diff options
author | Ryan <ry@tinyclouds.org> | 2009-04-22 19:35:47 +0200 |
---|---|---|
committer | Ryan <ry@tinyclouds.org> | 2009-04-22 19:35:47 +0200 |
commit | 40c0f755c998d2615fe8466aab20c6d81bd463e7 (patch) | |
tree | 51fcb08ba1bd3f745ceb43fd5f814a5700079881 /deps/v8/src/spaces.cc | |
parent | a93cf503073ba0258c55dec4dc325bdc1509b739 (diff) | |
download | node-new-40c0f755c998d2615fe8466aab20c6d81bd463e7.tar.gz |
import full versions of dependency libraries!
Diffstat (limited to 'deps/v8/src/spaces.cc')
-rw-r--r-- | deps/v8/src/spaces.cc | 2599 |
1 files changed, 2599 insertions, 0 deletions
diff --git a/deps/v8/src/spaces.cc b/deps/v8/src/spaces.cc new file mode 100644 index 0000000000..ea40d52116 --- /dev/null +++ b/deps/v8/src/spaces.cc @@ -0,0 +1,2599 @@ +// Copyright 2006-2008 the V8 project authors. All rights reserved. +// Redistribution and use in source and binary forms, with or without +// modification, are permitted provided that the following conditions are +// met: +// +// * Redistributions of source code must retain the above copyright +// notice, this list of conditions and the following disclaimer. +// * Redistributions in binary form must reproduce the above +// copyright notice, this list of conditions and the following +// disclaimer in the documentation and/or other materials provided +// with the distribution. +// * Neither the name of Google Inc. nor the names of its +// contributors may be used to endorse or promote products derived +// from this software without specific prior written permission. +// +// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS +// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT +// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR +// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT +// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, +// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT +// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, +// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY +// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT +// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE +// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + +#include "v8.h" + +#include "macro-assembler.h" +#include "mark-compact.h" +#include "platform.h" + +namespace v8 { namespace internal { + +// For contiguous spaces, top should be in the space (or at the end) and limit +// should be the end of the space. +#define ASSERT_SEMISPACE_ALLOCATION_INFO(info, space) \ + ASSERT((space).low() <= (info).top \ + && (info).top <= (space).high() \ + && (info).limit == (space).high()) + + +// ---------------------------------------------------------------------------- +// HeapObjectIterator + +HeapObjectIterator::HeapObjectIterator(PagedSpace* space) { + Initialize(space->bottom(), space->top(), NULL); +} + + +HeapObjectIterator::HeapObjectIterator(PagedSpace* space, + HeapObjectCallback size_func) { + Initialize(space->bottom(), space->top(), size_func); +} + + +HeapObjectIterator::HeapObjectIterator(PagedSpace* space, Address start) { + Initialize(start, space->top(), NULL); +} + + +HeapObjectIterator::HeapObjectIterator(PagedSpace* space, Address start, + HeapObjectCallback size_func) { + Initialize(start, space->top(), size_func); +} + + +void HeapObjectIterator::Initialize(Address cur, Address end, + HeapObjectCallback size_f) { + cur_addr_ = cur; + end_addr_ = end; + end_page_ = Page::FromAllocationTop(end); + size_func_ = size_f; + Page* p = Page::FromAllocationTop(cur_addr_); + cur_limit_ = (p == end_page_) ? end_addr_ : p->AllocationTop(); + +#ifdef DEBUG + Verify(); +#endif +} + + +bool HeapObjectIterator::HasNextInNextPage() { + if (cur_addr_ == end_addr_) return false; + + Page* cur_page = Page::FromAllocationTop(cur_addr_); + cur_page = cur_page->next_page(); + ASSERT(cur_page->is_valid()); + + cur_addr_ = cur_page->ObjectAreaStart(); + cur_limit_ = (cur_page == end_page_) ? end_addr_ : cur_page->AllocationTop(); + + ASSERT(cur_addr_ < cur_limit_); +#ifdef DEBUG + Verify(); +#endif + return true; +} + + +#ifdef DEBUG +void HeapObjectIterator::Verify() { + Page* p = Page::FromAllocationTop(cur_addr_); + ASSERT(p == Page::FromAllocationTop(cur_limit_)); + ASSERT(p->Offset(cur_addr_) <= p->Offset(cur_limit_)); +} +#endif + + +// ----------------------------------------------------------------------------- +// PageIterator + +PageIterator::PageIterator(PagedSpace* space, Mode mode) { + cur_page_ = space->first_page_; + switch (mode) { + case PAGES_IN_USE: + stop_page_ = space->AllocationTopPage()->next_page(); + break; + case PAGES_USED_BY_MC: + stop_page_ = space->MCRelocationTopPage()->next_page(); + break; + case ALL_PAGES: + stop_page_ = Page::FromAddress(NULL); + break; + default: + UNREACHABLE(); + } +} + + +// ----------------------------------------------------------------------------- +// Page + +#ifdef DEBUG +Page::RSetState Page::rset_state_ = Page::IN_USE; +#endif + +// ----------------------------------------------------------------------------- +// MemoryAllocator +// +int MemoryAllocator::capacity_ = 0; +int MemoryAllocator::size_ = 0; + +VirtualMemory* MemoryAllocator::initial_chunk_ = NULL; + +// 270 is an estimate based on the static default heap size of a pair of 256K +// semispaces and a 64M old generation. +const int kEstimatedNumberOfChunks = 270; +List<MemoryAllocator::ChunkInfo> MemoryAllocator::chunks_( + kEstimatedNumberOfChunks); +List<int> MemoryAllocator::free_chunk_ids_(kEstimatedNumberOfChunks); +int MemoryAllocator::max_nof_chunks_ = 0; +int MemoryAllocator::top_ = 0; + + +void MemoryAllocator::Push(int free_chunk_id) { + ASSERT(max_nof_chunks_ > 0); + ASSERT(top_ < max_nof_chunks_); + free_chunk_ids_[top_++] = free_chunk_id; +} + + +int MemoryAllocator::Pop() { + ASSERT(top_ > 0); + return free_chunk_ids_[--top_]; +} + + +bool MemoryAllocator::Setup(int capacity) { + capacity_ = RoundUp(capacity, Page::kPageSize); + + // Over-estimate the size of chunks_ array. It assumes the expansion of old + // space is always in the unit of a chunk (kChunkSize) except the last + // expansion. + // + // Due to alignment, allocated space might be one page less than required + // number (kPagesPerChunk) of pages for old spaces. + // + // Reserve two chunk ids for semispaces, one for map space, one for old + // space, and one for code space. + max_nof_chunks_ = (capacity_ / (kChunkSize - Page::kPageSize)) + 5; + if (max_nof_chunks_ > kMaxNofChunks) return false; + + size_ = 0; + ChunkInfo info; // uninitialized element. + for (int i = max_nof_chunks_ - 1; i >= 0; i--) { + chunks_.Add(info); + free_chunk_ids_.Add(i); + } + top_ = max_nof_chunks_; + return true; +} + + +void MemoryAllocator::TearDown() { + for (int i = 0; i < max_nof_chunks_; i++) { + if (chunks_[i].address() != NULL) DeleteChunk(i); + } + chunks_.Clear(); + free_chunk_ids_.Clear(); + + if (initial_chunk_ != NULL) { + LOG(DeleteEvent("InitialChunk", initial_chunk_->address())); + delete initial_chunk_; + initial_chunk_ = NULL; + } + + ASSERT(top_ == max_nof_chunks_); // all chunks are free + top_ = 0; + capacity_ = 0; + size_ = 0; + max_nof_chunks_ = 0; +} + + +void* MemoryAllocator::AllocateRawMemory(const size_t requested, + size_t* allocated, + Executability executable) { + if (size_ + static_cast<int>(requested) > capacity_) return NULL; + + void* mem = OS::Allocate(requested, allocated, executable == EXECUTABLE); + int alloced = *allocated; + size_ += alloced; + Counters::memory_allocated.Increment(alloced); + return mem; +} + + +void MemoryAllocator::FreeRawMemory(void* mem, size_t length) { + OS::Free(mem, length); + Counters::memory_allocated.Decrement(length); + size_ -= length; + ASSERT(size_ >= 0); +} + + +void* MemoryAllocator::ReserveInitialChunk(const size_t requested) { + ASSERT(initial_chunk_ == NULL); + + initial_chunk_ = new VirtualMemory(requested); + CHECK(initial_chunk_ != NULL); + if (!initial_chunk_->IsReserved()) { + delete initial_chunk_; + initial_chunk_ = NULL; + return NULL; + } + + // We are sure that we have mapped a block of requested addresses. + ASSERT(initial_chunk_->size() == requested); + LOG(NewEvent("InitialChunk", initial_chunk_->address(), requested)); + size_ += requested; + return initial_chunk_->address(); +} + + +static int PagesInChunk(Address start, size_t size) { + // The first page starts on the first page-aligned address from start onward + // and the last page ends on the last page-aligned address before + // start+size. Page::kPageSize is a power of two so we can divide by + // shifting. + return (RoundDown(start + size, Page::kPageSize) + - RoundUp(start, Page::kPageSize)) >> Page::kPageSizeBits; +} + + +Page* MemoryAllocator::AllocatePages(int requested_pages, int* allocated_pages, + PagedSpace* owner) { + if (requested_pages <= 0) return Page::FromAddress(NULL); + size_t chunk_size = requested_pages * Page::kPageSize; + + // There is not enough space to guarantee the desired number pages can be + // allocated. + if (size_ + static_cast<int>(chunk_size) > capacity_) { + // Request as many pages as we can. + chunk_size = capacity_ - size_; + requested_pages = chunk_size >> Page::kPageSizeBits; + + if (requested_pages <= 0) return Page::FromAddress(NULL); + } + void* chunk = AllocateRawMemory(chunk_size, &chunk_size, owner->executable()); + if (chunk == NULL) return Page::FromAddress(NULL); + LOG(NewEvent("PagedChunk", chunk, chunk_size)); + + *allocated_pages = PagesInChunk(static_cast<Address>(chunk), chunk_size); + if (*allocated_pages == 0) { + FreeRawMemory(chunk, chunk_size); + LOG(DeleteEvent("PagedChunk", chunk)); + return Page::FromAddress(NULL); + } + + int chunk_id = Pop(); + chunks_[chunk_id].init(static_cast<Address>(chunk), chunk_size, owner); + + return InitializePagesInChunk(chunk_id, *allocated_pages, owner); +} + + +Page* MemoryAllocator::CommitPages(Address start, size_t size, + PagedSpace* owner, int* num_pages) { + ASSERT(start != NULL); + *num_pages = PagesInChunk(start, size); + ASSERT(*num_pages > 0); + ASSERT(initial_chunk_ != NULL); + ASSERT(InInitialChunk(start)); + ASSERT(InInitialChunk(start + size - 1)); + if (!initial_chunk_->Commit(start, size, owner->executable() == EXECUTABLE)) { + return Page::FromAddress(NULL); + } + Counters::memory_allocated.Increment(size); + + // So long as we correctly overestimated the number of chunks we should not + // run out of chunk ids. + CHECK(!OutOfChunkIds()); + int chunk_id = Pop(); + chunks_[chunk_id].init(start, size, owner); + return InitializePagesInChunk(chunk_id, *num_pages, owner); +} + + +bool MemoryAllocator::CommitBlock(Address start, + size_t size, + Executability executable) { + ASSERT(start != NULL); + ASSERT(size > 0); + ASSERT(initial_chunk_ != NULL); + ASSERT(InInitialChunk(start)); + ASSERT(InInitialChunk(start + size - 1)); + + if (!initial_chunk_->Commit(start, size, executable)) return false; + Counters::memory_allocated.Increment(size); + return true; +} + + +Page* MemoryAllocator::InitializePagesInChunk(int chunk_id, int pages_in_chunk, + PagedSpace* owner) { + ASSERT(IsValidChunk(chunk_id)); + ASSERT(pages_in_chunk > 0); + + Address chunk_start = chunks_[chunk_id].address(); + + Address low = RoundUp(chunk_start, Page::kPageSize); + +#ifdef DEBUG + size_t chunk_size = chunks_[chunk_id].size(); + Address high = RoundDown(chunk_start + chunk_size, Page::kPageSize); + ASSERT(pages_in_chunk <= + ((OffsetFrom(high) - OffsetFrom(low)) / Page::kPageSize)); +#endif + + Address page_addr = low; + for (int i = 0; i < pages_in_chunk; i++) { + Page* p = Page::FromAddress(page_addr); + p->opaque_header = OffsetFrom(page_addr + Page::kPageSize) | chunk_id; + p->is_normal_page = 1; + page_addr += Page::kPageSize; + } + + // Set the next page of the last page to 0. + Page* last_page = Page::FromAddress(page_addr - Page::kPageSize); + last_page->opaque_header = OffsetFrom(0) | chunk_id; + + return Page::FromAddress(low); +} + + +Page* MemoryAllocator::FreePages(Page* p) { + if (!p->is_valid()) return p; + + // Find the first page in the same chunk as 'p' + Page* first_page = FindFirstPageInSameChunk(p); + Page* page_to_return = Page::FromAddress(NULL); + + if (p != first_page) { + // Find the last page in the same chunk as 'prev'. + Page* last_page = FindLastPageInSameChunk(p); + first_page = GetNextPage(last_page); // first page in next chunk + + // set the next_page of last_page to NULL + SetNextPage(last_page, Page::FromAddress(NULL)); + page_to_return = p; // return 'p' when exiting + } + + while (first_page->is_valid()) { + int chunk_id = GetChunkId(first_page); + ASSERT(IsValidChunk(chunk_id)); + + // Find the first page of the next chunk before deleting this chunk. + first_page = GetNextPage(FindLastPageInSameChunk(first_page)); + + // Free the current chunk. + DeleteChunk(chunk_id); + } + + return page_to_return; +} + + +void MemoryAllocator::DeleteChunk(int chunk_id) { + ASSERT(IsValidChunk(chunk_id)); + + ChunkInfo& c = chunks_[chunk_id]; + + // We cannot free a chunk contained in the initial chunk because it was not + // allocated with AllocateRawMemory. Instead we uncommit the virtual + // memory. + if (InInitialChunk(c.address())) { + // TODO(1240712): VirtualMemory::Uncommit has a return value which + // is ignored here. + initial_chunk_->Uncommit(c.address(), c.size()); + Counters::memory_allocated.Decrement(c.size()); + } else { + LOG(DeleteEvent("PagedChunk", c.address())); + FreeRawMemory(c.address(), c.size()); + } + c.init(NULL, 0, NULL); + Push(chunk_id); +} + + +Page* MemoryAllocator::FindFirstPageInSameChunk(Page* p) { + int chunk_id = GetChunkId(p); + ASSERT(IsValidChunk(chunk_id)); + + Address low = RoundUp(chunks_[chunk_id].address(), Page::kPageSize); + return Page::FromAddress(low); +} + + +Page* MemoryAllocator::FindLastPageInSameChunk(Page* p) { + int chunk_id = GetChunkId(p); + ASSERT(IsValidChunk(chunk_id)); + + Address chunk_start = chunks_[chunk_id].address(); + size_t chunk_size = chunks_[chunk_id].size(); + + Address high = RoundDown(chunk_start + chunk_size, Page::kPageSize); + ASSERT(chunk_start <= p->address() && p->address() < high); + + return Page::FromAddress(high - Page::kPageSize); +} + + +#ifdef DEBUG +void MemoryAllocator::ReportStatistics() { + float pct = static_cast<float>(capacity_ - size_) / capacity_; + PrintF(" capacity: %d, used: %d, available: %%%d\n\n", + capacity_, size_, static_cast<int>(pct*100)); +} +#endif + + +// ----------------------------------------------------------------------------- +// PagedSpace implementation + +PagedSpace::PagedSpace(int max_capacity, + AllocationSpace id, + Executability executable) + : Space(id, executable) { + max_capacity_ = (RoundDown(max_capacity, Page::kPageSize) / Page::kPageSize) + * Page::kObjectAreaSize; + accounting_stats_.Clear(); + + allocation_info_.top = NULL; + allocation_info_.limit = NULL; + + mc_forwarding_info_.top = NULL; + mc_forwarding_info_.limit = NULL; +} + + +bool PagedSpace::Setup(Address start, size_t size) { + if (HasBeenSetup()) return false; + + int num_pages = 0; + // Try to use the virtual memory range passed to us. If it is too small to + // contain at least one page, ignore it and allocate instead. + int pages_in_chunk = PagesInChunk(start, size); + if (pages_in_chunk > 0) { + first_page_ = MemoryAllocator::CommitPages(RoundUp(start, Page::kPageSize), + Page::kPageSize * pages_in_chunk, + this, &num_pages); + } else { + int requested_pages = Min(MemoryAllocator::kPagesPerChunk, + max_capacity_ / Page::kObjectAreaSize); + first_page_ = + MemoryAllocator::AllocatePages(requested_pages, &num_pages, this); + if (!first_page_->is_valid()) return false; + } + + // We are sure that the first page is valid and that we have at least one + // page. + ASSERT(first_page_->is_valid()); + ASSERT(num_pages > 0); + accounting_stats_.ExpandSpace(num_pages * Page::kObjectAreaSize); + ASSERT(Capacity() <= max_capacity_); + + for (Page* p = first_page_; p->is_valid(); p = p->next_page()) { + p->ClearRSet(); + } + + // Use first_page_ for allocation. + SetAllocationInfo(&allocation_info_, first_page_); + + return true; +} + + +bool PagedSpace::HasBeenSetup() { + return (Capacity() > 0); +} + + +void PagedSpace::TearDown() { + first_page_ = MemoryAllocator::FreePages(first_page_); + ASSERT(!first_page_->is_valid()); + + accounting_stats_.Clear(); +} + + +#ifdef ENABLE_HEAP_PROTECTION + +void PagedSpace::Protect() { + Page* page = first_page_; + while (page->is_valid()) { + MemoryAllocator::ProtectChunkFromPage(page); + page = MemoryAllocator::FindLastPageInSameChunk(page)->next_page(); + } +} + + +void PagedSpace::Unprotect() { + Page* page = first_page_; + while (page->is_valid()) { + MemoryAllocator::UnprotectChunkFromPage(page); + page = MemoryAllocator::FindLastPageInSameChunk(page)->next_page(); + } +} + +#endif + + +void PagedSpace::ClearRSet() { + PageIterator it(this, PageIterator::ALL_PAGES); + while (it.has_next()) { + it.next()->ClearRSet(); + } +} + + +Object* PagedSpace::FindObject(Address addr) { + // Note: this function can only be called before or after mark-compact GC + // because it accesses map pointers. + ASSERT(!MarkCompactCollector::in_use()); + + if (!Contains(addr)) return Failure::Exception(); + + Page* p = Page::FromAddress(addr); + ASSERT(IsUsed(p)); + Address cur = p->ObjectAreaStart(); + Address end = p->AllocationTop(); + while (cur < end) { + HeapObject* obj = HeapObject::FromAddress(cur); + Address next = cur + obj->Size(); + if ((cur <= addr) && (addr < next)) return obj; + cur = next; + } + + UNREACHABLE(); + return Failure::Exception(); +} + + +bool PagedSpace::IsUsed(Page* page) { + PageIterator it(this, PageIterator::PAGES_IN_USE); + while (it.has_next()) { + if (page == it.next()) return true; + } + return false; +} + + +void PagedSpace::SetAllocationInfo(AllocationInfo* alloc_info, Page* p) { + alloc_info->top = p->ObjectAreaStart(); + alloc_info->limit = p->ObjectAreaEnd(); + ASSERT(alloc_info->VerifyPagedAllocation()); +} + + +void PagedSpace::MCResetRelocationInfo() { + // Set page indexes. + int i = 0; + PageIterator it(this, PageIterator::ALL_PAGES); + while (it.has_next()) { + Page* p = it.next(); + p->mc_page_index = i++; + } + + // Set mc_forwarding_info_ to the first page in the space. + SetAllocationInfo(&mc_forwarding_info_, first_page_); + // All the bytes in the space are 'available'. We will rediscover + // allocated and wasted bytes during GC. + accounting_stats_.Reset(); +} + + +int PagedSpace::MCSpaceOffsetForAddress(Address addr) { +#ifdef DEBUG + // The Contains function considers the address at the beginning of a + // page in the page, MCSpaceOffsetForAddress considers it is in the + // previous page. + if (Page::IsAlignedToPageSize(addr)) { + ASSERT(Contains(addr - kPointerSize)); + } else { + ASSERT(Contains(addr)); + } +#endif + + // If addr is at the end of a page, it belongs to previous page + Page* p = Page::IsAlignedToPageSize(addr) + ? Page::FromAllocationTop(addr) + : Page::FromAddress(addr); + int index = p->mc_page_index; + return (index * Page::kPageSize) + p->Offset(addr); +} + + +// Slow case for reallocating and promoting objects during a compacting +// collection. This function is not space-specific. +HeapObject* PagedSpace::SlowMCAllocateRaw(int size_in_bytes) { + Page* current_page = TopPageOf(mc_forwarding_info_); + if (!current_page->next_page()->is_valid()) { + if (!Expand(current_page)) { + return NULL; + } + } + + // There are surely more pages in the space now. + ASSERT(current_page->next_page()->is_valid()); + // We do not add the top of page block for current page to the space's + // free list---the block may contain live objects so we cannot write + // bookkeeping information to it. Instead, we will recover top of page + // blocks when we move objects to their new locations. + // + // We do however write the allocation pointer to the page. The encoding + // of forwarding addresses is as an offset in terms of live bytes, so we + // need quick access to the allocation top of each page to decode + // forwarding addresses. + current_page->mc_relocation_top = mc_forwarding_info_.top; + SetAllocationInfo(&mc_forwarding_info_, current_page->next_page()); + return AllocateLinearly(&mc_forwarding_info_, size_in_bytes); +} + + +bool PagedSpace::Expand(Page* last_page) { + ASSERT(max_capacity_ % Page::kObjectAreaSize == 0); + ASSERT(Capacity() % Page::kObjectAreaSize == 0); + + if (Capacity() == max_capacity_) return false; + + ASSERT(Capacity() < max_capacity_); + // Last page must be valid and its next page is invalid. + ASSERT(last_page->is_valid() && !last_page->next_page()->is_valid()); + + int available_pages = (max_capacity_ - Capacity()) / Page::kObjectAreaSize; + if (available_pages <= 0) return false; + + int desired_pages = Min(available_pages, MemoryAllocator::kPagesPerChunk); + Page* p = MemoryAllocator::AllocatePages(desired_pages, &desired_pages, this); + if (!p->is_valid()) return false; + + accounting_stats_.ExpandSpace(desired_pages * Page::kObjectAreaSize); + ASSERT(Capacity() <= max_capacity_); + + MemoryAllocator::SetNextPage(last_page, p); + + // Clear remembered set of new pages. + while (p->is_valid()) { + p->ClearRSet(); + p = p->next_page(); + } + + return true; +} + + +#ifdef DEBUG +int PagedSpace::CountTotalPages() { + int count = 0; + for (Page* p = first_page_; p->is_valid(); p = p->next_page()) { + count++; + } + return count; +} +#endif + + +void PagedSpace::Shrink() { + // Release half of free pages. + Page* top_page = AllocationTopPage(); + ASSERT(top_page->is_valid()); + + // Loop over the pages from the top page to the end of the space to count + // the number of pages to keep and find the last page to keep. + int free_pages = 0; + int pages_to_keep = 0; // Of the free pages. + Page* last_page_to_keep = top_page; + Page* current_page = top_page->next_page(); + // Loop over the pages to the end of the space. + while (current_page->is_valid()) { + // Advance last_page_to_keep every other step to end up at the midpoint. + if ((free_pages & 0x1) == 1) { + pages_to_keep++; + last_page_to_keep = last_page_to_keep->next_page(); + } + free_pages++; + current_page = current_page->next_page(); + } + + // Free pages after last_page_to_keep, and adjust the next_page link. + Page* p = MemoryAllocator::FreePages(last_page_to_keep->next_page()); + MemoryAllocator::SetNextPage(last_page_to_keep, p); + + // Since pages are only freed in whole chunks, we may have kept more than + // pages_to_keep. + while (p->is_valid()) { + pages_to_keep++; + p = p->next_page(); + } + + // The difference between free_pages and pages_to_keep is the number of + // pages actually freed. + ASSERT(pages_to_keep <= free_pages); + int bytes_freed = (free_pages - pages_to_keep) * Page::kObjectAreaSize; + accounting_stats_.ShrinkSpace(bytes_freed); + + ASSERT(Capacity() == CountTotalPages() * Page::kObjectAreaSize); +} + + +bool PagedSpace::EnsureCapacity(int capacity) { + if (Capacity() >= capacity) return true; + + // Start from the allocation top and loop to the last page in the space. + Page* last_page = AllocationTopPage(); + Page* next_page = last_page->next_page(); + while (next_page->is_valid()) { + last_page = MemoryAllocator::FindLastPageInSameChunk(next_page); + next_page = last_page->next_page(); + } + + // Expand the space until it has the required capacity or expansion fails. + do { + if (!Expand(last_page)) return false; + ASSERT(last_page->next_page()->is_valid()); + last_page = + MemoryAllocator::FindLastPageInSameChunk(last_page->next_page()); + } while (Capacity() < capacity); + + return true; +} + + +#ifdef DEBUG +void PagedSpace::Print() { } +#endif + + +// ----------------------------------------------------------------------------- +// NewSpace implementation + + +bool NewSpace::Setup(Address start, int size) { + // Setup new space based on the preallocated memory block defined by + // start and size. The provided space is divided into two semi-spaces. + // To support fast containment testing in the new space, the size of + // this chunk must be a power of two and it must be aligned to its size. + int initial_semispace_capacity = Heap::InitialSemiSpaceSize(); + int maximum_semispace_capacity = Heap::SemiSpaceSize(); + + ASSERT(initial_semispace_capacity <= maximum_semispace_capacity); + ASSERT(IsPowerOf2(maximum_semispace_capacity)); + maximum_capacity_ = maximum_semispace_capacity; + capacity_ = initial_semispace_capacity; + + // Allocate and setup the histogram arrays if necessary. +#if defined(DEBUG) || defined(ENABLE_LOGGING_AND_PROFILING) + allocated_histogram_ = NewArray<HistogramInfo>(LAST_TYPE + 1); + promoted_histogram_ = NewArray<HistogramInfo>(LAST_TYPE + 1); + +#define SET_NAME(name) allocated_histogram_[name].set_name(#name); \ + promoted_histogram_[name].set_name(#name); + INSTANCE_TYPE_LIST(SET_NAME) +#undef SET_NAME +#endif + + ASSERT(size == 2 * maximum_capacity_); + ASSERT(IsAddressAligned(start, size, 0)); + + if (!to_space_.Setup(start, capacity_, maximum_capacity_)) { + return false; + } + if (!from_space_.Setup(start + maximum_capacity_, + capacity_, + maximum_capacity_)) { + return false; + } + + start_ = start; + address_mask_ = ~(size - 1); + object_mask_ = address_mask_ | kHeapObjectTag; + object_expected_ = reinterpret_cast<uint32_t>(start) | kHeapObjectTag; + + allocation_info_.top = to_space_.low(); + allocation_info_.limit = to_space_.high(); + mc_forwarding_info_.top = NULL; + mc_forwarding_info_.limit = NULL; + + ASSERT_SEMISPACE_ALLOCATION_INFO(allocation_info_, to_space_); + return true; +} + + +void NewSpace::TearDown() { +#if defined(DEBUG) || defined(ENABLE_LOGGING_AND_PROFILING) + if (allocated_histogram_) { + DeleteArray(allocated_histogram_); + allocated_histogram_ = NULL; + } + if (promoted_histogram_) { + DeleteArray(promoted_histogram_); + promoted_histogram_ = NULL; + } +#endif + + start_ = NULL; + capacity_ = 0; + allocation_info_.top = NULL; + allocation_info_.limit = NULL; + mc_forwarding_info_.top = NULL; + mc_forwarding_info_.limit = NULL; + + to_space_.TearDown(); + from_space_.TearDown(); +} + + +#ifdef ENABLE_HEAP_PROTECTION + +void NewSpace::Protect() { + MemoryAllocator::Protect(ToSpaceLow(), Capacity()); + MemoryAllocator::Protect(FromSpaceLow(), Capacity()); +} + + +void NewSpace::Unprotect() { + MemoryAllocator::Unprotect(ToSpaceLow(), Capacity(), + to_space_.executable()); + MemoryAllocator::Unprotect(FromSpaceLow(), Capacity(), + from_space_.executable()); +} + +#endif + + +void NewSpace::Flip() { + SemiSpace tmp = from_space_; + from_space_ = to_space_; + to_space_ = tmp; +} + + +bool NewSpace::Double() { + ASSERT(capacity_ <= maximum_capacity_ / 2); + // TODO(1240712): Failure to double the from space can result in + // semispaces of different sizes. In the event of that failure, the + // to space doubling should be rolled back before returning false. + if (!to_space_.Double() || !from_space_.Double()) return false; + capacity_ *= 2; + allocation_info_.limit = to_space_.high(); + ASSERT_SEMISPACE_ALLOCATION_INFO(allocation_info_, to_space_); + return true; +} + + +void NewSpace::ResetAllocationInfo() { + allocation_info_.top = to_space_.low(); + allocation_info_.limit = to_space_.high(); + ASSERT_SEMISPACE_ALLOCATION_INFO(allocation_info_, to_space_); +} + + +void NewSpace::MCResetRelocationInfo() { + mc_forwarding_info_.top = from_space_.low(); + mc_forwarding_info_.limit = from_space_.high(); + ASSERT_SEMISPACE_ALLOCATION_INFO(mc_forwarding_info_, from_space_); +} + + +void NewSpace::MCCommitRelocationInfo() { + // Assumes that the spaces have been flipped so that mc_forwarding_info_ is + // valid allocation info for the to space. + allocation_info_.top = mc_forwarding_info_.top; + allocation_info_.limit = to_space_.high(); + ASSERT_SEMISPACE_ALLOCATION_INFO(allocation_info_, to_space_); +} + + +#ifdef DEBUG +// We do not use the SemispaceIterator because verification doesn't assume +// that it works (it depends on the invariants we are checking). +void NewSpace::Verify() { + // The allocation pointer should be in the space or at the very end. + ASSERT_SEMISPACE_ALLOCATION_INFO(allocation_info_, to_space_); + + // There should be objects packed in from the low address up to the + // allocation pointer. + Address current = to_space_.low(); + while (current < top()) { + HeapObject* object = HeapObject::FromAddress(current); + + // The first word should be a map, and we expect all map pointers to + // be in map space. + Map* map = object->map(); + ASSERT(map->IsMap()); + ASSERT(Heap::map_space()->Contains(map)); + + // The object should not be code or a map. + ASSERT(!object->IsMap()); + ASSERT(!object->IsCode()); + + // The object itself should look OK. + object->Verify(); + + // All the interior pointers should be contained in the heap. + VerifyPointersVisitor visitor; + int size = object->Size(); + object->IterateBody(map->instance_type(), size, &visitor); + + current += size; + } + + // The allocation pointer should not be in the middle of an object. + ASSERT(current == top()); +} +#endif + + +// ----------------------------------------------------------------------------- +// SemiSpace implementation + +bool SemiSpace::Setup(Address start, + int initial_capacity, + int maximum_capacity) { + // Creates a space in the young generation. The constructor does not + // allocate memory from the OS. A SemiSpace is given a contiguous chunk of + // memory of size 'capacity' when set up, and does not grow or shrink + // otherwise. In the mark-compact collector, the memory region of the from + // space is used as the marking stack. It requires contiguous memory + // addresses. + capacity_ = initial_capacity; + maximum_capacity_ = maximum_capacity; + + if (!MemoryAllocator::CommitBlock(start, capacity_, executable())) { + return false; + } + + start_ = start; + address_mask_ = ~(maximum_capacity - 1); + object_mask_ = address_mask_ | kHeapObjectTag; + object_expected_ = reinterpret_cast<uint32_t>(start) | kHeapObjectTag; + + age_mark_ = start_; + return true; +} + + +void SemiSpace::TearDown() { + start_ = NULL; + capacity_ = 0; +} + + +bool SemiSpace::Double() { + if (!MemoryAllocator::CommitBlock(high(), capacity_, executable())) { + return false; + } + capacity_ *= 2; + return true; +} + + +#ifdef DEBUG +void SemiSpace::Print() { } + + +void SemiSpace::Verify() { } +#endif + + +// ----------------------------------------------------------------------------- +// SemiSpaceIterator implementation. +SemiSpaceIterator::SemiSpaceIterator(NewSpace* space) { + Initialize(space, space->bottom(), space->top(), NULL); +} + + +SemiSpaceIterator::SemiSpaceIterator(NewSpace* space, + HeapObjectCallback size_func) { + Initialize(space, space->bottom(), space->top(), size_func); +} + + +SemiSpaceIterator::SemiSpaceIterator(NewSpace* space, Address start) { + Initialize(space, start, space->top(), NULL); +} + + +void SemiSpaceIterator::Initialize(NewSpace* space, Address start, + Address end, + HeapObjectCallback size_func) { + ASSERT(space->ToSpaceContains(start)); + ASSERT(space->ToSpaceLow() <= end + && end <= space->ToSpaceHigh()); + space_ = &space->to_space_; + current_ = start; + limit_ = end; + size_func_ = size_func; +} + + +#ifdef DEBUG +// A static array of histogram info for each type. +static HistogramInfo heap_histograms[LAST_TYPE+1]; +static JSObject::SpillInformation js_spill_information; + +// heap_histograms is shared, always clear it before using it. +static void ClearHistograms() { + // We reset the name each time, though it hasn't changed. +#define DEF_TYPE_NAME(name) heap_histograms[name].set_name(#name); + INSTANCE_TYPE_LIST(DEF_TYPE_NAME) +#undef DEF_TYPE_NAME + +#define CLEAR_HISTOGRAM(name) heap_histograms[name].clear(); + INSTANCE_TYPE_LIST(CLEAR_HISTOGRAM) +#undef CLEAR_HISTOGRAM + + js_spill_information.Clear(); +} + + +static int code_kind_statistics[Code::NUMBER_OF_KINDS]; + + +static void ClearCodeKindStatistics() { + for (int i = 0; i < Code::NUMBER_OF_KINDS; i++) { + code_kind_statistics[i] = 0; + } +} + + +static void ReportCodeKindStatistics() { + const char* table[Code::NUMBER_OF_KINDS]; + +#define CASE(name) \ + case Code::name: table[Code::name] = #name; \ + break + + for (int i = 0; i < Code::NUMBER_OF_KINDS; i++) { + switch (static_cast<Code::Kind>(i)) { + CASE(FUNCTION); + CASE(STUB); + CASE(BUILTIN); + CASE(LOAD_IC); + CASE(KEYED_LOAD_IC); + CASE(STORE_IC); + CASE(KEYED_STORE_IC); + CASE(CALL_IC); + } + } + +#undef CASE + + PrintF("\n Code kind histograms: \n"); + for (int i = 0; i < Code::NUMBER_OF_KINDS; i++) { + if (code_kind_statistics[i] > 0) { + PrintF(" %-20s: %10d bytes\n", table[i], code_kind_statistics[i]); + } + } + PrintF("\n"); +} + + +static int CollectHistogramInfo(HeapObject* obj) { + InstanceType type = obj->map()->instance_type(); + ASSERT(0 <= type && type <= LAST_TYPE); + ASSERT(heap_histograms[type].name() != NULL); + heap_histograms[type].increment_number(1); + heap_histograms[type].increment_bytes(obj->Size()); + + if (FLAG_collect_heap_spill_statistics && obj->IsJSObject()) { + JSObject::cast(obj)->IncrementSpillStatistics(&js_spill_information); + } + + return obj->Size(); +} + + +static void ReportHistogram(bool print_spill) { + PrintF("\n Object Histogram:\n"); + for (int i = 0; i <= LAST_TYPE; i++) { + if (heap_histograms[i].number() > 0) { + PrintF(" %-33s%10d (%10d bytes)\n", + heap_histograms[i].name(), + heap_histograms[i].number(), + heap_histograms[i].bytes()); + } + } + PrintF("\n"); + + // Summarize string types. + int string_number = 0; + int string_bytes = 0; +#define INCREMENT(type, size, name) \ + string_number += heap_histograms[type].number(); \ + string_bytes += heap_histograms[type].bytes(); + STRING_TYPE_LIST(INCREMENT) +#undef INCREMENT + if (string_number > 0) { + PrintF(" %-33s%10d (%10d bytes)\n\n", "STRING_TYPE", string_number, + string_bytes); + } + + if (FLAG_collect_heap_spill_statistics && print_spill) { + js_spill_information.Print(); + } +} +#endif // DEBUG + + +// Support for statistics gathering for --heap-stats and --log-gc. +#if defined(DEBUG) || defined(ENABLE_LOGGING_AND_PROFILING) +void NewSpace::ClearHistograms() { + for (int i = 0; i <= LAST_TYPE; i++) { + allocated_histogram_[i].clear(); + promoted_histogram_[i].clear(); + } +} + +// Because the copying collector does not touch garbage objects, we iterate +// the new space before a collection to get a histogram of allocated objects. +// This only happens (1) when compiled with DEBUG and the --heap-stats flag is +// set, or when compiled with ENABLE_LOGGING_AND_PROFILING and the --log-gc +// flag is set. +void NewSpace::CollectStatistics() { + ClearHistograms(); + SemiSpaceIterator it(this); + while (it.has_next()) RecordAllocation(it.next()); +} + + +#ifdef ENABLE_LOGGING_AND_PROFILING +static void DoReportStatistics(HistogramInfo* info, const char* description) { + LOG(HeapSampleBeginEvent("NewSpace", description)); + // Lump all the string types together. + int string_number = 0; + int string_bytes = 0; +#define INCREMENT(type, size, name) \ + string_number += info[type].number(); \ + string_bytes += info[type].bytes(); + STRING_TYPE_LIST(INCREMENT) +#undef INCREMENT + if (string_number > 0) { + LOG(HeapSampleItemEvent("STRING_TYPE", string_number, string_bytes)); + } + + // Then do the other types. + for (int i = FIRST_NONSTRING_TYPE; i <= LAST_TYPE; ++i) { + if (info[i].number() > 0) { + LOG(HeapSampleItemEvent(info[i].name(), info[i].number(), + info[i].bytes())); + } + } + LOG(HeapSampleEndEvent("NewSpace", description)); +} +#endif // ENABLE_LOGGING_AND_PROFILING + + +void NewSpace::ReportStatistics() { +#ifdef DEBUG + if (FLAG_heap_stats) { + float pct = static_cast<float>(Available()) / Capacity(); + PrintF(" capacity: %d, available: %d, %%%d\n", + Capacity(), Available(), static_cast<int>(pct*100)); + PrintF("\n Object Histogram:\n"); + for (int i = 0; i <= LAST_TYPE; i++) { + if (allocated_histogram_[i].number() > 0) { + PrintF(" %-33s%10d (%10d bytes)\n", + allocated_histogram_[i].name(), + allocated_histogram_[i].number(), + allocated_histogram_[i].bytes()); + } + } + PrintF("\n"); + } +#endif // DEBUG + +#ifdef ENABLE_LOGGING_AND_PROFILING + if (FLAG_log_gc) { + DoReportStatistics(allocated_histogram_, "allocated"); + DoReportStatistics(promoted_histogram_, "promoted"); + } +#endif // ENABLE_LOGGING_AND_PROFILING +} + + +void NewSpace::RecordAllocation(HeapObject* obj) { + InstanceType type = obj->map()->instance_type(); + ASSERT(0 <= type && type <= LAST_TYPE); + allocated_histogram_[type].increment_number(1); + allocated_histogram_[type].increment_bytes(obj->Size()); +} + + +void NewSpace::RecordPromotion(HeapObject* obj) { + InstanceType type = obj->map()->instance_type(); + ASSERT(0 <= type && type <= LAST_TYPE); + promoted_histogram_[type].increment_number(1); + promoted_histogram_[type].increment_bytes(obj->Size()); +} +#endif // defined(DEBUG) || defined(ENABLE_LOGGING_AND_PROFILING) + + +// ----------------------------------------------------------------------------- +// Free lists for old object spaces implementation + +void FreeListNode::set_size(int size_in_bytes) { + ASSERT(size_in_bytes > 0); + ASSERT(IsAligned(size_in_bytes, kPointerSize)); + + // We write a map and possibly size information to the block. If the block + // is big enough to be a ByteArray with at least one extra word (the next + // pointer), we set its map to be the byte array map and its size to an + // appropriate array length for the desired size from HeapObject::Size(). + // If the block is too small (eg, one or two words), to hold both a size + // field and a next pointer, we give it a filler map that gives it the + // correct size. + if (size_in_bytes > Array::kHeaderSize) { + set_map(Heap::byte_array_map()); + ByteArray::cast(this)->set_length(ByteArray::LengthFor(size_in_bytes)); + } else if (size_in_bytes == kPointerSize) { + set_map(Heap::one_word_filler_map()); + } else if (size_in_bytes == 2 * kPointerSize) { + set_map(Heap::two_word_filler_map()); + } else { + UNREACHABLE(); + } + ASSERT(Size() == size_in_bytes); +} + + +Address FreeListNode::next() { + ASSERT(map() == Heap::byte_array_map()); + ASSERT(Size() >= kNextOffset + kPointerSize); + return Memory::Address_at(address() + kNextOffset); +} + + +void FreeListNode::set_next(Address next) { + ASSERT(map() == Heap::byte_array_map()); + ASSERT(Size() >= kNextOffset + kPointerSize); + Memory::Address_at(address() + kNextOffset) = next; +} + + +OldSpaceFreeList::OldSpaceFreeList(AllocationSpace owner) : owner_(owner) { + Reset(); +} + + +void OldSpaceFreeList::Reset() { + available_ = 0; + for (int i = 0; i < kFreeListsLength; i++) { + free_[i].head_node_ = NULL; + } + needs_rebuild_ = false; + finger_ = kHead; + free_[kHead].next_size_ = kEnd; +} + + +void OldSpaceFreeList::RebuildSizeList() { + ASSERT(needs_rebuild_); + int cur = kHead; + for (int i = cur + 1; i < kFreeListsLength; i++) { + if (free_[i].head_node_ != NULL) { + free_[cur].next_size_ = i; + cur = i; + } + } + free_[cur].next_size_ = kEnd; + needs_rebuild_ = false; +} + + +int OldSpaceFreeList::Free(Address start, int size_in_bytes) { +#ifdef DEBUG + for (int i = 0; i < size_in_bytes; i += kPointerSize) { + Memory::Address_at(start + i) = kZapValue; + } +#endif + FreeListNode* node = FreeListNode::FromAddress(start); + node->set_size(size_in_bytes); + + // Early return to drop too-small blocks on the floor (one or two word + // blocks cannot hold a map pointer, a size field, and a pointer to the + // next block in the free list). + if (size_in_bytes < kMinBlockSize) { + return size_in_bytes; + } + + // Insert other blocks at the head of an exact free list. + int index = size_in_bytes >> kPointerSizeLog2; + node->set_next(free_[index].head_node_); + free_[index].head_node_ = node->address(); + available_ += size_in_bytes; + needs_rebuild_ = true; + return 0; +} + + +Object* OldSpaceFreeList::Allocate(int size_in_bytes, int* wasted_bytes) { + ASSERT(0 < size_in_bytes); + ASSERT(size_in_bytes <= kMaxBlockSize); + ASSERT(IsAligned(size_in_bytes, kPointerSize)); + + if (needs_rebuild_) RebuildSizeList(); + int index = size_in_bytes >> kPointerSizeLog2; + // Check for a perfect fit. + if (free_[index].head_node_ != NULL) { + FreeListNode* node = FreeListNode::FromAddress(free_[index].head_node_); + // If this was the last block of its size, remove the size. + if ((free_[index].head_node_ = node->next()) == NULL) RemoveSize(index); + available_ -= size_in_bytes; + *wasted_bytes = 0; + return node; + } + // Search the size list for the best fit. + int prev = finger_ < index ? finger_ : kHead; + int cur = FindSize(index, &prev); + ASSERT(index < cur); + if (cur == kEnd) { + // No large enough size in list. + *wasted_bytes = 0; + return Failure::RetryAfterGC(size_in_bytes, owner_); + } + int rem = cur - index; + int rem_bytes = rem << kPointerSizeLog2; + FreeListNode* cur_node = FreeListNode::FromAddress(free_[cur].head_node_); + ASSERT(cur_node->Size() == (cur << kPointerSizeLog2)); + FreeListNode* rem_node = FreeListNode::FromAddress(free_[cur].head_node_ + + size_in_bytes); + // Distinguish the cases prev < rem < cur and rem <= prev < cur + // to avoid many redundant tests and calls to Insert/RemoveSize. + if (prev < rem) { + // Simple case: insert rem between prev and cur. + finger_ = prev; + free_[prev].next_size_ = rem; + // If this was the last block of size cur, remove the size. + if ((free_[cur].head_node_ = cur_node->next()) == NULL) { + free_[rem].next_size_ = free_[cur].next_size_; + } else { + free_[rem].next_size_ = cur; + } + // Add the remainder block. + rem_node->set_size(rem_bytes); + rem_node->set_next(free_[rem].head_node_); + free_[rem].head_node_ = rem_node->address(); + } else { + // If this was the last block of size cur, remove the size. + if ((free_[cur].head_node_ = cur_node->next()) == NULL) { + finger_ = prev; + free_[prev].next_size_ = free_[cur].next_size_; + } + if (rem_bytes < kMinBlockSize) { + // Too-small remainder is wasted. + rem_node->set_size(rem_bytes); + available_ -= size_in_bytes + rem_bytes; + *wasted_bytes = rem_bytes; + return cur_node; + } + // Add the remainder block and, if needed, insert its size. + rem_node->set_size(rem_bytes); + rem_node->set_next(free_[rem].head_node_); + free_[rem].head_node_ = rem_node->address(); + if (rem_node->next() == NULL) InsertSize(rem); + } + available_ -= size_in_bytes; + *wasted_bytes = 0; + return cur_node; +} + + +#ifdef DEBUG +bool OldSpaceFreeList::Contains(FreeListNode* node) { + for (int i = 0; i < kFreeListsLength; i++) { + Address cur_addr = free_[i].head_node_; + while (cur_addr != NULL) { + FreeListNode* cur_node = FreeListNode::FromAddress(cur_addr); + if (cur_node == node) return true; + cur_addr = cur_node->next(); + } + } + return false; +} +#endif + + +MapSpaceFreeList::MapSpaceFreeList(AllocationSpace owner) { + owner_ = owner; + Reset(); +} + + +void MapSpaceFreeList::Reset() { + available_ = 0; + head_ = NULL; +} + + +void MapSpaceFreeList::Free(Address start) { +#ifdef DEBUG + for (int i = 0; i < Map::kSize; i += kPointerSize) { + Memory::Address_at(start + i) = kZapValue; + } +#endif + FreeListNode* node = FreeListNode::FromAddress(start); + node->set_size(Map::kSize); + node->set_next(head_); + head_ = node->address(); + available_ += Map::kSize; +} + + +Object* MapSpaceFreeList::Allocate() { + if (head_ == NULL) { + return Failure::RetryAfterGC(Map::kSize, owner_); + } + + FreeListNode* node = FreeListNode::FromAddress(head_); + head_ = node->next(); + available_ -= Map::kSize; + return node; +} + + +// ----------------------------------------------------------------------------- +// OldSpace implementation + +void OldSpace::PrepareForMarkCompact(bool will_compact) { + if (will_compact) { + // Reset relocation info. During a compacting collection, everything in + // the space is considered 'available' and we will rediscover live data + // and waste during the collection. + MCResetRelocationInfo(); + mc_end_of_relocation_ = bottom(); + ASSERT(Available() == Capacity()); + } else { + // During a non-compacting collection, everything below the linear + // allocation pointer is considered allocated (everything above is + // available) and we will rediscover available and wasted bytes during + // the collection. + accounting_stats_.AllocateBytes(free_list_.available()); + accounting_stats_.FillWastedBytes(Waste()); + } + + // Clear the free list before a full GC---it will be rebuilt afterward. + free_list_.Reset(); +} + + +void OldSpace::MCAdjustRelocationEnd(Address address, int size_in_bytes) { + ASSERT(Contains(address)); + Address current_top = mc_end_of_relocation_; + Page* current_page = Page::FromAllocationTop(current_top); + + // No more objects relocated to this page? Move to the next. + ASSERT(current_top <= current_page->mc_relocation_top); + if (current_top == current_page->mc_relocation_top) { + // The space should already be properly expanded. + Page* next_page = current_page->next_page(); + CHECK(next_page->is_valid()); + mc_end_of_relocation_ = next_page->ObjectAreaStart(); + } + ASSERT(mc_end_of_relocation_ == address); + mc_end_of_relocation_ += size_in_bytes; +} + + +void OldSpace::MCCommitRelocationInfo() { + // Update fast allocation info. + allocation_info_.top = mc_forwarding_info_.top; + allocation_info_.limit = mc_forwarding_info_.limit; + ASSERT(allocation_info_.VerifyPagedAllocation()); + + // The space is compacted and we haven't yet built free lists or + // wasted any space. + ASSERT(Waste() == 0); + ASSERT(AvailableFree() == 0); + + // Build the free list for the space. + int computed_size = 0; + PageIterator it(this, PageIterator::PAGES_USED_BY_MC); + while (it.has_next()) { + Page* p = it.next(); + // Space below the relocation pointer is allocated. + computed_size += p->mc_relocation_top - p->ObjectAreaStart(); + if (it.has_next()) { + // Free the space at the top of the page. We cannot use + // p->mc_relocation_top after the call to Free (because Free will clear + // remembered set bits). + int extra_size = p->ObjectAreaEnd() - p->mc_relocation_top; + if (extra_size > 0) { + int wasted_bytes = free_list_.Free(p->mc_relocation_top, extra_size); + // The bytes we have just "freed" to add to the free list were + // already accounted as available. + accounting_stats_.WasteBytes(wasted_bytes); + } + } + } + + // Make sure the computed size - based on the used portion of the pages in + // use - matches the size obtained while computing forwarding addresses. + ASSERT(computed_size == Size()); +} + + +// Slow case for normal allocation. Try in order: (1) allocate in the next +// page in the space, (2) allocate off the space's free list, (3) expand the +// space, (4) fail. +HeapObject* OldSpace::SlowAllocateRaw(int size_in_bytes) { + // Linear allocation in this space has failed. If there is another page + // in the space, move to that page and allocate there. This allocation + // should succeed (size_in_bytes should not be greater than a page's + // object area size). + Page* current_page = TopPageOf(allocation_info_); + if (current_page->next_page()->is_valid()) { + return AllocateInNextPage(current_page, size_in_bytes); + } + + // There is no next page in this space. Try free list allocation. + int wasted_bytes; + Object* result = free_list_.Allocate(size_in_bytes, &wasted_bytes); + accounting_stats_.WasteBytes(wasted_bytes); + if (!result->IsFailure()) { + accounting_stats_.AllocateBytes(size_in_bytes); + return HeapObject::cast(result); + } + + // Free list allocation failed and there is no next page. Fail if we have + // hit the old generation size limit that should cause a garbage + // collection. + if (!Heap::always_allocate() && Heap::OldGenerationAllocationLimitReached()) { + return NULL; + } + + // Try to expand the space and allocate in the new next page. + ASSERT(!current_page->next_page()->is_valid()); + if (Expand(current_page)) { + return AllocateInNextPage(current_page, size_in_bytes); + } + + // Finally, fail. + return NULL; +} + + +// Add the block at the top of the page to the space's free list, set the +// allocation info to the next page (assumed to be one), and allocate +// linearly there. +HeapObject* OldSpace::AllocateInNextPage(Page* current_page, + int size_in_bytes) { + ASSERT(current_page->next_page()->is_valid()); + // Add the block at the top of this page to the free list. + int free_size = current_page->ObjectAreaEnd() - allocation_info_.top; + if (free_size > 0) { + int wasted_bytes = free_list_.Free(allocation_info_.top, free_size); + accounting_stats_.WasteBytes(wasted_bytes); + } + SetAllocationInfo(&allocation_info_, current_page->next_page()); + return AllocateLinearly(&allocation_info_, size_in_bytes); +} + + +#ifdef DEBUG +// We do not assume that the PageIterator works, because it depends on the +// invariants we are checking during verification. +void OldSpace::Verify() { + // The allocation pointer should be valid, and it should be in a page in the + // space. + ASSERT(allocation_info_.VerifyPagedAllocation()); + Page* top_page = Page::FromAllocationTop(allocation_info_.top); + ASSERT(MemoryAllocator::IsPageInSpace(top_page, this)); + + // Loop over all the pages. + bool above_allocation_top = false; + Page* current_page = first_page_; + while (current_page->is_valid()) { + if (above_allocation_top) { + // We don't care what's above the allocation top. + } else { + // Unless this is the last page in the space containing allocated + // objects, the allocation top should be at the object area end. + Address top = current_page->AllocationTop(); + if (current_page == top_page) { + ASSERT(top == allocation_info_.top); + // The next page will be above the allocation top. + above_allocation_top = true; + } else { + ASSERT(top == current_page->ObjectAreaEnd()); + } + + // It should be packed with objects from the bottom to the top. + Address current = current_page->ObjectAreaStart(); + while (current < top) { + HeapObject* object = HeapObject::FromAddress(current); + + // The first word should be a map, and we expect all map pointers to + // be in map space. + Map* map = object->map(); + ASSERT(map->IsMap()); + ASSERT(Heap::map_space()->Contains(map)); + + // The object should not be a map. + ASSERT(!object->IsMap()); + + // The object itself should look OK. + object->Verify(); + + // All the interior pointers should be contained in the heap and have + // their remembered set bits set if they point to new space. Code + // objects do not have remembered set bits that we care about. + VerifyPointersAndRSetVisitor rset_visitor; + VerifyPointersVisitor no_rset_visitor; + int size = object->Size(); + if (object->IsCode()) { + Code::cast(object)->ConvertICTargetsFromAddressToObject(); + object->IterateBody(map->instance_type(), size, &no_rset_visitor); + Code::cast(object)->ConvertICTargetsFromObjectToAddress(); + } else { + object->IterateBody(map->instance_type(), size, &rset_visitor); + } + + current += size; + } + + // The allocation pointer should not be in the middle of an object. + ASSERT(current == top); + } + + current_page = current_page->next_page(); + } +} + + +struct CommentStatistic { + const char* comment; + int size; + int count; + void Clear() { + comment = NULL; + size = 0; + count = 0; + } +}; + + +// must be small, since an iteration is used for lookup +const int kMaxComments = 64; +static CommentStatistic comments_statistics[kMaxComments+1]; + + +void PagedSpace::ReportCodeStatistics() { + ReportCodeKindStatistics(); + PrintF("Code comment statistics (\" [ comment-txt : size/ " + "count (average)\"):\n"); + for (int i = 0; i <= kMaxComments; i++) { + const CommentStatistic& cs = comments_statistics[i]; + if (cs.size > 0) { + PrintF(" %-30s: %10d/%6d (%d)\n", cs.comment, cs.size, cs.count, + cs.size/cs.count); + } + } + PrintF("\n"); +} + + +void PagedSpace::ResetCodeStatistics() { + ClearCodeKindStatistics(); + for (int i = 0; i < kMaxComments; i++) comments_statistics[i].Clear(); + comments_statistics[kMaxComments].comment = "Unknown"; + comments_statistics[kMaxComments].size = 0; + comments_statistics[kMaxComments].count = 0; +} + + +// Adds comment to 'comment_statistics' table. Performance OK sa long as +// 'kMaxComments' is small +static void EnterComment(const char* comment, int delta) { + // Do not count empty comments + if (delta <= 0) return; + CommentStatistic* cs = &comments_statistics[kMaxComments]; + // Search for a free or matching entry in 'comments_statistics': 'cs' + // points to result. + for (int i = 0; i < kMaxComments; i++) { + if (comments_statistics[i].comment == NULL) { + cs = &comments_statistics[i]; + cs->comment = comment; + break; + } else if (strcmp(comments_statistics[i].comment, comment) == 0) { + cs = &comments_statistics[i]; + break; + } + } + // Update entry for 'comment' + cs->size += delta; + cs->count += 1; +} + + +// Call for each nested comment start (start marked with '[ xxx', end marked +// with ']'. RelocIterator 'it' must point to a comment reloc info. +static void CollectCommentStatistics(RelocIterator* it) { + ASSERT(!it->done()); + ASSERT(it->rinfo()->rmode() == RelocInfo::COMMENT); + const char* tmp = reinterpret_cast<const char*>(it->rinfo()->data()); + if (tmp[0] != '[') { + // Not a nested comment; skip + return; + } + + // Search for end of nested comment or a new nested comment + const char* const comment_txt = + reinterpret_cast<const char*>(it->rinfo()->data()); + const byte* prev_pc = it->rinfo()->pc(); + int flat_delta = 0; + it->next(); + while (true) { + // All nested comments must be terminated properly, and therefore exit + // from loop. + ASSERT(!it->done()); + if (it->rinfo()->rmode() == RelocInfo::COMMENT) { + const char* const txt = + reinterpret_cast<const char*>(it->rinfo()->data()); + flat_delta += it->rinfo()->pc() - prev_pc; + if (txt[0] == ']') break; // End of nested comment + // A new comment + CollectCommentStatistics(it); + // Skip code that was covered with previous comment + prev_pc = it->rinfo()->pc(); + } + it->next(); + } + EnterComment(comment_txt, flat_delta); +} + + +// Collects code size statistics: +// - by code kind +// - by code comment +void PagedSpace::CollectCodeStatistics() { + HeapObjectIterator obj_it(this); + while (obj_it.has_next()) { + HeapObject* obj = obj_it.next(); + if (obj->IsCode()) { + Code* code = Code::cast(obj); + code_kind_statistics[code->kind()] += code->Size(); + RelocIterator it(code); + int delta = 0; + const byte* prev_pc = code->instruction_start(); + while (!it.done()) { + if (it.rinfo()->rmode() == RelocInfo::COMMENT) { + delta += it.rinfo()->pc() - prev_pc; + CollectCommentStatistics(&it); + prev_pc = it.rinfo()->pc(); + } + it.next(); + } + + ASSERT(code->instruction_start() <= prev_pc && + prev_pc <= code->relocation_start()); + delta += code->relocation_start() - prev_pc; + EnterComment("NoComment", delta); + } + } +} + + +void OldSpace::ReportStatistics() { + int pct = Available() * 100 / Capacity(); + PrintF(" capacity: %d, waste: %d, available: %d, %%%d\n", + Capacity(), Waste(), Available(), pct); + + // Report remembered set statistics. + int rset_marked_pointers = 0; + int rset_marked_arrays = 0; + int rset_marked_array_elements = 0; + int cross_gen_pointers = 0; + int cross_gen_array_elements = 0; + + PageIterator page_it(this, PageIterator::PAGES_IN_USE); + while (page_it.has_next()) { + Page* p = page_it.next(); + + for (Address rset_addr = p->RSetStart(); + rset_addr < p->RSetEnd(); + rset_addr += kIntSize) { + int rset = Memory::int_at(rset_addr); + if (rset != 0) { + // Bits were set + int intoff = rset_addr - p->address(); + int bitoff = 0; + for (; bitoff < kBitsPerInt; ++bitoff) { + if ((rset & (1 << bitoff)) != 0) { + int bitpos = intoff*kBitsPerByte + bitoff; + Address slot = p->OffsetToAddress(bitpos << kObjectAlignmentBits); + Object** obj = reinterpret_cast<Object**>(slot); + if (*obj == Heap::fixed_array_map()) { + rset_marked_arrays++; + FixedArray* fa = FixedArray::cast(HeapObject::FromAddress(slot)); + + rset_marked_array_elements += fa->length(); + // Manually inline FixedArray::IterateBody + Address elm_start = slot + FixedArray::kHeaderSize; + Address elm_stop = elm_start + fa->length() * kPointerSize; + for (Address elm_addr = elm_start; + elm_addr < elm_stop; elm_addr += kPointerSize) { + // Filter non-heap-object pointers + Object** elm_p = reinterpret_cast<Object**>(elm_addr); + if (Heap::InNewSpace(*elm_p)) + cross_gen_array_elements++; + } + } else { + rset_marked_pointers++; + if (Heap::InNewSpace(*obj)) + cross_gen_pointers++; + } + } + } + } + } + } + + pct = rset_marked_pointers == 0 ? + 0 : cross_gen_pointers * 100 / rset_marked_pointers; + PrintF(" rset-marked pointers %d, to-new-space %d (%%%d)\n", + rset_marked_pointers, cross_gen_pointers, pct); + PrintF(" rset_marked arrays %d, ", rset_marked_arrays); + PrintF(" elements %d, ", rset_marked_array_elements); + pct = rset_marked_array_elements == 0 ? 0 + : cross_gen_array_elements * 100 / rset_marked_array_elements; + PrintF(" pointers to new space %d (%%%d)\n", cross_gen_array_elements, pct); + PrintF(" total rset-marked bits %d\n", + (rset_marked_pointers + rset_marked_arrays)); + pct = (rset_marked_pointers + rset_marked_array_elements) == 0 ? 0 + : (cross_gen_pointers + cross_gen_array_elements) * 100 / + (rset_marked_pointers + rset_marked_array_elements); + PrintF(" total rset pointers %d, true cross generation ones %d (%%%d)\n", + (rset_marked_pointers + rset_marked_array_elements), + (cross_gen_pointers + cross_gen_array_elements), + pct); + + ClearHistograms(); + HeapObjectIterator obj_it(this); + while (obj_it.has_next()) { CollectHistogramInfo(obj_it.next()); } + ReportHistogram(true); +} + + +// Dump the range of remembered set words between [start, end) corresponding +// to the pointers starting at object_p. The allocation_top is an object +// pointer which should not be read past. This is important for large object +// pages, where some bits in the remembered set range do not correspond to +// allocated addresses. +static void PrintRSetRange(Address start, Address end, Object** object_p, + Address allocation_top) { + Address rset_address = start; + + // If the range starts on on odd numbered word (eg, for large object extra + // remembered set ranges), print some spaces. + if ((reinterpret_cast<uint32_t>(start) / kIntSize) % 2 == 1) { + PrintF(" "); + } + + // Loop over all the words in the range. + while (rset_address < end) { + uint32_t rset_word = Memory::uint32_at(rset_address); + int bit_position = 0; + + // Loop over all the bits in the word. + while (bit_position < kBitsPerInt) { + if (object_p == reinterpret_cast<Object**>(allocation_top)) { + // Print a bar at the allocation pointer. + PrintF("|"); + } else if (object_p > reinterpret_cast<Object**>(allocation_top)) { + // Do not dereference object_p past the allocation pointer. + PrintF("#"); + } else if ((rset_word & (1 << bit_position)) == 0) { + // Print a dot for zero bits. + PrintF("."); + } else if (Heap::InNewSpace(*object_p)) { + // Print an X for one bits for pointers to new space. + PrintF("X"); + } else { + // Print a circle for one bits for pointers to old space. + PrintF("o"); + } + + // Print a space after every 8th bit except the last. + if (bit_position % 8 == 7 && bit_position != (kBitsPerInt - 1)) { + PrintF(" "); + } + + // Advance to next bit. + bit_position++; + object_p++; + } + + // Print a newline after every odd numbered word, otherwise a space. + if ((reinterpret_cast<uint32_t>(rset_address) / kIntSize) % 2 == 1) { + PrintF("\n"); + } else { + PrintF(" "); + } + + // Advance to next remembered set word. + rset_address += kIntSize; + } +} + + +void PagedSpace::DoPrintRSet(const char* space_name) { + PageIterator it(this, PageIterator::PAGES_IN_USE); + while (it.has_next()) { + Page* p = it.next(); + PrintF("%s page 0x%x:\n", space_name, p); + PrintRSetRange(p->RSetStart(), p->RSetEnd(), + reinterpret_cast<Object**>(p->ObjectAreaStart()), + p->AllocationTop()); + PrintF("\n"); + } +} + + +void OldSpace::PrintRSet() { DoPrintRSet("old"); } +#endif + +// ----------------------------------------------------------------------------- +// MapSpace implementation + +void MapSpace::PrepareForMarkCompact(bool will_compact) { + if (will_compact) { + // Reset relocation info. + MCResetRelocationInfo(); + + // Initialize map index entry. + int page_count = 0; + PageIterator it(this, PageIterator::ALL_PAGES); + while (it.has_next()) { + ASSERT_MAP_PAGE_INDEX(page_count); + + Page* p = it.next(); + ASSERT(p->mc_page_index == page_count); + + page_addresses_[page_count++] = p->address(); + } + + // During a compacting collection, everything in the space is considered + // 'available' (set by the call to MCResetRelocationInfo) and we will + // rediscover live and wasted bytes during the collection. + ASSERT(Available() == Capacity()); + } else { + // During a non-compacting collection, everything below the linear + // allocation pointer except wasted top-of-page blocks is considered + // allocated and we will rediscover available bytes during the + // collection. + accounting_stats_.AllocateBytes(free_list_.available()); + } + + // Clear the free list before a full GC---it will be rebuilt afterward. + free_list_.Reset(); +} + + +void MapSpace::MCCommitRelocationInfo() { + // Update fast allocation info. + allocation_info_.top = mc_forwarding_info_.top; + allocation_info_.limit = mc_forwarding_info_.limit; + ASSERT(allocation_info_.VerifyPagedAllocation()); + + // The space is compacted and we haven't yet wasted any space. + ASSERT(Waste() == 0); + + // Update allocation_top of each page in use and compute waste. + int computed_size = 0; + PageIterator it(this, PageIterator::PAGES_USED_BY_MC); + while (it.has_next()) { + Page* page = it.next(); + Address page_top = page->AllocationTop(); + computed_size += page_top - page->ObjectAreaStart(); + if (it.has_next()) { + accounting_stats_.WasteBytes(page->ObjectAreaEnd() - page_top); + } + } + + // Make sure the computed size - based on the used portion of the + // pages in use - matches the size we adjust during allocation. + ASSERT(computed_size == Size()); +} + + +// Slow case for normal allocation. Try in order: (1) allocate in the next +// page in the space, (2) allocate off the space's free list, (3) expand the +// space, (4) fail. +HeapObject* MapSpace::SlowAllocateRaw(int size_in_bytes) { + // Linear allocation in this space has failed. If there is another page + // in the space, move to that page and allocate there. This allocation + // should succeed. + Page* current_page = TopPageOf(allocation_info_); + if (current_page->next_page()->is_valid()) { + return AllocateInNextPage(current_page, size_in_bytes); + } + + // There is no next page in this space. Try free list allocation. The + // map space free list implicitly assumes that all free blocks are map + // sized. + if (size_in_bytes == Map::kSize) { + Object* result = free_list_.Allocate(); + if (!result->IsFailure()) { + accounting_stats_.AllocateBytes(size_in_bytes); + return HeapObject::cast(result); + } + } + + // Free list allocation failed and there is no next page. Fail if we have + // hit the old generation size limit that should cause a garbage + // collection. + if (!Heap::always_allocate() && Heap::OldGenerationAllocationLimitReached()) { + return NULL; + } + + // Try to expand the space and allocate in the new next page. + ASSERT(!current_page->next_page()->is_valid()); + if (Expand(current_page)) { + return AllocateInNextPage(current_page, size_in_bytes); + } + + // Finally, fail. + return NULL; +} + + +// Move to the next page (there is assumed to be one) and allocate there. +// The top of page block is always wasted, because it is too small to hold a +// map. +HeapObject* MapSpace::AllocateInNextPage(Page* current_page, + int size_in_bytes) { + ASSERT(current_page->next_page()->is_valid()); + ASSERT(current_page->ObjectAreaEnd() - allocation_info_.top == kPageExtra); + accounting_stats_.WasteBytes(kPageExtra); + SetAllocationInfo(&allocation_info_, current_page->next_page()); + return AllocateLinearly(&allocation_info_, size_in_bytes); +} + + +#ifdef DEBUG +// We do not assume that the PageIterator works, because it depends on the +// invariants we are checking during verification. +void MapSpace::Verify() { + // The allocation pointer should be valid, and it should be in a page in the + // space. + ASSERT(allocation_info_.VerifyPagedAllocation()); + Page* top_page = Page::FromAllocationTop(allocation_info_.top); + ASSERT(MemoryAllocator::IsPageInSpace(top_page, this)); + + // Loop over all the pages. + bool above_allocation_top = false; + Page* current_page = first_page_; + while (current_page->is_valid()) { + if (above_allocation_top) { + // We don't care what's above the allocation top. + } else { + // Unless this is the last page in the space containing allocated + // objects, the allocation top should be at a constant offset from the + // object area end. + Address top = current_page->AllocationTop(); + if (current_page == top_page) { + ASSERT(top == allocation_info_.top); + // The next page will be above the allocation top. + above_allocation_top = true; + } else { + ASSERT(top == current_page->ObjectAreaEnd() - kPageExtra); + } + + // It should be packed with objects from the bottom to the top. + Address current = current_page->ObjectAreaStart(); + while (current < top) { + HeapObject* object = HeapObject::FromAddress(current); + + // The first word should be a map, and we expect all map pointers to + // be in map space. + Map* map = object->map(); + ASSERT(map->IsMap()); + ASSERT(Heap::map_space()->Contains(map)); + + // The object should be a map or a byte array. + ASSERT(object->IsMap() || object->IsByteArray()); + + // The object itself should look OK. + object->Verify(); + + // All the interior pointers should be contained in the heap and + // have their remembered set bits set if they point to new space. + VerifyPointersAndRSetVisitor visitor; + int size = object->Size(); + object->IterateBody(map->instance_type(), size, &visitor); + + current += size; + } + + // The allocation pointer should not be in the middle of an object. + ASSERT(current == top); + } + + current_page = current_page->next_page(); + } +} + + +void MapSpace::ReportStatistics() { + int pct = Available() * 100 / Capacity(); + PrintF(" capacity: %d, waste: %d, available: %d, %%%d\n", + Capacity(), Waste(), Available(), pct); + + // Report remembered set statistics. + int rset_marked_pointers = 0; + int cross_gen_pointers = 0; + + PageIterator page_it(this, PageIterator::PAGES_IN_USE); + while (page_it.has_next()) { + Page* p = page_it.next(); + + for (Address rset_addr = p->RSetStart(); + rset_addr < p->RSetEnd(); + rset_addr += kIntSize) { + int rset = Memory::int_at(rset_addr); + if (rset != 0) { + // Bits were set + int intoff = rset_addr - p->address(); + int bitoff = 0; + for (; bitoff < kBitsPerInt; ++bitoff) { + if ((rset & (1 << bitoff)) != 0) { + int bitpos = intoff*kBitsPerByte + bitoff; + Address slot = p->OffsetToAddress(bitpos << kObjectAlignmentBits); + Object** obj = reinterpret_cast<Object**>(slot); + rset_marked_pointers++; + if (Heap::InNewSpace(*obj)) + cross_gen_pointers++; + } + } + } + } + } + + pct = rset_marked_pointers == 0 ? + 0 : cross_gen_pointers * 100 / rset_marked_pointers; + PrintF(" rset-marked pointers %d, to-new-space %d (%%%d)\n", + rset_marked_pointers, cross_gen_pointers, pct); + + ClearHistograms(); + HeapObjectIterator obj_it(this); + while (obj_it.has_next()) { CollectHistogramInfo(obj_it.next()); } + ReportHistogram(false); +} + + +void MapSpace::PrintRSet() { DoPrintRSet("map"); } +#endif + + +// ----------------------------------------------------------------------------- +// LargeObjectIterator + +LargeObjectIterator::LargeObjectIterator(LargeObjectSpace* space) { + current_ = space->first_chunk_; + size_func_ = NULL; +} + + +LargeObjectIterator::LargeObjectIterator(LargeObjectSpace* space, + HeapObjectCallback size_func) { + current_ = space->first_chunk_; + size_func_ = size_func; +} + + +HeapObject* LargeObjectIterator::next() { + ASSERT(has_next()); + HeapObject* object = current_->GetObject(); + current_ = current_->next(); + return object; +} + + +// ----------------------------------------------------------------------------- +// LargeObjectChunk + +LargeObjectChunk* LargeObjectChunk::New(int size_in_bytes, + size_t* chunk_size, + Executability executable) { + size_t requested = ChunkSizeFor(size_in_bytes); + void* mem = MemoryAllocator::AllocateRawMemory(requested, + chunk_size, + executable); + if (mem == NULL) return NULL; + LOG(NewEvent("LargeObjectChunk", mem, *chunk_size)); + if (*chunk_size < requested) { + MemoryAllocator::FreeRawMemory(mem, *chunk_size); + LOG(DeleteEvent("LargeObjectChunk", mem)); + return NULL; + } + return reinterpret_cast<LargeObjectChunk*>(mem); +} + + +int LargeObjectChunk::ChunkSizeFor(int size_in_bytes) { + int os_alignment = OS::AllocateAlignment(); + if (os_alignment < Page::kPageSize) + size_in_bytes += (Page::kPageSize - os_alignment); + return size_in_bytes + Page::kObjectStartOffset; +} + +// ----------------------------------------------------------------------------- +// LargeObjectSpace + +LargeObjectSpace::LargeObjectSpace(AllocationSpace id) + : Space(id, NOT_EXECUTABLE), // Managed on a per-allocation basis + first_chunk_(NULL), + size_(0), + page_count_(0) {} + + +bool LargeObjectSpace::Setup() { + first_chunk_ = NULL; + size_ = 0; + page_count_ = 0; + return true; +} + + +void LargeObjectSpace::TearDown() { + while (first_chunk_ != NULL) { + LargeObjectChunk* chunk = first_chunk_; + first_chunk_ = first_chunk_->next(); + LOG(DeleteEvent("LargeObjectChunk", chunk->address())); + MemoryAllocator::FreeRawMemory(chunk->address(), chunk->size()); + } + + size_ = 0; + page_count_ = 0; +} + + +#ifdef ENABLE_HEAP_PROTECTION + +void LargeObjectSpace::Protect() { + LargeObjectChunk* chunk = first_chunk_; + while (chunk != NULL) { + MemoryAllocator::Protect(chunk->address(), chunk->size()); + chunk = chunk->next(); + } +} + + +void LargeObjectSpace::Unprotect() { + LargeObjectChunk* chunk = first_chunk_; + while (chunk != NULL) { + bool is_code = chunk->GetObject()->IsCode(); + MemoryAllocator::Unprotect(chunk->address(), chunk->size(), + is_code ? EXECUTABLE : NOT_EXECUTABLE); + chunk = chunk->next(); + } +} + +#endif + + +Object* LargeObjectSpace::AllocateRawInternal(int requested_size, + int object_size, + Executability executable) { + ASSERT(0 < object_size && object_size <= requested_size); + + // Check if we want to force a GC before growing the old space further. + // If so, fail the allocation. + if (!Heap::always_allocate() && Heap::OldGenerationAllocationLimitReached()) { + return Failure::RetryAfterGC(requested_size, identity()); + } + + size_t chunk_size; + LargeObjectChunk* chunk = + LargeObjectChunk::New(requested_size, &chunk_size, executable); + if (chunk == NULL) { + return Failure::RetryAfterGC(requested_size, identity()); + } + + size_ += chunk_size; + page_count_++; + chunk->set_next(first_chunk_); + chunk->set_size(chunk_size); + first_chunk_ = chunk; + + // Set the object address and size in the page header and clear its + // remembered set. + Page* page = Page::FromAddress(RoundUp(chunk->address(), Page::kPageSize)); + Address object_address = page->ObjectAreaStart(); + // Clear the low order bit of the second word in the page to flag it as a + // large object page. If the chunk_size happened to be written there, its + // low order bit should already be clear. + ASSERT((chunk_size & 0x1) == 0); + page->is_normal_page &= ~0x1; + page->ClearRSet(); + int extra_bytes = requested_size - object_size; + if (extra_bytes > 0) { + // The extra memory for the remembered set should be cleared. + memset(object_address + object_size, 0, extra_bytes); + } + + return HeapObject::FromAddress(object_address); +} + + +Object* LargeObjectSpace::AllocateRawCode(int size_in_bytes) { + ASSERT(0 < size_in_bytes); + return AllocateRawInternal(size_in_bytes, + size_in_bytes, + EXECUTABLE); +} + + +Object* LargeObjectSpace::AllocateRawFixedArray(int size_in_bytes) { + ASSERT(0 < size_in_bytes); + int extra_rset_bytes = ExtraRSetBytesFor(size_in_bytes); + return AllocateRawInternal(size_in_bytes + extra_rset_bytes, + size_in_bytes, + NOT_EXECUTABLE); +} + + +Object* LargeObjectSpace::AllocateRaw(int size_in_bytes) { + ASSERT(0 < size_in_bytes); + return AllocateRawInternal(size_in_bytes, + size_in_bytes, + NOT_EXECUTABLE); +} + + +// GC support +Object* LargeObjectSpace::FindObject(Address a) { + for (LargeObjectChunk* chunk = first_chunk_; + chunk != NULL; + chunk = chunk->next()) { + Address chunk_address = chunk->address(); + if (chunk_address <= a && a < chunk_address + chunk->size()) { + return chunk->GetObject(); + } + } + return Failure::Exception(); +} + + +void LargeObjectSpace::ClearRSet() { + ASSERT(Page::is_rset_in_use()); + + LargeObjectIterator it(this); + while (it.has_next()) { + HeapObject* object = it.next(); + // We only have code, sequential strings, or fixed arrays in large + // object space, and only fixed arrays need remembered set support. + if (object->IsFixedArray()) { + // Clear the normal remembered set region of the page; + Page* page = Page::FromAddress(object->address()); + page->ClearRSet(); + + // Clear the extra remembered set. + int size = object->Size(); + int extra_rset_bytes = ExtraRSetBytesFor(size); + memset(object->address() + size, 0, extra_rset_bytes); + } + } +} + + +void LargeObjectSpace::IterateRSet(ObjectSlotCallback copy_object_func) { + ASSERT(Page::is_rset_in_use()); + + LargeObjectIterator it(this); + while (it.has_next()) { + // We only have code, sequential strings, or fixed arrays in large + // object space, and only fixed arrays can possibly contain pointers to + // the young generation. + HeapObject* object = it.next(); + if (object->IsFixedArray()) { + // Iterate the normal page remembered set range. + Page* page = Page::FromAddress(object->address()); + Address object_end = object->address() + object->Size(); + Heap::IterateRSetRange(page->ObjectAreaStart(), + Min(page->ObjectAreaEnd(), object_end), + page->RSetStart(), + copy_object_func); + + // Iterate the extra array elements. + if (object_end > page->ObjectAreaEnd()) { + Heap::IterateRSetRange(page->ObjectAreaEnd(), object_end, + object_end, copy_object_func); + } + } + } +} + + +void LargeObjectSpace::FreeUnmarkedObjects() { + LargeObjectChunk* previous = NULL; + LargeObjectChunk* current = first_chunk_; + while (current != NULL) { + HeapObject* object = current->GetObject(); + if (object->IsMarked()) { + object->ClearMark(); + MarkCompactCollector::tracer()->decrement_marked_count(); + previous = current; + current = current->next(); + } else { + Address chunk_address = current->address(); + size_t chunk_size = current->size(); + + // Cut the chunk out from the chunk list. + current = current->next(); + if (previous == NULL) { + first_chunk_ = current; + } else { + previous->set_next(current); + } + + // Free the chunk. + if (object->IsCode()) { + LOG(CodeDeleteEvent(object->address())); + } + size_ -= chunk_size; + page_count_--; + MemoryAllocator::FreeRawMemory(chunk_address, chunk_size); + LOG(DeleteEvent("LargeObjectChunk", chunk_address)); + } + } +} + + +bool LargeObjectSpace::Contains(HeapObject* object) { + Address address = object->address(); + Page* page = Page::FromAddress(address); + + SLOW_ASSERT(!page->IsLargeObjectPage() + || !FindObject(address)->IsFailure()); + + return page->IsLargeObjectPage(); +} + + +#ifdef DEBUG +// We do not assume that the large object iterator works, because it depends +// on the invariants we are checking during verification. +void LargeObjectSpace::Verify() { + for (LargeObjectChunk* chunk = first_chunk_; + chunk != NULL; + chunk = chunk->next()) { + // Each chunk contains an object that starts at the large object page's + // object area start. + HeapObject* object = chunk->GetObject(); + Page* page = Page::FromAddress(object->address()); + ASSERT(object->address() == page->ObjectAreaStart()); + + // The first word should be a map, and we expect all map pointers to be + // in map space. + Map* map = object->map(); + ASSERT(map->IsMap()); + ASSERT(Heap::map_space()->Contains(map)); + + // We have only code, sequential strings, fixed arrays, and byte arrays + // in large object space. + ASSERT(object->IsCode() || object->IsSeqString() + || object->IsFixedArray() || object->IsByteArray()); + + // The object itself should look OK. + object->Verify(); + + // Byte arrays and strings don't have interior pointers. + if (object->IsCode()) { + VerifyPointersVisitor code_visitor; + Code::cast(object)->ConvertICTargetsFromAddressToObject(); + object->IterateBody(map->instance_type(), + object->Size(), + &code_visitor); + Code::cast(object)->ConvertICTargetsFromObjectToAddress(); + } else if (object->IsFixedArray()) { + // We loop over fixed arrays ourselves, rather then using the visitor, + // because the visitor doesn't support the start/offset iteration + // needed for IsRSetSet. + FixedArray* array = FixedArray::cast(object); + for (int j = 0; j < array->length(); j++) { + Object* element = array->get(j); + if (element->IsHeapObject()) { + HeapObject* element_object = HeapObject::cast(element); + ASSERT(Heap::Contains(element_object)); + ASSERT(element_object->map()->IsMap()); + if (Heap::InNewSpace(element_object)) { + ASSERT(Page::IsRSetSet(object->address(), + FixedArray::kHeaderSize + j * kPointerSize)); + } + } + } + } + } +} + + +void LargeObjectSpace::Print() { + LargeObjectIterator it(this); + while (it.has_next()) { + it.next()->Print(); + } +} + + +void LargeObjectSpace::ReportStatistics() { + PrintF(" size: %d\n", size_); + int num_objects = 0; + ClearHistograms(); + LargeObjectIterator it(this); + while (it.has_next()) { + num_objects++; + CollectHistogramInfo(it.next()); + } + + PrintF(" number of objects %d\n", num_objects); + if (num_objects > 0) ReportHistogram(false); +} + + +void LargeObjectSpace::CollectCodeStatistics() { + LargeObjectIterator obj_it(this); + while (obj_it.has_next()) { + HeapObject* obj = obj_it.next(); + if (obj->IsCode()) { + Code* code = Code::cast(obj); + code_kind_statistics[code->kind()] += code->Size(); + } + } +} + + +void LargeObjectSpace::PrintRSet() { + LargeObjectIterator it(this); + while (it.has_next()) { + HeapObject* object = it.next(); + if (object->IsFixedArray()) { + Page* page = Page::FromAddress(object->address()); + + Address allocation_top = object->address() + object->Size(); + PrintF("large page 0x%x:\n", page); + PrintRSetRange(page->RSetStart(), page->RSetEnd(), + reinterpret_cast<Object**>(object->address()), + allocation_top); + int extra_array_bytes = object->Size() - Page::kObjectAreaSize; + int extra_rset_bits = RoundUp(extra_array_bytes / kPointerSize, + kBitsPerInt); + PrintF("------------------------------------------------------------" + "-----------\n"); + PrintRSetRange(allocation_top, + allocation_top + extra_rset_bits / kBitsPerByte, + reinterpret_cast<Object**>(object->address() + + Page::kObjectAreaSize), + allocation_top); + PrintF("\n"); + } + } +} +#endif // DEBUG + +} } // namespace v8::internal |