ //
+ // However, similar to the local monitor, it is possible that a store
+ // caused a cache eviction, which can affect the montior, so
+ // conservatively, we always clear the monitor.
+ Clear_Locked();
+ }
+}
+
+bool Simulator::GlobalMonitor::Processor::NotifyStoreExcl_Locked(
+ int32_t addr, bool is_requesting_processor) {
+ if (access_state_ == MonitorAccess::Exclusive) {
+ if (is_requesting_processor) {
+ // It is allowed for a processor to require that the address matches
+ // exactly (A3.4.5), so this comparison does not mask addr.
+ if (addr == tagged_addr_) {
+ // The access state for the requesting processor after a successful
+ // exclusive store is implementation-defined, but according to the ARM
+ // DDI, this has no effect on the subsequent operation of the global
+ // monitor.
+ Clear_Locked();
+ // Introduce occasional strex failures. This is to simulate the
+ // behavior of hardware, which can randomly fail due to background
+ // cache evictions.
+ if (failure_counter_++ >= kMaxFailureCounter) {
+ failure_counter_ = 0;
+ return false;
+ } else {
+ return true;
+ }
+ }
+ } else if ((addr & kExclusiveTaggedAddrMask) ==
+ (tagged_addr_ & kExclusiveTaggedAddrMask)) {
+ // Check the masked addresses when responding to a successful lock by
+ // another processor so the implementation is more conservative (i.e. the
+ // granularity of locking is as large as possible.)
+ Clear_Locked();
+ return false;
+ }
+ }
+ return false;
+}
+
+void Simulator::GlobalMonitor::NotifyLoadExcl_Locked(int32_t addr,
+ Processor* processor) {
+ processor->NotifyLoadExcl_Locked(addr);
+ PrependProcessor_Locked(processor);
+}
+
+void Simulator::GlobalMonitor::NotifyStore_Locked(int32_t addr,
+ Processor* processor) {
+ // Notify each processor of the store operation.
+ for (Processor* iter = head_; iter; iter = iter->next_) {
+ bool is_requesting_processor = iter == processor;
+ iter->NotifyStore_Locked(addr, is_requesting_processor);
+ }
+}
+
+bool Simulator::GlobalMonitor::NotifyStoreExcl_Locked(int32_t addr,
+ Processor* processor) {
+ DCHECK(IsProcessorInLinkedList_Locked(processor));
+ if (processor->NotifyStoreExcl_Locked(addr, true)) {
+ // Notify the other processors that this StoreExcl succeeded.
+ for (Processor* iter = head_; iter; iter = iter->next_) {
+ if (iter != processor) {
+ iter->NotifyStoreExcl_Locked(addr, false);
+ }
+ }
+ return true;
+ } else {
+ return false;
+ }
+}
+
+bool Simulator::GlobalMonitor::IsProcessorInLinkedList_Locked(
+ Processor* processor) const {
+ return head_ == processor || processor->next_ || processor->prev_;
+}
+
+void Simulator::GlobalMonitor::PrependProcessor_Locked(Processor* processor) {
+ if (IsProcessorInLinkedList_Locked(processor)) {
+ return;
+ }
+
+ if (head_) {
+ head_->prev_ = processor;
+ }
+ processor->prev_ = nullptr;
+ processor->next_ = head_;
+ head_ = processor;
+}
+
+void Simulator::GlobalMonitor::RemoveProcessor(Processor* processor) {
+ base::MutexGuard lock_guard(&mutex);
+ if (!IsProcessorInLinkedList_Locked(processor)) {
+ return;
+ }
+
+ if (processor->prev_) {
+ processor->prev_->next_ = processor->next_;
+ } else {
+ head_ = processor->next_;
+ }
+ if (processor->next_) {
+ processor->next_->prev_ = processor->prev_;
+ }
+ processor->prev_ = nullptr;
+ processor->next_ = nullptr;
+}
+
+#undef SScanF
+
+} // namespace internal
+} // namespace v8
+
+#endif // USE_SIMULATOR