summaryrefslogtreecommitdiff
path: root/deps/v8/src/store-buffer.cc
diff options
context:
space:
mode:
authorRefael Ackermann <refack@gmail.com>2014-09-29 13:20:04 +0400
committerFedor Indutny <fedor@indutny.com>2014-10-08 15:35:57 +0400
commit939278ac059b44439d41aab12bf552c8ae3c52d0 (patch)
tree86c586915a96d308b1b04de679a8ae293caf3e41 /deps/v8/src/store-buffer.cc
parent4412a71d76a0fa002f627ec21d2337e089da6764 (diff)
downloadnode-new-939278ac059b44439d41aab12bf552c8ae3c52d0.tar.gz
deps: update v8 to 3.28.73
Reviewed-By: Fedor Indutny <fedor@indutny.com> PR-URL: https://github.com/joyent/node/pull/8476
Diffstat (limited to 'deps/v8/src/store-buffer.cc')
-rw-r--r--deps/v8/src/store-buffer.cc730
1 files changed, 0 insertions, 730 deletions
diff --git a/deps/v8/src/store-buffer.cc b/deps/v8/src/store-buffer.cc
deleted file mode 100644
index b0f7d2f803..0000000000
--- a/deps/v8/src/store-buffer.cc
+++ /dev/null
@@ -1,730 +0,0 @@
-// Copyright 2011 the V8 project authors. All rights reserved.
-// Use of this source code is governed by a BSD-style license that can be
-// found in the LICENSE file.
-
-#include "store-buffer.h"
-
-#include <algorithm>
-
-#include "v8.h"
-#include "counters.h"
-#include "store-buffer-inl.h"
-
-namespace v8 {
-namespace internal {
-
-StoreBuffer::StoreBuffer(Heap* heap)
- : heap_(heap),
- start_(NULL),
- limit_(NULL),
- old_start_(NULL),
- old_limit_(NULL),
- old_top_(NULL),
- old_reserved_limit_(NULL),
- old_buffer_is_sorted_(false),
- old_buffer_is_filtered_(false),
- during_gc_(false),
- store_buffer_rebuilding_enabled_(false),
- callback_(NULL),
- may_move_store_buffer_entries_(true),
- virtual_memory_(NULL),
- hash_set_1_(NULL),
- hash_set_2_(NULL),
- hash_sets_are_empty_(true) {
-}
-
-
-void StoreBuffer::SetUp() {
- virtual_memory_ = new VirtualMemory(kStoreBufferSize * 3);
- uintptr_t start_as_int =
- reinterpret_cast<uintptr_t>(virtual_memory_->address());
- start_ =
- reinterpret_cast<Address*>(RoundUp(start_as_int, kStoreBufferSize * 2));
- limit_ = start_ + (kStoreBufferSize / kPointerSize);
-
- old_virtual_memory_ =
- new VirtualMemory(kOldStoreBufferLength * kPointerSize);
- old_top_ = old_start_ =
- reinterpret_cast<Address*>(old_virtual_memory_->address());
- // Don't know the alignment requirements of the OS, but it is certainly not
- // less than 0xfff.
- ASSERT((reinterpret_cast<uintptr_t>(old_start_) & 0xfff) == 0);
- int initial_length = static_cast<int>(OS::CommitPageSize() / kPointerSize);
- ASSERT(initial_length > 0);
- ASSERT(initial_length <= kOldStoreBufferLength);
- old_limit_ = old_start_ + initial_length;
- old_reserved_limit_ = old_start_ + kOldStoreBufferLength;
-
- CHECK(old_virtual_memory_->Commit(
- reinterpret_cast<void*>(old_start_),
- (old_limit_ - old_start_) * kPointerSize,
- false));
-
- ASSERT(reinterpret_cast<Address>(start_) >= virtual_memory_->address());
- ASSERT(reinterpret_cast<Address>(limit_) >= virtual_memory_->address());
- Address* vm_limit = reinterpret_cast<Address*>(
- reinterpret_cast<char*>(virtual_memory_->address()) +
- virtual_memory_->size());
- ASSERT(start_ <= vm_limit);
- ASSERT(limit_ <= vm_limit);
- USE(vm_limit);
- ASSERT((reinterpret_cast<uintptr_t>(limit_) & kStoreBufferOverflowBit) != 0);
- ASSERT((reinterpret_cast<uintptr_t>(limit_ - 1) & kStoreBufferOverflowBit) ==
- 0);
-
- CHECK(virtual_memory_->Commit(reinterpret_cast<Address>(start_),
- kStoreBufferSize,
- false)); // Not executable.
- heap_->public_set_store_buffer_top(start_);
-
- hash_set_1_ = new uintptr_t[kHashSetLength];
- hash_set_2_ = new uintptr_t[kHashSetLength];
- hash_sets_are_empty_ = false;
-
- ClearFilteringHashSets();
-}
-
-
-void StoreBuffer::TearDown() {
- delete virtual_memory_;
- delete old_virtual_memory_;
- delete[] hash_set_1_;
- delete[] hash_set_2_;
- old_start_ = old_top_ = old_limit_ = old_reserved_limit_ = NULL;
- start_ = limit_ = NULL;
- heap_->public_set_store_buffer_top(start_);
-}
-
-
-void StoreBuffer::StoreBufferOverflow(Isolate* isolate) {
- isolate->heap()->store_buffer()->Compact();
- isolate->counters()->store_buffer_overflows()->Increment();
-}
-
-
-void StoreBuffer::Uniq() {
- // Remove adjacent duplicates and cells that do not point at new space.
- Address previous = NULL;
- Address* write = old_start_;
- ASSERT(may_move_store_buffer_entries_);
- for (Address* read = old_start_; read < old_top_; read++) {
- Address current = *read;
- if (current != previous) {
- if (heap_->InNewSpace(*reinterpret_cast<Object**>(current))) {
- *write++ = current;
- }
- }
- previous = current;
- }
- old_top_ = write;
-}
-
-
-bool StoreBuffer::SpaceAvailable(intptr_t space_needed) {
- return old_limit_ - old_top_ >= space_needed;
-}
-
-
-void StoreBuffer::EnsureSpace(intptr_t space_needed) {
- while (old_limit_ - old_top_ < space_needed &&
- old_limit_ < old_reserved_limit_) {
- size_t grow = old_limit_ - old_start_; // Double size.
- CHECK(old_virtual_memory_->Commit(reinterpret_cast<void*>(old_limit_),
- grow * kPointerSize,
- false));
- old_limit_ += grow;
- }
-
- if (SpaceAvailable(space_needed)) return;
-
- if (old_buffer_is_filtered_) return;
- ASSERT(may_move_store_buffer_entries_);
- Compact();
-
- old_buffer_is_filtered_ = true;
- bool page_has_scan_on_scavenge_flag = false;
-
- PointerChunkIterator it(heap_);
- MemoryChunk* chunk;
- while ((chunk = it.next()) != NULL) {
- if (chunk->scan_on_scavenge()) {
- page_has_scan_on_scavenge_flag = true;
- break;
- }
- }
-
- if (page_has_scan_on_scavenge_flag) {
- Filter(MemoryChunk::SCAN_ON_SCAVENGE);
- }
-
- if (SpaceAvailable(space_needed)) return;
-
- // Sample 1 entry in 97 and filter out the pages where we estimate that more
- // than 1 in 8 pointers are to new space.
- static const int kSampleFinenesses = 5;
- static const struct Samples {
- int prime_sample_step;
- int threshold;
- } samples[kSampleFinenesses] = {
- { 97, ((Page::kPageSize / kPointerSize) / 97) / 8 },
- { 23, ((Page::kPageSize / kPointerSize) / 23) / 16 },
- { 7, ((Page::kPageSize / kPointerSize) / 7) / 32 },
- { 3, ((Page::kPageSize / kPointerSize) / 3) / 256 },
- { 1, 0}
- };
- for (int i = 0; i < kSampleFinenesses; i++) {
- ExemptPopularPages(samples[i].prime_sample_step, samples[i].threshold);
- // As a last resort we mark all pages as being exempt from the store buffer.
- ASSERT(i != (kSampleFinenesses - 1) || old_top_ == old_start_);
- if (SpaceAvailable(space_needed)) return;
- }
- UNREACHABLE();
-}
-
-
-// Sample the store buffer to see if some pages are taking up a lot of space
-// in the store buffer.
-void StoreBuffer::ExemptPopularPages(int prime_sample_step, int threshold) {
- PointerChunkIterator it(heap_);
- MemoryChunk* chunk;
- while ((chunk = it.next()) != NULL) {
- chunk->set_store_buffer_counter(0);
- }
- bool created_new_scan_on_scavenge_pages = false;
- MemoryChunk* previous_chunk = NULL;
- for (Address* p = old_start_; p < old_top_; p += prime_sample_step) {
- Address addr = *p;
- MemoryChunk* containing_chunk = NULL;
- if (previous_chunk != NULL && previous_chunk->Contains(addr)) {
- containing_chunk = previous_chunk;
- } else {
- containing_chunk = MemoryChunk::FromAnyPointerAddress(heap_, addr);
- }
- int old_counter = containing_chunk->store_buffer_counter();
- if (old_counter >= threshold) {
- containing_chunk->set_scan_on_scavenge(true);
- created_new_scan_on_scavenge_pages = true;
- }
- containing_chunk->set_store_buffer_counter(old_counter + 1);
- previous_chunk = containing_chunk;
- }
- if (created_new_scan_on_scavenge_pages) {
- Filter(MemoryChunk::SCAN_ON_SCAVENGE);
- }
- old_buffer_is_filtered_ = true;
-}
-
-
-void StoreBuffer::Filter(int flag) {
- Address* new_top = old_start_;
- MemoryChunk* previous_chunk = NULL;
- for (Address* p = old_start_; p < old_top_; p++) {
- Address addr = *p;
- MemoryChunk* containing_chunk = NULL;
- if (previous_chunk != NULL && previous_chunk->Contains(addr)) {
- containing_chunk = previous_chunk;
- } else {
- containing_chunk = MemoryChunk::FromAnyPointerAddress(heap_, addr);
- previous_chunk = containing_chunk;
- }
- if (!containing_chunk->IsFlagSet(flag)) {
- *new_top++ = addr;
- }
- }
- old_top_ = new_top;
-
- // Filtering hash sets are inconsistent with the store buffer after this
- // operation.
- ClearFilteringHashSets();
-}
-
-
-void StoreBuffer::SortUniq() {
- Compact();
- if (old_buffer_is_sorted_) return;
- std::sort(old_start_, old_top_);
- Uniq();
-
- old_buffer_is_sorted_ = true;
-
- // Filtering hash sets are inconsistent with the store buffer after this
- // operation.
- ClearFilteringHashSets();
-}
-
-
-bool StoreBuffer::PrepareForIteration() {
- Compact();
- PointerChunkIterator it(heap_);
- MemoryChunk* chunk;
- bool page_has_scan_on_scavenge_flag = false;
- while ((chunk = it.next()) != NULL) {
- if (chunk->scan_on_scavenge()) {
- page_has_scan_on_scavenge_flag = true;
- break;
- }
- }
-
- if (page_has_scan_on_scavenge_flag) {
- Filter(MemoryChunk::SCAN_ON_SCAVENGE);
- }
-
- // Filtering hash sets are inconsistent with the store buffer after
- // iteration.
- ClearFilteringHashSets();
-
- return page_has_scan_on_scavenge_flag;
-}
-
-
-#ifdef DEBUG
-void StoreBuffer::Clean() {
- ClearFilteringHashSets();
- Uniq(); // Also removes things that no longer point to new space.
- EnsureSpace(kStoreBufferSize / 2);
-}
-
-
-static Address* in_store_buffer_1_element_cache = NULL;
-
-
-bool StoreBuffer::CellIsInStoreBuffer(Address cell_address) {
- if (!FLAG_enable_slow_asserts) return true;
- if (in_store_buffer_1_element_cache != NULL &&
- *in_store_buffer_1_element_cache == cell_address) {
- return true;
- }
- Address* top = reinterpret_cast<Address*>(heap_->store_buffer_top());
- for (Address* current = top - 1; current >= start_; current--) {
- if (*current == cell_address) {
- in_store_buffer_1_element_cache = current;
- return true;
- }
- }
- for (Address* current = old_top_ - 1; current >= old_start_; current--) {
- if (*current == cell_address) {
- in_store_buffer_1_element_cache = current;
- return true;
- }
- }
- return false;
-}
-#endif
-
-
-void StoreBuffer::ClearFilteringHashSets() {
- if (!hash_sets_are_empty_) {
- memset(reinterpret_cast<void*>(hash_set_1_),
- 0,
- sizeof(uintptr_t) * kHashSetLength);
- memset(reinterpret_cast<void*>(hash_set_2_),
- 0,
- sizeof(uintptr_t) * kHashSetLength);
- hash_sets_are_empty_ = true;
- }
-}
-
-
-void StoreBuffer::GCPrologue() {
- ClearFilteringHashSets();
- during_gc_ = true;
-}
-
-
-#ifdef VERIFY_HEAP
-static void DummyScavengePointer(HeapObject** p, HeapObject* o) {
- // Do nothing.
-}
-
-
-void StoreBuffer::VerifyPointers(PagedSpace* space,
- RegionCallback region_callback) {
- PageIterator it(space);
-
- while (it.has_next()) {
- Page* page = it.next();
- FindPointersToNewSpaceOnPage(
- reinterpret_cast<PagedSpace*>(page->owner()),
- page,
- region_callback,
- &DummyScavengePointer,
- false);
- }
-}
-
-
-void StoreBuffer::VerifyPointers(LargeObjectSpace* space) {
- LargeObjectIterator it(space);
- for (HeapObject* object = it.Next(); object != NULL; object = it.Next()) {
- if (object->IsFixedArray()) {
- Address slot_address = object->address();
- Address end = object->address() + object->Size();
-
- while (slot_address < end) {
- HeapObject** slot = reinterpret_cast<HeapObject**>(slot_address);
- // When we are not in GC the Heap::InNewSpace() predicate
- // checks that pointers which satisfy predicate point into
- // the active semispace.
- Object* object = reinterpret_cast<Object*>(
- NoBarrier_Load(reinterpret_cast<AtomicWord*>(slot)));
- heap_->InNewSpace(object);
- slot_address += kPointerSize;
- }
- }
- }
-}
-#endif
-
-
-void StoreBuffer::Verify() {
-#ifdef VERIFY_HEAP
- VerifyPointers(heap_->old_pointer_space(),
- &StoreBuffer::FindPointersToNewSpaceInRegion);
- VerifyPointers(heap_->map_space(),
- &StoreBuffer::FindPointersToNewSpaceInMapsRegion);
- VerifyPointers(heap_->lo_space());
-#endif
-}
-
-
-void StoreBuffer::GCEpilogue() {
- during_gc_ = false;
-#ifdef VERIFY_HEAP
- if (FLAG_verify_heap) {
- Verify();
- }
-#endif
-}
-
-
-void StoreBuffer::FindPointersToNewSpaceInRegion(
- Address start,
- Address end,
- ObjectSlotCallback slot_callback,
- bool clear_maps) {
- for (Address slot_address = start;
- slot_address < end;
- slot_address += kPointerSize) {
- Object** slot = reinterpret_cast<Object**>(slot_address);
- Object* object = reinterpret_cast<Object*>(
- NoBarrier_Load(reinterpret_cast<AtomicWord*>(slot)));
- if (heap_->InNewSpace(object)) {
- HeapObject* heap_object = reinterpret_cast<HeapObject*>(object);
- ASSERT(heap_object->IsHeapObject());
- // The new space object was not promoted if it still contains a map
- // pointer. Clear the map field now lazily.
- if (clear_maps) ClearDeadObject(heap_object);
- slot_callback(reinterpret_cast<HeapObject**>(slot), heap_object);
- object = reinterpret_cast<Object*>(
- NoBarrier_Load(reinterpret_cast<AtomicWord*>(slot)));
- if (heap_->InNewSpace(object)) {
- EnterDirectlyIntoStoreBuffer(slot_address);
- }
- }
- }
-}
-
-
-// Compute start address of the first map following given addr.
-static inline Address MapStartAlign(Address addr) {
- Address page = Page::FromAddress(addr)->area_start();
- return page + (((addr - page) + (Map::kSize - 1)) / Map::kSize * Map::kSize);
-}
-
-
-// Compute end address of the first map preceding given addr.
-static inline Address MapEndAlign(Address addr) {
- Address page = Page::FromAllocationTop(addr)->area_start();
- return page + ((addr - page) / Map::kSize * Map::kSize);
-}
-
-
-void StoreBuffer::FindPointersToNewSpaceInMaps(
- Address start,
- Address end,
- ObjectSlotCallback slot_callback,
- bool clear_maps) {
- ASSERT(MapStartAlign(start) == start);
- ASSERT(MapEndAlign(end) == end);
-
- Address map_address = start;
- while (map_address < end) {
- ASSERT(!heap_->InNewSpace(Memory::Object_at(map_address)));
- ASSERT(Memory::Object_at(map_address)->IsMap());
-
- Address pointer_fields_start = map_address + Map::kPointerFieldsBeginOffset;
- Address pointer_fields_end = map_address + Map::kPointerFieldsEndOffset;
-
- FindPointersToNewSpaceInRegion(pointer_fields_start,
- pointer_fields_end,
- slot_callback,
- clear_maps);
- map_address += Map::kSize;
- }
-}
-
-
-void StoreBuffer::FindPointersToNewSpaceInMapsRegion(
- Address start,
- Address end,
- ObjectSlotCallback slot_callback,
- bool clear_maps) {
- Address map_aligned_start = MapStartAlign(start);
- Address map_aligned_end = MapEndAlign(end);
-
- ASSERT(map_aligned_start == start);
- ASSERT(map_aligned_end == end);
-
- FindPointersToNewSpaceInMaps(map_aligned_start,
- map_aligned_end,
- slot_callback,
- clear_maps);
-}
-
-
-// This function iterates over all the pointers in a paged space in the heap,
-// looking for pointers into new space. Within the pages there may be dead
-// objects that have not been overwritten by free spaces or fillers because of
-// concurrent sweeping. These dead objects may not contain pointers to new
-// space. The garbage areas that have been swept properly (these will normally
-// be the large ones) will be marked with free space and filler map words. In
-// addition any area that has never been used at all for object allocation must
-// be marked with a free space or filler. Because the free space and filler
-// maps do not move we can always recognize these even after a compaction.
-// Normal objects like FixedArrays and JSObjects should not contain references
-// to these maps. Constant pool array objects may contain references to these
-// maps, however, constant pool arrays cannot contain pointers to new space
-// objects, therefore they are skipped. The special garbage section (see
-// comment in spaces.h) is skipped since it can contain absolutely anything.
-// Any objects that are allocated during iteration may or may not be visited by
-// the iteration, but they will not be partially visited.
-void StoreBuffer::FindPointersToNewSpaceOnPage(
- PagedSpace* space,
- Page* page,
- RegionCallback region_callback,
- ObjectSlotCallback slot_callback,
- bool clear_maps) {
- Address visitable_start = page->area_start();
- Address end_of_page = page->area_end();
-
- Address visitable_end = visitable_start;
-
- Object* free_space_map = heap_->free_space_map();
- Object* two_pointer_filler_map = heap_->two_pointer_filler_map();
- Object* constant_pool_array_map = heap_->constant_pool_array_map();
-
- while (visitable_end < end_of_page) {
- // The sweeper thread concurrently may write free space maps and size to
- // this page. We need acquire load here to make sure that we get a
- // consistent view of maps and their sizes.
- Object* o = reinterpret_cast<Object*>(
- Acquire_Load(reinterpret_cast<AtomicWord*>(visitable_end)));
- // Skip fillers or constant pool arrays (which never contain new-space
- // pointers but can contain pointers which can be confused for fillers)
- // but not things that look like fillers in the special garbage section
- // which can contain anything.
- if (o == free_space_map ||
- o == two_pointer_filler_map ||
- o == constant_pool_array_map ||
- (visitable_end == space->top() && visitable_end != space->limit())) {
- if (visitable_start != visitable_end) {
- // After calling this the special garbage section may have moved.
- (this->*region_callback)(visitable_start,
- visitable_end,
- slot_callback,
- clear_maps);
- if (visitable_end >= space->top() && visitable_end < space->limit()) {
- visitable_end = space->limit();
- visitable_start = visitable_end;
- continue;
- }
- }
- if (visitable_end == space->top() && visitable_end != space->limit()) {
- visitable_start = visitable_end = space->limit();
- } else {
- // At this point we are either at the start of a filler, a
- // constant pool array, or we are at the point where the space->top()
- // used to be before the visit_pointer_region call above. Either way we
- // can skip the object at the current spot: We don't promise to visit
- // objects allocated during heap traversal, and if space->top() moved
- // then it must be because an object was allocated at this point.
- visitable_start =
- visitable_end + HeapObject::FromAddress(visitable_end)->Size();
- visitable_end = visitable_start;
- }
- } else {
- ASSERT(o != free_space_map);
- ASSERT(o != two_pointer_filler_map);
- ASSERT(o != constant_pool_array_map);
- ASSERT(visitable_end < space->top() || visitable_end >= space->limit());
- visitable_end += kPointerSize;
- }
- }
- ASSERT(visitable_end == end_of_page);
- if (visitable_start != visitable_end) {
- (this->*region_callback)(visitable_start,
- visitable_end,
- slot_callback,
- clear_maps);
- }
-}
-
-
-void StoreBuffer::IteratePointersInStoreBuffer(
- ObjectSlotCallback slot_callback,
- bool clear_maps) {
- Address* limit = old_top_;
- old_top_ = old_start_;
- {
- DontMoveStoreBufferEntriesScope scope(this);
- for (Address* current = old_start_; current < limit; current++) {
-#ifdef DEBUG
- Address* saved_top = old_top_;
-#endif
- Object** slot = reinterpret_cast<Object**>(*current);
- Object* object = reinterpret_cast<Object*>(
- NoBarrier_Load(reinterpret_cast<AtomicWord*>(slot)));
- if (heap_->InFromSpace(object)) {
- HeapObject* heap_object = reinterpret_cast<HeapObject*>(object);
- // The new space object was not promoted if it still contains a map
- // pointer. Clear the map field now lazily.
- if (clear_maps) ClearDeadObject(heap_object);
- slot_callback(reinterpret_cast<HeapObject**>(slot), heap_object);
- object = reinterpret_cast<Object*>(
- NoBarrier_Load(reinterpret_cast<AtomicWord*>(slot)));
- if (heap_->InNewSpace(object)) {
- EnterDirectlyIntoStoreBuffer(reinterpret_cast<Address>(slot));
- }
- }
- ASSERT(old_top_ == saved_top + 1 || old_top_ == saved_top);
- }
- }
-}
-
-
-void StoreBuffer::IteratePointersToNewSpace(ObjectSlotCallback slot_callback) {
- IteratePointersToNewSpace(slot_callback, false);
-}
-
-
-void StoreBuffer::IteratePointersToNewSpaceAndClearMaps(
- ObjectSlotCallback slot_callback) {
- IteratePointersToNewSpace(slot_callback, true);
-}
-
-
-void StoreBuffer::IteratePointersToNewSpace(ObjectSlotCallback slot_callback,
- bool clear_maps) {
- // We do not sort or remove duplicated entries from the store buffer because
- // we expect that callback will rebuild the store buffer thus removing
- // all duplicates and pointers to old space.
- bool some_pages_to_scan = PrepareForIteration();
-
- // TODO(gc): we want to skip slots on evacuation candidates
- // but we can't simply figure that out from slot address
- // because slot can belong to a large object.
- IteratePointersInStoreBuffer(slot_callback, clear_maps);
-
- // We are done scanning all the pointers that were in the store buffer, but
- // there may be some pages marked scan_on_scavenge that have pointers to new
- // space that are not in the store buffer. We must scan them now. As we
- // scan, the surviving pointers to new space will be added to the store
- // buffer. If there are still a lot of pointers to new space then we will
- // keep the scan_on_scavenge flag on the page and discard the pointers that
- // were added to the store buffer. If there are not many pointers to new
- // space left on the page we will keep the pointers in the store buffer and
- // remove the flag from the page.
- if (some_pages_to_scan) {
- if (callback_ != NULL) {
- (*callback_)(heap_, NULL, kStoreBufferStartScanningPagesEvent);
- }
- PointerChunkIterator it(heap_);
- MemoryChunk* chunk;
- while ((chunk = it.next()) != NULL) {
- if (chunk->scan_on_scavenge()) {
- chunk->set_scan_on_scavenge(false);
- if (callback_ != NULL) {
- (*callback_)(heap_, chunk, kStoreBufferScanningPageEvent);
- }
- if (chunk->owner() == heap_->lo_space()) {
- LargePage* large_page = reinterpret_cast<LargePage*>(chunk);
- HeapObject* array = large_page->GetObject();
- ASSERT(array->IsFixedArray());
- Address start = array->address();
- Address end = start + array->Size();
- FindPointersToNewSpaceInRegion(start, end, slot_callback, clear_maps);
- } else {
- Page* page = reinterpret_cast<Page*>(chunk);
- PagedSpace* owner = reinterpret_cast<PagedSpace*>(page->owner());
- FindPointersToNewSpaceOnPage(
- owner,
- page,
- (owner == heap_->map_space() ?
- &StoreBuffer::FindPointersToNewSpaceInMapsRegion :
- &StoreBuffer::FindPointersToNewSpaceInRegion),
- slot_callback,
- clear_maps);
- }
- }
- }
- if (callback_ != NULL) {
- (*callback_)(heap_, NULL, kStoreBufferScanningPageEvent);
- }
- }
-}
-
-
-void StoreBuffer::Compact() {
- Address* top = reinterpret_cast<Address*>(heap_->store_buffer_top());
-
- if (top == start_) return;
-
- // There's no check of the limit in the loop below so we check here for
- // the worst case (compaction doesn't eliminate any pointers).
- ASSERT(top <= limit_);
- heap_->public_set_store_buffer_top(start_);
- EnsureSpace(top - start_);
- ASSERT(may_move_store_buffer_entries_);
- // Goes through the addresses in the store buffer attempting to remove
- // duplicates. In the interest of speed this is a lossy operation. Some
- // duplicates will remain. We have two hash sets with different hash
- // functions to reduce the number of unnecessary clashes.
- hash_sets_are_empty_ = false; // Hash sets are in use.
- for (Address* current = start_; current < top; current++) {
- ASSERT(!heap_->cell_space()->Contains(*current));
- ASSERT(!heap_->code_space()->Contains(*current));
- ASSERT(!heap_->old_data_space()->Contains(*current));
- uintptr_t int_addr = reinterpret_cast<uintptr_t>(*current);
- // Shift out the last bits including any tags.
- int_addr >>= kPointerSizeLog2;
- // The upper part of an address is basically random because of ASLR and OS
- // non-determinism, so we use only the bits within a page for hashing to
- // make v8's behavior (more) deterministic.
- uintptr_t hash_addr =
- int_addr & (Page::kPageAlignmentMask >> kPointerSizeLog2);
- int hash1 = ((hash_addr ^ (hash_addr >> kHashSetLengthLog2)) &
- (kHashSetLength - 1));
- if (hash_set_1_[hash1] == int_addr) continue;
- uintptr_t hash2 = (hash_addr - (hash_addr >> kHashSetLengthLog2));
- hash2 ^= hash2 >> (kHashSetLengthLog2 * 2);
- hash2 &= (kHashSetLength - 1);
- if (hash_set_2_[hash2] == int_addr) continue;
- if (hash_set_1_[hash1] == 0) {
- hash_set_1_[hash1] = int_addr;
- } else if (hash_set_2_[hash2] == 0) {
- hash_set_2_[hash2] = int_addr;
- } else {
- // Rather than slowing down we just throw away some entries. This will
- // cause some duplicates to remain undetected.
- hash_set_1_[hash1] = int_addr;
- hash_set_2_[hash2] = 0;
- }
- old_buffer_is_sorted_ = false;
- old_buffer_is_filtered_ = false;
- *old_top_++ = reinterpret_cast<Address>(int_addr << kPointerSizeLog2);
- ASSERT(old_top_ <= old_limit_);
- }
- heap_->isolate()->counters()->store_buffer_compactions()->Increment();
-}
-
-} } // namespace v8::internal