diff options
author | Refael Ackermann <refack@gmail.com> | 2014-09-29 13:20:04 +0400 |
---|---|---|
committer | Fedor Indutny <fedor@indutny.com> | 2014-10-08 15:35:57 +0400 |
commit | 939278ac059b44439d41aab12bf552c8ae3c52d0 (patch) | |
tree | 86c586915a96d308b1b04de679a8ae293caf3e41 /deps/v8/src/spaces.cc | |
parent | 4412a71d76a0fa002f627ec21d2337e089da6764 (diff) | |
download | node-new-939278ac059b44439d41aab12bf552c8ae3c52d0.tar.gz |
deps: update v8 to 3.28.73
Reviewed-By: Fedor Indutny <fedor@indutny.com>
PR-URL: https://github.com/joyent/node/pull/8476
Diffstat (limited to 'deps/v8/src/spaces.cc')
-rw-r--r-- | deps/v8/src/spaces.cc | 3120 |
1 files changed, 0 insertions, 3120 deletions
diff --git a/deps/v8/src/spaces.cc b/deps/v8/src/spaces.cc deleted file mode 100644 index fd319ab717..0000000000 --- a/deps/v8/src/spaces.cc +++ /dev/null @@ -1,3120 +0,0 @@ -// Copyright 2011 the V8 project authors. All rights reserved. -// Use of this source code is governed by a BSD-style license that can be -// found in the LICENSE file. - -#include "v8.h" - -#include "full-codegen.h" -#include "macro-assembler.h" -#include "mark-compact.h" -#include "msan.h" -#include "platform.h" - -namespace v8 { -namespace internal { - - -// ---------------------------------------------------------------------------- -// HeapObjectIterator - -HeapObjectIterator::HeapObjectIterator(PagedSpace* space) { - // You can't actually iterate over the anchor page. It is not a real page, - // just an anchor for the double linked page list. Initialize as if we have - // reached the end of the anchor page, then the first iteration will move on - // to the first page. - Initialize(space, - NULL, - NULL, - kAllPagesInSpace, - NULL); -} - - -HeapObjectIterator::HeapObjectIterator(PagedSpace* space, - HeapObjectCallback size_func) { - // You can't actually iterate over the anchor page. It is not a real page, - // just an anchor for the double linked page list. Initialize the current - // address and end as NULL, then the first iteration will move on - // to the first page. - Initialize(space, - NULL, - NULL, - kAllPagesInSpace, - size_func); -} - - -HeapObjectIterator::HeapObjectIterator(Page* page, - HeapObjectCallback size_func) { - Space* owner = page->owner(); - ASSERT(owner == page->heap()->old_pointer_space() || - owner == page->heap()->old_data_space() || - owner == page->heap()->map_space() || - owner == page->heap()->cell_space() || - owner == page->heap()->property_cell_space() || - owner == page->heap()->code_space()); - Initialize(reinterpret_cast<PagedSpace*>(owner), - page->area_start(), - page->area_end(), - kOnePageOnly, - size_func); - ASSERT(page->WasSweptPrecisely()); -} - - -void HeapObjectIterator::Initialize(PagedSpace* space, - Address cur, Address end, - HeapObjectIterator::PageMode mode, - HeapObjectCallback size_f) { - // Check that we actually can iterate this space. - ASSERT(!space->was_swept_conservatively()); - - space_ = space; - cur_addr_ = cur; - cur_end_ = end; - page_mode_ = mode; - size_func_ = size_f; -} - - -// We have hit the end of the page and should advance to the next block of -// objects. This happens at the end of the page. -bool HeapObjectIterator::AdvanceToNextPage() { - ASSERT(cur_addr_ == cur_end_); - if (page_mode_ == kOnePageOnly) return false; - Page* cur_page; - if (cur_addr_ == NULL) { - cur_page = space_->anchor(); - } else { - cur_page = Page::FromAddress(cur_addr_ - 1); - ASSERT(cur_addr_ == cur_page->area_end()); - } - cur_page = cur_page->next_page(); - if (cur_page == space_->anchor()) return false; - cur_addr_ = cur_page->area_start(); - cur_end_ = cur_page->area_end(); - ASSERT(cur_page->WasSweptPrecisely()); - return true; -} - - -// ----------------------------------------------------------------------------- -// CodeRange - - -CodeRange::CodeRange(Isolate* isolate) - : isolate_(isolate), - code_range_(NULL), - free_list_(0), - allocation_list_(0), - current_allocation_block_index_(0) { -} - - -bool CodeRange::SetUp(size_t requested) { - ASSERT(code_range_ == NULL); - - if (requested == 0) { - // On 64-bit platform(s), we put all code objects in a 512 MB range of - // virtual address space, so that they can call each other with near calls. - if (kIs64BitArch) { - requested = 512 * MB; - } else { - return true; - } - } - - code_range_ = new VirtualMemory(requested); - CHECK(code_range_ != NULL); - if (!code_range_->IsReserved()) { - delete code_range_; - code_range_ = NULL; - return false; - } - - // We are sure that we have mapped a block of requested addresses. - ASSERT(code_range_->size() == requested); - LOG(isolate_, - NewEvent("CodeRange", code_range_->address(), requested)); - Address base = reinterpret_cast<Address>(code_range_->address()); - Address aligned_base = - RoundUp(reinterpret_cast<Address>(code_range_->address()), - MemoryChunk::kAlignment); - size_t size = code_range_->size() - (aligned_base - base); - allocation_list_.Add(FreeBlock(aligned_base, size)); - current_allocation_block_index_ = 0; - return true; -} - - -int CodeRange::CompareFreeBlockAddress(const FreeBlock* left, - const FreeBlock* right) { - // The entire point of CodeRange is that the difference between two - // addresses in the range can be represented as a signed 32-bit int, - // so the cast is semantically correct. - return static_cast<int>(left->start - right->start); -} - - -bool CodeRange::GetNextAllocationBlock(size_t requested) { - for (current_allocation_block_index_++; - current_allocation_block_index_ < allocation_list_.length(); - current_allocation_block_index_++) { - if (requested <= allocation_list_[current_allocation_block_index_].size) { - return true; // Found a large enough allocation block. - } - } - - // Sort and merge the free blocks on the free list and the allocation list. - free_list_.AddAll(allocation_list_); - allocation_list_.Clear(); - free_list_.Sort(&CompareFreeBlockAddress); - for (int i = 0; i < free_list_.length();) { - FreeBlock merged = free_list_[i]; - i++; - // Add adjacent free blocks to the current merged block. - while (i < free_list_.length() && - free_list_[i].start == merged.start + merged.size) { - merged.size += free_list_[i].size; - i++; - } - if (merged.size > 0) { - allocation_list_.Add(merged); - } - } - free_list_.Clear(); - - for (current_allocation_block_index_ = 0; - current_allocation_block_index_ < allocation_list_.length(); - current_allocation_block_index_++) { - if (requested <= allocation_list_[current_allocation_block_index_].size) { - return true; // Found a large enough allocation block. - } - } - current_allocation_block_index_ = 0; - // Code range is full or too fragmented. - return false; -} - - -Address CodeRange::AllocateRawMemory(const size_t requested_size, - const size_t commit_size, - size_t* allocated) { - ASSERT(commit_size <= requested_size); - ASSERT(current_allocation_block_index_ < allocation_list_.length()); - if (requested_size > allocation_list_[current_allocation_block_index_].size) { - // Find an allocation block large enough. - if (!GetNextAllocationBlock(requested_size)) return NULL; - } - // Commit the requested memory at the start of the current allocation block. - size_t aligned_requested = RoundUp(requested_size, MemoryChunk::kAlignment); - FreeBlock current = allocation_list_[current_allocation_block_index_]; - if (aligned_requested >= (current.size - Page::kPageSize)) { - // Don't leave a small free block, useless for a large object or chunk. - *allocated = current.size; - } else { - *allocated = aligned_requested; - } - ASSERT(*allocated <= current.size); - ASSERT(IsAddressAligned(current.start, MemoryChunk::kAlignment)); - if (!isolate_->memory_allocator()->CommitExecutableMemory(code_range_, - current.start, - commit_size, - *allocated)) { - *allocated = 0; - return NULL; - } - allocation_list_[current_allocation_block_index_].start += *allocated; - allocation_list_[current_allocation_block_index_].size -= *allocated; - if (*allocated == current.size) { - // This block is used up, get the next one. - if (!GetNextAllocationBlock(0)) return NULL; - } - return current.start; -} - - -bool CodeRange::CommitRawMemory(Address start, size_t length) { - return isolate_->memory_allocator()->CommitMemory(start, length, EXECUTABLE); -} - - -bool CodeRange::UncommitRawMemory(Address start, size_t length) { - return code_range_->Uncommit(start, length); -} - - -void CodeRange::FreeRawMemory(Address address, size_t length) { - ASSERT(IsAddressAligned(address, MemoryChunk::kAlignment)); - free_list_.Add(FreeBlock(address, length)); - code_range_->Uncommit(address, length); -} - - -void CodeRange::TearDown() { - delete code_range_; // Frees all memory in the virtual memory range. - code_range_ = NULL; - free_list_.Free(); - allocation_list_.Free(); -} - - -// ----------------------------------------------------------------------------- -// MemoryAllocator -// - -MemoryAllocator::MemoryAllocator(Isolate* isolate) - : isolate_(isolate), - capacity_(0), - capacity_executable_(0), - size_(0), - size_executable_(0), - lowest_ever_allocated_(reinterpret_cast<void*>(-1)), - highest_ever_allocated_(reinterpret_cast<void*>(0)) { -} - - -bool MemoryAllocator::SetUp(intptr_t capacity, intptr_t capacity_executable) { - capacity_ = RoundUp(capacity, Page::kPageSize); - capacity_executable_ = RoundUp(capacity_executable, Page::kPageSize); - ASSERT_GE(capacity_, capacity_executable_); - - size_ = 0; - size_executable_ = 0; - - return true; -} - - -void MemoryAllocator::TearDown() { - // Check that spaces were torn down before MemoryAllocator. - ASSERT(size_ == 0); - // TODO(gc) this will be true again when we fix FreeMemory. - // ASSERT(size_executable_ == 0); - capacity_ = 0; - capacity_executable_ = 0; -} - - -bool MemoryAllocator::CommitMemory(Address base, - size_t size, - Executability executable) { - if (!VirtualMemory::CommitRegion(base, size, executable == EXECUTABLE)) { - return false; - } - UpdateAllocatedSpaceLimits(base, base + size); - return true; -} - - -void MemoryAllocator::FreeMemory(VirtualMemory* reservation, - Executability executable) { - // TODO(gc) make code_range part of memory allocator? - ASSERT(reservation->IsReserved()); - size_t size = reservation->size(); - ASSERT(size_ >= size); - size_ -= size; - - isolate_->counters()->memory_allocated()->Decrement(static_cast<int>(size)); - - if (executable == EXECUTABLE) { - ASSERT(size_executable_ >= size); - size_executable_ -= size; - } - // Code which is part of the code-range does not have its own VirtualMemory. - ASSERT(!isolate_->code_range()->contains( - static_cast<Address>(reservation->address()))); - ASSERT(executable == NOT_EXECUTABLE || !isolate_->code_range()->exists()); - reservation->Release(); -} - - -void MemoryAllocator::FreeMemory(Address base, - size_t size, - Executability executable) { - // TODO(gc) make code_range part of memory allocator? - ASSERT(size_ >= size); - size_ -= size; - - isolate_->counters()->memory_allocated()->Decrement(static_cast<int>(size)); - - if (executable == EXECUTABLE) { - ASSERT(size_executable_ >= size); - size_executable_ -= size; - } - if (isolate_->code_range()->contains(static_cast<Address>(base))) { - ASSERT(executable == EXECUTABLE); - isolate_->code_range()->FreeRawMemory(base, size); - } else { - ASSERT(executable == NOT_EXECUTABLE || !isolate_->code_range()->exists()); - bool result = VirtualMemory::ReleaseRegion(base, size); - USE(result); - ASSERT(result); - } -} - - -Address MemoryAllocator::ReserveAlignedMemory(size_t size, - size_t alignment, - VirtualMemory* controller) { - VirtualMemory reservation(size, alignment); - - if (!reservation.IsReserved()) return NULL; - size_ += reservation.size(); - Address base = RoundUp(static_cast<Address>(reservation.address()), - alignment); - controller->TakeControl(&reservation); - return base; -} - - -Address MemoryAllocator::AllocateAlignedMemory(size_t reserve_size, - size_t commit_size, - size_t alignment, - Executability executable, - VirtualMemory* controller) { - ASSERT(commit_size <= reserve_size); - VirtualMemory reservation; - Address base = ReserveAlignedMemory(reserve_size, alignment, &reservation); - if (base == NULL) return NULL; - - if (executable == EXECUTABLE) { - if (!CommitExecutableMemory(&reservation, - base, - commit_size, - reserve_size)) { - base = NULL; - } - } else { - if (reservation.Commit(base, commit_size, false)) { - UpdateAllocatedSpaceLimits(base, base + commit_size); - } else { - base = NULL; - } - } - - if (base == NULL) { - // Failed to commit the body. Release the mapping and any partially - // commited regions inside it. - reservation.Release(); - return NULL; - } - - controller->TakeControl(&reservation); - return base; -} - - -void Page::InitializeAsAnchor(PagedSpace* owner) { - set_owner(owner); - set_prev_page(this); - set_next_page(this); -} - - -NewSpacePage* NewSpacePage::Initialize(Heap* heap, - Address start, - SemiSpace* semi_space) { - Address area_start = start + NewSpacePage::kObjectStartOffset; - Address area_end = start + Page::kPageSize; - - MemoryChunk* chunk = MemoryChunk::Initialize(heap, - start, - Page::kPageSize, - area_start, - area_end, - NOT_EXECUTABLE, - semi_space); - chunk->set_next_chunk(NULL); - chunk->set_prev_chunk(NULL); - chunk->initialize_scan_on_scavenge(true); - bool in_to_space = (semi_space->id() != kFromSpace); - chunk->SetFlag(in_to_space ? MemoryChunk::IN_TO_SPACE - : MemoryChunk::IN_FROM_SPACE); - ASSERT(!chunk->IsFlagSet(in_to_space ? MemoryChunk::IN_FROM_SPACE - : MemoryChunk::IN_TO_SPACE)); - NewSpacePage* page = static_cast<NewSpacePage*>(chunk); - heap->incremental_marking()->SetNewSpacePageFlags(page); - return page; -} - - -void NewSpacePage::InitializeAsAnchor(SemiSpace* semi_space) { - set_owner(semi_space); - set_next_chunk(this); - set_prev_chunk(this); - // Flags marks this invalid page as not being in new-space. - // All real new-space pages will be in new-space. - SetFlags(0, ~0); -} - - -MemoryChunk* MemoryChunk::Initialize(Heap* heap, - Address base, - size_t size, - Address area_start, - Address area_end, - Executability executable, - Space* owner) { - MemoryChunk* chunk = FromAddress(base); - - ASSERT(base == chunk->address()); - - chunk->heap_ = heap; - chunk->size_ = size; - chunk->area_start_ = area_start; - chunk->area_end_ = area_end; - chunk->flags_ = 0; - chunk->set_owner(owner); - chunk->InitializeReservedMemory(); - chunk->slots_buffer_ = NULL; - chunk->skip_list_ = NULL; - chunk->write_barrier_counter_ = kWriteBarrierCounterGranularity; - chunk->progress_bar_ = 0; - chunk->high_water_mark_ = static_cast<int>(area_start - base); - chunk->set_parallel_sweeping(PARALLEL_SWEEPING_DONE); - chunk->available_in_small_free_list_ = 0; - chunk->available_in_medium_free_list_ = 0; - chunk->available_in_large_free_list_ = 0; - chunk->available_in_huge_free_list_ = 0; - chunk->non_available_small_blocks_ = 0; - chunk->ResetLiveBytes(); - Bitmap::Clear(chunk); - chunk->initialize_scan_on_scavenge(false); - chunk->SetFlag(WAS_SWEPT_PRECISELY); - - ASSERT(OFFSET_OF(MemoryChunk, flags_) == kFlagsOffset); - ASSERT(OFFSET_OF(MemoryChunk, live_byte_count_) == kLiveBytesOffset); - - if (executable == EXECUTABLE) { - chunk->SetFlag(IS_EXECUTABLE); - } - - if (owner == heap->old_data_space()) { - chunk->SetFlag(CONTAINS_ONLY_DATA); - } - - return chunk; -} - - -// Commit MemoryChunk area to the requested size. -bool MemoryChunk::CommitArea(size_t requested) { - size_t guard_size = IsFlagSet(IS_EXECUTABLE) ? - MemoryAllocator::CodePageGuardSize() : 0; - size_t header_size = area_start() - address() - guard_size; - size_t commit_size = RoundUp(header_size + requested, OS::CommitPageSize()); - size_t committed_size = RoundUp(header_size + (area_end() - area_start()), - OS::CommitPageSize()); - - if (commit_size > committed_size) { - // Commit size should be less or equal than the reserved size. - ASSERT(commit_size <= size() - 2 * guard_size); - // Append the committed area. - Address start = address() + committed_size + guard_size; - size_t length = commit_size - committed_size; - if (reservation_.IsReserved()) { - Executability executable = IsFlagSet(IS_EXECUTABLE) - ? EXECUTABLE : NOT_EXECUTABLE; - if (!heap()->isolate()->memory_allocator()->CommitMemory( - start, length, executable)) { - return false; - } - } else { - CodeRange* code_range = heap_->isolate()->code_range(); - ASSERT(code_range->exists() && IsFlagSet(IS_EXECUTABLE)); - if (!code_range->CommitRawMemory(start, length)) return false; - } - - if (Heap::ShouldZapGarbage()) { - heap_->isolate()->memory_allocator()->ZapBlock(start, length); - } - } else if (commit_size < committed_size) { - ASSERT(commit_size > 0); - // Shrink the committed area. - size_t length = committed_size - commit_size; - Address start = address() + committed_size + guard_size - length; - if (reservation_.IsReserved()) { - if (!reservation_.Uncommit(start, length)) return false; - } else { - CodeRange* code_range = heap_->isolate()->code_range(); - ASSERT(code_range->exists() && IsFlagSet(IS_EXECUTABLE)); - if (!code_range->UncommitRawMemory(start, length)) return false; - } - } - - area_end_ = area_start_ + requested; - return true; -} - - -void MemoryChunk::InsertAfter(MemoryChunk* other) { - MemoryChunk* other_next = other->next_chunk(); - - set_next_chunk(other_next); - set_prev_chunk(other); - other_next->set_prev_chunk(this); - other->set_next_chunk(this); -} - - -void MemoryChunk::Unlink() { - MemoryChunk* next_element = next_chunk(); - MemoryChunk* prev_element = prev_chunk(); - next_element->set_prev_chunk(prev_element); - prev_element->set_next_chunk(next_element); - set_prev_chunk(NULL); - set_next_chunk(NULL); -} - - -MemoryChunk* MemoryAllocator::AllocateChunk(intptr_t reserve_area_size, - intptr_t commit_area_size, - Executability executable, - Space* owner) { - ASSERT(commit_area_size <= reserve_area_size); - - size_t chunk_size; - Heap* heap = isolate_->heap(); - Address base = NULL; - VirtualMemory reservation; - Address area_start = NULL; - Address area_end = NULL; - - // - // MemoryChunk layout: - // - // Executable - // +----------------------------+<- base aligned with MemoryChunk::kAlignment - // | Header | - // +----------------------------+<- base + CodePageGuardStartOffset - // | Guard | - // +----------------------------+<- area_start_ - // | Area | - // +----------------------------+<- area_end_ (area_start + commit_area_size) - // | Committed but not used | - // +----------------------------+<- aligned at OS page boundary - // | Reserved but not committed | - // +----------------------------+<- aligned at OS page boundary - // | Guard | - // +----------------------------+<- base + chunk_size - // - // Non-executable - // +----------------------------+<- base aligned with MemoryChunk::kAlignment - // | Header | - // +----------------------------+<- area_start_ (base + kObjectStartOffset) - // | Area | - // +----------------------------+<- area_end_ (area_start + commit_area_size) - // | Committed but not used | - // +----------------------------+<- aligned at OS page boundary - // | Reserved but not committed | - // +----------------------------+<- base + chunk_size - // - - if (executable == EXECUTABLE) { - chunk_size = RoundUp(CodePageAreaStartOffset() + reserve_area_size, - OS::CommitPageSize()) + CodePageGuardSize(); - - // Check executable memory limit. - if (size_executable_ + chunk_size > capacity_executable_) { - LOG(isolate_, - StringEvent("MemoryAllocator::AllocateRawMemory", - "V8 Executable Allocation capacity exceeded")); - return NULL; - } - - // Size of header (not executable) plus area (executable). - size_t commit_size = RoundUp(CodePageGuardStartOffset() + commit_area_size, - OS::CommitPageSize()); - // Allocate executable memory either from code range or from the - // OS. - if (isolate_->code_range()->exists()) { - base = isolate_->code_range()->AllocateRawMemory(chunk_size, - commit_size, - &chunk_size); - ASSERT(IsAligned(reinterpret_cast<intptr_t>(base), - MemoryChunk::kAlignment)); - if (base == NULL) return NULL; - size_ += chunk_size; - // Update executable memory size. - size_executable_ += chunk_size; - } else { - base = AllocateAlignedMemory(chunk_size, - commit_size, - MemoryChunk::kAlignment, - executable, - &reservation); - if (base == NULL) return NULL; - // Update executable memory size. - size_executable_ += reservation.size(); - } - - if (Heap::ShouldZapGarbage()) { - ZapBlock(base, CodePageGuardStartOffset()); - ZapBlock(base + CodePageAreaStartOffset(), commit_area_size); - } - - area_start = base + CodePageAreaStartOffset(); - area_end = area_start + commit_area_size; - } else { - chunk_size = RoundUp(MemoryChunk::kObjectStartOffset + reserve_area_size, - OS::CommitPageSize()); - size_t commit_size = RoundUp(MemoryChunk::kObjectStartOffset + - commit_area_size, OS::CommitPageSize()); - base = AllocateAlignedMemory(chunk_size, - commit_size, - MemoryChunk::kAlignment, - executable, - &reservation); - - if (base == NULL) return NULL; - - if (Heap::ShouldZapGarbage()) { - ZapBlock(base, Page::kObjectStartOffset + commit_area_size); - } - - area_start = base + Page::kObjectStartOffset; - area_end = area_start + commit_area_size; - } - - // Use chunk_size for statistics and callbacks because we assume that they - // treat reserved but not-yet committed memory regions of chunks as allocated. - isolate_->counters()->memory_allocated()-> - Increment(static_cast<int>(chunk_size)); - - LOG(isolate_, NewEvent("MemoryChunk", base, chunk_size)); - if (owner != NULL) { - ObjectSpace space = static_cast<ObjectSpace>(1 << owner->identity()); - PerformAllocationCallback(space, kAllocationActionAllocate, chunk_size); - } - - MemoryChunk* result = MemoryChunk::Initialize(heap, - base, - chunk_size, - area_start, - area_end, - executable, - owner); - result->set_reserved_memory(&reservation); - MSAN_MEMORY_IS_INITIALIZED_IN_JIT(base, chunk_size); - return result; -} - - -void Page::ResetFreeListStatistics() { - non_available_small_blocks_ = 0; - available_in_small_free_list_ = 0; - available_in_medium_free_list_ = 0; - available_in_large_free_list_ = 0; - available_in_huge_free_list_ = 0; -} - - -Page* MemoryAllocator::AllocatePage(intptr_t size, - PagedSpace* owner, - Executability executable) { - MemoryChunk* chunk = AllocateChunk(size, size, executable, owner); - - if (chunk == NULL) return NULL; - - return Page::Initialize(isolate_->heap(), chunk, executable, owner); -} - - -LargePage* MemoryAllocator::AllocateLargePage(intptr_t object_size, - Space* owner, - Executability executable) { - MemoryChunk* chunk = AllocateChunk(object_size, - object_size, - executable, - owner); - if (chunk == NULL) return NULL; - return LargePage::Initialize(isolate_->heap(), chunk); -} - - -void MemoryAllocator::Free(MemoryChunk* chunk) { - LOG(isolate_, DeleteEvent("MemoryChunk", chunk)); - if (chunk->owner() != NULL) { - ObjectSpace space = - static_cast<ObjectSpace>(1 << chunk->owner()->identity()); - PerformAllocationCallback(space, kAllocationActionFree, chunk->size()); - } - - isolate_->heap()->RememberUnmappedPage( - reinterpret_cast<Address>(chunk), chunk->IsEvacuationCandidate()); - - delete chunk->slots_buffer(); - delete chunk->skip_list(); - - VirtualMemory* reservation = chunk->reserved_memory(); - if (reservation->IsReserved()) { - FreeMemory(reservation, chunk->executable()); - } else { - FreeMemory(chunk->address(), - chunk->size(), - chunk->executable()); - } -} - - -bool MemoryAllocator::CommitBlock(Address start, - size_t size, - Executability executable) { - if (!CommitMemory(start, size, executable)) return false; - - if (Heap::ShouldZapGarbage()) { - ZapBlock(start, size); - } - - isolate_->counters()->memory_allocated()->Increment(static_cast<int>(size)); - return true; -} - - -bool MemoryAllocator::UncommitBlock(Address start, size_t size) { - if (!VirtualMemory::UncommitRegion(start, size)) return false; - isolate_->counters()->memory_allocated()->Decrement(static_cast<int>(size)); - return true; -} - - -void MemoryAllocator::ZapBlock(Address start, size_t size) { - for (size_t s = 0; s + kPointerSize <= size; s += kPointerSize) { - Memory::Address_at(start + s) = kZapValue; - } -} - - -void MemoryAllocator::PerformAllocationCallback(ObjectSpace space, - AllocationAction action, - size_t size) { - for (int i = 0; i < memory_allocation_callbacks_.length(); ++i) { - MemoryAllocationCallbackRegistration registration = - memory_allocation_callbacks_[i]; - if ((registration.space & space) == space && - (registration.action & action) == action) - registration.callback(space, action, static_cast<int>(size)); - } -} - - -bool MemoryAllocator::MemoryAllocationCallbackRegistered( - MemoryAllocationCallback callback) { - for (int i = 0; i < memory_allocation_callbacks_.length(); ++i) { - if (memory_allocation_callbacks_[i].callback == callback) return true; - } - return false; -} - - -void MemoryAllocator::AddMemoryAllocationCallback( - MemoryAllocationCallback callback, - ObjectSpace space, - AllocationAction action) { - ASSERT(callback != NULL); - MemoryAllocationCallbackRegistration registration(callback, space, action); - ASSERT(!MemoryAllocator::MemoryAllocationCallbackRegistered(callback)); - return memory_allocation_callbacks_.Add(registration); -} - - -void MemoryAllocator::RemoveMemoryAllocationCallback( - MemoryAllocationCallback callback) { - ASSERT(callback != NULL); - for (int i = 0; i < memory_allocation_callbacks_.length(); ++i) { - if (memory_allocation_callbacks_[i].callback == callback) { - memory_allocation_callbacks_.Remove(i); - return; - } - } - UNREACHABLE(); -} - - -#ifdef DEBUG -void MemoryAllocator::ReportStatistics() { - float pct = static_cast<float>(capacity_ - size_) / capacity_; - PrintF(" capacity: %" V8_PTR_PREFIX "d" - ", used: %" V8_PTR_PREFIX "d" - ", available: %%%d\n\n", - capacity_, size_, static_cast<int>(pct*100)); -} -#endif - - -int MemoryAllocator::CodePageGuardStartOffset() { - // We are guarding code pages: the first OS page after the header - // will be protected as non-writable. - return RoundUp(Page::kObjectStartOffset, OS::CommitPageSize()); -} - - -int MemoryAllocator::CodePageGuardSize() { - return static_cast<int>(OS::CommitPageSize()); -} - - -int MemoryAllocator::CodePageAreaStartOffset() { - // We are guarding code pages: the first OS page after the header - // will be protected as non-writable. - return CodePageGuardStartOffset() + CodePageGuardSize(); -} - - -int MemoryAllocator::CodePageAreaEndOffset() { - // We are guarding code pages: the last OS page will be protected as - // non-writable. - return Page::kPageSize - static_cast<int>(OS::CommitPageSize()); -} - - -bool MemoryAllocator::CommitExecutableMemory(VirtualMemory* vm, - Address start, - size_t commit_size, - size_t reserved_size) { - // Commit page header (not executable). - if (!vm->Commit(start, - CodePageGuardStartOffset(), - false)) { - return false; - } - - // Create guard page after the header. - if (!vm->Guard(start + CodePageGuardStartOffset())) { - return false; - } - - // Commit page body (executable). - if (!vm->Commit(start + CodePageAreaStartOffset(), - commit_size - CodePageGuardStartOffset(), - true)) { - return false; - } - - // Create guard page before the end. - if (!vm->Guard(start + reserved_size - CodePageGuardSize())) { - return false; - } - - UpdateAllocatedSpaceLimits(start, - start + CodePageAreaStartOffset() + - commit_size - CodePageGuardStartOffset()); - return true; -} - - -// ----------------------------------------------------------------------------- -// MemoryChunk implementation - -void MemoryChunk::IncrementLiveBytesFromMutator(Address address, int by) { - MemoryChunk* chunk = MemoryChunk::FromAddress(address); - if (!chunk->InNewSpace() && !static_cast<Page*>(chunk)->WasSwept()) { - static_cast<PagedSpace*>(chunk->owner())->IncrementUnsweptFreeBytes(-by); - } - chunk->IncrementLiveBytes(by); -} - - -// ----------------------------------------------------------------------------- -// PagedSpace implementation - -PagedSpace::PagedSpace(Heap* heap, - intptr_t max_capacity, - AllocationSpace id, - Executability executable) - : Space(heap, id, executable), - free_list_(this), - was_swept_conservatively_(false), - unswept_free_bytes_(0), - end_of_unswept_pages_(NULL) { - if (id == CODE_SPACE) { - area_size_ = heap->isolate()->memory_allocator()-> - CodePageAreaSize(); - } else { - area_size_ = Page::kPageSize - Page::kObjectStartOffset; - } - max_capacity_ = (RoundDown(max_capacity, Page::kPageSize) / Page::kPageSize) - * AreaSize(); - accounting_stats_.Clear(); - - allocation_info_.set_top(NULL); - allocation_info_.set_limit(NULL); - - anchor_.InitializeAsAnchor(this); -} - - -bool PagedSpace::SetUp() { - return true; -} - - -bool PagedSpace::HasBeenSetUp() { - return true; -} - - -void PagedSpace::TearDown() { - PageIterator iterator(this); - while (iterator.has_next()) { - heap()->isolate()->memory_allocator()->Free(iterator.next()); - } - anchor_.set_next_page(&anchor_); - anchor_.set_prev_page(&anchor_); - accounting_stats_.Clear(); -} - - -size_t PagedSpace::CommittedPhysicalMemory() { - if (!VirtualMemory::HasLazyCommits()) return CommittedMemory(); - MemoryChunk::UpdateHighWaterMark(allocation_info_.top()); - size_t size = 0; - PageIterator it(this); - while (it.has_next()) { - size += it.next()->CommittedPhysicalMemory(); - } - return size; -} - - -Object* PagedSpace::FindObject(Address addr) { - // Note: this function can only be called on precisely swept spaces. - ASSERT(!heap()->mark_compact_collector()->in_use()); - - if (!Contains(addr)) return Smi::FromInt(0); // Signaling not found. - - Page* p = Page::FromAddress(addr); - HeapObjectIterator it(p, NULL); - for (HeapObject* obj = it.Next(); obj != NULL; obj = it.Next()) { - Address cur = obj->address(); - Address next = cur + obj->Size(); - if ((cur <= addr) && (addr < next)) return obj; - } - - UNREACHABLE(); - return Smi::FromInt(0); -} - - -bool PagedSpace::CanExpand() { - ASSERT(max_capacity_ % AreaSize() == 0); - - if (Capacity() == max_capacity_) return false; - - ASSERT(Capacity() < max_capacity_); - - // Are we going to exceed capacity for this space? - if ((Capacity() + Page::kPageSize) > max_capacity_) return false; - - return true; -} - - -bool PagedSpace::Expand() { - if (!CanExpand()) return false; - - intptr_t size = AreaSize(); - - if (anchor_.next_page() == &anchor_) { - size = SizeOfFirstPage(); - } - - Page* p = heap()->isolate()->memory_allocator()->AllocatePage( - size, this, executable()); - if (p == NULL) return false; - - ASSERT(Capacity() <= max_capacity_); - - p->InsertAfter(anchor_.prev_page()); - - return true; -} - - -intptr_t PagedSpace::SizeOfFirstPage() { - int size = 0; - switch (identity()) { - case OLD_POINTER_SPACE: - size = 96 * kPointerSize * KB; - break; - case OLD_DATA_SPACE: - size = 192 * KB; - break; - case MAP_SPACE: - size = 16 * kPointerSize * KB; - break; - case CELL_SPACE: - size = 16 * kPointerSize * KB; - break; - case PROPERTY_CELL_SPACE: - size = 8 * kPointerSize * KB; - break; - case CODE_SPACE: - if (heap()->isolate()->code_range()->exists()) { - // When code range exists, code pages are allocated in a special way - // (from the reserved code range). That part of the code is not yet - // upgraded to handle small pages. - size = AreaSize(); - } else { - size = RoundUp( - 480 * KB * FullCodeGenerator::kBootCodeSizeMultiplier / 100, - kPointerSize); - } - break; - default: - UNREACHABLE(); - } - return Min(size, AreaSize()); -} - - -int PagedSpace::CountTotalPages() { - PageIterator it(this); - int count = 0; - while (it.has_next()) { - it.next(); - count++; - } - return count; -} - - -void PagedSpace::ObtainFreeListStatistics(Page* page, SizeStats* sizes) { - sizes->huge_size_ = page->available_in_huge_free_list(); - sizes->small_size_ = page->available_in_small_free_list(); - sizes->medium_size_ = page->available_in_medium_free_list(); - sizes->large_size_ = page->available_in_large_free_list(); -} - - -void PagedSpace::ResetFreeListStatistics() { - PageIterator page_iterator(this); - while (page_iterator.has_next()) { - Page* page = page_iterator.next(); - page->ResetFreeListStatistics(); - } -} - - -void PagedSpace::IncreaseCapacity(int size) { - accounting_stats_.ExpandSpace(size); -} - - -void PagedSpace::ReleasePage(Page* page) { - ASSERT(page->LiveBytes() == 0); - ASSERT(AreaSize() == page->area_size()); - - if (page->WasSwept()) { - intptr_t size = free_list_.EvictFreeListItems(page); - accounting_stats_.AllocateBytes(size); - ASSERT_EQ(AreaSize(), static_cast<int>(size)); - } else { - DecreaseUnsweptFreeBytes(page); - } - - if (page->IsFlagSet(MemoryChunk::SCAN_ON_SCAVENGE)) { - heap()->decrement_scan_on_scavenge_pages(); - page->ClearFlag(MemoryChunk::SCAN_ON_SCAVENGE); - } - - ASSERT(!free_list_.ContainsPageFreeListItems(page)); - - if (Page::FromAllocationTop(allocation_info_.top()) == page) { - allocation_info_.set_top(NULL); - allocation_info_.set_limit(NULL); - } - - page->Unlink(); - if (page->IsFlagSet(MemoryChunk::CONTAINS_ONLY_DATA)) { - heap()->isolate()->memory_allocator()->Free(page); - } else { - heap()->QueueMemoryChunkForFree(page); - } - - ASSERT(Capacity() > 0); - accounting_stats_.ShrinkSpace(AreaSize()); -} - - -#ifdef DEBUG -void PagedSpace::Print() { } -#endif - -#ifdef VERIFY_HEAP -void PagedSpace::Verify(ObjectVisitor* visitor) { - // We can only iterate over the pages if they were swept precisely. - if (was_swept_conservatively_) return; - - bool allocation_pointer_found_in_space = - (allocation_info_.top() == allocation_info_.limit()); - PageIterator page_iterator(this); - while (page_iterator.has_next()) { - Page* page = page_iterator.next(); - CHECK(page->owner() == this); - if (page == Page::FromAllocationTop(allocation_info_.top())) { - allocation_pointer_found_in_space = true; - } - CHECK(page->WasSweptPrecisely()); - HeapObjectIterator it(page, NULL); - Address end_of_previous_object = page->area_start(); - Address top = page->area_end(); - int black_size = 0; - for (HeapObject* object = it.Next(); object != NULL; object = it.Next()) { - CHECK(end_of_previous_object <= object->address()); - - // The first word should be a map, and we expect all map pointers to - // be in map space. - Map* map = object->map(); - CHECK(map->IsMap()); - CHECK(heap()->map_space()->Contains(map)); - - // Perform space-specific object verification. - VerifyObject(object); - - // The object itself should look OK. - object->ObjectVerify(); - - // All the interior pointers should be contained in the heap. - int size = object->Size(); - object->IterateBody(map->instance_type(), size, visitor); - if (Marking::IsBlack(Marking::MarkBitFrom(object))) { - black_size += size; - } - - CHECK(object->address() + size <= top); - end_of_previous_object = object->address() + size; - } - CHECK_LE(black_size, page->LiveBytes()); - } - CHECK(allocation_pointer_found_in_space); -} -#endif // VERIFY_HEAP - -// ----------------------------------------------------------------------------- -// NewSpace implementation - - -bool NewSpace::SetUp(int reserved_semispace_capacity, - int maximum_semispace_capacity) { - // Set up new space based on the preallocated memory block defined by - // start and size. The provided space is divided into two semi-spaces. - // To support fast containment testing in the new space, the size of - // this chunk must be a power of two and it must be aligned to its size. - int initial_semispace_capacity = heap()->InitialSemiSpaceSize(); - - size_t size = 2 * reserved_semispace_capacity; - Address base = - heap()->isolate()->memory_allocator()->ReserveAlignedMemory( - size, size, &reservation_); - if (base == NULL) return false; - - chunk_base_ = base; - chunk_size_ = static_cast<uintptr_t>(size); - LOG(heap()->isolate(), NewEvent("InitialChunk", chunk_base_, chunk_size_)); - - ASSERT(initial_semispace_capacity <= maximum_semispace_capacity); - ASSERT(IsPowerOf2(maximum_semispace_capacity)); - - // Allocate and set up the histogram arrays if necessary. - allocated_histogram_ = NewArray<HistogramInfo>(LAST_TYPE + 1); - promoted_histogram_ = NewArray<HistogramInfo>(LAST_TYPE + 1); - -#define SET_NAME(name) allocated_histogram_[name].set_name(#name); \ - promoted_histogram_[name].set_name(#name); - INSTANCE_TYPE_LIST(SET_NAME) -#undef SET_NAME - - ASSERT(reserved_semispace_capacity == heap()->ReservedSemiSpaceSize()); - ASSERT(static_cast<intptr_t>(chunk_size_) >= - 2 * heap()->ReservedSemiSpaceSize()); - ASSERT(IsAddressAligned(chunk_base_, 2 * reserved_semispace_capacity, 0)); - - to_space_.SetUp(chunk_base_, - initial_semispace_capacity, - maximum_semispace_capacity); - from_space_.SetUp(chunk_base_ + reserved_semispace_capacity, - initial_semispace_capacity, - maximum_semispace_capacity); - if (!to_space_.Commit()) { - return false; - } - ASSERT(!from_space_.is_committed()); // No need to use memory yet. - - start_ = chunk_base_; - address_mask_ = ~(2 * reserved_semispace_capacity - 1); - object_mask_ = address_mask_ | kHeapObjectTagMask; - object_expected_ = reinterpret_cast<uintptr_t>(start_) | kHeapObjectTag; - - ResetAllocationInfo(); - - return true; -} - - -void NewSpace::TearDown() { - if (allocated_histogram_) { - DeleteArray(allocated_histogram_); - allocated_histogram_ = NULL; - } - if (promoted_histogram_) { - DeleteArray(promoted_histogram_); - promoted_histogram_ = NULL; - } - - start_ = NULL; - allocation_info_.set_top(NULL); - allocation_info_.set_limit(NULL); - - to_space_.TearDown(); - from_space_.TearDown(); - - LOG(heap()->isolate(), DeleteEvent("InitialChunk", chunk_base_)); - - ASSERT(reservation_.IsReserved()); - heap()->isolate()->memory_allocator()->FreeMemory(&reservation_, - NOT_EXECUTABLE); - chunk_base_ = NULL; - chunk_size_ = 0; -} - - -void NewSpace::Flip() { - SemiSpace::Swap(&from_space_, &to_space_); -} - - -void NewSpace::Grow() { - // Double the semispace size but only up to maximum capacity. - ASSERT(Capacity() < MaximumCapacity()); - int new_capacity = Min(MaximumCapacity(), 2 * static_cast<int>(Capacity())); - if (to_space_.GrowTo(new_capacity)) { - // Only grow from space if we managed to grow to-space. - if (!from_space_.GrowTo(new_capacity)) { - // If we managed to grow to-space but couldn't grow from-space, - // attempt to shrink to-space. - if (!to_space_.ShrinkTo(from_space_.Capacity())) { - // We are in an inconsistent state because we could not - // commit/uncommit memory from new space. - V8::FatalProcessOutOfMemory("Failed to grow new space."); - } - } - } - ASSERT_SEMISPACE_ALLOCATION_INFO(allocation_info_, to_space_); -} - - -void NewSpace::Shrink() { - int new_capacity = Max(InitialCapacity(), 2 * SizeAsInt()); - int rounded_new_capacity = RoundUp(new_capacity, Page::kPageSize); - if (rounded_new_capacity < Capacity() && - to_space_.ShrinkTo(rounded_new_capacity)) { - // Only shrink from-space if we managed to shrink to-space. - from_space_.Reset(); - if (!from_space_.ShrinkTo(rounded_new_capacity)) { - // If we managed to shrink to-space but couldn't shrink from - // space, attempt to grow to-space again. - if (!to_space_.GrowTo(from_space_.Capacity())) { - // We are in an inconsistent state because we could not - // commit/uncommit memory from new space. - V8::FatalProcessOutOfMemory("Failed to shrink new space."); - } - } - } - ASSERT_SEMISPACE_ALLOCATION_INFO(allocation_info_, to_space_); -} - - -void NewSpace::UpdateAllocationInfo() { - MemoryChunk::UpdateHighWaterMark(allocation_info_.top()); - allocation_info_.set_top(to_space_.page_low()); - allocation_info_.set_limit(to_space_.page_high()); - UpdateInlineAllocationLimit(0); - ASSERT_SEMISPACE_ALLOCATION_INFO(allocation_info_, to_space_); -} - - -void NewSpace::ResetAllocationInfo() { - to_space_.Reset(); - UpdateAllocationInfo(); - pages_used_ = 0; - // Clear all mark-bits in the to-space. - NewSpacePageIterator it(&to_space_); - while (it.has_next()) { - Bitmap::Clear(it.next()); - } -} - - -void NewSpace::UpdateInlineAllocationLimit(int size_in_bytes) { - if (heap()->inline_allocation_disabled()) { - // Lowest limit when linear allocation was disabled. - Address high = to_space_.page_high(); - Address new_top = allocation_info_.top() + size_in_bytes; - allocation_info_.set_limit(Min(new_top, high)); - } else if (inline_allocation_limit_step() == 0) { - // Normal limit is the end of the current page. - allocation_info_.set_limit(to_space_.page_high()); - } else { - // Lower limit during incremental marking. - Address high = to_space_.page_high(); - Address new_top = allocation_info_.top() + size_in_bytes; - Address new_limit = new_top + inline_allocation_limit_step_; - allocation_info_.set_limit(Min(new_limit, high)); - } - ASSERT_SEMISPACE_ALLOCATION_INFO(allocation_info_, to_space_); -} - - -bool NewSpace::AddFreshPage() { - Address top = allocation_info_.top(); - if (NewSpacePage::IsAtStart(top)) { - // The current page is already empty. Don't try to make another. - - // We should only get here if someone asks to allocate more - // than what can be stored in a single page. - // TODO(gc): Change the limit on new-space allocation to prevent this - // from happening (all such allocations should go directly to LOSpace). - return false; - } - if (!to_space_.AdvancePage()) { - // Failed to get a new page in to-space. - return false; - } - - // Clear remainder of current page. - Address limit = NewSpacePage::FromLimit(top)->area_end(); - if (heap()->gc_state() == Heap::SCAVENGE) { - heap()->promotion_queue()->SetNewLimit(limit); - heap()->promotion_queue()->ActivateGuardIfOnTheSamePage(); - } - - int remaining_in_page = static_cast<int>(limit - top); - heap()->CreateFillerObjectAt(top, remaining_in_page); - pages_used_++; - UpdateAllocationInfo(); - - return true; -} - - -AllocationResult NewSpace::SlowAllocateRaw(int size_in_bytes) { - Address old_top = allocation_info_.top(); - Address high = to_space_.page_high(); - if (allocation_info_.limit() < high) { - // Either the limit has been lowered because linear allocation was disabled - // or because incremental marking wants to get a chance to do a step. Set - // the new limit accordingly. - Address new_top = old_top + size_in_bytes; - int bytes_allocated = static_cast<int>(new_top - top_on_previous_step_); - heap()->incremental_marking()->Step( - bytes_allocated, IncrementalMarking::GC_VIA_STACK_GUARD); - UpdateInlineAllocationLimit(size_in_bytes); - top_on_previous_step_ = new_top; - return AllocateRaw(size_in_bytes); - } else if (AddFreshPage()) { - // Switched to new page. Try allocating again. - int bytes_allocated = static_cast<int>(old_top - top_on_previous_step_); - heap()->incremental_marking()->Step( - bytes_allocated, IncrementalMarking::GC_VIA_STACK_GUARD); - top_on_previous_step_ = to_space_.page_low(); - return AllocateRaw(size_in_bytes); - } else { - return AllocationResult::Retry(); - } -} - - -#ifdef VERIFY_HEAP -// We do not use the SemiSpaceIterator because verification doesn't assume -// that it works (it depends on the invariants we are checking). -void NewSpace::Verify() { - // The allocation pointer should be in the space or at the very end. - ASSERT_SEMISPACE_ALLOCATION_INFO(allocation_info_, to_space_); - - // There should be objects packed in from the low address up to the - // allocation pointer. - Address current = to_space_.first_page()->area_start(); - CHECK_EQ(current, to_space_.space_start()); - - while (current != top()) { - if (!NewSpacePage::IsAtEnd(current)) { - // The allocation pointer should not be in the middle of an object. - CHECK(!NewSpacePage::FromLimit(current)->ContainsLimit(top()) || - current < top()); - - HeapObject* object = HeapObject::FromAddress(current); - - // The first word should be a map, and we expect all map pointers to - // be in map space. - Map* map = object->map(); - CHECK(map->IsMap()); - CHECK(heap()->map_space()->Contains(map)); - - // The object should not be code or a map. - CHECK(!object->IsMap()); - CHECK(!object->IsCode()); - - // The object itself should look OK. - object->ObjectVerify(); - - // All the interior pointers should be contained in the heap. - VerifyPointersVisitor visitor; - int size = object->Size(); - object->IterateBody(map->instance_type(), size, &visitor); - - current += size; - } else { - // At end of page, switch to next page. - NewSpacePage* page = NewSpacePage::FromLimit(current)->next_page(); - // Next page should be valid. - CHECK(!page->is_anchor()); - current = page->area_start(); - } - } - - // Check semi-spaces. - CHECK_EQ(from_space_.id(), kFromSpace); - CHECK_EQ(to_space_.id(), kToSpace); - from_space_.Verify(); - to_space_.Verify(); -} -#endif - -// ----------------------------------------------------------------------------- -// SemiSpace implementation - -void SemiSpace::SetUp(Address start, - int initial_capacity, - int maximum_capacity) { - // Creates a space in the young generation. The constructor does not - // allocate memory from the OS. A SemiSpace is given a contiguous chunk of - // memory of size 'capacity' when set up, and does not grow or shrink - // otherwise. In the mark-compact collector, the memory region of the from - // space is used as the marking stack. It requires contiguous memory - // addresses. - ASSERT(maximum_capacity >= Page::kPageSize); - initial_capacity_ = RoundDown(initial_capacity, Page::kPageSize); - capacity_ = initial_capacity; - maximum_capacity_ = RoundDown(maximum_capacity, Page::kPageSize); - maximum_committed_ = 0; - committed_ = false; - start_ = start; - address_mask_ = ~(maximum_capacity - 1); - object_mask_ = address_mask_ | kHeapObjectTagMask; - object_expected_ = reinterpret_cast<uintptr_t>(start) | kHeapObjectTag; - age_mark_ = start_; -} - - -void SemiSpace::TearDown() { - start_ = NULL; - capacity_ = 0; -} - - -bool SemiSpace::Commit() { - ASSERT(!is_committed()); - int pages = capacity_ / Page::kPageSize; - if (!heap()->isolate()->memory_allocator()->CommitBlock(start_, - capacity_, - executable())) { - return false; - } - - NewSpacePage* current = anchor(); - for (int i = 0; i < pages; i++) { - NewSpacePage* new_page = - NewSpacePage::Initialize(heap(), start_ + i * Page::kPageSize, this); - new_page->InsertAfter(current); - current = new_page; - } - - SetCapacity(capacity_); - committed_ = true; - Reset(); - return true; -} - - -bool SemiSpace::Uncommit() { - ASSERT(is_committed()); - Address start = start_ + maximum_capacity_ - capacity_; - if (!heap()->isolate()->memory_allocator()->UncommitBlock(start, capacity_)) { - return false; - } - anchor()->set_next_page(anchor()); - anchor()->set_prev_page(anchor()); - - committed_ = false; - return true; -} - - -size_t SemiSpace::CommittedPhysicalMemory() { - if (!is_committed()) return 0; - size_t size = 0; - NewSpacePageIterator it(this); - while (it.has_next()) { - size += it.next()->CommittedPhysicalMemory(); - } - return size; -} - - -bool SemiSpace::GrowTo(int new_capacity) { - if (!is_committed()) { - if (!Commit()) return false; - } - ASSERT((new_capacity & Page::kPageAlignmentMask) == 0); - ASSERT(new_capacity <= maximum_capacity_); - ASSERT(new_capacity > capacity_); - int pages_before = capacity_ / Page::kPageSize; - int pages_after = new_capacity / Page::kPageSize; - - size_t delta = new_capacity - capacity_; - - ASSERT(IsAligned(delta, OS::AllocateAlignment())); - if (!heap()->isolate()->memory_allocator()->CommitBlock( - start_ + capacity_, delta, executable())) { - return false; - } - SetCapacity(new_capacity); - NewSpacePage* last_page = anchor()->prev_page(); - ASSERT(last_page != anchor()); - for (int i = pages_before; i < pages_after; i++) { - Address page_address = start_ + i * Page::kPageSize; - NewSpacePage* new_page = NewSpacePage::Initialize(heap(), - page_address, - this); - new_page->InsertAfter(last_page); - Bitmap::Clear(new_page); - // Duplicate the flags that was set on the old page. - new_page->SetFlags(last_page->GetFlags(), - NewSpacePage::kCopyOnFlipFlagsMask); - last_page = new_page; - } - return true; -} - - -bool SemiSpace::ShrinkTo(int new_capacity) { - ASSERT((new_capacity & Page::kPageAlignmentMask) == 0); - ASSERT(new_capacity >= initial_capacity_); - ASSERT(new_capacity < capacity_); - if (is_committed()) { - size_t delta = capacity_ - new_capacity; - ASSERT(IsAligned(delta, OS::AllocateAlignment())); - - MemoryAllocator* allocator = heap()->isolate()->memory_allocator(); - if (!allocator->UncommitBlock(start_ + new_capacity, delta)) { - return false; - } - - int pages_after = new_capacity / Page::kPageSize; - NewSpacePage* new_last_page = - NewSpacePage::FromAddress(start_ + (pages_after - 1) * Page::kPageSize); - new_last_page->set_next_page(anchor()); - anchor()->set_prev_page(new_last_page); - ASSERT((current_page_ >= first_page()) && (current_page_ <= new_last_page)); - } - - SetCapacity(new_capacity); - - return true; -} - - -void SemiSpace::FlipPages(intptr_t flags, intptr_t mask) { - anchor_.set_owner(this); - // Fixup back-pointers to anchor. Address of anchor changes - // when we swap. - anchor_.prev_page()->set_next_page(&anchor_); - anchor_.next_page()->set_prev_page(&anchor_); - - bool becomes_to_space = (id_ == kFromSpace); - id_ = becomes_to_space ? kToSpace : kFromSpace; - NewSpacePage* page = anchor_.next_page(); - while (page != &anchor_) { - page->set_owner(this); - page->SetFlags(flags, mask); - if (becomes_to_space) { - page->ClearFlag(MemoryChunk::IN_FROM_SPACE); - page->SetFlag(MemoryChunk::IN_TO_SPACE); - page->ClearFlag(MemoryChunk::NEW_SPACE_BELOW_AGE_MARK); - page->ResetLiveBytes(); - } else { - page->SetFlag(MemoryChunk::IN_FROM_SPACE); - page->ClearFlag(MemoryChunk::IN_TO_SPACE); - } - ASSERT(page->IsFlagSet(MemoryChunk::SCAN_ON_SCAVENGE)); - ASSERT(page->IsFlagSet(MemoryChunk::IN_TO_SPACE) || - page->IsFlagSet(MemoryChunk::IN_FROM_SPACE)); - page = page->next_page(); - } -} - - -void SemiSpace::Reset() { - ASSERT(anchor_.next_page() != &anchor_); - current_page_ = anchor_.next_page(); -} - - -void SemiSpace::Swap(SemiSpace* from, SemiSpace* to) { - // We won't be swapping semispaces without data in them. - ASSERT(from->anchor_.next_page() != &from->anchor_); - ASSERT(to->anchor_.next_page() != &to->anchor_); - - // Swap bits. - SemiSpace tmp = *from; - *from = *to; - *to = tmp; - - // Fixup back-pointers to the page list anchor now that its address - // has changed. - // Swap to/from-space bits on pages. - // Copy GC flags from old active space (from-space) to new (to-space). - intptr_t flags = from->current_page()->GetFlags(); - to->FlipPages(flags, NewSpacePage::kCopyOnFlipFlagsMask); - - from->FlipPages(0, 0); -} - - -void SemiSpace::SetCapacity(int new_capacity) { - capacity_ = new_capacity; - if (capacity_ > maximum_committed_) { - maximum_committed_ = capacity_; - } -} - - -void SemiSpace::set_age_mark(Address mark) { - ASSERT(NewSpacePage::FromLimit(mark)->semi_space() == this); - age_mark_ = mark; - // Mark all pages up to the one containing mark. - NewSpacePageIterator it(space_start(), mark); - while (it.has_next()) { - it.next()->SetFlag(MemoryChunk::NEW_SPACE_BELOW_AGE_MARK); - } -} - - -#ifdef DEBUG -void SemiSpace::Print() { } -#endif - -#ifdef VERIFY_HEAP -void SemiSpace::Verify() { - bool is_from_space = (id_ == kFromSpace); - NewSpacePage* page = anchor_.next_page(); - CHECK(anchor_.semi_space() == this); - while (page != &anchor_) { - CHECK(page->semi_space() == this); - CHECK(page->InNewSpace()); - CHECK(page->IsFlagSet(is_from_space ? MemoryChunk::IN_FROM_SPACE - : MemoryChunk::IN_TO_SPACE)); - CHECK(!page->IsFlagSet(is_from_space ? MemoryChunk::IN_TO_SPACE - : MemoryChunk::IN_FROM_SPACE)); - CHECK(page->IsFlagSet(MemoryChunk::POINTERS_TO_HERE_ARE_INTERESTING)); - if (!is_from_space) { - // The pointers-from-here-are-interesting flag isn't updated dynamically - // on from-space pages, so it might be out of sync with the marking state. - if (page->heap()->incremental_marking()->IsMarking()) { - CHECK(page->IsFlagSet(MemoryChunk::POINTERS_FROM_HERE_ARE_INTERESTING)); - } else { - CHECK(!page->IsFlagSet( - MemoryChunk::POINTERS_FROM_HERE_ARE_INTERESTING)); - } - // TODO(gc): Check that the live_bytes_count_ field matches the - // black marking on the page (if we make it match in new-space). - } - CHECK(page->IsFlagSet(MemoryChunk::SCAN_ON_SCAVENGE)); - CHECK(page->prev_page()->next_page() == page); - page = page->next_page(); - } -} -#endif - -#ifdef DEBUG -void SemiSpace::AssertValidRange(Address start, Address end) { - // Addresses belong to same semi-space - NewSpacePage* page = NewSpacePage::FromLimit(start); - NewSpacePage* end_page = NewSpacePage::FromLimit(end); - SemiSpace* space = page->semi_space(); - CHECK_EQ(space, end_page->semi_space()); - // Start address is before end address, either on same page, - // or end address is on a later page in the linked list of - // semi-space pages. - if (page == end_page) { - CHECK(start <= end); - } else { - while (page != end_page) { - page = page->next_page(); - CHECK_NE(page, space->anchor()); - } - } -} -#endif - - -// ----------------------------------------------------------------------------- -// SemiSpaceIterator implementation. -SemiSpaceIterator::SemiSpaceIterator(NewSpace* space) { - Initialize(space->bottom(), space->top(), NULL); -} - - -SemiSpaceIterator::SemiSpaceIterator(NewSpace* space, - HeapObjectCallback size_func) { - Initialize(space->bottom(), space->top(), size_func); -} - - -SemiSpaceIterator::SemiSpaceIterator(NewSpace* space, Address start) { - Initialize(start, space->top(), NULL); -} - - -SemiSpaceIterator::SemiSpaceIterator(Address from, Address to) { - Initialize(from, to, NULL); -} - - -void SemiSpaceIterator::Initialize(Address start, - Address end, - HeapObjectCallback size_func) { - SemiSpace::AssertValidRange(start, end); - current_ = start; - limit_ = end; - size_func_ = size_func; -} - - -#ifdef DEBUG -// heap_histograms is shared, always clear it before using it. -static void ClearHistograms(Isolate* isolate) { - // We reset the name each time, though it hasn't changed. -#define DEF_TYPE_NAME(name) isolate->heap_histograms()[name].set_name(#name); - INSTANCE_TYPE_LIST(DEF_TYPE_NAME) -#undef DEF_TYPE_NAME - -#define CLEAR_HISTOGRAM(name) isolate->heap_histograms()[name].clear(); - INSTANCE_TYPE_LIST(CLEAR_HISTOGRAM) -#undef CLEAR_HISTOGRAM - - isolate->js_spill_information()->Clear(); -} - - -static void ClearCodeKindStatistics(int* code_kind_statistics) { - for (int i = 0; i < Code::NUMBER_OF_KINDS; i++) { - code_kind_statistics[i] = 0; - } -} - - -static void ReportCodeKindStatistics(int* code_kind_statistics) { - PrintF("\n Code kind histograms: \n"); - for (int i = 0; i < Code::NUMBER_OF_KINDS; i++) { - if (code_kind_statistics[i] > 0) { - PrintF(" %-20s: %10d bytes\n", - Code::Kind2String(static_cast<Code::Kind>(i)), - code_kind_statistics[i]); - } - } - PrintF("\n"); -} - - -static int CollectHistogramInfo(HeapObject* obj) { - Isolate* isolate = obj->GetIsolate(); - InstanceType type = obj->map()->instance_type(); - ASSERT(0 <= type && type <= LAST_TYPE); - ASSERT(isolate->heap_histograms()[type].name() != NULL); - isolate->heap_histograms()[type].increment_number(1); - isolate->heap_histograms()[type].increment_bytes(obj->Size()); - - if (FLAG_collect_heap_spill_statistics && obj->IsJSObject()) { - JSObject::cast(obj)->IncrementSpillStatistics( - isolate->js_spill_information()); - } - - return obj->Size(); -} - - -static void ReportHistogram(Isolate* isolate, bool print_spill) { - PrintF("\n Object Histogram:\n"); - for (int i = 0; i <= LAST_TYPE; i++) { - if (isolate->heap_histograms()[i].number() > 0) { - PrintF(" %-34s%10d (%10d bytes)\n", - isolate->heap_histograms()[i].name(), - isolate->heap_histograms()[i].number(), - isolate->heap_histograms()[i].bytes()); - } - } - PrintF("\n"); - - // Summarize string types. - int string_number = 0; - int string_bytes = 0; -#define INCREMENT(type, size, name, camel_name) \ - string_number += isolate->heap_histograms()[type].number(); \ - string_bytes += isolate->heap_histograms()[type].bytes(); - STRING_TYPE_LIST(INCREMENT) -#undef INCREMENT - if (string_number > 0) { - PrintF(" %-34s%10d (%10d bytes)\n\n", "STRING_TYPE", string_number, - string_bytes); - } - - if (FLAG_collect_heap_spill_statistics && print_spill) { - isolate->js_spill_information()->Print(); - } -} -#endif // DEBUG - - -// Support for statistics gathering for --heap-stats and --log-gc. -void NewSpace::ClearHistograms() { - for (int i = 0; i <= LAST_TYPE; i++) { - allocated_histogram_[i].clear(); - promoted_histogram_[i].clear(); - } -} - - -// Because the copying collector does not touch garbage objects, we iterate -// the new space before a collection to get a histogram of allocated objects. -// This only happens when --log-gc flag is set. -void NewSpace::CollectStatistics() { - ClearHistograms(); - SemiSpaceIterator it(this); - for (HeapObject* obj = it.Next(); obj != NULL; obj = it.Next()) - RecordAllocation(obj); -} - - -static void DoReportStatistics(Isolate* isolate, - HistogramInfo* info, const char* description) { - LOG(isolate, HeapSampleBeginEvent("NewSpace", description)); - // Lump all the string types together. - int string_number = 0; - int string_bytes = 0; -#define INCREMENT(type, size, name, camel_name) \ - string_number += info[type].number(); \ - string_bytes += info[type].bytes(); - STRING_TYPE_LIST(INCREMENT) -#undef INCREMENT - if (string_number > 0) { - LOG(isolate, - HeapSampleItemEvent("STRING_TYPE", string_number, string_bytes)); - } - - // Then do the other types. - for (int i = FIRST_NONSTRING_TYPE; i <= LAST_TYPE; ++i) { - if (info[i].number() > 0) { - LOG(isolate, - HeapSampleItemEvent(info[i].name(), info[i].number(), - info[i].bytes())); - } - } - LOG(isolate, HeapSampleEndEvent("NewSpace", description)); -} - - -void NewSpace::ReportStatistics() { -#ifdef DEBUG - if (FLAG_heap_stats) { - float pct = static_cast<float>(Available()) / Capacity(); - PrintF(" capacity: %" V8_PTR_PREFIX "d" - ", available: %" V8_PTR_PREFIX "d, %%%d\n", - Capacity(), Available(), static_cast<int>(pct*100)); - PrintF("\n Object Histogram:\n"); - for (int i = 0; i <= LAST_TYPE; i++) { - if (allocated_histogram_[i].number() > 0) { - PrintF(" %-34s%10d (%10d bytes)\n", - allocated_histogram_[i].name(), - allocated_histogram_[i].number(), - allocated_histogram_[i].bytes()); - } - } - PrintF("\n"); - } -#endif // DEBUG - - if (FLAG_log_gc) { - Isolate* isolate = heap()->isolate(); - DoReportStatistics(isolate, allocated_histogram_, "allocated"); - DoReportStatistics(isolate, promoted_histogram_, "promoted"); - } -} - - -void NewSpace::RecordAllocation(HeapObject* obj) { - InstanceType type = obj->map()->instance_type(); - ASSERT(0 <= type && type <= LAST_TYPE); - allocated_histogram_[type].increment_number(1); - allocated_histogram_[type].increment_bytes(obj->Size()); -} - - -void NewSpace::RecordPromotion(HeapObject* obj) { - InstanceType type = obj->map()->instance_type(); - ASSERT(0 <= type && type <= LAST_TYPE); - promoted_histogram_[type].increment_number(1); - promoted_histogram_[type].increment_bytes(obj->Size()); -} - - -size_t NewSpace::CommittedPhysicalMemory() { - if (!VirtualMemory::HasLazyCommits()) return CommittedMemory(); - MemoryChunk::UpdateHighWaterMark(allocation_info_.top()); - size_t size = to_space_.CommittedPhysicalMemory(); - if (from_space_.is_committed()) { - size += from_space_.CommittedPhysicalMemory(); - } - return size; -} - - -// ----------------------------------------------------------------------------- -// Free lists for old object spaces implementation - -void FreeListNode::set_size(Heap* heap, int size_in_bytes) { - ASSERT(size_in_bytes > 0); - ASSERT(IsAligned(size_in_bytes, kPointerSize)); - - // We write a map and possibly size information to the block. If the block - // is big enough to be a FreeSpace with at least one extra word (the next - // pointer), we set its map to be the free space map and its size to an - // appropriate array length for the desired size from HeapObject::Size(). - // If the block is too small (eg, one or two words), to hold both a size - // field and a next pointer, we give it a filler map that gives it the - // correct size. - if (size_in_bytes > FreeSpace::kHeaderSize) { - // Can't use FreeSpace::cast because it fails during deserialization. - // We have to set the size first with a release store before we store - // the map because a concurrent store buffer scan on scavenge must not - // observe a map with an invalid size. - FreeSpace* this_as_free_space = reinterpret_cast<FreeSpace*>(this); - this_as_free_space->nobarrier_set_size(size_in_bytes); - synchronized_set_map_no_write_barrier(heap->raw_unchecked_free_space_map()); - } else if (size_in_bytes == kPointerSize) { - set_map_no_write_barrier(heap->raw_unchecked_one_pointer_filler_map()); - } else if (size_in_bytes == 2 * kPointerSize) { - set_map_no_write_barrier(heap->raw_unchecked_two_pointer_filler_map()); - } else { - UNREACHABLE(); - } - // We would like to ASSERT(Size() == size_in_bytes) but this would fail during - // deserialization because the free space map is not done yet. -} - - -FreeListNode* FreeListNode::next() { - ASSERT(IsFreeListNode(this)); - if (map() == GetHeap()->raw_unchecked_free_space_map()) { - ASSERT(map() == NULL || Size() >= kNextOffset + kPointerSize); - return reinterpret_cast<FreeListNode*>( - Memory::Address_at(address() + kNextOffset)); - } else { - return reinterpret_cast<FreeListNode*>( - Memory::Address_at(address() + kPointerSize)); - } -} - - -FreeListNode** FreeListNode::next_address() { - ASSERT(IsFreeListNode(this)); - if (map() == GetHeap()->raw_unchecked_free_space_map()) { - ASSERT(Size() >= kNextOffset + kPointerSize); - return reinterpret_cast<FreeListNode**>(address() + kNextOffset); - } else { - return reinterpret_cast<FreeListNode**>(address() + kPointerSize); - } -} - - -void FreeListNode::set_next(FreeListNode* next) { - ASSERT(IsFreeListNode(this)); - // While we are booting the VM the free space map will actually be null. So - // we have to make sure that we don't try to use it for anything at that - // stage. - if (map() == GetHeap()->raw_unchecked_free_space_map()) { - ASSERT(map() == NULL || Size() >= kNextOffset + kPointerSize); - NoBarrier_Store(reinterpret_cast<AtomicWord*>(address() + kNextOffset), - reinterpret_cast<AtomicWord>(next)); - } else { - NoBarrier_Store(reinterpret_cast<AtomicWord*>(address() + kPointerSize), - reinterpret_cast<AtomicWord>(next)); - } -} - - -intptr_t FreeListCategory::Concatenate(FreeListCategory* category) { - intptr_t free_bytes = 0; - if (category->top() != NULL) { - // This is safe (not going to deadlock) since Concatenate operations - // are never performed on the same free lists at the same time in - // reverse order. - LockGuard<Mutex> target_lock_guard(mutex()); - LockGuard<Mutex> source_lock_guard(category->mutex()); - ASSERT(category->end_ != NULL); - free_bytes = category->available(); - if (end_ == NULL) { - end_ = category->end(); - } else { - category->end()->set_next(top()); - } - set_top(category->top()); - NoBarrier_Store(&top_, category->top_); - available_ += category->available(); - category->Reset(); - } - return free_bytes; -} - - -void FreeListCategory::Reset() { - set_top(NULL); - set_end(NULL); - set_available(0); -} - - -intptr_t FreeListCategory::EvictFreeListItemsInList(Page* p) { - int sum = 0; - FreeListNode* t = top(); - FreeListNode** n = &t; - while (*n != NULL) { - if (Page::FromAddress((*n)->address()) == p) { - FreeSpace* free_space = reinterpret_cast<FreeSpace*>(*n); - sum += free_space->Size(); - *n = (*n)->next(); - } else { - n = (*n)->next_address(); - } - } - set_top(t); - if (top() == NULL) { - set_end(NULL); - } - available_ -= sum; - return sum; -} - - -bool FreeListCategory::ContainsPageFreeListItemsInList(Page* p) { - FreeListNode* node = top(); - while (node != NULL) { - if (Page::FromAddress(node->address()) == p) return true; - node = node->next(); - } - return false; -} - - -FreeListNode* FreeListCategory::PickNodeFromList(int *node_size) { - FreeListNode* node = top(); - - if (node == NULL) return NULL; - - while (node != NULL && - Page::FromAddress(node->address())->IsEvacuationCandidate()) { - available_ -= reinterpret_cast<FreeSpace*>(node)->Size(); - node = node->next(); - } - - if (node != NULL) { - set_top(node->next()); - *node_size = reinterpret_cast<FreeSpace*>(node)->Size(); - available_ -= *node_size; - } else { - set_top(NULL); - } - - if (top() == NULL) { - set_end(NULL); - } - - return node; -} - - -FreeListNode* FreeListCategory::PickNodeFromList(int size_in_bytes, - int *node_size) { - FreeListNode* node = PickNodeFromList(node_size); - if (node != NULL && *node_size < size_in_bytes) { - Free(node, *node_size); - *node_size = 0; - return NULL; - } - return node; -} - - -void FreeListCategory::Free(FreeListNode* node, int size_in_bytes) { - node->set_next(top()); - set_top(node); - if (end_ == NULL) { - end_ = node; - } - available_ += size_in_bytes; -} - - -void FreeListCategory::RepairFreeList(Heap* heap) { - FreeListNode* n = top(); - while (n != NULL) { - Map** map_location = reinterpret_cast<Map**>(n->address()); - if (*map_location == NULL) { - *map_location = heap->free_space_map(); - } else { - ASSERT(*map_location == heap->free_space_map()); - } - n = n->next(); - } -} - - -FreeList::FreeList(PagedSpace* owner) - : owner_(owner), heap_(owner->heap()) { - Reset(); -} - - -intptr_t FreeList::Concatenate(FreeList* free_list) { - intptr_t free_bytes = 0; - free_bytes += small_list_.Concatenate(free_list->small_list()); - free_bytes += medium_list_.Concatenate(free_list->medium_list()); - free_bytes += large_list_.Concatenate(free_list->large_list()); - free_bytes += huge_list_.Concatenate(free_list->huge_list()); - return free_bytes; -} - - -void FreeList::Reset() { - small_list_.Reset(); - medium_list_.Reset(); - large_list_.Reset(); - huge_list_.Reset(); -} - - -int FreeList::Free(Address start, int size_in_bytes) { - if (size_in_bytes == 0) return 0; - - FreeListNode* node = FreeListNode::FromAddress(start); - node->set_size(heap_, size_in_bytes); - Page* page = Page::FromAddress(start); - - // Early return to drop too-small blocks on the floor. - if (size_in_bytes < kSmallListMin) { - page->add_non_available_small_blocks(size_in_bytes); - return size_in_bytes; - } - - // Insert other blocks at the head of a free list of the appropriate - // magnitude. - if (size_in_bytes <= kSmallListMax) { - small_list_.Free(node, size_in_bytes); - page->add_available_in_small_free_list(size_in_bytes); - } else if (size_in_bytes <= kMediumListMax) { - medium_list_.Free(node, size_in_bytes); - page->add_available_in_medium_free_list(size_in_bytes); - } else if (size_in_bytes <= kLargeListMax) { - large_list_.Free(node, size_in_bytes); - page->add_available_in_large_free_list(size_in_bytes); - } else { - huge_list_.Free(node, size_in_bytes); - page->add_available_in_huge_free_list(size_in_bytes); - } - - ASSERT(IsVeryLong() || available() == SumFreeLists()); - return 0; -} - - -FreeListNode* FreeList::FindNodeFor(int size_in_bytes, int* node_size) { - FreeListNode* node = NULL; - Page* page = NULL; - - if (size_in_bytes <= kSmallAllocationMax) { - node = small_list_.PickNodeFromList(node_size); - if (node != NULL) { - ASSERT(size_in_bytes <= *node_size); - page = Page::FromAddress(node->address()); - page->add_available_in_small_free_list(-(*node_size)); - ASSERT(IsVeryLong() || available() == SumFreeLists()); - return node; - } - } - - if (size_in_bytes <= kMediumAllocationMax) { - node = medium_list_.PickNodeFromList(node_size); - if (node != NULL) { - ASSERT(size_in_bytes <= *node_size); - page = Page::FromAddress(node->address()); - page->add_available_in_medium_free_list(-(*node_size)); - ASSERT(IsVeryLong() || available() == SumFreeLists()); - return node; - } - } - - if (size_in_bytes <= kLargeAllocationMax) { - node = large_list_.PickNodeFromList(node_size); - if (node != NULL) { - ASSERT(size_in_bytes <= *node_size); - page = Page::FromAddress(node->address()); - page->add_available_in_large_free_list(-(*node_size)); - ASSERT(IsVeryLong() || available() == SumFreeLists()); - return node; - } - } - - int huge_list_available = huge_list_.available(); - FreeListNode* top_node = huge_list_.top(); - for (FreeListNode** cur = &top_node; - *cur != NULL; - cur = (*cur)->next_address()) { - FreeListNode* cur_node = *cur; - while (cur_node != NULL && - Page::FromAddress(cur_node->address())->IsEvacuationCandidate()) { - int size = reinterpret_cast<FreeSpace*>(cur_node)->Size(); - huge_list_available -= size; - page = Page::FromAddress(cur_node->address()); - page->add_available_in_huge_free_list(-size); - cur_node = cur_node->next(); - } - - *cur = cur_node; - if (cur_node == NULL) { - huge_list_.set_end(NULL); - break; - } - - ASSERT((*cur)->map() == heap_->raw_unchecked_free_space_map()); - FreeSpace* cur_as_free_space = reinterpret_cast<FreeSpace*>(*cur); - int size = cur_as_free_space->Size(); - if (size >= size_in_bytes) { - // Large enough node found. Unlink it from the list. - node = *cur; - *cur = node->next(); - *node_size = size; - huge_list_available -= size; - page = Page::FromAddress(node->address()); - page->add_available_in_huge_free_list(-size); - break; - } - } - - huge_list_.set_top(top_node); - if (huge_list_.top() == NULL) { - huge_list_.set_end(NULL); - } - huge_list_.set_available(huge_list_available); - - if (node != NULL) { - ASSERT(IsVeryLong() || available() == SumFreeLists()); - return node; - } - - if (size_in_bytes <= kSmallListMax) { - node = small_list_.PickNodeFromList(size_in_bytes, node_size); - if (node != NULL) { - ASSERT(size_in_bytes <= *node_size); - page = Page::FromAddress(node->address()); - page->add_available_in_small_free_list(-(*node_size)); - } - } else if (size_in_bytes <= kMediumListMax) { - node = medium_list_.PickNodeFromList(size_in_bytes, node_size); - if (node != NULL) { - ASSERT(size_in_bytes <= *node_size); - page = Page::FromAddress(node->address()); - page->add_available_in_medium_free_list(-(*node_size)); - } - } else if (size_in_bytes <= kLargeListMax) { - node = large_list_.PickNodeFromList(size_in_bytes, node_size); - if (node != NULL) { - ASSERT(size_in_bytes <= *node_size); - page = Page::FromAddress(node->address()); - page->add_available_in_large_free_list(-(*node_size)); - } - } - - ASSERT(IsVeryLong() || available() == SumFreeLists()); - return node; -} - - -// Allocation on the old space free list. If it succeeds then a new linear -// allocation space has been set up with the top and limit of the space. If -// the allocation fails then NULL is returned, and the caller can perform a GC -// or allocate a new page before retrying. -HeapObject* FreeList::Allocate(int size_in_bytes) { - ASSERT(0 < size_in_bytes); - ASSERT(size_in_bytes <= kMaxBlockSize); - ASSERT(IsAligned(size_in_bytes, kPointerSize)); - // Don't free list allocate if there is linear space available. - ASSERT(owner_->limit() - owner_->top() < size_in_bytes); - - int old_linear_size = static_cast<int>(owner_->limit() - owner_->top()); - // Mark the old linear allocation area with a free space map so it can be - // skipped when scanning the heap. This also puts it back in the free list - // if it is big enough. - owner_->Free(owner_->top(), old_linear_size); - - owner_->heap()->incremental_marking()->OldSpaceStep( - size_in_bytes - old_linear_size); - - int new_node_size = 0; - FreeListNode* new_node = FindNodeFor(size_in_bytes, &new_node_size); - if (new_node == NULL) { - owner_->SetTopAndLimit(NULL, NULL); - return NULL; - } - - int bytes_left = new_node_size - size_in_bytes; - ASSERT(bytes_left >= 0); - -#ifdef DEBUG - for (int i = 0; i < size_in_bytes / kPointerSize; i++) { - reinterpret_cast<Object**>(new_node->address())[i] = - Smi::FromInt(kCodeZapValue); - } -#endif - - // The old-space-step might have finished sweeping and restarted marking. - // Verify that it did not turn the page of the new node into an evacuation - // candidate. - ASSERT(!MarkCompactCollector::IsOnEvacuationCandidate(new_node)); - - const int kThreshold = IncrementalMarking::kAllocatedThreshold; - - // Memory in the linear allocation area is counted as allocated. We may free - // a little of this again immediately - see below. - owner_->Allocate(new_node_size); - - if (owner_->heap()->inline_allocation_disabled()) { - // Keep the linear allocation area empty if requested to do so, just - // return area back to the free list instead. - owner_->Free(new_node->address() + size_in_bytes, bytes_left); - ASSERT(owner_->top() == NULL && owner_->limit() == NULL); - } else if (bytes_left > kThreshold && - owner_->heap()->incremental_marking()->IsMarkingIncomplete() && - FLAG_incremental_marking_steps) { - int linear_size = owner_->RoundSizeDownToObjectAlignment(kThreshold); - // We don't want to give too large linear areas to the allocator while - // incremental marking is going on, because we won't check again whether - // we want to do another increment until the linear area is used up. - owner_->Free(new_node->address() + size_in_bytes + linear_size, - new_node_size - size_in_bytes - linear_size); - owner_->SetTopAndLimit(new_node->address() + size_in_bytes, - new_node->address() + size_in_bytes + linear_size); - } else if (bytes_left > 0) { - // Normally we give the rest of the node to the allocator as its new - // linear allocation area. - owner_->SetTopAndLimit(new_node->address() + size_in_bytes, - new_node->address() + new_node_size); - } else { - // TODO(gc) Try not freeing linear allocation region when bytes_left - // are zero. - owner_->SetTopAndLimit(NULL, NULL); - } - - return new_node; -} - - -intptr_t FreeList::EvictFreeListItems(Page* p) { - intptr_t sum = huge_list_.EvictFreeListItemsInList(p); - p->set_available_in_huge_free_list(0); - - if (sum < p->area_size()) { - sum += small_list_.EvictFreeListItemsInList(p) + - medium_list_.EvictFreeListItemsInList(p) + - large_list_.EvictFreeListItemsInList(p); - p->set_available_in_small_free_list(0); - p->set_available_in_medium_free_list(0); - p->set_available_in_large_free_list(0); - } - - return sum; -} - - -bool FreeList::ContainsPageFreeListItems(Page* p) { - return huge_list_.EvictFreeListItemsInList(p) || - small_list_.EvictFreeListItemsInList(p) || - medium_list_.EvictFreeListItemsInList(p) || - large_list_.EvictFreeListItemsInList(p); -} - - -void FreeList::RepairLists(Heap* heap) { - small_list_.RepairFreeList(heap); - medium_list_.RepairFreeList(heap); - large_list_.RepairFreeList(heap); - huge_list_.RepairFreeList(heap); -} - - -#ifdef DEBUG -intptr_t FreeListCategory::SumFreeList() { - intptr_t sum = 0; - FreeListNode* cur = top(); - while (cur != NULL) { - ASSERT(cur->map() == cur->GetHeap()->raw_unchecked_free_space_map()); - FreeSpace* cur_as_free_space = reinterpret_cast<FreeSpace*>(cur); - sum += cur_as_free_space->nobarrier_size(); - cur = cur->next(); - } - return sum; -} - - -static const int kVeryLongFreeList = 500; - - -int FreeListCategory::FreeListLength() { - int length = 0; - FreeListNode* cur = top(); - while (cur != NULL) { - length++; - cur = cur->next(); - if (length == kVeryLongFreeList) return length; - } - return length; -} - - -bool FreeList::IsVeryLong() { - if (small_list_.FreeListLength() == kVeryLongFreeList) return true; - if (medium_list_.FreeListLength() == kVeryLongFreeList) return true; - if (large_list_.FreeListLength() == kVeryLongFreeList) return true; - if (huge_list_.FreeListLength() == kVeryLongFreeList) return true; - return false; -} - - -// This can take a very long time because it is linear in the number of entries -// on the free list, so it should not be called if FreeListLength returns -// kVeryLongFreeList. -intptr_t FreeList::SumFreeLists() { - intptr_t sum = small_list_.SumFreeList(); - sum += medium_list_.SumFreeList(); - sum += large_list_.SumFreeList(); - sum += huge_list_.SumFreeList(); - return sum; -} -#endif - - -// ----------------------------------------------------------------------------- -// OldSpace implementation - -void PagedSpace::PrepareForMarkCompact() { - // We don't have a linear allocation area while sweeping. It will be restored - // on the first allocation after the sweep. - EmptyAllocationInfo(); - - // This counter will be increased for pages which will be swept by the - // sweeper threads. - unswept_free_bytes_ = 0; - - // Clear the free list before a full GC---it will be rebuilt afterward. - free_list_.Reset(); -} - - -intptr_t PagedSpace::SizeOfObjects() { - ASSERT(heap()->mark_compact_collector()->IsConcurrentSweepingInProgress() || - (unswept_free_bytes_ == 0)); - return Size() - unswept_free_bytes_ - (limit() - top()); -} - - -// After we have booted, we have created a map which represents free space -// on the heap. If there was already a free list then the elements on it -// were created with the wrong FreeSpaceMap (normally NULL), so we need to -// fix them. -void PagedSpace::RepairFreeListsAfterBoot() { - free_list_.RepairLists(heap()); -} - - -void PagedSpace::EvictEvacuationCandidatesFromFreeLists() { - if (allocation_info_.top() >= allocation_info_.limit()) return; - - if (Page::FromAllocationTop(allocation_info_.top())-> - IsEvacuationCandidate()) { - // Create filler object to keep page iterable if it was iterable. - int remaining = - static_cast<int>(allocation_info_.limit() - allocation_info_.top()); - heap()->CreateFillerObjectAt(allocation_info_.top(), remaining); - - allocation_info_.set_top(NULL); - allocation_info_.set_limit(NULL); - } -} - - -HeapObject* PagedSpace::SlowAllocateRaw(int size_in_bytes) { - // Allocation in this space has failed. - - // If sweeper threads are active, try to re-fill the free-lists. - MarkCompactCollector* collector = heap()->mark_compact_collector(); - if (collector->IsConcurrentSweepingInProgress()) { - collector->RefillFreeList(this); - - // Retry the free list allocation. - HeapObject* object = free_list_.Allocate(size_in_bytes); - if (object != NULL) return object; - } - - // Free list allocation failed and there is no next page. Fail if we have - // hit the old generation size limit that should cause a garbage - // collection. - if (!heap()->always_allocate() && - heap()->OldGenerationAllocationLimitReached()) { - return NULL; - } - - // Try to expand the space and allocate in the new next page. - if (Expand()) { - ASSERT(CountTotalPages() > 1 || size_in_bytes <= free_list_.available()); - return free_list_.Allocate(size_in_bytes); - } - - // If sweeper threads are active, wait for them at that point. - if (collector->IsConcurrentSweepingInProgress()) { - collector->WaitUntilSweepingCompleted(); - - // After waiting for the sweeper threads, there may be new free-list - // entries. - HeapObject* object = free_list_.Allocate(size_in_bytes); - if (object != NULL) return object; - } - - // Finally, fail. - return NULL; -} - - -#ifdef DEBUG -void PagedSpace::ReportCodeStatistics(Isolate* isolate) { - CommentStatistic* comments_statistics = - isolate->paged_space_comments_statistics(); - ReportCodeKindStatistics(isolate->code_kind_statistics()); - PrintF("Code comment statistics (\" [ comment-txt : size/ " - "count (average)\"):\n"); - for (int i = 0; i <= CommentStatistic::kMaxComments; i++) { - const CommentStatistic& cs = comments_statistics[i]; - if (cs.size > 0) { - PrintF(" %-30s: %10d/%6d (%d)\n", cs.comment, cs.size, cs.count, - cs.size/cs.count); - } - } - PrintF("\n"); -} - - -void PagedSpace::ResetCodeStatistics(Isolate* isolate) { - CommentStatistic* comments_statistics = - isolate->paged_space_comments_statistics(); - ClearCodeKindStatistics(isolate->code_kind_statistics()); - for (int i = 0; i < CommentStatistic::kMaxComments; i++) { - comments_statistics[i].Clear(); - } - comments_statistics[CommentStatistic::kMaxComments].comment = "Unknown"; - comments_statistics[CommentStatistic::kMaxComments].size = 0; - comments_statistics[CommentStatistic::kMaxComments].count = 0; -} - - -// Adds comment to 'comment_statistics' table. Performance OK as long as -// 'kMaxComments' is small -static void EnterComment(Isolate* isolate, const char* comment, int delta) { - CommentStatistic* comments_statistics = - isolate->paged_space_comments_statistics(); - // Do not count empty comments - if (delta <= 0) return; - CommentStatistic* cs = &comments_statistics[CommentStatistic::kMaxComments]; - // Search for a free or matching entry in 'comments_statistics': 'cs' - // points to result. - for (int i = 0; i < CommentStatistic::kMaxComments; i++) { - if (comments_statistics[i].comment == NULL) { - cs = &comments_statistics[i]; - cs->comment = comment; - break; - } else if (strcmp(comments_statistics[i].comment, comment) == 0) { - cs = &comments_statistics[i]; - break; - } - } - // Update entry for 'comment' - cs->size += delta; - cs->count += 1; -} - - -// Call for each nested comment start (start marked with '[ xxx', end marked -// with ']'. RelocIterator 'it' must point to a comment reloc info. -static void CollectCommentStatistics(Isolate* isolate, RelocIterator* it) { - ASSERT(!it->done()); - ASSERT(it->rinfo()->rmode() == RelocInfo::COMMENT); - const char* tmp = reinterpret_cast<const char*>(it->rinfo()->data()); - if (tmp[0] != '[') { - // Not a nested comment; skip - return; - } - - // Search for end of nested comment or a new nested comment - const char* const comment_txt = - reinterpret_cast<const char*>(it->rinfo()->data()); - const byte* prev_pc = it->rinfo()->pc(); - int flat_delta = 0; - it->next(); - while (true) { - // All nested comments must be terminated properly, and therefore exit - // from loop. - ASSERT(!it->done()); - if (it->rinfo()->rmode() == RelocInfo::COMMENT) { - const char* const txt = - reinterpret_cast<const char*>(it->rinfo()->data()); - flat_delta += static_cast<int>(it->rinfo()->pc() - prev_pc); - if (txt[0] == ']') break; // End of nested comment - // A new comment - CollectCommentStatistics(isolate, it); - // Skip code that was covered with previous comment - prev_pc = it->rinfo()->pc(); - } - it->next(); - } - EnterComment(isolate, comment_txt, flat_delta); -} - - -// Collects code size statistics: -// - by code kind -// - by code comment -void PagedSpace::CollectCodeStatistics() { - Isolate* isolate = heap()->isolate(); - HeapObjectIterator obj_it(this); - for (HeapObject* obj = obj_it.Next(); obj != NULL; obj = obj_it.Next()) { - if (obj->IsCode()) { - Code* code = Code::cast(obj); - isolate->code_kind_statistics()[code->kind()] += code->Size(); - RelocIterator it(code); - int delta = 0; - const byte* prev_pc = code->instruction_start(); - while (!it.done()) { - if (it.rinfo()->rmode() == RelocInfo::COMMENT) { - delta += static_cast<int>(it.rinfo()->pc() - prev_pc); - CollectCommentStatistics(isolate, &it); - prev_pc = it.rinfo()->pc(); - } - it.next(); - } - - ASSERT(code->instruction_start() <= prev_pc && - prev_pc <= code->instruction_end()); - delta += static_cast<int>(code->instruction_end() - prev_pc); - EnterComment(isolate, "NoComment", delta); - } - } -} - - -void PagedSpace::ReportStatistics() { - int pct = static_cast<int>(Available() * 100 / Capacity()); - PrintF(" capacity: %" V8_PTR_PREFIX "d" - ", waste: %" V8_PTR_PREFIX "d" - ", available: %" V8_PTR_PREFIX "d, %%%d\n", - Capacity(), Waste(), Available(), pct); - - if (was_swept_conservatively_) return; - ClearHistograms(heap()->isolate()); - HeapObjectIterator obj_it(this); - for (HeapObject* obj = obj_it.Next(); obj != NULL; obj = obj_it.Next()) - CollectHistogramInfo(obj); - ReportHistogram(heap()->isolate(), true); -} -#endif - - -// ----------------------------------------------------------------------------- -// MapSpace implementation -// TODO(mvstanton): this is weird...the compiler can't make a vtable unless -// there is at least one non-inlined virtual function. I would prefer to hide -// the VerifyObject definition behind VERIFY_HEAP. - -void MapSpace::VerifyObject(HeapObject* object) { - CHECK(object->IsMap()); -} - - -// ----------------------------------------------------------------------------- -// CellSpace and PropertyCellSpace implementation -// TODO(mvstanton): this is weird...the compiler can't make a vtable unless -// there is at least one non-inlined virtual function. I would prefer to hide -// the VerifyObject definition behind VERIFY_HEAP. - -void CellSpace::VerifyObject(HeapObject* object) { - CHECK(object->IsCell()); -} - - -void PropertyCellSpace::VerifyObject(HeapObject* object) { - CHECK(object->IsPropertyCell()); -} - - -// ----------------------------------------------------------------------------- -// LargeObjectIterator - -LargeObjectIterator::LargeObjectIterator(LargeObjectSpace* space) { - current_ = space->first_page_; - size_func_ = NULL; -} - - -LargeObjectIterator::LargeObjectIterator(LargeObjectSpace* space, - HeapObjectCallback size_func) { - current_ = space->first_page_; - size_func_ = size_func; -} - - -HeapObject* LargeObjectIterator::Next() { - if (current_ == NULL) return NULL; - - HeapObject* object = current_->GetObject(); - current_ = current_->next_page(); - return object; -} - - -// ----------------------------------------------------------------------------- -// LargeObjectSpace -static bool ComparePointers(void* key1, void* key2) { - return key1 == key2; -} - - -LargeObjectSpace::LargeObjectSpace(Heap* heap, - intptr_t max_capacity, - AllocationSpace id) - : Space(heap, id, NOT_EXECUTABLE), // Managed on a per-allocation basis - max_capacity_(max_capacity), - first_page_(NULL), - size_(0), - page_count_(0), - objects_size_(0), - chunk_map_(ComparePointers, 1024) {} - - -bool LargeObjectSpace::SetUp() { - first_page_ = NULL; - size_ = 0; - maximum_committed_ = 0; - page_count_ = 0; - objects_size_ = 0; - chunk_map_.Clear(); - return true; -} - - -void LargeObjectSpace::TearDown() { - while (first_page_ != NULL) { - LargePage* page = first_page_; - first_page_ = first_page_->next_page(); - LOG(heap()->isolate(), DeleteEvent("LargeObjectChunk", page->address())); - - ObjectSpace space = static_cast<ObjectSpace>(1 << identity()); - heap()->isolate()->memory_allocator()->PerformAllocationCallback( - space, kAllocationActionFree, page->size()); - heap()->isolate()->memory_allocator()->Free(page); - } - SetUp(); -} - - -AllocationResult LargeObjectSpace::AllocateRaw(int object_size, - Executability executable) { - // Check if we want to force a GC before growing the old space further. - // If so, fail the allocation. - if (!heap()->always_allocate() && - heap()->OldGenerationAllocationLimitReached()) { - return AllocationResult::Retry(identity()); - } - - if (Size() + object_size > max_capacity_) { - return AllocationResult::Retry(identity()); - } - - LargePage* page = heap()->isolate()->memory_allocator()-> - AllocateLargePage(object_size, this, executable); - if (page == NULL) return AllocationResult::Retry(identity()); - ASSERT(page->area_size() >= object_size); - - size_ += static_cast<int>(page->size()); - objects_size_ += object_size; - page_count_++; - page->set_next_page(first_page_); - first_page_ = page; - - if (size_ > maximum_committed_) { - maximum_committed_ = size_; - } - - // Register all MemoryChunk::kAlignment-aligned chunks covered by - // this large page in the chunk map. - uintptr_t base = reinterpret_cast<uintptr_t>(page) / MemoryChunk::kAlignment; - uintptr_t limit = base + (page->size() - 1) / MemoryChunk::kAlignment; - for (uintptr_t key = base; key <= limit; key++) { - HashMap::Entry* entry = chunk_map_.Lookup(reinterpret_cast<void*>(key), - static_cast<uint32_t>(key), - true); - ASSERT(entry != NULL); - entry->value = page; - } - - HeapObject* object = page->GetObject(); - - if (Heap::ShouldZapGarbage()) { - // Make the object consistent so the heap can be verified in OldSpaceStep. - // We only need to do this in debug builds or if verify_heap is on. - reinterpret_cast<Object**>(object->address())[0] = - heap()->fixed_array_map(); - reinterpret_cast<Object**>(object->address())[1] = Smi::FromInt(0); - } - - heap()->incremental_marking()->OldSpaceStep(object_size); - return object; -} - - -size_t LargeObjectSpace::CommittedPhysicalMemory() { - if (!VirtualMemory::HasLazyCommits()) return CommittedMemory(); - size_t size = 0; - LargePage* current = first_page_; - while (current != NULL) { - size += current->CommittedPhysicalMemory(); - current = current->next_page(); - } - return size; -} - - -// GC support -Object* LargeObjectSpace::FindObject(Address a) { - LargePage* page = FindPage(a); - if (page != NULL) { - return page->GetObject(); - } - return Smi::FromInt(0); // Signaling not found. -} - - -LargePage* LargeObjectSpace::FindPage(Address a) { - uintptr_t key = reinterpret_cast<uintptr_t>(a) / MemoryChunk::kAlignment; - HashMap::Entry* e = chunk_map_.Lookup(reinterpret_cast<void*>(key), - static_cast<uint32_t>(key), - false); - if (e != NULL) { - ASSERT(e->value != NULL); - LargePage* page = reinterpret_cast<LargePage*>(e->value); - ASSERT(page->is_valid()); - if (page->Contains(a)) { - return page; - } - } - return NULL; -} - - -void LargeObjectSpace::FreeUnmarkedObjects() { - LargePage* previous = NULL; - LargePage* current = first_page_; - while (current != NULL) { - HeapObject* object = current->GetObject(); - // Can this large page contain pointers to non-trivial objects. No other - // pointer object is this big. - bool is_pointer_object = object->IsFixedArray(); - MarkBit mark_bit = Marking::MarkBitFrom(object); - if (mark_bit.Get()) { - mark_bit.Clear(); - Page::FromAddress(object->address())->ResetProgressBar(); - Page::FromAddress(object->address())->ResetLiveBytes(); - previous = current; - current = current->next_page(); - } else { - LargePage* page = current; - // Cut the chunk out from the chunk list. - current = current->next_page(); - if (previous == NULL) { - first_page_ = current; - } else { - previous->set_next_page(current); - } - - // Free the chunk. - heap()->mark_compact_collector()->ReportDeleteIfNeeded( - object, heap()->isolate()); - size_ -= static_cast<int>(page->size()); - objects_size_ -= object->Size(); - page_count_--; - - // Remove entries belonging to this page. - // Use variable alignment to help pass length check (<= 80 characters) - // of single line in tools/presubmit.py. - const intptr_t alignment = MemoryChunk::kAlignment; - uintptr_t base = reinterpret_cast<uintptr_t>(page)/alignment; - uintptr_t limit = base + (page->size()-1)/alignment; - for (uintptr_t key = base; key <= limit; key++) { - chunk_map_.Remove(reinterpret_cast<void*>(key), - static_cast<uint32_t>(key)); - } - - if (is_pointer_object) { - heap()->QueueMemoryChunkForFree(page); - } else { - heap()->isolate()->memory_allocator()->Free(page); - } - } - } - heap()->FreeQueuedChunks(); -} - - -bool LargeObjectSpace::Contains(HeapObject* object) { - Address address = object->address(); - MemoryChunk* chunk = MemoryChunk::FromAddress(address); - - bool owned = (chunk->owner() == this); - - SLOW_ASSERT(!owned || FindObject(address)->IsHeapObject()); - - return owned; -} - - -#ifdef VERIFY_HEAP -// We do not assume that the large object iterator works, because it depends -// on the invariants we are checking during verification. -void LargeObjectSpace::Verify() { - for (LargePage* chunk = first_page_; - chunk != NULL; - chunk = chunk->next_page()) { - // Each chunk contains an object that starts at the large object page's - // object area start. - HeapObject* object = chunk->GetObject(); - Page* page = Page::FromAddress(object->address()); - CHECK(object->address() == page->area_start()); - - // The first word should be a map, and we expect all map pointers to be - // in map space. - Map* map = object->map(); - CHECK(map->IsMap()); - CHECK(heap()->map_space()->Contains(map)); - - // We have only code, sequential strings, external strings - // (sequential strings that have been morphed into external - // strings), fixed arrays, and byte arrays in large object space. - CHECK(object->IsCode() || object->IsSeqString() || - object->IsExternalString() || object->IsFixedArray() || - object->IsFixedDoubleArray() || object->IsByteArray()); - - // The object itself should look OK. - object->ObjectVerify(); - - // Byte arrays and strings don't have interior pointers. - if (object->IsCode()) { - VerifyPointersVisitor code_visitor; - object->IterateBody(map->instance_type(), - object->Size(), - &code_visitor); - } else if (object->IsFixedArray()) { - FixedArray* array = FixedArray::cast(object); - for (int j = 0; j < array->length(); j++) { - Object* element = array->get(j); - if (element->IsHeapObject()) { - HeapObject* element_object = HeapObject::cast(element); - CHECK(heap()->Contains(element_object)); - CHECK(element_object->map()->IsMap()); - } - } - } - } -} -#endif - - -#ifdef DEBUG -void LargeObjectSpace::Print() { - LargeObjectIterator it(this); - for (HeapObject* obj = it.Next(); obj != NULL; obj = it.Next()) { - obj->Print(); - } -} - - -void LargeObjectSpace::ReportStatistics() { - PrintF(" size: %" V8_PTR_PREFIX "d\n", size_); - int num_objects = 0; - ClearHistograms(heap()->isolate()); - LargeObjectIterator it(this); - for (HeapObject* obj = it.Next(); obj != NULL; obj = it.Next()) { - num_objects++; - CollectHistogramInfo(obj); - } - - PrintF(" number of objects %d, " - "size of objects %" V8_PTR_PREFIX "d\n", num_objects, objects_size_); - if (num_objects > 0) ReportHistogram(heap()->isolate(), false); -} - - -void LargeObjectSpace::CollectCodeStatistics() { - Isolate* isolate = heap()->isolate(); - LargeObjectIterator obj_it(this); - for (HeapObject* obj = obj_it.Next(); obj != NULL; obj = obj_it.Next()) { - if (obj->IsCode()) { - Code* code = Code::cast(obj); - isolate->code_kind_statistics()[code->kind()] += code->Size(); - } - } -} - - -void Page::Print() { - // Make a best-effort to print the objects in the page. - PrintF("Page@%p in %s\n", - this->address(), - AllocationSpaceName(this->owner()->identity())); - printf(" --------------------------------------\n"); - HeapObjectIterator objects(this, heap()->GcSafeSizeOfOldObjectFunction()); - unsigned mark_size = 0; - for (HeapObject* object = objects.Next(); - object != NULL; - object = objects.Next()) { - bool is_marked = Marking::MarkBitFrom(object).Get(); - PrintF(" %c ", (is_marked ? '!' : ' ')); // Indent a little. - if (is_marked) { - mark_size += heap()->GcSafeSizeOfOldObjectFunction()(object); - } - object->ShortPrint(); - PrintF("\n"); - } - printf(" --------------------------------------\n"); - printf(" Marked: %x, LiveCount: %x\n", mark_size, LiveBytes()); -} - -#endif // DEBUG - -} } // namespace v8::internal |