diff options
author | Ryan <ry@tinyclouds.org> | 2009-04-22 19:35:47 +0200 |
---|---|---|
committer | Ryan <ry@tinyclouds.org> | 2009-04-22 19:35:47 +0200 |
commit | 40c0f755c998d2615fe8466aab20c6d81bd463e7 (patch) | |
tree | 51fcb08ba1bd3f745ceb43fd5f814a5700079881 /deps/v8/src/scopes.cc | |
parent | a93cf503073ba0258c55dec4dc325bdc1509b739 (diff) | |
download | node-new-40c0f755c998d2615fe8466aab20c6d81bd463e7.tar.gz |
import full versions of dependency libraries!
Diffstat (limited to 'deps/v8/src/scopes.cc')
-rw-r--r-- | deps/v8/src/scopes.cc | 946 |
1 files changed, 946 insertions, 0 deletions
diff --git a/deps/v8/src/scopes.cc b/deps/v8/src/scopes.cc new file mode 100644 index 0000000000..e959f02523 --- /dev/null +++ b/deps/v8/src/scopes.cc @@ -0,0 +1,946 @@ +// Copyright 2006-2008 the V8 project authors. All rights reserved. +// Redistribution and use in source and binary forms, with or without +// modification, are permitted provided that the following conditions are +// met: +// +// * Redistributions of source code must retain the above copyright +// notice, this list of conditions and the following disclaimer. +// * Redistributions in binary form must reproduce the above +// copyright notice, this list of conditions and the following +// disclaimer in the documentation and/or other materials provided +// with the distribution. +// * Neither the name of Google Inc. nor the names of its +// contributors may be used to endorse or promote products derived +// from this software without specific prior written permission. +// +// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS +// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT +// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR +// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT +// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, +// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT +// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, +// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY +// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT +// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE +// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + +#include "v8.h" + +#include "prettyprinter.h" +#include "scopeinfo.h" +#include "scopes.h" + +namespace v8 { namespace internal { + +// ---------------------------------------------------------------------------- +// A Zone allocator for use with LocalsMap. + +class ZoneAllocator: public Allocator { + public: + /* nothing to do */ + virtual ~ZoneAllocator() {} + + virtual void* New(size_t size) { return Zone::New(size); } + + /* ignored - Zone is freed in one fell swoop */ + virtual void Delete(void* p) {} +}; + + +static ZoneAllocator LocalsMapAllocator; + + +// ---------------------------------------------------------------------------- +// Implementation of LocalsMap +// +// Note: We are storing the handle locations as key values in the hash map. +// When inserting a new variable via Declare(), we rely on the fact that +// the handle location remains alive for the duration of that variable +// use. Because a Variable holding a handle with the same location exists +// this is ensured. + +static bool Match(void* key1, void* key2) { + String* name1 = *reinterpret_cast<String**>(key1); + String* name2 = *reinterpret_cast<String**>(key2); + ASSERT(name1->IsSymbol()); + ASSERT(name2->IsSymbol()); + return name1 == name2; +} + + +// Dummy constructor +LocalsMap::LocalsMap(bool gotta_love_static_overloading) : HashMap() {} + +LocalsMap::LocalsMap() : HashMap(Match, &LocalsMapAllocator, 8) {} +LocalsMap::~LocalsMap() {} + + +Variable* LocalsMap::Declare(Scope* scope, + Handle<String> name, + Variable::Mode mode, + bool is_valid_LHS, + bool is_this) { + HashMap::Entry* p = HashMap::Lookup(name.location(), name->Hash(), true); + if (p->value == NULL) { + // The variable has not been declared yet -> insert it. + ASSERT(p->key == name.location()); + p->value = new Variable(scope, name, mode, is_valid_LHS, is_this); + } + return reinterpret_cast<Variable*>(p->value); +} + + +Variable* LocalsMap::Lookup(Handle<String> name) { + HashMap::Entry* p = HashMap::Lookup(name.location(), name->Hash(), false); + if (p != NULL) { + ASSERT(*reinterpret_cast<String**>(p->key) == *name); + ASSERT(p->value != NULL); + return reinterpret_cast<Variable*>(p->value); + } + return NULL; +} + + +// ---------------------------------------------------------------------------- +// Implementation of Scope + + +// Dummy constructor +Scope::Scope() + : inner_scopes_(0), + locals_(false), + temps_(0), + params_(0), + nonlocals_(0), + unresolved_(0), + decls_(0) { +} + + +Scope::Scope(Scope* outer_scope, Type type) + : outer_scope_(outer_scope), + inner_scopes_(4), + type_(type), + scope_name_(Factory::empty_symbol()), + locals_(), + temps_(4), + params_(4), + nonlocals_(4), + unresolved_(16), + decls_(4), + receiver_(NULL), + function_(NULL), + arguments_(NULL), + arguments_shadow_(NULL), + illegal_redecl_(NULL), + scope_inside_with_(false), + scope_contains_with_(false), + scope_calls_eval_(false), + outer_scope_calls_eval_(false), + inner_scope_calls_eval_(false), + outer_scope_is_eval_scope_(false), + force_eager_compilation_(false), + num_stack_slots_(0), + num_heap_slots_(0) { + // At some point we might want to provide outer scopes to + // eval scopes (by walking the stack and reading the scope info). + // In that case, the ASSERT below needs to be adjusted. + ASSERT((type == GLOBAL_SCOPE || type == EVAL_SCOPE) == (outer_scope == NULL)); + ASSERT(!HasIllegalRedeclaration()); +} + + +void Scope::Initialize(bool inside_with) { + // Add this scope as a new inner scope of the outer scope. + if (outer_scope_ != NULL) { + outer_scope_->inner_scopes_.Add(this); + scope_inside_with_ = outer_scope_->scope_inside_with_ || inside_with; + } else { + scope_inside_with_ = inside_with; + } + + // Declare convenience variables. + // Declare and allocate receiver (even for the global scope, and even + // if naccesses_ == 0). + // NOTE: When loading parameters in the global scope, we must take + // care not to access them as properties of the global object, but + // instead load them directly from the stack. Currently, the only + // such parameter is 'this' which is passed on the stack when + // invoking scripts + { Variable* var = + locals_.Declare(this, Factory::this_symbol(), Variable::VAR, false, true); + var->rewrite_ = new Slot(var, Slot::PARAMETER, -1); + receiver_ = new VariableProxy(Factory::this_symbol(), true, false); + receiver_->BindTo(var); + } + + if (is_function_scope()) { + // Declare 'arguments' variable which exists in all functions. + // Note that it may never be accessed, in which case it won't + // be allocated during variable allocation. + Declare(Factory::arguments_symbol(), Variable::VAR); + } +} + + + +Variable* Scope::LookupLocal(Handle<String> name) { + return locals_.Lookup(name); +} + + +Variable* Scope::Lookup(Handle<String> name) { + for (Scope* scope = this; + scope != NULL; + scope = scope->outer_scope()) { + Variable* var = scope->LookupLocal(name); + if (var != NULL) return var; + } + return NULL; +} + + +Variable* Scope::DeclareFunctionVar(Handle<String> name) { + ASSERT(is_function_scope() && function_ == NULL); + function_ = new Variable(this, name, Variable::CONST, true, false); + return function_; +} + + +Variable* Scope::Declare(Handle<String> name, Variable::Mode mode) { + // DYNAMIC variables are introduces during variable allocation, + // INTERNAL variables are allocated explicitly, and TEMPORARY + // variables are allocated via NewTemporary(). + ASSERT(mode == Variable::VAR || mode == Variable::CONST); + return locals_.Declare(this, name, mode, true, false); +} + + +void Scope::AddParameter(Variable* var) { + ASSERT(is_function_scope()); + ASSERT(LookupLocal(var->name()) == var); + params_.Add(var); +} + + +VariableProxy* Scope::NewUnresolved(Handle<String> name, bool inside_with) { + // Note that we must not share the unresolved variables with + // the same name because they may be removed selectively via + // RemoveUnresolved(). + VariableProxy* proxy = new VariableProxy(name, false, inside_with); + unresolved_.Add(proxy); + return proxy; +} + + +void Scope::RemoveUnresolved(VariableProxy* var) { + // Most likely (always?) any variable we want to remove + // was just added before, so we search backwards. + for (int i = unresolved_.length(); i-- > 0;) { + if (unresolved_[i] == var) { + unresolved_.Remove(i); + return; + } + } +} + + +VariableProxy* Scope::NewTemporary(Handle<String> name) { + Variable* var = new Variable(this, name, Variable::TEMPORARY, true, false); + VariableProxy* tmp = new VariableProxy(name, false, false); + tmp->BindTo(var); + temps_.Add(var); + return tmp; +} + + +void Scope::AddDeclaration(Declaration* declaration) { + decls_.Add(declaration); +} + + +void Scope::SetIllegalRedeclaration(Expression* expression) { + // Only set the illegal redeclaration expression the + // first time the function is called. + if (!HasIllegalRedeclaration()) { + illegal_redecl_ = expression; + } + ASSERT(HasIllegalRedeclaration()); +} + + +void Scope::VisitIllegalRedeclaration(AstVisitor* visitor) { + ASSERT(HasIllegalRedeclaration()); + illegal_redecl_->Accept(visitor); +} + + +template<class Allocator> +void Scope::CollectUsedVariables(List<Variable*, Allocator>* locals) { + // Collect variables in this scope. + // Note that the function_ variable - if present - is not + // collected here but handled separately in ScopeInfo + // which is the current user of this function). + for (int i = 0; i < temps_.length(); i++) { + Variable* var = temps_[i]; + if (var->var_uses()->is_used()) { + locals->Add(var); + } + } + for (LocalsMap::Entry* p = locals_.Start(); p != NULL; p = locals_.Next(p)) { + Variable* var = reinterpret_cast<Variable*>(p->value); + if (var->var_uses()->is_used()) { + locals->Add(var); + } + } +} + + +// Make sure the method gets instantiated by the template system. +template void Scope::CollectUsedVariables( + List<Variable*, FreeStoreAllocationPolicy>* locals); +template void Scope::CollectUsedVariables( + List<Variable*, PreallocatedStorage>* locals); + + +void Scope::AllocateVariables(Handle<Context> context) { + ASSERT(outer_scope_ == NULL); // eval or global scopes only + + // 1) Propagate scope information. + // If we are in an eval scope, we may have other outer scopes about + // which we don't know anything at this point. Thus we must be conservative + // and assume they may invoke eval themselves. Eventually we could capture + // this information in the ScopeInfo and then use it here (by traversing + // the call chain stack, at compile time). + bool eval_scope = is_eval_scope(); + PropagateScopeInfo(eval_scope, eval_scope); + + // 2) Resolve variables. + Scope* global_scope = NULL; + if (is_global_scope()) global_scope = this; + ResolveVariablesRecursively(global_scope, context); + + // 3) Allocate variables. + AllocateVariablesRecursively(); +} + + +bool Scope::AllowsLazyCompilation() const { + return !force_eager_compilation_ && HasTrivialOuterContext(); +} + + +bool Scope::HasTrivialContext() const { + // A function scope has a trivial context if it always is the global + // context. We iteratively scan out the context chain to see if + // there is anything that makes this scope non-trivial; otherwise we + // return true. + for (const Scope* scope = this; scope != NULL; scope = scope->outer_scope_) { + if (scope->is_eval_scope()) return false; + if (scope->scope_inside_with_) return false; + if (scope->num_heap_slots_ > 0) return false; + } + return true; +} + + +bool Scope::HasTrivialOuterContext() const { + Scope* outer = outer_scope_; + if (outer == NULL) return true; + // Note that the outer context may be trivial in general, but the current + // scope may be inside a 'with' statement in which case the outer context + // for this scope is not trivial. + return !scope_inside_with_ && outer->HasTrivialContext(); +} + + +int Scope::ContextChainLength(Scope* scope) { + int n = 0; + for (Scope* s = this; s != scope; s = s->outer_scope_) { + ASSERT(s != NULL); // scope must be in the scope chain + if (s->num_heap_slots() > 0) n++; + } + return n; +} + + +#ifdef DEBUG +static const char* Header(Scope::Type type) { + switch (type) { + case Scope::EVAL_SCOPE: return "eval"; + case Scope::FUNCTION_SCOPE: return "function"; + case Scope::GLOBAL_SCOPE: return "global"; + } + UNREACHABLE(); + return NULL; +} + + +static void Indent(int n, const char* str) { + PrintF("%*s%s", n, "", str); +} + + +static void PrintName(Handle<String> name) { + SmartPointer<char> s = name->ToCString(DISALLOW_NULLS); + PrintF("%s", *s); +} + + +static void PrintVar(PrettyPrinter* printer, int indent, Variable* var) { + if (var->var_uses()->is_used() || var->rewrite() != NULL) { + Indent(indent, Variable::Mode2String(var->mode())); + PrintF(" "); + PrintName(var->name()); + PrintF("; // "); + if (var->rewrite() != NULL) PrintF("%s, ", printer->Print(var->rewrite())); + if (var->is_accessed_from_inner_scope()) PrintF("inner scope access, "); + PrintF("var "); + var->var_uses()->Print(); + PrintF(", obj "); + var->obj_uses()->Print(); + PrintF("\n"); + } +} + + +void Scope::Print(int n) { + int n0 = (n > 0 ? n : 0); + int n1 = n0 + 2; // indentation + + // Print header. + Indent(n0, Header(type_)); + if (scope_name_->length() > 0) { + PrintF(" "); + PrintName(scope_name_); + } + + // Print parameters, if any. + if (is_function_scope()) { + PrintF(" ("); + for (int i = 0; i < params_.length(); i++) { + if (i > 0) PrintF(", "); + PrintName(params_[i]->name()); + } + PrintF(")"); + } + + PrintF(" {\n"); + + // Function name, if any (named function literals, only). + if (function_ != NULL) { + Indent(n1, "// (local) function name: "); + PrintName(function_->name()); + PrintF("\n"); + } + + // Scope info. + if (HasTrivialOuterContext()) { + Indent(n1, "// scope has trivial outer context\n"); + } + if (scope_inside_with_) Indent(n1, "// scope inside 'with'\n"); + if (scope_contains_with_) Indent(n1, "// scope contains 'with'\n"); + if (scope_calls_eval_) Indent(n1, "// scope calls 'eval'\n"); + if (outer_scope_calls_eval_) Indent(n1, "// outer scope calls 'eval'\n"); + if (inner_scope_calls_eval_) Indent(n1, "// inner scope calls 'eval'\n"); + if (outer_scope_is_eval_scope_) { + Indent(n1, "// outer scope is 'eval' scope\n"); + } + if (num_stack_slots_ > 0) { Indent(n1, "// "); + PrintF("%d stack slots\n", num_stack_slots_); } + if (num_heap_slots_ > 0) { Indent(n1, "// "); + PrintF("%d heap slots\n", num_heap_slots_); } + + // Print locals. + PrettyPrinter printer; + Indent(n1, "// function var\n"); + if (function_ != NULL) { + PrintVar(&printer, n1, function_); + } + + Indent(n1, "// temporary vars\n"); + for (int i = 0; i < temps_.length(); i++) { + PrintVar(&printer, n1, temps_[i]); + } + + Indent(n1, "// local vars\n"); + for (LocalsMap::Entry* p = locals_.Start(); p != NULL; p = locals_.Next(p)) { + Variable* var = reinterpret_cast<Variable*>(p->value); + PrintVar(&printer, n1, var); + } + + Indent(n1, "// nonlocal vars\n"); + for (int i = 0; i < nonlocals_.length(); i++) + PrintVar(&printer, n1, nonlocals_[i]); + + // Print inner scopes (disable by providing negative n). + if (n >= 0) { + for (int i = 0; i < inner_scopes_.length(); i++) { + PrintF("\n"); + inner_scopes_[i]->Print(n1); + } + } + + Indent(n0, "}\n"); +} +#endif // DEBUG + + +Variable* Scope::NonLocal(Handle<String> name, Variable::Mode mode) { + // Space optimization: reuse existing non-local with the same name + // and mode. + for (int i = 0; i < nonlocals_.length(); i++) { + Variable* var = nonlocals_[i]; + if (var->name().is_identical_to(name) && var->mode() == mode) { + return var; + } + } + + // Otherwise create a new non-local and add it to the list. + Variable* var = new Variable(NULL, name, mode, true, false); + nonlocals_.Add(var); + + // Allocate it by giving it a dynamic lookup. + var->rewrite_ = new Slot(var, Slot::LOOKUP, -1); + + return var; +} + + +// Lookup a variable starting with this scope. The result is either +// the statically resolved (local!) variable belonging to an outer scope, +// or NULL. It may be NULL because a) we couldn't find a variable, or b) +// because the variable is just a guess (and may be shadowed by another +// variable that is introduced dynamically via an 'eval' call or a 'with' +// statement). +Variable* Scope::LookupRecursive(Handle<String> name, + bool inner_lookup, + Variable** invalidated_local) { + // If we find a variable, but the current scope calls 'eval', the found + // variable may not be the correct one (the 'eval' may introduce a + // property with the same name). In that case, remember that the variable + // found is just a guess. + bool guess = scope_calls_eval_; + + // Try to find the variable in this scope. + Variable* var = LookupLocal(name); + + if (var != NULL) { + // We found a variable. If this is not an inner lookup, we are done. + // (Even if there is an 'eval' in this scope which introduces the + // same variable again, the resulting variable remains the same. + // Note that enclosing 'with' statements are handled at the call site.) + if (!inner_lookup) + return var; + + } else { + // We did not find a variable locally. Check against the function variable, + // if any. We can do this for all scopes, since the function variable is + // only present - if at all - for function scopes. + // + // This lookup corresponds to a lookup in the "intermediate" scope sitting + // between this scope and the outer scope. (ECMA-262, 3rd., requires that + // the name of named function literal is kept in an intermediate scope + // in between this scope and the next outer scope.) + if (function_ != NULL && function_->name().is_identical_to(name)) { + var = function_; + + } else if (outer_scope_ != NULL) { + var = outer_scope_->LookupRecursive(name, true, invalidated_local); + // We may have found a variable in an outer scope. However, if + // the current scope is inside a 'with', the actual variable may + // be a property introduced via the 'with' statement. Then, the + // variable we may have found is just a guess. + if (scope_inside_with_) + guess = true; + } + + // If we did not find a variable, we are done. + if (var == NULL) + return NULL; + } + + ASSERT(var != NULL); + + // If this is a lookup from an inner scope, mark the variable. + if (inner_lookup) + var->is_accessed_from_inner_scope_ = true; + + // If the variable we have found is just a guess, invalidate the result. + if (guess) { + *invalidated_local = var; + var = NULL; + } + + return var; +} + + +void Scope::ResolveVariable(Scope* global_scope, + Handle<Context> context, + VariableProxy* proxy) { + ASSERT(global_scope == NULL || global_scope->is_global_scope()); + + // If the proxy is already resolved there's nothing to do + // (functions and consts may be resolved by the parser). + if (proxy->var() != NULL) return; + + // Otherwise, try to resolve the variable. + Variable* invalidated_local = NULL; + Variable* var = LookupRecursive(proxy->name(), false, &invalidated_local); + + if (proxy->inside_with()) { + // If we are inside a local 'with' statement, all bets are off + // and we cannot resolve the proxy to a local variable even if + // we found an outer matching variable. + // Note that we must do a lookup anyway, because if we find one, + // we must mark that variable as potentially accessed from this + // inner scope (the property may not be in the 'with' object). + var = NonLocal(proxy->name(), Variable::DYNAMIC); + + } else { + // We are not inside a local 'with' statement. + + if (var == NULL) { + // We did not find the variable. We have a global variable + // if we are in the global scope (we know already that we + // are outside a 'with' statement) or if there is no way + // that the variable might be introduced dynamically (through + // a local or outer eval() call, or an outer 'with' statement), + // or we don't know about the outer scope (because we are + // in an eval scope). + if (is_global_scope() || + !(scope_inside_with_ || outer_scope_is_eval_scope_ || + scope_calls_eval_ || outer_scope_calls_eval_)) { + // We must have a global variable. + ASSERT(global_scope != NULL); + var = new Variable(global_scope, proxy->name(), + Variable::DYNAMIC, true, false); + // Ideally we simply rewrite these variables into property + // accesses. Unfortunately, we cannot do this here at the + // moment because then we can't differentiate between + // global variable ('x') and global property ('this.x') access. + // If 'x' doesn't exist, the former leads to an error, while the + // latter returns undefined. Sigh... + // var->rewrite_ = new Property(new Literal(env_->global()), + // new Literal(proxy->name())); + + } else if (scope_inside_with_) { + // If we are inside a with statement we give up and look up + // the variable at runtime. + var = NonLocal(proxy->name(), Variable::DYNAMIC); + + } else if (invalidated_local != NULL) { + // No with statements are involved and we found a local + // variable that might be shadowed by eval introduced + // variables. + var = NonLocal(proxy->name(), Variable::DYNAMIC_LOCAL); + var->set_local_if_not_shadowed(invalidated_local); + + } else if (outer_scope_is_eval_scope_) { + // No with statements and we did not find a local and the code + // is executed with a call to eval. The context contains + // scope information that we can use to determine if the + // variable is global if it is not shadowed by eval-introduced + // variables. + if (context->GlobalIfNotShadowedByEval(proxy->name())) { + var = NonLocal(proxy->name(), Variable::DYNAMIC_GLOBAL); + + } else { + var = NonLocal(proxy->name(), Variable::DYNAMIC); + } + + } else { + // No with statements and we did not find a local and the code + // is not executed with a call to eval. We know that this + // variable is global unless it is shadowed by eval-introduced + // variables. + var = NonLocal(proxy->name(), Variable::DYNAMIC_GLOBAL); + } + } + } + + proxy->BindTo(var); +} + + +void Scope::ResolveVariablesRecursively(Scope* global_scope, + Handle<Context> context) { + ASSERT(global_scope == NULL || global_scope->is_global_scope()); + + // Resolve unresolved variables for this scope. + for (int i = 0; i < unresolved_.length(); i++) { + ResolveVariable(global_scope, context, unresolved_[i]); + } + + // Resolve unresolved variables for inner scopes. + for (int i = 0; i < inner_scopes_.length(); i++) { + inner_scopes_[i]->ResolveVariablesRecursively(global_scope, context); + } +} + + +bool Scope::PropagateScopeInfo(bool outer_scope_calls_eval, + bool outer_scope_is_eval_scope) { + if (outer_scope_calls_eval) { + outer_scope_calls_eval_ = true; + } + + if (outer_scope_is_eval_scope) { + outer_scope_is_eval_scope_ = true; + } + + bool calls_eval = scope_calls_eval_ || outer_scope_calls_eval_; + bool is_eval = is_eval_scope() || outer_scope_is_eval_scope_; + for (int i = 0; i < inner_scopes_.length(); i++) { + Scope* inner_scope = inner_scopes_[i]; + if (inner_scope->PropagateScopeInfo(calls_eval, is_eval)) { + inner_scope_calls_eval_ = true; + } + if (inner_scope->force_eager_compilation_) { + force_eager_compilation_ = true; + } + } + + return scope_calls_eval_ || inner_scope_calls_eval_; +} + + +bool Scope::MustAllocate(Variable* var) { + // Give var a read/write use if there is a chance it might be + // accessed via an eval() call, or if it is a global variable. + // This is only possible if the variable has a visible name. + if ((var->is_this() || var->name()->length() > 0) && + (var->is_accessed_from_inner_scope_ || + scope_calls_eval_ || inner_scope_calls_eval_ || + scope_contains_with_ || var->is_global())) { + var->var_uses()->RecordAccess(1); + } + return var->var_uses()->is_used(); +} + + +bool Scope::MustAllocateInContext(Variable* var) { + // If var is accessed from an inner scope, or if there is a + // possibility that it might be accessed from the current or + // an inner scope (through an eval() call), it must be allocated + // in the context. + // Exceptions: Global variables and temporary variables must + // never be allocated in the (FixedArray part of the) context. + return + var->mode() != Variable::TEMPORARY && + (var->is_accessed_from_inner_scope_ || + scope_calls_eval_ || inner_scope_calls_eval_ || + scope_contains_with_ || var->is_global()); +} + + +bool Scope::HasArgumentsParameter() { + for (int i = 0; i < params_.length(); i++) { + if (params_[i]->name().is_identical_to(Factory::arguments_symbol())) + return true; + } + return false; +} + + +void Scope::AllocateStackSlot(Variable* var) { + var->rewrite_ = new Slot(var, Slot::LOCAL, num_stack_slots_++); +} + + +void Scope::AllocateHeapSlot(Variable* var) { + var->rewrite_ = new Slot(var, Slot::CONTEXT, num_heap_slots_++); +} + + +void Scope::AllocateParameterLocals() { + ASSERT(is_function_scope()); + Variable* arguments = LookupLocal(Factory::arguments_symbol()); + ASSERT(arguments != NULL); // functions have 'arguments' declared implicitly + if (MustAllocate(arguments) && !HasArgumentsParameter()) { + // 'arguments' is used. Unless there is also a parameter called + // 'arguments', we must be conservative and access all parameters via + // the arguments object: The i'th parameter is rewritten into + // '.arguments[i]' (*). If we have a parameter named 'arguments', a + // (new) value is always assigned to it via the function + // invocation. Then 'arguments' denotes that specific parameter value + // and cannot be used to access the parameters, which is why we don't + // need to rewrite in that case. + // + // (*) Instead of having a parameter called 'arguments', we may have an + // assignment to 'arguments' in the function body, at some arbitrary + // point in time (possibly through an 'eval()' call!). After that + // assignment any re-write of parameters would be invalid (was bug + // 881452). Thus, we introduce a shadow '.arguments' + // variable which also points to the arguments object. For rewrites we + // use '.arguments' which remains valid even if we assign to + // 'arguments'. To summarize: If we need to rewrite, we allocate an + // 'arguments' object dynamically upon function invocation. The compiler + // introduces 2 local variables 'arguments' and '.arguments', both of + // which originally point to the arguments object that was + // allocated. All parameters are rewritten into property accesses via + // the '.arguments' variable. Thus, any changes to properties of + // 'arguments' are reflected in the variables and vice versa. If the + // 'arguments' variable is changed, '.arguments' still points to the + // correct arguments object and the rewrites still work. + + // We are using 'arguments'. Tell the code generator that is needs to + // allocate the arguments object by setting 'arguments_'. + arguments_ = new VariableProxy(Factory::arguments_symbol(), false, false); + arguments_->BindTo(arguments); + + // We also need the '.arguments' shadow variable. Declare it and create + // and bind the corresponding proxy. It's ok to declare it only now + // because it's a local variable that is allocated after the parameters + // have been allocated. + // + // Note: This is "almost" at temporary variable but we cannot use + // NewTemporary() because the mode needs to be INTERNAL since this + // variable may be allocated in the heap-allocated context (temporaries + // are never allocated in the context). + Variable* arguments_shadow = + new Variable(this, Factory::arguments_shadow_symbol(), + Variable::INTERNAL, true, false); + arguments_shadow_ = + new VariableProxy(Factory::arguments_shadow_symbol(), false, false); + arguments_shadow_->BindTo(arguments_shadow); + temps_.Add(arguments_shadow); + + // Allocate the parameters by rewriting them into '.arguments[i]' accesses. + for (int i = 0; i < params_.length(); i++) { + Variable* var = params_[i]; + ASSERT(var->scope() == this); + if (MustAllocate(var)) { + if (MustAllocateInContext(var)) { + // It is ok to set this only now, because arguments is a local + // variable that is allocated after the parameters have been + // allocated. + arguments_shadow->is_accessed_from_inner_scope_ = true; + } + var->rewrite_ = + new Property(arguments_shadow_, + new Literal(Handle<Object>(Smi::FromInt(i))), + RelocInfo::kNoPosition, + Property::SYNTHETIC); + arguments_shadow->var_uses()->RecordUses(var->var_uses()); + } + } + + } else { + // The arguments object is not used, so we can access parameters directly. + // The same parameter may occur multiple times in the parameters_ list. + // If it does, and if it is not copied into the context object, it must + // receive the highest parameter index for that parameter; thus iteration + // order is relevant! + for (int i = 0; i < params_.length(); i++) { + Variable* var = params_[i]; + ASSERT(var->scope() == this); + if (MustAllocate(var)) { + if (MustAllocateInContext(var)) { + ASSERT(var->rewrite_ == NULL || + (var->slot() != NULL && var->slot()->type() == Slot::CONTEXT)); + if (var->rewrite_ == NULL) { + // Only set the heap allocation if the parameter has not + // been allocated yet. + AllocateHeapSlot(var); + } + } else { + ASSERT(var->rewrite_ == NULL || + (var->slot() != NULL && + var->slot()->type() == Slot::PARAMETER)); + // Set the parameter index always, even if the parameter + // was seen before! (We need to access the actual parameter + // supplied for the last occurrence of a multiply declared + // parameter.) + var->rewrite_ = new Slot(var, Slot::PARAMETER, i); + } + } + } + } +} + + +void Scope::AllocateNonParameterLocal(Variable* var) { + ASSERT(var->scope() == this); + ASSERT(var->rewrite_ == NULL || + (!var->IsVariable(Factory::result_symbol())) || + (var->slot() == NULL || var->slot()->type() != Slot::LOCAL)); + if (MustAllocate(var) && var->rewrite_ == NULL) { + if (MustAllocateInContext(var)) { + AllocateHeapSlot(var); + } else { + AllocateStackSlot(var); + } + } +} + + +void Scope::AllocateNonParameterLocals() { + // Each variable occurs exactly once in the locals_ list; all + // variables that have no rewrite yet are non-parameter locals. + + // Sort them according to use such that the locals with more uses + // get allocated first. + if (FLAG_usage_computation) { + // This is currently not implemented. + } + + for (int i = 0; i < temps_.length(); i++) { + AllocateNonParameterLocal(temps_[i]); + } + + for (LocalsMap::Entry* p = locals_.Start(); p != NULL; p = locals_.Next(p)) { + Variable* var = reinterpret_cast<Variable*>(p->value); + AllocateNonParameterLocal(var); + } + + // Note: For now, function_ must be allocated at the very end. If + // it gets allocated in the context, it must be the last slot in the + // context, because of the current ScopeInfo implementation (see + // ScopeInfo::ScopeInfo(FunctionScope* scope) constructor). + if (function_ != NULL) { + AllocateNonParameterLocal(function_); + } +} + + +void Scope::AllocateVariablesRecursively() { + // The number of slots required for variables. + num_stack_slots_ = 0; + num_heap_slots_ = Context::MIN_CONTEXT_SLOTS; + + // Allocate variables for inner scopes. + for (int i = 0; i < inner_scopes_.length(); i++) { + inner_scopes_[i]->AllocateVariablesRecursively(); + } + + // Allocate variables for this scope. + // Parameters must be allocated first, if any. + if (is_function_scope()) AllocateParameterLocals(); + AllocateNonParameterLocals(); + + // Allocate context if necessary. + bool must_have_local_context = false; + if (scope_calls_eval_ || scope_contains_with_) { + // The context for the eval() call or 'with' statement in this scope. + // Unless we are in the global or an eval scope, we need a local + // context even if we didn't statically allocate any locals in it, + // and the compiler will access the context variable. If we are + // not in an inner scope, the scope is provided from the outside. + must_have_local_context = is_function_scope(); + } + + // If we didn't allocate any locals in the local context, then we only + // need the minimal number of slots if we must have a local context. + if (num_heap_slots_ == Context::MIN_CONTEXT_SLOTS && + !must_have_local_context) { + num_heap_slots_ = 0; + } + + // Allocation done. + ASSERT(num_heap_slots_ == 0 || num_heap_slots_ >= Context::MIN_CONTEXT_SLOTS); +} + +} } // namespace v8::internal |