diff options
Diffstat (limited to 'deps/v8/src/arm/codegen-arm.cc')
-rw-r--r-- | deps/v8/src/arm/codegen-arm.cc | 7360 |
1 files changed, 2 insertions, 7358 deletions
diff --git a/deps/v8/src/arm/codegen-arm.cc b/deps/v8/src/arm/codegen-arm.cc index 1cd86d1da1..bf748a9b6a 100644 --- a/deps/v8/src/arm/codegen-arm.cc +++ b/deps/v8/src/arm/codegen-arm.cc @@ -1,4 +1,4 @@ -// Copyright 2010 the V8 project authors. All rights reserved. +// Copyright 2011 the V8 project authors. All rights reserved. // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: @@ -29,56 +29,14 @@ #if defined(V8_TARGET_ARCH_ARM) -#include "bootstrapper.h" -#include "code-stubs.h" -#include "codegen-inl.h" -#include "compiler.h" -#include "debug.h" -#include "ic-inl.h" -#include "jsregexp.h" -#include "jump-target-inl.h" -#include "parser.h" -#include "regexp-macro-assembler.h" -#include "regexp-stack.h" -#include "register-allocator-inl.h" -#include "runtime.h" -#include "scopes.h" -#include "stub-cache.h" -#include "virtual-frame-inl.h" -#include "virtual-frame-arm-inl.h" +#include "codegen.h" namespace v8 { namespace internal { - -#define __ ACCESS_MASM(masm_) - -// ------------------------------------------------------------------------- -// Platform-specific DeferredCode functions. - -void DeferredCode::SaveRegisters() { - // On ARM you either have a completely spilled frame or you - // handle it yourself, but at the moment there's no automation - // of registers and deferred code. -} - - -void DeferredCode::RestoreRegisters() { -} - - // ------------------------------------------------------------------------- // Platform-specific RuntimeCallHelper functions. -void VirtualFrameRuntimeCallHelper::BeforeCall(MacroAssembler* masm) const { - frame_state_->frame()->AssertIsSpilled(); -} - - -void VirtualFrameRuntimeCallHelper::AfterCall(MacroAssembler* masm) const { -} - - void StubRuntimeCallHelper::BeforeCall(MacroAssembler* masm) const { masm->EnterInternalFrame(); } @@ -89,7320 +47,6 @@ void StubRuntimeCallHelper::AfterCall(MacroAssembler* masm) const { } -// ------------------------------------------------------------------------- -// CodeGenState implementation. - -CodeGenState::CodeGenState(CodeGenerator* owner) - : owner_(owner), - previous_(owner->state()) { - owner->set_state(this); -} - - -ConditionCodeGenState::ConditionCodeGenState(CodeGenerator* owner, - JumpTarget* true_target, - JumpTarget* false_target) - : CodeGenState(owner), - true_target_(true_target), - false_target_(false_target) { - owner->set_state(this); -} - - -TypeInfoCodeGenState::TypeInfoCodeGenState(CodeGenerator* owner, - Slot* slot, - TypeInfo type_info) - : CodeGenState(owner), - slot_(slot) { - owner->set_state(this); - old_type_info_ = owner->set_type_info(slot, type_info); -} - - -CodeGenState::~CodeGenState() { - ASSERT(owner_->state() == this); - owner_->set_state(previous_); -} - - -TypeInfoCodeGenState::~TypeInfoCodeGenState() { - owner()->set_type_info(slot_, old_type_info_); -} - -// ------------------------------------------------------------------------- -// CodeGenerator implementation - -int CodeGenerator::inlined_write_barrier_size_ = -1; - -CodeGenerator::CodeGenerator(MacroAssembler* masm) - : deferred_(8), - masm_(masm), - info_(NULL), - frame_(NULL), - allocator_(NULL), - cc_reg_(al), - state_(NULL), - loop_nesting_(0), - type_info_(NULL), - function_return_(JumpTarget::BIDIRECTIONAL), - function_return_is_shadowed_(false) { -} - - -// Calling conventions: -// fp: caller's frame pointer -// sp: stack pointer -// r1: called JS function -// cp: callee's context - -void CodeGenerator::Generate(CompilationInfo* info) { - // Record the position for debugging purposes. - CodeForFunctionPosition(info->function()); - Comment cmnt(masm_, "[ function compiled by virtual frame code generator"); - - // Initialize state. - info_ = info; - - int slots = scope()->num_parameters() + scope()->num_stack_slots(); - ScopedVector<TypeInfo> type_info_array(slots); - for (int i = 0; i < slots; i++) { - type_info_array[i] = TypeInfo::Unknown(); - } - type_info_ = &type_info_array; - - ASSERT(allocator_ == NULL); - RegisterAllocator register_allocator(this); - allocator_ = ®ister_allocator; - ASSERT(frame_ == NULL); - frame_ = new VirtualFrame(); - cc_reg_ = al; - - // Adjust for function-level loop nesting. - ASSERT_EQ(0, loop_nesting_); - loop_nesting_ = info->is_in_loop() ? 1 : 0; - - { - CodeGenState state(this); - - // Entry: - // Stack: receiver, arguments - // lr: return address - // fp: caller's frame pointer - // sp: stack pointer - // r1: called JS function - // cp: callee's context - allocator_->Initialize(); - -#ifdef DEBUG - if (strlen(FLAG_stop_at) > 0 && - info->function()->name()->IsEqualTo(CStrVector(FLAG_stop_at))) { - frame_->SpillAll(); - __ stop("stop-at"); - } -#endif - - frame_->Enter(); - // tos: code slot - - // Allocate space for locals and initialize them. This also checks - // for stack overflow. - frame_->AllocateStackSlots(); - - frame_->AssertIsSpilled(); - int heap_slots = scope()->num_heap_slots() - Context::MIN_CONTEXT_SLOTS; - if (heap_slots > 0) { - // Allocate local context. - // Get outer context and create a new context based on it. - __ ldr(r0, frame_->Function()); - frame_->EmitPush(r0); - if (heap_slots <= FastNewContextStub::kMaximumSlots) { - FastNewContextStub stub(heap_slots); - frame_->CallStub(&stub, 1); - } else { - frame_->CallRuntime(Runtime::kNewContext, 1); - } - -#ifdef DEBUG - JumpTarget verified_true; - __ cmp(r0, cp); - verified_true.Branch(eq); - __ stop("NewContext: r0 is expected to be the same as cp"); - verified_true.Bind(); -#endif - // Update context local. - __ str(cp, frame_->Context()); - } - - // TODO(1241774): Improve this code: - // 1) only needed if we have a context - // 2) no need to recompute context ptr every single time - // 3) don't copy parameter operand code from SlotOperand! - { - Comment cmnt2(masm_, "[ copy context parameters into .context"); - // Note that iteration order is relevant here! If we have the same - // parameter twice (e.g., function (x, y, x)), and that parameter - // needs to be copied into the context, it must be the last argument - // passed to the parameter that needs to be copied. This is a rare - // case so we don't check for it, instead we rely on the copying - // order: such a parameter is copied repeatedly into the same - // context location and thus the last value is what is seen inside - // the function. - frame_->AssertIsSpilled(); - for (int i = 0; i < scope()->num_parameters(); i++) { - Variable* par = scope()->parameter(i); - Slot* slot = par->AsSlot(); - if (slot != NULL && slot->type() == Slot::CONTEXT) { - ASSERT(!scope()->is_global_scope()); // No params in global scope. - __ ldr(r1, frame_->ParameterAt(i)); - // Loads r2 with context; used below in RecordWrite. - __ str(r1, SlotOperand(slot, r2)); - // Load the offset into r3. - int slot_offset = - FixedArray::kHeaderSize + slot->index() * kPointerSize; - __ RecordWrite(r2, Operand(slot_offset), r3, r1); - } - } - } - - // Store the arguments object. This must happen after context - // initialization because the arguments object may be stored in - // the context. - if (ArgumentsMode() != NO_ARGUMENTS_ALLOCATION) { - StoreArgumentsObject(true); - } - - // Initialize ThisFunction reference if present. - if (scope()->is_function_scope() && scope()->function() != NULL) { - frame_->EmitPushRoot(Heap::kTheHoleValueRootIndex); - StoreToSlot(scope()->function()->AsSlot(), NOT_CONST_INIT); - } - - // Initialize the function return target after the locals are set - // up, because it needs the expected frame height from the frame. - function_return_.SetExpectedHeight(); - function_return_is_shadowed_ = false; - - // Generate code to 'execute' declarations and initialize functions - // (source elements). In case of an illegal redeclaration we need to - // handle that instead of processing the declarations. - if (scope()->HasIllegalRedeclaration()) { - Comment cmnt(masm_, "[ illegal redeclarations"); - scope()->VisitIllegalRedeclaration(this); - } else { - Comment cmnt(masm_, "[ declarations"); - ProcessDeclarations(scope()->declarations()); - // Bail out if a stack-overflow exception occurred when processing - // declarations. - if (HasStackOverflow()) return; - } - - if (FLAG_trace) { - frame_->CallRuntime(Runtime::kTraceEnter, 0); - // Ignore the return value. - } - - // Compile the body of the function in a vanilla state. Don't - // bother compiling all the code if the scope has an illegal - // redeclaration. - if (!scope()->HasIllegalRedeclaration()) { - Comment cmnt(masm_, "[ function body"); -#ifdef DEBUG - bool is_builtin = Bootstrapper::IsActive(); - bool should_trace = - is_builtin ? FLAG_trace_builtin_calls : FLAG_trace_calls; - if (should_trace) { - frame_->CallRuntime(Runtime::kDebugTrace, 0); - // Ignore the return value. - } -#endif - VisitStatements(info->function()->body()); - } - } - - // Handle the return from the function. - if (has_valid_frame()) { - // If there is a valid frame, control flow can fall off the end of - // the body. In that case there is an implicit return statement. - ASSERT(!function_return_is_shadowed_); - frame_->PrepareForReturn(); - __ LoadRoot(r0, Heap::kUndefinedValueRootIndex); - if (function_return_.is_bound()) { - function_return_.Jump(); - } else { - function_return_.Bind(); - GenerateReturnSequence(); - } - } else if (function_return_.is_linked()) { - // If the return target has dangling jumps to it, then we have not - // yet generated the return sequence. This can happen when (a) - // control does not flow off the end of the body so we did not - // compile an artificial return statement just above, and (b) there - // are return statements in the body but (c) they are all shadowed. - function_return_.Bind(); - GenerateReturnSequence(); - } - - // Adjust for function-level loop nesting. - ASSERT(loop_nesting_ == info->is_in_loop()? 1 : 0); - loop_nesting_ = 0; - - // Code generation state must be reset. - ASSERT(!has_cc()); - ASSERT(state_ == NULL); - ASSERT(loop_nesting() == 0); - ASSERT(!function_return_is_shadowed_); - function_return_.Unuse(); - DeleteFrame(); - - // Process any deferred code using the register allocator. - if (!HasStackOverflow()) { - ProcessDeferred(); - } - - allocator_ = NULL; - type_info_ = NULL; -} - - -int CodeGenerator::NumberOfSlot(Slot* slot) { - if (slot == NULL) return kInvalidSlotNumber; - switch (slot->type()) { - case Slot::PARAMETER: - return slot->index(); - case Slot::LOCAL: - return slot->index() + scope()->num_parameters(); - default: - break; - } - return kInvalidSlotNumber; -} - - -MemOperand CodeGenerator::SlotOperand(Slot* slot, Register tmp) { - // Currently, this assertion will fail if we try to assign to - // a constant variable that is constant because it is read-only - // (such as the variable referring to a named function expression). - // We need to implement assignments to read-only variables. - // Ideally, we should do this during AST generation (by converting - // such assignments into expression statements); however, in general - // we may not be able to make the decision until past AST generation, - // that is when the entire program is known. - ASSERT(slot != NULL); - int index = slot->index(); - switch (slot->type()) { - case Slot::PARAMETER: - return frame_->ParameterAt(index); - - case Slot::LOCAL: - return frame_->LocalAt(index); - - case Slot::CONTEXT: { - // Follow the context chain if necessary. - ASSERT(!tmp.is(cp)); // do not overwrite context register - Register context = cp; - int chain_length = scope()->ContextChainLength(slot->var()->scope()); - for (int i = 0; i < chain_length; i++) { - // Load the closure. - // (All contexts, even 'with' contexts, have a closure, - // and it is the same for all contexts inside a function. - // There is no need to go to the function context first.) - __ ldr(tmp, ContextOperand(context, Context::CLOSURE_INDEX)); - // Load the function context (which is the incoming, outer context). - __ ldr(tmp, FieldMemOperand(tmp, JSFunction::kContextOffset)); - context = tmp; - } - // We may have a 'with' context now. Get the function context. - // (In fact this mov may never be the needed, since the scope analysis - // may not permit a direct context access in this case and thus we are - // always at a function context. However it is safe to dereference be- - // cause the function context of a function context is itself. Before - // deleting this mov we should try to create a counter-example first, - // though...) - __ ldr(tmp, ContextOperand(context, Context::FCONTEXT_INDEX)); - return ContextOperand(tmp, index); - } - - default: - UNREACHABLE(); - return MemOperand(r0, 0); - } -} - - -MemOperand CodeGenerator::ContextSlotOperandCheckExtensions( - Slot* slot, - Register tmp, - Register tmp2, - JumpTarget* slow) { - ASSERT(slot->type() == Slot::CONTEXT); - Register context = cp; - - for (Scope* s = scope(); s != slot->var()->scope(); s = s->outer_scope()) { - if (s->num_heap_slots() > 0) { - if (s->calls_eval()) { - // Check that extension is NULL. - __ ldr(tmp2, ContextOperand(context, Context::EXTENSION_INDEX)); - __ tst(tmp2, tmp2); - slow->Branch(ne); - } - __ ldr(tmp, ContextOperand(context, Context::CLOSURE_INDEX)); - __ ldr(tmp, FieldMemOperand(tmp, JSFunction::kContextOffset)); - context = tmp; - } - } - // Check that last extension is NULL. - __ ldr(tmp2, ContextOperand(context, Context::EXTENSION_INDEX)); - __ tst(tmp2, tmp2); - slow->Branch(ne); - __ ldr(tmp, ContextOperand(context, Context::FCONTEXT_INDEX)); - return ContextOperand(tmp, slot->index()); -} - - -// Loads a value on TOS. If it is a boolean value, the result may have been -// (partially) translated into branches, or it may have set the condition -// code register. If force_cc is set, the value is forced to set the -// condition code register and no value is pushed. If the condition code -// register was set, has_cc() is true and cc_reg_ contains the condition to -// test for 'true'. -void CodeGenerator::LoadCondition(Expression* x, - JumpTarget* true_target, - JumpTarget* false_target, - bool force_cc) { - ASSERT(!has_cc()); - int original_height = frame_->height(); - - { ConditionCodeGenState new_state(this, true_target, false_target); - Visit(x); - - // If we hit a stack overflow, we may not have actually visited - // the expression. In that case, we ensure that we have a - // valid-looking frame state because we will continue to generate - // code as we unwind the C++ stack. - // - // It's possible to have both a stack overflow and a valid frame - // state (eg, a subexpression overflowed, visiting it returned - // with a dummied frame state, and visiting this expression - // returned with a normal-looking state). - if (HasStackOverflow() && - has_valid_frame() && - !has_cc() && - frame_->height() == original_height) { - true_target->Jump(); - } - } - if (force_cc && frame_ != NULL && !has_cc()) { - // Convert the TOS value to a boolean in the condition code register. - ToBoolean(true_target, false_target); - } - ASSERT(!force_cc || !has_valid_frame() || has_cc()); - ASSERT(!has_valid_frame() || - (has_cc() && frame_->height() == original_height) || - (!has_cc() && frame_->height() == original_height + 1)); -} - - -void CodeGenerator::Load(Expression* expr) { - // We generally assume that we are not in a spilled scope for most - // of the code generator. A failure to ensure this caused issue 815 - // and this assert is designed to catch similar issues. - frame_->AssertIsNotSpilled(); -#ifdef DEBUG - int original_height = frame_->height(); -#endif - JumpTarget true_target; - JumpTarget false_target; - LoadCondition(expr, &true_target, &false_target, false); - - if (has_cc()) { - // Convert cc_reg_ into a boolean value. - JumpTarget loaded; - JumpTarget materialize_true; - materialize_true.Branch(cc_reg_); - frame_->EmitPushRoot(Heap::kFalseValueRootIndex); - loaded.Jump(); - materialize_true.Bind(); - frame_->EmitPushRoot(Heap::kTrueValueRootIndex); - loaded.Bind(); - cc_reg_ = al; - } - - if (true_target.is_linked() || false_target.is_linked()) { - // We have at least one condition value that has been "translated" - // into a branch, thus it needs to be loaded explicitly. - JumpTarget loaded; - if (frame_ != NULL) { - loaded.Jump(); // Don't lose the current TOS. - } - bool both = true_target.is_linked() && false_target.is_linked(); - // Load "true" if necessary. - if (true_target.is_linked()) { - true_target.Bind(); - frame_->EmitPushRoot(Heap::kTrueValueRootIndex); - } - // If both "true" and "false" need to be loaded jump across the code for - // "false". - if (both) { - loaded.Jump(); - } - // Load "false" if necessary. - if (false_target.is_linked()) { - false_target.Bind(); - frame_->EmitPushRoot(Heap::kFalseValueRootIndex); - } - // A value is loaded on all paths reaching this point. - loaded.Bind(); - } - ASSERT(has_valid_frame()); - ASSERT(!has_cc()); - ASSERT_EQ(original_height + 1, frame_->height()); -} - - -void CodeGenerator::LoadGlobal() { - Register reg = frame_->GetTOSRegister(); - __ ldr(reg, GlobalObjectOperand()); - frame_->EmitPush(reg); -} - - -void CodeGenerator::LoadGlobalReceiver(Register scratch) { - Register reg = frame_->GetTOSRegister(); - __ ldr(reg, ContextOperand(cp, Context::GLOBAL_INDEX)); - __ ldr(reg, - FieldMemOperand(reg, GlobalObject::kGlobalReceiverOffset)); - frame_->EmitPush(reg); -} - - -ArgumentsAllocationMode CodeGenerator::ArgumentsMode() { - if (scope()->arguments() == NULL) return NO_ARGUMENTS_ALLOCATION; - ASSERT(scope()->arguments_shadow() != NULL); - // We don't want to do lazy arguments allocation for functions that - // have heap-allocated contexts, because it interfers with the - // uninitialized const tracking in the context objects. - return (scope()->num_heap_slots() > 0) - ? EAGER_ARGUMENTS_ALLOCATION - : LAZY_ARGUMENTS_ALLOCATION; -} - - -void CodeGenerator::StoreArgumentsObject(bool initial) { - ArgumentsAllocationMode mode = ArgumentsMode(); - ASSERT(mode != NO_ARGUMENTS_ALLOCATION); - - Comment cmnt(masm_, "[ store arguments object"); - if (mode == LAZY_ARGUMENTS_ALLOCATION && initial) { - // When using lazy arguments allocation, we store the hole value - // as a sentinel indicating that the arguments object hasn't been - // allocated yet. - frame_->EmitPushRoot(Heap::kArgumentsMarkerRootIndex); - } else { - frame_->SpillAll(); - ArgumentsAccessStub stub(ArgumentsAccessStub::NEW_OBJECT); - __ ldr(r2, frame_->Function()); - // The receiver is below the arguments, the return address, and the - // frame pointer on the stack. - const int kReceiverDisplacement = 2 + scope()->num_parameters(); - __ add(r1, fp, Operand(kReceiverDisplacement * kPointerSize)); - __ mov(r0, Operand(Smi::FromInt(scope()->num_parameters()))); - frame_->Adjust(3); - __ Push(r2, r1, r0); - frame_->CallStub(&stub, 3); - frame_->EmitPush(r0); - } - - Variable* arguments = scope()->arguments(); - Variable* shadow = scope()->arguments_shadow(); - ASSERT(arguments != NULL && arguments->AsSlot() != NULL); - ASSERT(shadow != NULL && shadow->AsSlot() != NULL); - JumpTarget done; - if (mode == LAZY_ARGUMENTS_ALLOCATION && !initial) { - // We have to skip storing into the arguments slot if it has - // already been written to. This can happen if the a function - // has a local variable named 'arguments'. - LoadFromSlot(scope()->arguments()->AsSlot(), NOT_INSIDE_TYPEOF); - Register arguments = frame_->PopToRegister(); - __ LoadRoot(ip, Heap::kArgumentsMarkerRootIndex); - __ cmp(arguments, ip); - done.Branch(ne); - } - StoreToSlot(arguments->AsSlot(), NOT_CONST_INIT); - if (mode == LAZY_ARGUMENTS_ALLOCATION) done.Bind(); - StoreToSlot(shadow->AsSlot(), NOT_CONST_INIT); -} - - -void CodeGenerator::LoadTypeofExpression(Expression* expr) { - // Special handling of identifiers as subexpressions of typeof. - Variable* variable = expr->AsVariableProxy()->AsVariable(); - if (variable != NULL && !variable->is_this() && variable->is_global()) { - // For a global variable we build the property reference - // <global>.<variable> and perform a (regular non-contextual) property - // load to make sure we do not get reference errors. - Slot global(variable, Slot::CONTEXT, Context::GLOBAL_INDEX); - Literal key(variable->name()); - Property property(&global, &key, RelocInfo::kNoPosition); - Reference ref(this, &property); - ref.GetValue(); - } else if (variable != NULL && variable->AsSlot() != NULL) { - // For a variable that rewrites to a slot, we signal it is the immediate - // subexpression of a typeof. - LoadFromSlotCheckForArguments(variable->AsSlot(), INSIDE_TYPEOF); - } else { - // Anything else can be handled normally. - Load(expr); - } -} - - -Reference::Reference(CodeGenerator* cgen, - Expression* expression, - bool persist_after_get) - : cgen_(cgen), - expression_(expression), - type_(ILLEGAL), - persist_after_get_(persist_after_get) { - // We generally assume that we are not in a spilled scope for most - // of the code generator. A failure to ensure this caused issue 815 - // and this assert is designed to catch similar issues. - cgen->frame()->AssertIsNotSpilled(); - cgen->LoadReference(this); -} - - -Reference::~Reference() { - ASSERT(is_unloaded() || is_illegal()); -} - - -void CodeGenerator::LoadReference(Reference* ref) { - Comment cmnt(masm_, "[ LoadReference"); - Expression* e = ref->expression(); - Property* property = e->AsProperty(); - Variable* var = e->AsVariableProxy()->AsVariable(); - - if (property != NULL) { - // The expression is either a property or a variable proxy that rewrites - // to a property. - Load(property->obj()); - if (property->key()->IsPropertyName()) { - ref->set_type(Reference::NAMED); - } else { - Load(property->key()); - ref->set_type(Reference::KEYED); - } - } else if (var != NULL) { - // The expression is a variable proxy that does not rewrite to a - // property. Global variables are treated as named property references. - if (var->is_global()) { - LoadGlobal(); - ref->set_type(Reference::NAMED); - } else { - ASSERT(var->AsSlot() != NULL); - ref->set_type(Reference::SLOT); - } - } else { - // Anything else is a runtime error. - Load(e); - frame_->CallRuntime(Runtime::kThrowReferenceError, 1); - } -} - - -void CodeGenerator::UnloadReference(Reference* ref) { - int size = ref->size(); - ref->set_unloaded(); - if (size == 0) return; - - // Pop a reference from the stack while preserving TOS. - VirtualFrame::RegisterAllocationScope scope(this); - Comment cmnt(masm_, "[ UnloadReference"); - if (size > 0) { - Register tos = frame_->PopToRegister(); - frame_->Drop(size); - frame_->EmitPush(tos); - } -} - - -// ECMA-262, section 9.2, page 30: ToBoolean(). Convert the given -// register to a boolean in the condition code register. The code -// may jump to 'false_target' in case the register converts to 'false'. -void CodeGenerator::ToBoolean(JumpTarget* true_target, - JumpTarget* false_target) { - // Note: The generated code snippet does not change stack variables. - // Only the condition code should be set. - bool known_smi = frame_->KnownSmiAt(0); - Register tos = frame_->PopToRegister(); - - // Fast case checks - - // Check if the value is 'false'. - if (!known_smi) { - __ LoadRoot(ip, Heap::kFalseValueRootIndex); - __ cmp(tos, ip); - false_target->Branch(eq); - - // Check if the value is 'true'. - __ LoadRoot(ip, Heap::kTrueValueRootIndex); - __ cmp(tos, ip); - true_target->Branch(eq); - - // Check if the value is 'undefined'. - __ LoadRoot(ip, Heap::kUndefinedValueRootIndex); - __ cmp(tos, ip); - false_target->Branch(eq); - } - - // Check if the value is a smi. - __ cmp(tos, Operand(Smi::FromInt(0))); - - if (!known_smi) { - false_target->Branch(eq); - __ tst(tos, Operand(kSmiTagMask)); - true_target->Branch(eq); - - // Slow case. - if (CpuFeatures::IsSupported(VFP3)) { - CpuFeatures::Scope scope(VFP3); - // Implements the slow case by using ToBooleanStub. - // The ToBooleanStub takes a single argument, and - // returns a non-zero value for true, or zero for false. - // Both the argument value and the return value use the - // register assigned to tos_ - ToBooleanStub stub(tos); - frame_->CallStub(&stub, 0); - // Convert the result in "tos" to a condition code. - __ cmp(tos, Operand(0, RelocInfo::NONE)); - } else { - // Implements slow case by calling the runtime. - frame_->EmitPush(tos); - frame_->CallRuntime(Runtime::kToBool, 1); - // Convert the result (r0) to a condition code. - __ LoadRoot(ip, Heap::kFalseValueRootIndex); - __ cmp(r0, ip); - } - } - - cc_reg_ = ne; -} - - -void CodeGenerator::GenericBinaryOperation(Token::Value op, - OverwriteMode overwrite_mode, - GenerateInlineSmi inline_smi, - int constant_rhs) { - // top of virtual frame: y - // 2nd elt. on virtual frame : x - // result : top of virtual frame - - // Stub is entered with a call: 'return address' is in lr. - switch (op) { - case Token::ADD: - case Token::SUB: - if (inline_smi) { - JumpTarget done; - Register rhs = frame_->PopToRegister(); - Register lhs = frame_->PopToRegister(rhs); - Register scratch = VirtualFrame::scratch0(); - __ orr(scratch, rhs, Operand(lhs)); - // Check they are both small and positive. - __ tst(scratch, Operand(kSmiTagMask | 0xc0000000)); - ASSERT(rhs.is(r0) || lhs.is(r0)); // r0 is free now. - STATIC_ASSERT(kSmiTag == 0); - if (op == Token::ADD) { - __ add(r0, lhs, Operand(rhs), LeaveCC, eq); - } else { - __ sub(r0, lhs, Operand(rhs), LeaveCC, eq); - } - done.Branch(eq); - GenericBinaryOpStub stub(op, overwrite_mode, lhs, rhs, constant_rhs); - frame_->SpillAll(); - frame_->CallStub(&stub, 0); - done.Bind(); - frame_->EmitPush(r0); - break; - } else { - // Fall through! - } - case Token::BIT_OR: - case Token::BIT_AND: - case Token::BIT_XOR: - if (inline_smi) { - bool rhs_is_smi = frame_->KnownSmiAt(0); - bool lhs_is_smi = frame_->KnownSmiAt(1); - Register rhs = frame_->PopToRegister(); - Register lhs = frame_->PopToRegister(rhs); - Register smi_test_reg; - Condition cond; - if (!rhs_is_smi || !lhs_is_smi) { - if (rhs_is_smi) { - smi_test_reg = lhs; - } else if (lhs_is_smi) { - smi_test_reg = rhs; - } else { - smi_test_reg = VirtualFrame::scratch0(); - __ orr(smi_test_reg, rhs, Operand(lhs)); - } - // Check they are both Smis. - __ tst(smi_test_reg, Operand(kSmiTagMask)); - cond = eq; - } else { - cond = al; - } - ASSERT(rhs.is(r0) || lhs.is(r0)); // r0 is free now. - if (op == Token::BIT_OR) { - __ orr(r0, lhs, Operand(rhs), LeaveCC, cond); - } else if (op == Token::BIT_AND) { - __ and_(r0, lhs, Operand(rhs), LeaveCC, cond); - } else { - ASSERT(op == Token::BIT_XOR); - STATIC_ASSERT(kSmiTag == 0); - __ eor(r0, lhs, Operand(rhs), LeaveCC, cond); - } - if (cond != al) { - JumpTarget done; - done.Branch(cond); - GenericBinaryOpStub stub(op, overwrite_mode, lhs, rhs, constant_rhs); - frame_->SpillAll(); - frame_->CallStub(&stub, 0); - done.Bind(); - } - frame_->EmitPush(r0); - break; - } else { - // Fall through! - } - case Token::MUL: - case Token::DIV: - case Token::MOD: - case Token::SHL: - case Token::SHR: - case Token::SAR: { - Register rhs = frame_->PopToRegister(); - Register lhs = frame_->PopToRegister(rhs); // Don't pop to rhs register. - GenericBinaryOpStub stub(op, overwrite_mode, lhs, rhs, constant_rhs); - frame_->SpillAll(); - frame_->CallStub(&stub, 0); - frame_->EmitPush(r0); - break; - } - - case Token::COMMA: { - Register scratch = frame_->PopToRegister(); - // Simply discard left value. - frame_->Drop(); - frame_->EmitPush(scratch); - break; - } - - default: - // Other cases should have been handled before this point. - UNREACHABLE(); - break; - } -} - - -class DeferredInlineSmiOperation: public DeferredCode { - public: - DeferredInlineSmiOperation(Token::Value op, - int value, - bool reversed, - OverwriteMode overwrite_mode, - Register tos) - : op_(op), - value_(value), - reversed_(reversed), - overwrite_mode_(overwrite_mode), - tos_register_(tos) { - set_comment("[ DeferredInlinedSmiOperation"); - } - - virtual void Generate(); - // This stub makes explicit calls to SaveRegisters(), RestoreRegisters() and - // Exit(). Currently on ARM SaveRegisters() and RestoreRegisters() are empty - // methods, it is the responsibility of the deferred code to save and restore - // registers. - virtual bool AutoSaveAndRestore() { return false; } - - void JumpToNonSmiInput(Condition cond); - void JumpToAnswerOutOfRange(Condition cond); - - private: - void GenerateNonSmiInput(); - void GenerateAnswerOutOfRange(); - void WriteNonSmiAnswer(Register answer, - Register heap_number, - Register scratch); - - Token::Value op_; - int value_; - bool reversed_; - OverwriteMode overwrite_mode_; - Register tos_register_; - Label non_smi_input_; - Label answer_out_of_range_; -}; - - -// For bit operations we try harder and handle the case where the input is not -// a Smi but a 32bits integer without calling the generic stub. -void DeferredInlineSmiOperation::JumpToNonSmiInput(Condition cond) { - ASSERT(Token::IsBitOp(op_)); - - __ b(cond, &non_smi_input_); -} - - -// For bit operations the result is always 32bits so we handle the case where -// the result does not fit in a Smi without calling the generic stub. -void DeferredInlineSmiOperation::JumpToAnswerOutOfRange(Condition cond) { - ASSERT(Token::IsBitOp(op_)); - - if ((op_ == Token::SHR) && !CpuFeatures::IsSupported(VFP3)) { - // >>> requires an unsigned to double conversion and the non VFP code - // does not support this conversion. - __ b(cond, entry_label()); - } else { - __ b(cond, &answer_out_of_range_); - } -} - - -// On entry the non-constant side of the binary operation is in tos_register_ -// and the constant smi side is nowhere. The tos_register_ is not used by the -// virtual frame. On exit the answer is in the tos_register_ and the virtual -// frame is unchanged. -void DeferredInlineSmiOperation::Generate() { - VirtualFrame copied_frame(*frame_state()->frame()); - copied_frame.SpillAll(); - - Register lhs = r1; - Register rhs = r0; - switch (op_) { - case Token::ADD: { - // Revert optimistic add. - if (reversed_) { - __ sub(r0, tos_register_, Operand(Smi::FromInt(value_))); - __ mov(r1, Operand(Smi::FromInt(value_))); - } else { - __ sub(r1, tos_register_, Operand(Smi::FromInt(value_))); - __ mov(r0, Operand(Smi::FromInt(value_))); - } - break; - } - - case Token::SUB: { - // Revert optimistic sub. - if (reversed_) { - __ rsb(r0, tos_register_, Operand(Smi::FromInt(value_))); - __ mov(r1, Operand(Smi::FromInt(value_))); - } else { - __ add(r1, tos_register_, Operand(Smi::FromInt(value_))); - __ mov(r0, Operand(Smi::FromInt(value_))); - } - break; - } - - // For these operations there is no optimistic operation that needs to be - // reverted. - case Token::MUL: - case Token::MOD: - case Token::BIT_OR: - case Token::BIT_XOR: - case Token::BIT_AND: - case Token::SHL: - case Token::SHR: - case Token::SAR: { - if (tos_register_.is(r1)) { - __ mov(r0, Operand(Smi::FromInt(value_))); - } else { - ASSERT(tos_register_.is(r0)); - __ mov(r1, Operand(Smi::FromInt(value_))); - } - if (reversed_ == tos_register_.is(r1)) { - lhs = r0; - rhs = r1; - } - break; - } - - default: - // Other cases should have been handled before this point. - UNREACHABLE(); - break; - } - - GenericBinaryOpStub stub(op_, overwrite_mode_, lhs, rhs, value_); - __ CallStub(&stub); - - // The generic stub returns its value in r0, but that's not - // necessarily what we want. We want whatever the inlined code - // expected, which is that the answer is in the same register as - // the operand was. - __ Move(tos_register_, r0); - - // The tos register was not in use for the virtual frame that we - // came into this function with, so we can merge back to that frame - // without trashing it. - copied_frame.MergeTo(frame_state()->frame()); - - Exit(); - - if (non_smi_input_.is_linked()) { - GenerateNonSmiInput(); - } - - if (answer_out_of_range_.is_linked()) { - GenerateAnswerOutOfRange(); - } -} - - -// Convert and write the integer answer into heap_number. -void DeferredInlineSmiOperation::WriteNonSmiAnswer(Register answer, - Register heap_number, - Register scratch) { - if (CpuFeatures::IsSupported(VFP3)) { - CpuFeatures::Scope scope(VFP3); - __ vmov(s0, answer); - if (op_ == Token::SHR) { - __ vcvt_f64_u32(d0, s0); - } else { - __ vcvt_f64_s32(d0, s0); - } - __ sub(scratch, heap_number, Operand(kHeapObjectTag)); - __ vstr(d0, scratch, HeapNumber::kValueOffset); - } else { - WriteInt32ToHeapNumberStub stub(answer, heap_number, scratch); - __ CallStub(&stub); - } -} - - -void DeferredInlineSmiOperation::GenerateNonSmiInput() { - // We know the left hand side is not a Smi and the right hand side is an - // immediate value (value_) which can be represented as a Smi. We only - // handle bit operations. - ASSERT(Token::IsBitOp(op_)); - - if (FLAG_debug_code) { - __ Abort("Should not fall through!"); - } - - __ bind(&non_smi_input_); - if (FLAG_debug_code) { - __ AbortIfSmi(tos_register_); - } - - // This routine uses the registers from r2 to r6. At the moment they are - // not used by the register allocator, but when they are it should use - // SpillAll and MergeTo like DeferredInlineSmiOperation::Generate() above. - - Register heap_number_map = r7; - __ LoadRoot(heap_number_map, Heap::kHeapNumberMapRootIndex); - __ ldr(r3, FieldMemOperand(tos_register_, HeapNumber::kMapOffset)); - __ cmp(r3, heap_number_map); - // Not a number, fall back to the GenericBinaryOpStub. - __ b(ne, entry_label()); - - Register int32 = r2; - // Not a 32bits signed int, fall back to the GenericBinaryOpStub. - __ ConvertToInt32(tos_register_, int32, r4, r5, d0, entry_label()); - - // tos_register_ (r0 or r1): Original heap number. - // int32: signed 32bits int. - - Label result_not_a_smi; - int shift_value = value_ & 0x1f; - switch (op_) { - case Token::BIT_OR: __ orr(int32, int32, Operand(value_)); break; - case Token::BIT_XOR: __ eor(int32, int32, Operand(value_)); break; - case Token::BIT_AND: __ and_(int32, int32, Operand(value_)); break; - case Token::SAR: - ASSERT(!reversed_); - if (shift_value != 0) { - __ mov(int32, Operand(int32, ASR, shift_value)); - } - break; - case Token::SHR: - ASSERT(!reversed_); - if (shift_value != 0) { - __ mov(int32, Operand(int32, LSR, shift_value), SetCC); - } else { - // SHR is special because it is required to produce a positive answer. - __ cmp(int32, Operand(0, RelocInfo::NONE)); - } - if (CpuFeatures::IsSupported(VFP3)) { - __ b(mi, &result_not_a_smi); - } else { - // Non VFP code cannot convert from unsigned to double, so fall back - // to GenericBinaryOpStub. - __ b(mi, entry_label()); - } - break; - case Token::SHL: - ASSERT(!reversed_); - if (shift_value != 0) { - __ mov(int32, Operand(int32, LSL, shift_value)); - } - break; - default: UNREACHABLE(); - } - // Check that the *signed* result fits in a smi. Not necessary for AND, SAR - // if the shift if more than 0 or SHR if the shit is more than 1. - if (!( (op_ == Token::AND && value_ >= 0) || - ((op_ == Token::SAR) && (shift_value > 0)) || - ((op_ == Token::SHR) && (shift_value > 1)))) { - __ add(r3, int32, Operand(0x40000000), SetCC); - __ b(mi, &result_not_a_smi); - } - __ mov(tos_register_, Operand(int32, LSL, kSmiTagSize)); - Exit(); - - if (result_not_a_smi.is_linked()) { - __ bind(&result_not_a_smi); - if (overwrite_mode_ != OVERWRITE_LEFT) { - ASSERT((overwrite_mode_ == NO_OVERWRITE) || - (overwrite_mode_ == OVERWRITE_RIGHT)); - // If the allocation fails, fall back to the GenericBinaryOpStub. - __ AllocateHeapNumber(r4, r5, r6, heap_number_map, entry_label()); - // Nothing can go wrong now, so overwrite tos. - __ mov(tos_register_, Operand(r4)); - } - - // int32: answer as signed 32bits integer. - // tos_register_: Heap number to write the answer into. - WriteNonSmiAnswer(int32, tos_register_, r3); - - Exit(); - } -} - - -void DeferredInlineSmiOperation::GenerateAnswerOutOfRange() { - // The input from a bitwise operation were Smis but the result cannot fit - // into a Smi, so we store it into a heap number. VirtualFrame::scratch0() - // holds the untagged result to be converted. tos_register_ contains the - // input. See the calls to JumpToAnswerOutOfRange to see how we got here. - ASSERT(Token::IsBitOp(op_)); - ASSERT(!reversed_); - - Register untagged_result = VirtualFrame::scratch0(); - - if (FLAG_debug_code) { - __ Abort("Should not fall through!"); - } - - __ bind(&answer_out_of_range_); - if (((value_ & 0x1f) == 0) && (op_ == Token::SHR)) { - // >>> 0 is a special case where the untagged_result register is not set up - // yet. We untag the input to get it. - __ mov(untagged_result, Operand(tos_register_, ASR, kSmiTagSize)); - } - - // This routine uses the registers from r2 to r6. At the moment they are - // not used by the register allocator, but when they are it should use - // SpillAll and MergeTo like DeferredInlineSmiOperation::Generate() above. - - // Allocate the result heap number. - Register heap_number_map = VirtualFrame::scratch1(); - Register heap_number = r4; - __ LoadRoot(heap_number_map, Heap::kHeapNumberMapRootIndex); - // If the allocation fails, fall back to the GenericBinaryOpStub. - __ AllocateHeapNumber(heap_number, r5, r6, heap_number_map, entry_label()); - WriteNonSmiAnswer(untagged_result, heap_number, r3); - __ mov(tos_register_, Operand(heap_number)); - - Exit(); -} - - -static bool PopCountLessThanEqual2(unsigned int x) { - x &= x - 1; - return (x & (x - 1)) == 0; -} - - -// Returns the index of the lowest bit set. -static int BitPosition(unsigned x) { - int bit_posn = 0; - while ((x & 0xf) == 0) { - bit_posn += 4; - x >>= 4; - } - while ((x & 1) == 0) { - bit_posn++; - x >>= 1; - } - return bit_posn; -} - - -// Can we multiply by x with max two shifts and an add. -// This answers yes to all integers from 2 to 10. -static bool IsEasyToMultiplyBy(int x) { - if (x < 2) return false; // Avoid special cases. - if (x > (Smi::kMaxValue + 1) >> 2) return false; // Almost always overflows. - if (IsPowerOf2(x)) return true; // Simple shift. - if (PopCountLessThanEqual2(x)) return true; // Shift and add and shift. - if (IsPowerOf2(x + 1)) return true; // Patterns like 11111. - return false; -} - - -// Can multiply by anything that IsEasyToMultiplyBy returns true for. -// Source and destination may be the same register. This routine does -// not set carry and overflow the way a mul instruction would. -static void InlineMultiplyByKnownInt(MacroAssembler* masm, - Register source, - Register destination, - int known_int) { - if (IsPowerOf2(known_int)) { - masm->mov(destination, Operand(source, LSL, BitPosition(known_int))); - } else if (PopCountLessThanEqual2(known_int)) { - int first_bit = BitPosition(known_int); - int second_bit = BitPosition(known_int ^ (1 << first_bit)); - masm->add(destination, source, - Operand(source, LSL, second_bit - first_bit)); - if (first_bit != 0) { - masm->mov(destination, Operand(destination, LSL, first_bit)); - } - } else { - ASSERT(IsPowerOf2(known_int + 1)); // Patterns like 1111. - int the_bit = BitPosition(known_int + 1); - masm->rsb(destination, source, Operand(source, LSL, the_bit)); - } -} - - -void CodeGenerator::SmiOperation(Token::Value op, - Handle<Object> value, - bool reversed, - OverwriteMode mode) { - int int_value = Smi::cast(*value)->value(); - - bool both_sides_are_smi = frame_->KnownSmiAt(0); - - bool something_to_inline; - switch (op) { - case Token::ADD: - case Token::SUB: - case Token::BIT_AND: - case Token::BIT_OR: - case Token::BIT_XOR: { - something_to_inline = true; - break; - } - case Token::SHL: { - something_to_inline = (both_sides_are_smi || !reversed); - break; - } - case Token::SHR: - case Token::SAR: { - if (reversed) { - something_to_inline = false; - } else { - something_to_inline = true; - } - break; - } - case Token::MOD: { - if (reversed || int_value < 2 || !IsPowerOf2(int_value)) { - something_to_inline = false; - } else { - something_to_inline = true; - } - break; - } - case Token::MUL: { - if (!IsEasyToMultiplyBy(int_value)) { - something_to_inline = false; - } else { - something_to_inline = true; - } - break; - } - default: { - something_to_inline = false; - break; - } - } - - if (!something_to_inline) { - if (!reversed) { - // Push the rhs onto the virtual frame by putting it in a TOS register. - Register rhs = frame_->GetTOSRegister(); - __ mov(rhs, Operand(value)); - frame_->EmitPush(rhs, TypeInfo::Smi()); - GenericBinaryOperation(op, mode, GENERATE_INLINE_SMI, int_value); - } else { - // Pop the rhs, then push lhs and rhs in the right order. Only performs - // at most one pop, the rest takes place in TOS registers. - Register lhs = frame_->GetTOSRegister(); // Get reg for pushing. - Register rhs = frame_->PopToRegister(lhs); // Don't use lhs for this. - __ mov(lhs, Operand(value)); - frame_->EmitPush(lhs, TypeInfo::Smi()); - TypeInfo t = both_sides_are_smi ? TypeInfo::Smi() : TypeInfo::Unknown(); - frame_->EmitPush(rhs, t); - GenericBinaryOperation(op, mode, GENERATE_INLINE_SMI, - GenericBinaryOpStub::kUnknownIntValue); - } - return; - } - - // We move the top of stack to a register (normally no move is invoved). - Register tos = frame_->PopToRegister(); - switch (op) { - case Token::ADD: { - DeferredCode* deferred = - new DeferredInlineSmiOperation(op, int_value, reversed, mode, tos); - - __ add(tos, tos, Operand(value), SetCC); - deferred->Branch(vs); - if (!both_sides_are_smi) { - __ tst(tos, Operand(kSmiTagMask)); - deferred->Branch(ne); - } - deferred->BindExit(); - frame_->EmitPush(tos); - break; - } - - case Token::SUB: { - DeferredCode* deferred = - new DeferredInlineSmiOperation(op, int_value, reversed, mode, tos); - - if (reversed) { - __ rsb(tos, tos, Operand(value), SetCC); - } else { - __ sub(tos, tos, Operand(value), SetCC); - } - deferred->Branch(vs); - if (!both_sides_are_smi) { - __ tst(tos, Operand(kSmiTagMask)); - deferred->Branch(ne); - } - deferred->BindExit(); - frame_->EmitPush(tos); - break; - } - - - case Token::BIT_OR: - case Token::BIT_XOR: - case Token::BIT_AND: { - if (both_sides_are_smi) { - switch (op) { - case Token::BIT_OR: __ orr(tos, tos, Operand(value)); break; - case Token::BIT_XOR: __ eor(tos, tos, Operand(value)); break; - case Token::BIT_AND: __ And(tos, tos, Operand(value)); break; - default: UNREACHABLE(); - } - frame_->EmitPush(tos, TypeInfo::Smi()); - } else { - DeferredInlineSmiOperation* deferred = - new DeferredInlineSmiOperation(op, int_value, reversed, mode, tos); - __ tst(tos, Operand(kSmiTagMask)); - deferred->JumpToNonSmiInput(ne); - switch (op) { - case Token::BIT_OR: __ orr(tos, tos, Operand(value)); break; - case Token::BIT_XOR: __ eor(tos, tos, Operand(value)); break; - case Token::BIT_AND: __ And(tos, tos, Operand(value)); break; - default: UNREACHABLE(); - } - deferred->BindExit(); - TypeInfo result_type = TypeInfo::Integer32(); - if (op == Token::BIT_AND && int_value >= 0) { - result_type = TypeInfo::Smi(); - } - frame_->EmitPush(tos, result_type); - } - break; - } - - case Token::SHL: - if (reversed) { - ASSERT(both_sides_are_smi); - int max_shift = 0; - int max_result = int_value == 0 ? 1 : int_value; - while (Smi::IsValid(max_result << 1)) { - max_shift++; - max_result <<= 1; - } - DeferredCode* deferred = - new DeferredInlineSmiOperation(op, int_value, true, mode, tos); - // Mask off the last 5 bits of the shift operand (rhs). This is part - // of the definition of shift in JS and we know we have a Smi so we - // can safely do this. The masked version gets passed to the - // deferred code, but that makes no difference. - __ and_(tos, tos, Operand(Smi::FromInt(0x1f))); - __ cmp(tos, Operand(Smi::FromInt(max_shift))); - deferred->Branch(ge); - Register scratch = VirtualFrame::scratch0(); - __ mov(scratch, Operand(tos, ASR, kSmiTagSize)); // Untag. - __ mov(tos, Operand(Smi::FromInt(int_value))); // Load constant. - __ mov(tos, Operand(tos, LSL, scratch)); // Shift constant. - deferred->BindExit(); - TypeInfo result = TypeInfo::Integer32(); - frame_->EmitPush(tos, result); - break; - } - // Fall through! - case Token::SHR: - case Token::SAR: { - ASSERT(!reversed); - int shift_value = int_value & 0x1f; - TypeInfo result = TypeInfo::Number(); - - if (op == Token::SHR) { - if (shift_value > 1) { - result = TypeInfo::Smi(); - } else if (shift_value > 0) { - result = TypeInfo::Integer32(); - } - } else if (op == Token::SAR) { - if (shift_value > 0) { - result = TypeInfo::Smi(); - } else { - result = TypeInfo::Integer32(); - } - } else { - ASSERT(op == Token::SHL); - result = TypeInfo::Integer32(); - } - - DeferredInlineSmiOperation* deferred = - new DeferredInlineSmiOperation(op, shift_value, false, mode, tos); - if (!both_sides_are_smi) { - __ tst(tos, Operand(kSmiTagMask)); - deferred->JumpToNonSmiInput(ne); - } - switch (op) { - case Token::SHL: { - if (shift_value != 0) { - Register untagged_result = VirtualFrame::scratch0(); - Register scratch = VirtualFrame::scratch1(); - int adjusted_shift = shift_value - kSmiTagSize; - ASSERT(adjusted_shift >= 0); - - if (adjusted_shift != 0) { - __ mov(untagged_result, Operand(tos, LSL, adjusted_shift)); - } else { - __ mov(untagged_result, Operand(tos)); - } - // Check that the *signed* result fits in a smi. - __ add(scratch, untagged_result, Operand(0x40000000), SetCC); - deferred->JumpToAnswerOutOfRange(mi); - __ mov(tos, Operand(untagged_result, LSL, kSmiTagSize)); - } - break; - } - case Token::SHR: { - if (shift_value != 0) { - Register untagged_result = VirtualFrame::scratch0(); - // Remove tag. - __ mov(untagged_result, Operand(tos, ASR, kSmiTagSize)); - __ mov(untagged_result, Operand(untagged_result, LSR, shift_value)); - if (shift_value == 1) { - // Check that the *unsigned* result fits in a smi. - // Neither of the two high-order bits can be set: - // - 0x80000000: high bit would be lost when smi tagging - // - 0x40000000: this number would convert to negative when Smi - // tagging. - // These two cases can only happen with shifts by 0 or 1 when - // handed a valid smi. - __ tst(untagged_result, Operand(0xc0000000)); - deferred->JumpToAnswerOutOfRange(ne); - } - __ mov(tos, Operand(untagged_result, LSL, kSmiTagSize)); - } else { - __ cmp(tos, Operand(0, RelocInfo::NONE)); - deferred->JumpToAnswerOutOfRange(mi); - } - break; - } - case Token::SAR: { - if (shift_value != 0) { - // Do the shift and the tag removal in one operation. If the shift - // is 31 bits (the highest possible value) then we emit the - // instruction as a shift by 0 which in the ARM ISA means shift - // arithmetically by 32. - __ mov(tos, Operand(tos, ASR, (kSmiTagSize + shift_value) & 0x1f)); - __ mov(tos, Operand(tos, LSL, kSmiTagSize)); - } - break; - } - default: UNREACHABLE(); - } - deferred->BindExit(); - frame_->EmitPush(tos, result); - break; - } - - case Token::MOD: { - ASSERT(!reversed); - ASSERT(int_value >= 2); - ASSERT(IsPowerOf2(int_value)); - DeferredCode* deferred = - new DeferredInlineSmiOperation(op, int_value, reversed, mode, tos); - unsigned mask = (0x80000000u | kSmiTagMask); - __ tst(tos, Operand(mask)); - deferred->Branch(ne); // Go to deferred code on non-Smis and negative. - mask = (int_value << kSmiTagSize) - 1; - __ and_(tos, tos, Operand(mask)); - deferred->BindExit(); - // Mod of positive power of 2 Smi gives a Smi if the lhs is an integer. - frame_->EmitPush( - tos, - both_sides_are_smi ? TypeInfo::Smi() : TypeInfo::Number()); - break; - } - - case Token::MUL: { - ASSERT(IsEasyToMultiplyBy(int_value)); - DeferredCode* deferred = - new DeferredInlineSmiOperation(op, int_value, reversed, mode, tos); - unsigned max_smi_that_wont_overflow = Smi::kMaxValue / int_value; - max_smi_that_wont_overflow <<= kSmiTagSize; - unsigned mask = 0x80000000u; - while ((mask & max_smi_that_wont_overflow) == 0) { - mask |= mask >> 1; - } - mask |= kSmiTagMask; - // This does a single mask that checks for a too high value in a - // conservative way and for a non-Smi. It also filters out negative - // numbers, unfortunately, but since this code is inline we prefer - // brevity to comprehensiveness. - __ tst(tos, Operand(mask)); - deferred->Branch(ne); - InlineMultiplyByKnownInt(masm_, tos, tos, int_value); - deferred->BindExit(); - frame_->EmitPush(tos); - break; - } - - default: - UNREACHABLE(); - break; - } -} - - -void CodeGenerator::Comparison(Condition cond, - Expression* left, - Expression* right, - bool strict) { - VirtualFrame::RegisterAllocationScope scope(this); - - if (left != NULL) Load(left); - if (right != NULL) Load(right); - - // sp[0] : y - // sp[1] : x - // result : cc register - - // Strict only makes sense for equality comparisons. - ASSERT(!strict || cond == eq); - - Register lhs; - Register rhs; - - bool lhs_is_smi; - bool rhs_is_smi; - - // We load the top two stack positions into registers chosen by the virtual - // frame. This should keep the register shuffling to a minimum. - // Implement '>' and '<=' by reversal to obtain ECMA-262 conversion order. - if (cond == gt || cond == le) { - cond = ReverseCondition(cond); - lhs_is_smi = frame_->KnownSmiAt(0); - rhs_is_smi = frame_->KnownSmiAt(1); - lhs = frame_->PopToRegister(); - rhs = frame_->PopToRegister(lhs); // Don't pop to the same register again! - } else { - rhs_is_smi = frame_->KnownSmiAt(0); - lhs_is_smi = frame_->KnownSmiAt(1); - rhs = frame_->PopToRegister(); - lhs = frame_->PopToRegister(rhs); // Don't pop to the same register again! - } - - bool both_sides_are_smi = (lhs_is_smi && rhs_is_smi); - - ASSERT(rhs.is(r0) || rhs.is(r1)); - ASSERT(lhs.is(r0) || lhs.is(r1)); - - JumpTarget exit; - - if (!both_sides_are_smi) { - // Now we have the two sides in r0 and r1. We flush any other registers - // because the stub doesn't know about register allocation. - frame_->SpillAll(); - Register scratch = VirtualFrame::scratch0(); - Register smi_test_reg; - if (lhs_is_smi) { - smi_test_reg = rhs; - } else if (rhs_is_smi) { - smi_test_reg = lhs; - } else { - __ orr(scratch, lhs, Operand(rhs)); - smi_test_reg = scratch; - } - __ tst(smi_test_reg, Operand(kSmiTagMask)); - JumpTarget smi; - smi.Branch(eq); - - // Perform non-smi comparison by stub. - // CompareStub takes arguments in r0 and r1, returns <0, >0 or 0 in r0. - // We call with 0 args because there are 0 on the stack. - CompareStub stub(cond, strict, NO_SMI_COMPARE_IN_STUB, lhs, rhs); - frame_->CallStub(&stub, 0); - __ cmp(r0, Operand(0, RelocInfo::NONE)); - exit.Jump(); - - smi.Bind(); - } - - // Do smi comparisons by pointer comparison. - __ cmp(lhs, Operand(rhs)); - - exit.Bind(); - cc_reg_ = cond; -} - - -// Call the function on the stack with the given arguments. -void CodeGenerator::CallWithArguments(ZoneList<Expression*>* args, - CallFunctionFlags flags, - int position) { - // Push the arguments ("left-to-right") on the stack. - int arg_count = args->length(); - for (int i = 0; i < arg_count; i++) { - Load(args->at(i)); - } - - // Record the position for debugging purposes. - CodeForSourcePosition(position); - - // Use the shared code stub to call the function. - InLoopFlag in_loop = loop_nesting() > 0 ? IN_LOOP : NOT_IN_LOOP; - CallFunctionStub call_function(arg_count, in_loop, flags); - frame_->CallStub(&call_function, arg_count + 1); - - // Restore context and pop function from the stack. - __ ldr(cp, frame_->Context()); - frame_->Drop(); // discard the TOS -} - - -void CodeGenerator::CallApplyLazy(Expression* applicand, - Expression* receiver, - VariableProxy* arguments, - int position) { - // An optimized implementation of expressions of the form - // x.apply(y, arguments). - // If the arguments object of the scope has not been allocated, - // and x.apply is Function.prototype.apply, this optimization - // just copies y and the arguments of the current function on the - // stack, as receiver and arguments, and calls x. - // In the implementation comments, we call x the applicand - // and y the receiver. - - ASSERT(ArgumentsMode() == LAZY_ARGUMENTS_ALLOCATION); - ASSERT(arguments->IsArguments()); - - // Load applicand.apply onto the stack. This will usually - // give us a megamorphic load site. Not super, but it works. - Load(applicand); - Handle<String> name = Factory::LookupAsciiSymbol("apply"); - frame_->Dup(); - frame_->CallLoadIC(name, RelocInfo::CODE_TARGET); - frame_->EmitPush(r0); - - // Load the receiver and the existing arguments object onto the - // expression stack. Avoid allocating the arguments object here. - Load(receiver); - LoadFromSlot(scope()->arguments()->AsSlot(), NOT_INSIDE_TYPEOF); - - // At this point the top two stack elements are probably in registers - // since they were just loaded. Ensure they are in regs and get the - // regs. - Register receiver_reg = frame_->Peek2(); - Register arguments_reg = frame_->Peek(); - - // From now on the frame is spilled. - frame_->SpillAll(); - - // Emit the source position information after having loaded the - // receiver and the arguments. - CodeForSourcePosition(position); - // Contents of the stack at this point: - // sp[0]: arguments object of the current function or the hole. - // sp[1]: receiver - // sp[2]: applicand.apply - // sp[3]: applicand. - - // Check if the arguments object has been lazily allocated - // already. If so, just use that instead of copying the arguments - // from the stack. This also deals with cases where a local variable - // named 'arguments' has been introduced. - JumpTarget slow; - Label done; - __ LoadRoot(ip, Heap::kArgumentsMarkerRootIndex); - __ cmp(ip, arguments_reg); - slow.Branch(ne); - - Label build_args; - // Get rid of the arguments object probe. - frame_->Drop(); - // Stack now has 3 elements on it. - // Contents of stack at this point: - // sp[0]: receiver - in the receiver_reg register. - // sp[1]: applicand.apply - // sp[2]: applicand. - - // Check that the receiver really is a JavaScript object. - __ JumpIfSmi(receiver_reg, &build_args); - // We allow all JSObjects including JSFunctions. As long as - // JS_FUNCTION_TYPE is the last instance type and it is right - // after LAST_JS_OBJECT_TYPE, we do not have to check the upper - // bound. - STATIC_ASSERT(LAST_TYPE == JS_FUNCTION_TYPE); - STATIC_ASSERT(JS_FUNCTION_TYPE == LAST_JS_OBJECT_TYPE + 1); - __ CompareObjectType(receiver_reg, r2, r3, FIRST_JS_OBJECT_TYPE); - __ b(lt, &build_args); - - // Check that applicand.apply is Function.prototype.apply. - __ ldr(r0, MemOperand(sp, kPointerSize)); - __ JumpIfSmi(r0, &build_args); - __ CompareObjectType(r0, r1, r2, JS_FUNCTION_TYPE); - __ b(ne, &build_args); - Handle<Code> apply_code(Builtins::builtin(Builtins::FunctionApply)); - __ ldr(r1, FieldMemOperand(r0, JSFunction::kCodeEntryOffset)); - __ sub(r1, r1, Operand(Code::kHeaderSize - kHeapObjectTag)); - __ cmp(r1, Operand(apply_code)); - __ b(ne, &build_args); - - // Check that applicand is a function. - __ ldr(r1, MemOperand(sp, 2 * kPointerSize)); - __ JumpIfSmi(r1, &build_args); - __ CompareObjectType(r1, r2, r3, JS_FUNCTION_TYPE); - __ b(ne, &build_args); - - // Copy the arguments to this function possibly from the - // adaptor frame below it. - Label invoke, adapted; - __ ldr(r2, MemOperand(fp, StandardFrameConstants::kCallerFPOffset)); - __ ldr(r3, MemOperand(r2, StandardFrameConstants::kContextOffset)); - __ cmp(r3, Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR))); - __ b(eq, &adapted); - - // No arguments adaptor frame. Copy fixed number of arguments. - __ mov(r0, Operand(scope()->num_parameters())); - for (int i = 0; i < scope()->num_parameters(); i++) { - __ ldr(r2, frame_->ParameterAt(i)); - __ push(r2); - } - __ jmp(&invoke); - - // Arguments adaptor frame present. Copy arguments from there, but - // avoid copying too many arguments to avoid stack overflows. - __ bind(&adapted); - static const uint32_t kArgumentsLimit = 1 * KB; - __ ldr(r0, MemOperand(r2, ArgumentsAdaptorFrameConstants::kLengthOffset)); - __ mov(r0, Operand(r0, LSR, kSmiTagSize)); - __ mov(r3, r0); - __ cmp(r0, Operand(kArgumentsLimit)); - __ b(gt, &build_args); - - // Loop through the arguments pushing them onto the execution - // stack. We don't inform the virtual frame of the push, so we don't - // have to worry about getting rid of the elements from the virtual - // frame. - Label loop; - // r3 is a small non-negative integer, due to the test above. - __ cmp(r3, Operand(0, RelocInfo::NONE)); - __ b(eq, &invoke); - // Compute the address of the first argument. - __ add(r2, r2, Operand(r3, LSL, kPointerSizeLog2)); - __ add(r2, r2, Operand(kPointerSize)); - __ bind(&loop); - // Post-decrement argument address by kPointerSize on each iteration. - __ ldr(r4, MemOperand(r2, kPointerSize, NegPostIndex)); - __ push(r4); - __ sub(r3, r3, Operand(1), SetCC); - __ b(gt, &loop); - - // Invoke the function. - __ bind(&invoke); - ParameterCount actual(r0); - __ InvokeFunction(r1, actual, CALL_FUNCTION); - // Drop applicand.apply and applicand from the stack, and push - // the result of the function call, but leave the spilled frame - // unchanged, with 3 elements, so it is correct when we compile the - // slow-case code. - __ add(sp, sp, Operand(2 * kPointerSize)); - __ push(r0); - // Stack now has 1 element: - // sp[0]: result - __ jmp(&done); - - // Slow-case: Allocate the arguments object since we know it isn't - // there, and fall-through to the slow-case where we call - // applicand.apply. - __ bind(&build_args); - // Stack now has 3 elements, because we have jumped from where: - // sp[0]: receiver - // sp[1]: applicand.apply - // sp[2]: applicand. - StoreArgumentsObject(false); - - // Stack and frame now have 4 elements. - slow.Bind(); - - // Generic computation of x.apply(y, args) with no special optimization. - // Flip applicand.apply and applicand on the stack, so - // applicand looks like the receiver of the applicand.apply call. - // Then process it as a normal function call. - __ ldr(r0, MemOperand(sp, 3 * kPointerSize)); - __ ldr(r1, MemOperand(sp, 2 * kPointerSize)); - __ Strd(r0, r1, MemOperand(sp, 2 * kPointerSize)); - - CallFunctionStub call_function(2, NOT_IN_LOOP, NO_CALL_FUNCTION_FLAGS); - frame_->CallStub(&call_function, 3); - // The function and its two arguments have been dropped. - frame_->Drop(); // Drop the receiver as well. - frame_->EmitPush(r0); - frame_->SpillAll(); // A spilled frame is also jumping to label done. - // Stack now has 1 element: - // sp[0]: result - __ bind(&done); - - // Restore the context register after a call. - __ ldr(cp, frame_->Context()); -} - - -void CodeGenerator::Branch(bool if_true, JumpTarget* target) { - ASSERT(has_cc()); - Condition cond = if_true ? cc_reg_ : NegateCondition(cc_reg_); - target->Branch(cond); - cc_reg_ = al; -} - - -void CodeGenerator::CheckStack() { - frame_->SpillAll(); - Comment cmnt(masm_, "[ check stack"); - __ LoadRoot(ip, Heap::kStackLimitRootIndex); - masm_->cmp(sp, Operand(ip)); - StackCheckStub stub; - // Call the stub if lower. - masm_->mov(ip, - Operand(reinterpret_cast<intptr_t>(stub.GetCode().location()), - RelocInfo::CODE_TARGET), - LeaveCC, - lo); - masm_->Call(ip, lo); -} - - -void CodeGenerator::VisitStatements(ZoneList<Statement*>* statements) { -#ifdef DEBUG - int original_height = frame_->height(); -#endif - for (int i = 0; frame_ != NULL && i < statements->length(); i++) { - Visit(statements->at(i)); - } - ASSERT(!has_valid_frame() || frame_->height() == original_height); -} - - -void CodeGenerator::VisitBlock(Block* node) { -#ifdef DEBUG - int original_height = frame_->height(); -#endif - Comment cmnt(masm_, "[ Block"); - CodeForStatementPosition(node); - node->break_target()->SetExpectedHeight(); - VisitStatements(node->statements()); - if (node->break_target()->is_linked()) { - node->break_target()->Bind(); - } - node->break_target()->Unuse(); - ASSERT(!has_valid_frame() || frame_->height() == original_height); -} - - -void CodeGenerator::DeclareGlobals(Handle<FixedArray> pairs) { - frame_->EmitPush(cp); - frame_->EmitPush(Operand(pairs)); - frame_->EmitPush(Operand(Smi::FromInt(is_eval() ? 1 : 0))); - frame_->EmitPush(Operand(Smi::FromInt(strict_mode_flag()))); - - frame_->CallRuntime(Runtime::kDeclareGlobals, 4); - // The result is discarded. -} - - -void CodeGenerator::VisitDeclaration(Declaration* node) { -#ifdef DEBUG - int original_height = frame_->height(); -#endif - Comment cmnt(masm_, "[ Declaration"); - Variable* var = node->proxy()->var(); - ASSERT(var != NULL); // must have been resolved - Slot* slot = var->AsSlot(); - - // If it was not possible to allocate the variable at compile time, - // we need to "declare" it at runtime to make sure it actually - // exists in the local context. - if (slot != NULL && slot->type() == Slot::LOOKUP) { - // Variables with a "LOOKUP" slot were introduced as non-locals - // during variable resolution and must have mode DYNAMIC. - ASSERT(var->is_dynamic()); - // For now, just do a runtime call. - frame_->EmitPush(cp); - frame_->EmitPush(Operand(var->name())); - // Declaration nodes are always declared in only two modes. - ASSERT(node->mode() == Variable::VAR || node->mode() == Variable::CONST); - PropertyAttributes attr = node->mode() == Variable::VAR ? NONE : READ_ONLY; - frame_->EmitPush(Operand(Smi::FromInt(attr))); - // Push initial value, if any. - // Note: For variables we must not push an initial value (such as - // 'undefined') because we may have a (legal) redeclaration and we - // must not destroy the current value. - if (node->mode() == Variable::CONST) { - frame_->EmitPushRoot(Heap::kTheHoleValueRootIndex); - } else if (node->fun() != NULL) { - Load(node->fun()); - } else { - frame_->EmitPush(Operand(0, RelocInfo::NONE)); - } - - frame_->CallRuntime(Runtime::kDeclareContextSlot, 4); - // Ignore the return value (declarations are statements). - - ASSERT(frame_->height() == original_height); - return; - } - - ASSERT(!var->is_global()); - - // If we have a function or a constant, we need to initialize the variable. - Expression* val = NULL; - if (node->mode() == Variable::CONST) { - val = new Literal(Factory::the_hole_value()); - } else { - val = node->fun(); // NULL if we don't have a function - } - - - if (val != NULL) { - WriteBarrierCharacter wb_info = - val->type()->IsLikelySmi() ? LIKELY_SMI : UNLIKELY_SMI; - if (val->AsLiteral() != NULL) wb_info = NEVER_NEWSPACE; - // Set initial value. - Reference target(this, node->proxy()); - Load(val); - target.SetValue(NOT_CONST_INIT, wb_info); - - // Get rid of the assigned value (declarations are statements). - frame_->Drop(); - } - ASSERT(frame_->height() == original_height); -} - - -void CodeGenerator::VisitExpressionStatement(ExpressionStatement* node) { -#ifdef DEBUG - int original_height = frame_->height(); -#endif - Comment cmnt(masm_, "[ ExpressionStatement"); - CodeForStatementPosition(node); - Expression* expression = node->expression(); - expression->MarkAsStatement(); - Load(expression); - frame_->Drop(); - ASSERT(frame_->height() == original_height); -} - - -void CodeGenerator::VisitEmptyStatement(EmptyStatement* node) { -#ifdef DEBUG - int original_height = frame_->height(); -#endif - Comment cmnt(masm_, "// EmptyStatement"); - CodeForStatementPosition(node); - // nothing to do - ASSERT(frame_->height() == original_height); -} - - -void CodeGenerator::VisitIfStatement(IfStatement* node) { -#ifdef DEBUG - int original_height = frame_->height(); -#endif - Comment cmnt(masm_, "[ IfStatement"); - // Generate different code depending on which parts of the if statement - // are present or not. - bool has_then_stm = node->HasThenStatement(); - bool has_else_stm = node->HasElseStatement(); - - CodeForStatementPosition(node); - - JumpTarget exit; - if (has_then_stm && has_else_stm) { - Comment cmnt(masm_, "[ IfThenElse"); - JumpTarget then; - JumpTarget else_; - // if (cond) - LoadCondition(node->condition(), &then, &else_, true); - if (frame_ != NULL) { - Branch(false, &else_); - } - // then - if (frame_ != NULL || then.is_linked()) { - then.Bind(); - Visit(node->then_statement()); - } - if (frame_ != NULL) { - exit.Jump(); - } - // else - if (else_.is_linked()) { - else_.Bind(); - Visit(node->else_statement()); - } - - } else if (has_then_stm) { - Comment cmnt(masm_, "[ IfThen"); - ASSERT(!has_else_stm); - JumpTarget then; - // if (cond) - LoadCondition(node->condition(), &then, &exit, true); - if (frame_ != NULL) { - Branch(false, &exit); - } - // then - if (frame_ != NULL || then.is_linked()) { - then.Bind(); - Visit(node->then_statement()); - } - - } else if (has_else_stm) { - Comment cmnt(masm_, "[ IfElse"); - ASSERT(!has_then_stm); - JumpTarget else_; - // if (!cond) - LoadCondition(node->condition(), &exit, &else_, true); - if (frame_ != NULL) { - Branch(true, &exit); - } - // else - if (frame_ != NULL || else_.is_linked()) { - else_.Bind(); - Visit(node->else_statement()); - } - - } else { - Comment cmnt(masm_, "[ If"); - ASSERT(!has_then_stm && !has_else_stm); - // if (cond) - LoadCondition(node->condition(), &exit, &exit, false); - if (frame_ != NULL) { - if (has_cc()) { - cc_reg_ = al; - } else { - frame_->Drop(); - } - } - } - - // end - if (exit.is_linked()) { - exit.Bind(); - } - ASSERT(!has_valid_frame() || frame_->height() == original_height); -} - - -void CodeGenerator::VisitContinueStatement(ContinueStatement* node) { - Comment cmnt(masm_, "[ ContinueStatement"); - CodeForStatementPosition(node); - node->target()->continue_target()->Jump(); -} - - -void CodeGenerator::VisitBreakStatement(BreakStatement* node) { - Comment cmnt(masm_, "[ BreakStatement"); - CodeForStatementPosition(node); - node->target()->break_target()->Jump(); -} - - -void CodeGenerator::VisitReturnStatement(ReturnStatement* node) { - Comment cmnt(masm_, "[ ReturnStatement"); - - CodeForStatementPosition(node); - Load(node->expression()); - frame_->PopToR0(); - frame_->PrepareForReturn(); - if (function_return_is_shadowed_) { - function_return_.Jump(); - } else { - // Pop the result from the frame and prepare the frame for - // returning thus making it easier to merge. - if (function_return_.is_bound()) { - // If the function return label is already bound we reuse the - // code by jumping to the return site. - function_return_.Jump(); - } else { - function_return_.Bind(); - GenerateReturnSequence(); - } - } -} - - -void CodeGenerator::GenerateReturnSequence() { - if (FLAG_trace) { - // Push the return value on the stack as the parameter. - // Runtime::TraceExit returns the parameter as it is. - frame_->EmitPush(r0); - frame_->CallRuntime(Runtime::kTraceExit, 1); - } - -#ifdef DEBUG - // Add a label for checking the size of the code used for returning. - Label check_exit_codesize; - masm_->bind(&check_exit_codesize); -#endif - // Make sure that the constant pool is not emitted inside of the return - // sequence. - { Assembler::BlockConstPoolScope block_const_pool(masm_); - // Tear down the frame which will restore the caller's frame pointer and - // the link register. - frame_->Exit(); - - // Here we use masm_-> instead of the __ macro to avoid the code coverage - // tool from instrumenting as we rely on the code size here. - int32_t sp_delta = (scope()->num_parameters() + 1) * kPointerSize; - masm_->add(sp, sp, Operand(sp_delta)); - masm_->Jump(lr); - DeleteFrame(); - -#ifdef DEBUG - // Check that the size of the code used for returning is large enough - // for the debugger's requirements. - ASSERT(Assembler::kJSReturnSequenceInstructions <= - masm_->InstructionsGeneratedSince(&check_exit_codesize)); -#endif - } -} - - -void CodeGenerator::VisitWithEnterStatement(WithEnterStatement* node) { -#ifdef DEBUG - int original_height = frame_->height(); -#endif - Comment cmnt(masm_, "[ WithEnterStatement"); - CodeForStatementPosition(node); - Load(node->expression()); - if (node->is_catch_block()) { - frame_->CallRuntime(Runtime::kPushCatchContext, 1); - } else { - frame_->CallRuntime(Runtime::kPushContext, 1); - } -#ifdef DEBUG - JumpTarget verified_true; - __ cmp(r0, cp); - verified_true.Branch(eq); - __ stop("PushContext: r0 is expected to be the same as cp"); - verified_true.Bind(); -#endif - // Update context local. - __ str(cp, frame_->Context()); - ASSERT(frame_->height() == original_height); -} - - -void CodeGenerator::VisitWithExitStatement(WithExitStatement* node) { -#ifdef DEBUG - int original_height = frame_->height(); -#endif - Comment cmnt(masm_, "[ WithExitStatement"); - CodeForStatementPosition(node); - // Pop context. - __ ldr(cp, ContextOperand(cp, Context::PREVIOUS_INDEX)); - // Update context local. - __ str(cp, frame_->Context()); - ASSERT(frame_->height() == original_height); -} - - -void CodeGenerator::VisitSwitchStatement(SwitchStatement* node) { -#ifdef DEBUG - int original_height = frame_->height(); -#endif - Comment cmnt(masm_, "[ SwitchStatement"); - CodeForStatementPosition(node); - node->break_target()->SetExpectedHeight(); - - Load(node->tag()); - - JumpTarget next_test; - JumpTarget fall_through; - JumpTarget default_entry; - JumpTarget default_exit(JumpTarget::BIDIRECTIONAL); - ZoneList<CaseClause*>* cases = node->cases(); - int length = cases->length(); - CaseClause* default_clause = NULL; - - for (int i = 0; i < length; i++) { - CaseClause* clause = cases->at(i); - if (clause->is_default()) { - // Remember the default clause and compile it at the end. - default_clause = clause; - continue; - } - - Comment cmnt(masm_, "[ Case clause"); - // Compile the test. - next_test.Bind(); - next_test.Unuse(); - // Duplicate TOS. - frame_->Dup(); - Comparison(eq, NULL, clause->label(), true); - Branch(false, &next_test); - - // Before entering the body from the test, remove the switch value from - // the stack. - frame_->Drop(); - - // Label the body so that fall through is enabled. - if (i > 0 && cases->at(i - 1)->is_default()) { - default_exit.Bind(); - } else { - fall_through.Bind(); - fall_through.Unuse(); - } - VisitStatements(clause->statements()); - - // If control flow can fall through from the body, jump to the next body - // or the end of the statement. - if (frame_ != NULL) { - if (i < length - 1 && cases->at(i + 1)->is_default()) { - default_entry.Jump(); - } else { - fall_through.Jump(); - } - } - } - - // The final "test" removes the switch value. - next_test.Bind(); - frame_->Drop(); - - // If there is a default clause, compile it. - if (default_clause != NULL) { - Comment cmnt(masm_, "[ Default clause"); - default_entry.Bind(); - VisitStatements(default_clause->statements()); - // If control flow can fall out of the default and there is a case after - // it, jump to that case's body. - if (frame_ != NULL && default_exit.is_bound()) { - default_exit.Jump(); - } - } - - if (fall_through.is_linked()) { - fall_through.Bind(); - } - - if (node->break_target()->is_linked()) { - node->break_target()->Bind(); - } - node->break_target()->Unuse(); - ASSERT(!has_valid_frame() || frame_->height() == original_height); -} - - -void CodeGenerator::VisitDoWhileStatement(DoWhileStatement* node) { -#ifdef DEBUG - int original_height = frame_->height(); -#endif - Comment cmnt(masm_, "[ DoWhileStatement"); - CodeForStatementPosition(node); - node->break_target()->SetExpectedHeight(); - JumpTarget body(JumpTarget::BIDIRECTIONAL); - IncrementLoopNesting(); - - // Label the top of the loop for the backward CFG edge. If the test - // is always true we can use the continue target, and if the test is - // always false there is no need. - ConditionAnalysis info = AnalyzeCondition(node->cond()); - switch (info) { - case ALWAYS_TRUE: - node->continue_target()->SetExpectedHeight(); - node->continue_target()->Bind(); - break; - case ALWAYS_FALSE: - node->continue_target()->SetExpectedHeight(); - break; - case DONT_KNOW: - node->continue_target()->SetExpectedHeight(); - body.Bind(); - break; - } - - CheckStack(); // TODO(1222600): ignore if body contains calls. - Visit(node->body()); - - // Compile the test. - switch (info) { - case ALWAYS_TRUE: - // If control can fall off the end of the body, jump back to the - // top. - if (has_valid_frame()) { - node->continue_target()->Jump(); - } - break; - case ALWAYS_FALSE: - // If we have a continue in the body, we only have to bind its - // jump target. - if (node->continue_target()->is_linked()) { - node->continue_target()->Bind(); - } - break; - case DONT_KNOW: - // We have to compile the test expression if it can be reached by - // control flow falling out of the body or via continue. - if (node->continue_target()->is_linked()) { - node->continue_target()->Bind(); - } - if (has_valid_frame()) { - Comment cmnt(masm_, "[ DoWhileCondition"); - CodeForDoWhileConditionPosition(node); - LoadCondition(node->cond(), &body, node->break_target(), true); - if (has_valid_frame()) { - // A invalid frame here indicates that control did not - // fall out of the test expression. - Branch(true, &body); - } - } - break; - } - - if (node->break_target()->is_linked()) { - node->break_target()->Bind(); - } - DecrementLoopNesting(); - ASSERT(!has_valid_frame() || frame_->height() == original_height); -} - - -void CodeGenerator::VisitWhileStatement(WhileStatement* node) { -#ifdef DEBUG - int original_height = frame_->height(); -#endif - Comment cmnt(masm_, "[ WhileStatement"); - CodeForStatementPosition(node); - - // If the test is never true and has no side effects there is no need - // to compile the test or body. - ConditionAnalysis info = AnalyzeCondition(node->cond()); - if (info == ALWAYS_FALSE) return; - - node->break_target()->SetExpectedHeight(); - IncrementLoopNesting(); - - // Label the top of the loop with the continue target for the backward - // CFG edge. - node->continue_target()->SetExpectedHeight(); - node->continue_target()->Bind(); - - if (info == DONT_KNOW) { - JumpTarget body(JumpTarget::BIDIRECTIONAL); - LoadCondition(node->cond(), &body, node->break_target(), true); - if (has_valid_frame()) { - // A NULL frame indicates that control did not fall out of the - // test expression. - Branch(false, node->break_target()); - } - if (has_valid_frame() || body.is_linked()) { - body.Bind(); - } - } - - if (has_valid_frame()) { - CheckStack(); // TODO(1222600): ignore if body contains calls. - Visit(node->body()); - - // If control flow can fall out of the body, jump back to the top. - if (has_valid_frame()) { - node->continue_target()->Jump(); - } - } - if (node->break_target()->is_linked()) { - node->break_target()->Bind(); - } - DecrementLoopNesting(); - ASSERT(!has_valid_frame() || frame_->height() == original_height); -} - - -void CodeGenerator::VisitForStatement(ForStatement* node) { -#ifdef DEBUG - int original_height = frame_->height(); -#endif - Comment cmnt(masm_, "[ ForStatement"); - CodeForStatementPosition(node); - if (node->init() != NULL) { - Visit(node->init()); - } - - // If the test is never true there is no need to compile the test or - // body. - ConditionAnalysis info = AnalyzeCondition(node->cond()); - if (info == ALWAYS_FALSE) return; - - node->break_target()->SetExpectedHeight(); - IncrementLoopNesting(); - - // We know that the loop index is a smi if it is not modified in the - // loop body and it is checked against a constant limit in the loop - // condition. In this case, we reset the static type information of the - // loop index to smi before compiling the body, the update expression, and - // the bottom check of the loop condition. - TypeInfoCodeGenState type_info_scope(this, - node->is_fast_smi_loop() ? - node->loop_variable()->AsSlot() : - NULL, - TypeInfo::Smi()); - - // If there is no update statement, label the top of the loop with the - // continue target, otherwise with the loop target. - JumpTarget loop(JumpTarget::BIDIRECTIONAL); - if (node->next() == NULL) { - node->continue_target()->SetExpectedHeight(); - node->continue_target()->Bind(); - } else { - node->continue_target()->SetExpectedHeight(); - loop.Bind(); - } - - // If the test is always true, there is no need to compile it. - if (info == DONT_KNOW) { - JumpTarget body; - LoadCondition(node->cond(), &body, node->break_target(), true); - if (has_valid_frame()) { - Branch(false, node->break_target()); - } - if (has_valid_frame() || body.is_linked()) { - body.Bind(); - } - } - - if (has_valid_frame()) { - CheckStack(); // TODO(1222600): ignore if body contains calls. - Visit(node->body()); - - if (node->next() == NULL) { - // If there is no update statement and control flow can fall out - // of the loop, jump directly to the continue label. - if (has_valid_frame()) { - node->continue_target()->Jump(); - } - } else { - // If there is an update statement and control flow can reach it - // via falling out of the body of the loop or continuing, we - // compile the update statement. - if (node->continue_target()->is_linked()) { - node->continue_target()->Bind(); - } - if (has_valid_frame()) { - // Record source position of the statement as this code which is - // after the code for the body actually belongs to the loop - // statement and not the body. - CodeForStatementPosition(node); - Visit(node->next()); - loop.Jump(); - } - } - } - if (node->break_target()->is_linked()) { - node->break_target()->Bind(); - } - DecrementLoopNesting(); - ASSERT(!has_valid_frame() || frame_->height() == original_height); -} - - -void CodeGenerator::VisitForInStatement(ForInStatement* node) { -#ifdef DEBUG - int original_height = frame_->height(); -#endif - Comment cmnt(masm_, "[ ForInStatement"); - CodeForStatementPosition(node); - - JumpTarget primitive; - JumpTarget jsobject; - JumpTarget fixed_array; - JumpTarget entry(JumpTarget::BIDIRECTIONAL); - JumpTarget end_del_check; - JumpTarget exit; - - // Get the object to enumerate over (converted to JSObject). - Load(node->enumerable()); - - VirtualFrame::SpilledScope spilled_scope(frame_); - // Both SpiderMonkey and kjs ignore null and undefined in contrast - // to the specification. 12.6.4 mandates a call to ToObject. - frame_->EmitPop(r0); - __ LoadRoot(ip, Heap::kUndefinedValueRootIndex); - __ cmp(r0, ip); - exit.Branch(eq); - __ LoadRoot(ip, Heap::kNullValueRootIndex); - __ cmp(r0, ip); - exit.Branch(eq); - - // Stack layout in body: - // [iteration counter (Smi)] - // [length of array] - // [FixedArray] - // [Map or 0] - // [Object] - - // Check if enumerable is already a JSObject - __ tst(r0, Operand(kSmiTagMask)); - primitive.Branch(eq); - __ CompareObjectType(r0, r1, r1, FIRST_JS_OBJECT_TYPE); - jsobject.Branch(hs); - - primitive.Bind(); - frame_->EmitPush(r0); - frame_->InvokeBuiltin(Builtins::TO_OBJECT, CALL_JS, 1); - - jsobject.Bind(); - // Get the set of properties (as a FixedArray or Map). - // r0: value to be iterated over - frame_->EmitPush(r0); // Push the object being iterated over. - - // Check cache validity in generated code. This is a fast case for - // the JSObject::IsSimpleEnum cache validity checks. If we cannot - // guarantee cache validity, call the runtime system to check cache - // validity or get the property names in a fixed array. - JumpTarget call_runtime; - JumpTarget loop(JumpTarget::BIDIRECTIONAL); - JumpTarget check_prototype; - JumpTarget use_cache; - __ mov(r1, Operand(r0)); - loop.Bind(); - // Check that there are no elements. - __ ldr(r2, FieldMemOperand(r1, JSObject::kElementsOffset)); - __ LoadRoot(r4, Heap::kEmptyFixedArrayRootIndex); - __ cmp(r2, r4); - call_runtime.Branch(ne); - // Check that instance descriptors are not empty so that we can - // check for an enum cache. Leave the map in r3 for the subsequent - // prototype load. - __ ldr(r3, FieldMemOperand(r1, HeapObject::kMapOffset)); - __ ldr(r2, FieldMemOperand(r3, Map::kInstanceDescriptorsOffset)); - __ LoadRoot(ip, Heap::kEmptyDescriptorArrayRootIndex); - __ cmp(r2, ip); - call_runtime.Branch(eq); - // Check that there in an enum cache in the non-empty instance - // descriptors. This is the case if the next enumeration index - // field does not contain a smi. - __ ldr(r2, FieldMemOperand(r2, DescriptorArray::kEnumerationIndexOffset)); - __ tst(r2, Operand(kSmiTagMask)); - call_runtime.Branch(eq); - // For all objects but the receiver, check that the cache is empty. - // r4: empty fixed array root. - __ cmp(r1, r0); - check_prototype.Branch(eq); - __ ldr(r2, FieldMemOperand(r2, DescriptorArray::kEnumCacheBridgeCacheOffset)); - __ cmp(r2, r4); - call_runtime.Branch(ne); - check_prototype.Bind(); - // Load the prototype from the map and loop if non-null. - __ ldr(r1, FieldMemOperand(r3, Map::kPrototypeOffset)); - __ LoadRoot(ip, Heap::kNullValueRootIndex); - __ cmp(r1, ip); - loop.Branch(ne); - // The enum cache is valid. Load the map of the object being - // iterated over and use the cache for the iteration. - __ ldr(r0, FieldMemOperand(r0, HeapObject::kMapOffset)); - use_cache.Jump(); - - call_runtime.Bind(); - // Call the runtime to get the property names for the object. - frame_->EmitPush(r0); // push the object (slot 4) for the runtime call - frame_->CallRuntime(Runtime::kGetPropertyNamesFast, 1); - - // If we got a map from the runtime call, we can do a fast - // modification check. Otherwise, we got a fixed array, and we have - // to do a slow check. - // r0: map or fixed array (result from call to - // Runtime::kGetPropertyNamesFast) - __ mov(r2, Operand(r0)); - __ ldr(r1, FieldMemOperand(r2, HeapObject::kMapOffset)); - __ LoadRoot(ip, Heap::kMetaMapRootIndex); - __ cmp(r1, ip); - fixed_array.Branch(ne); - - use_cache.Bind(); - // Get enum cache - // r0: map (either the result from a call to - // Runtime::kGetPropertyNamesFast or has been fetched directly from - // the object) - __ mov(r1, Operand(r0)); - __ ldr(r1, FieldMemOperand(r1, Map::kInstanceDescriptorsOffset)); - __ ldr(r1, FieldMemOperand(r1, DescriptorArray::kEnumerationIndexOffset)); - __ ldr(r2, - FieldMemOperand(r1, DescriptorArray::kEnumCacheBridgeCacheOffset)); - - frame_->EmitPush(r0); // map - frame_->EmitPush(r2); // enum cache bridge cache - __ ldr(r0, FieldMemOperand(r2, FixedArray::kLengthOffset)); - frame_->EmitPush(r0); - __ mov(r0, Operand(Smi::FromInt(0))); - frame_->EmitPush(r0); - entry.Jump(); - - fixed_array.Bind(); - __ mov(r1, Operand(Smi::FromInt(0))); - frame_->EmitPush(r1); // insert 0 in place of Map - frame_->EmitPush(r0); - - // Push the length of the array and the initial index onto the stack. - __ ldr(r0, FieldMemOperand(r0, FixedArray::kLengthOffset)); - frame_->EmitPush(r0); - __ mov(r0, Operand(Smi::FromInt(0))); // init index - frame_->EmitPush(r0); - - // Condition. - entry.Bind(); - // sp[0] : index - // sp[1] : array/enum cache length - // sp[2] : array or enum cache - // sp[3] : 0 or map - // sp[4] : enumerable - // Grab the current frame's height for the break and continue - // targets only after all the state is pushed on the frame. - node->break_target()->SetExpectedHeight(); - node->continue_target()->SetExpectedHeight(); - - // Load the current count to r0, load the length to r1. - __ Ldrd(r0, r1, frame_->ElementAt(0)); - __ cmp(r0, r1); // compare to the array length - node->break_target()->Branch(hs); - - // Get the i'th entry of the array. - __ ldr(r2, frame_->ElementAt(2)); - __ add(r2, r2, Operand(FixedArray::kHeaderSize - kHeapObjectTag)); - __ ldr(r3, MemOperand(r2, r0, LSL, kPointerSizeLog2 - kSmiTagSize)); - - // Get Map or 0. - __ ldr(r2, frame_->ElementAt(3)); - // Check if this (still) matches the map of the enumerable. - // If not, we have to filter the key. - __ ldr(r1, frame_->ElementAt(4)); - __ ldr(r1, FieldMemOperand(r1, HeapObject::kMapOffset)); - __ cmp(r1, Operand(r2)); - end_del_check.Branch(eq); - - // Convert the entry to a string (or null if it isn't a property anymore). - __ ldr(r0, frame_->ElementAt(4)); // push enumerable - frame_->EmitPush(r0); - frame_->EmitPush(r3); // push entry - frame_->InvokeBuiltin(Builtins::FILTER_KEY, CALL_JS, 2); - __ mov(r3, Operand(r0), SetCC); - // If the property has been removed while iterating, we just skip it. - node->continue_target()->Branch(eq); - - end_del_check.Bind(); - // Store the entry in the 'each' expression and take another spin in the - // loop. r3: i'th entry of the enum cache (or string there of) - frame_->EmitPush(r3); // push entry - { VirtualFrame::RegisterAllocationScope scope(this); - Reference each(this, node->each()); - if (!each.is_illegal()) { - if (each.size() > 0) { - // Loading a reference may leave the frame in an unspilled state. - frame_->SpillAll(); // Sync stack to memory. - // Get the value (under the reference on the stack) from memory. - __ ldr(r0, frame_->ElementAt(each.size())); - frame_->EmitPush(r0); - each.SetValue(NOT_CONST_INIT, UNLIKELY_SMI); - frame_->Drop(2); // The result of the set and the extra pushed value. - } else { - // If the reference was to a slot we rely on the convenient property - // that it doesn't matter whether a value (eg, ebx pushed above) is - // right on top of or right underneath a zero-sized reference. - each.SetValue(NOT_CONST_INIT, UNLIKELY_SMI); - frame_->Drop(1); // Drop the result of the set operation. - } - } - } - // Body. - CheckStack(); // TODO(1222600): ignore if body contains calls. - { VirtualFrame::RegisterAllocationScope scope(this); - Visit(node->body()); - } - - // Next. Reestablish a spilled frame in case we are coming here via - // a continue in the body. - node->continue_target()->Bind(); - frame_->SpillAll(); - frame_->EmitPop(r0); - __ add(r0, r0, Operand(Smi::FromInt(1))); - frame_->EmitPush(r0); - entry.Jump(); - - // Cleanup. No need to spill because VirtualFrame::Drop is safe for - // any frame. - node->break_target()->Bind(); - frame_->Drop(5); - - // Exit. - exit.Bind(); - node->continue_target()->Unuse(); - node->break_target()->Unuse(); - ASSERT(frame_->height() == original_height); -} - - -void CodeGenerator::VisitTryCatchStatement(TryCatchStatement* node) { -#ifdef DEBUG - int original_height = frame_->height(); -#endif - VirtualFrame::SpilledScope spilled_scope(frame_); - Comment cmnt(masm_, "[ TryCatchStatement"); - CodeForStatementPosition(node); - - JumpTarget try_block; - JumpTarget exit; - - try_block.Call(); - // --- Catch block --- - frame_->EmitPush(r0); - - // Store the caught exception in the catch variable. - Variable* catch_var = node->catch_var()->var(); - ASSERT(catch_var != NULL && catch_var->AsSlot() != NULL); - StoreToSlot(catch_var->AsSlot(), NOT_CONST_INIT); - - // Remove the exception from the stack. - frame_->Drop(); - - { VirtualFrame::RegisterAllocationScope scope(this); - VisitStatements(node->catch_block()->statements()); - } - if (frame_ != NULL) { - exit.Jump(); - } - - - // --- Try block --- - try_block.Bind(); - - frame_->PushTryHandler(TRY_CATCH_HANDLER); - int handler_height = frame_->height(); - - // Shadow the labels for all escapes from the try block, including - // returns. During shadowing, the original label is hidden as the - // LabelShadow and operations on the original actually affect the - // shadowing label. - // - // We should probably try to unify the escaping labels and the return - // label. - int nof_escapes = node->escaping_targets()->length(); - List<ShadowTarget*> shadows(1 + nof_escapes); - - // Add the shadow target for the function return. - static const int kReturnShadowIndex = 0; - shadows.Add(new ShadowTarget(&function_return_)); - bool function_return_was_shadowed = function_return_is_shadowed_; - function_return_is_shadowed_ = true; - ASSERT(shadows[kReturnShadowIndex]->other_target() == &function_return_); - - // Add the remaining shadow targets. - for (int i = 0; i < nof_escapes; i++) { - shadows.Add(new ShadowTarget(node->escaping_targets()->at(i))); - } - - // Generate code for the statements in the try block. - { VirtualFrame::RegisterAllocationScope scope(this); - VisitStatements(node->try_block()->statements()); - } - - // Stop the introduced shadowing and count the number of required unlinks. - // After shadowing stops, the original labels are unshadowed and the - // LabelShadows represent the formerly shadowing labels. - bool has_unlinks = false; - for (int i = 0; i < shadows.length(); i++) { - shadows[i]->StopShadowing(); - has_unlinks = has_unlinks || shadows[i]->is_linked(); - } - function_return_is_shadowed_ = function_return_was_shadowed; - - // Get an external reference to the handler address. - ExternalReference handler_address(Top::k_handler_address); - - // If we can fall off the end of the try block, unlink from try chain. - if (has_valid_frame()) { - // The next handler address is on top of the frame. Unlink from - // the handler list and drop the rest of this handler from the - // frame. - STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0); - frame_->EmitPop(r1); // r0 can contain the return value. - __ mov(r3, Operand(handler_address)); - __ str(r1, MemOperand(r3)); - frame_->Drop(StackHandlerConstants::kSize / kPointerSize - 1); - if (has_unlinks) { - exit.Jump(); - } - } - - // Generate unlink code for the (formerly) shadowing labels that have been - // jumped to. Deallocate each shadow target. - for (int i = 0; i < shadows.length(); i++) { - if (shadows[i]->is_linked()) { - // Unlink from try chain; - shadows[i]->Bind(); - // Because we can be jumping here (to spilled code) from unspilled - // code, we need to reestablish a spilled frame at this block. - frame_->SpillAll(); - - // Reload sp from the top handler, because some statements that we - // break from (eg, for...in) may have left stuff on the stack. - __ mov(r3, Operand(handler_address)); - __ ldr(sp, MemOperand(r3)); - frame_->Forget(frame_->height() - handler_height); - - STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0); - frame_->EmitPop(r1); // r0 can contain the return value. - __ str(r1, MemOperand(r3)); - frame_->Drop(StackHandlerConstants::kSize / kPointerSize - 1); - - if (!function_return_is_shadowed_ && i == kReturnShadowIndex) { - frame_->PrepareForReturn(); - } - shadows[i]->other_target()->Jump(); - } - } - - exit.Bind(); - ASSERT(!has_valid_frame() || frame_->height() == original_height); -} - - -void CodeGenerator::VisitTryFinallyStatement(TryFinallyStatement* node) { -#ifdef DEBUG - int original_height = frame_->height(); -#endif - VirtualFrame::SpilledScope spilled_scope(frame_); - Comment cmnt(masm_, "[ TryFinallyStatement"); - CodeForStatementPosition(node); - - // State: Used to keep track of reason for entering the finally - // block. Should probably be extended to hold information for - // break/continue from within the try block. - enum { FALLING, THROWING, JUMPING }; - - JumpTarget try_block; - JumpTarget finally_block; - - try_block.Call(); - - frame_->EmitPush(r0); // save exception object on the stack - // In case of thrown exceptions, this is where we continue. - __ mov(r2, Operand(Smi::FromInt(THROWING))); - finally_block.Jump(); - - // --- Try block --- - try_block.Bind(); - - frame_->PushTryHandler(TRY_FINALLY_HANDLER); - int handler_height = frame_->height(); - - // Shadow the labels for all escapes from the try block, including - // returns. Shadowing hides the original label as the LabelShadow and - // operations on the original actually affect the shadowing label. - // - // We should probably try to unify the escaping labels and the return - // label. - int nof_escapes = node->escaping_targets()->length(); - List<ShadowTarget*> shadows(1 + nof_escapes); - - // Add the shadow target for the function return. - static const int kReturnShadowIndex = 0; - shadows.Add(new ShadowTarget(&function_return_)); - bool function_return_was_shadowed = function_return_is_shadowed_; - function_return_is_shadowed_ = true; - ASSERT(shadows[kReturnShadowIndex]->other_target() == &function_return_); - - // Add the remaining shadow targets. - for (int i = 0; i < nof_escapes; i++) { - shadows.Add(new ShadowTarget(node->escaping_targets()->at(i))); - } - - // Generate code for the statements in the try block. - { VirtualFrame::RegisterAllocationScope scope(this); - VisitStatements(node->try_block()->statements()); - } - - // Stop the introduced shadowing and count the number of required unlinks. - // After shadowing stops, the original labels are unshadowed and the - // LabelShadows represent the formerly shadowing labels. - int nof_unlinks = 0; - for (int i = 0; i < shadows.length(); i++) { - shadows[i]->StopShadowing(); - if (shadows[i]->is_linked()) nof_unlinks++; - } - function_return_is_shadowed_ = function_return_was_shadowed; - - // Get an external reference to the handler address. - ExternalReference handler_address(Top::k_handler_address); - - // If we can fall off the end of the try block, unlink from the try - // chain and set the state on the frame to FALLING. - if (has_valid_frame()) { - // The next handler address is on top of the frame. - STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0); - frame_->EmitPop(r1); - __ mov(r3, Operand(handler_address)); - __ str(r1, MemOperand(r3)); - frame_->Drop(StackHandlerConstants::kSize / kPointerSize - 1); - - // Fake a top of stack value (unneeded when FALLING) and set the - // state in r2, then jump around the unlink blocks if any. - __ LoadRoot(r0, Heap::kUndefinedValueRootIndex); - frame_->EmitPush(r0); - __ mov(r2, Operand(Smi::FromInt(FALLING))); - if (nof_unlinks > 0) { - finally_block.Jump(); - } - } - - // Generate code to unlink and set the state for the (formerly) - // shadowing targets that have been jumped to. - for (int i = 0; i < shadows.length(); i++) { - if (shadows[i]->is_linked()) { - // If we have come from the shadowed return, the return value is - // in (a non-refcounted reference to) r0. We must preserve it - // until it is pushed. - // - // Because we can be jumping here (to spilled code) from - // unspilled code, we need to reestablish a spilled frame at - // this block. - shadows[i]->Bind(); - frame_->SpillAll(); - - // Reload sp from the top handler, because some statements that - // we break from (eg, for...in) may have left stuff on the - // stack. - __ mov(r3, Operand(handler_address)); - __ ldr(sp, MemOperand(r3)); - frame_->Forget(frame_->height() - handler_height); - - // Unlink this handler and drop it from the frame. The next - // handler address is currently on top of the frame. - STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0); - frame_->EmitPop(r1); - __ str(r1, MemOperand(r3)); - frame_->Drop(StackHandlerConstants::kSize / kPointerSize - 1); - - if (i == kReturnShadowIndex) { - // If this label shadowed the function return, materialize the - // return value on the stack. - frame_->EmitPush(r0); - } else { - // Fake TOS for targets that shadowed breaks and continues. - __ LoadRoot(r0, Heap::kUndefinedValueRootIndex); - frame_->EmitPush(r0); - } - __ mov(r2, Operand(Smi::FromInt(JUMPING + i))); - if (--nof_unlinks > 0) { - // If this is not the last unlink block, jump around the next. - finally_block.Jump(); - } - } - } - - // --- Finally block --- - finally_block.Bind(); - - // Push the state on the stack. - frame_->EmitPush(r2); - - // We keep two elements on the stack - the (possibly faked) result - // and the state - while evaluating the finally block. - // - // Generate code for the statements in the finally block. - { VirtualFrame::RegisterAllocationScope scope(this); - VisitStatements(node->finally_block()->statements()); - } - - if (has_valid_frame()) { - // Restore state and return value or faked TOS. - frame_->EmitPop(r2); - frame_->EmitPop(r0); - } - - // Generate code to jump to the right destination for all used - // formerly shadowing targets. Deallocate each shadow target. - for (int i = 0; i < shadows.length(); i++) { - if (has_valid_frame() && shadows[i]->is_bound()) { - JumpTarget* original = shadows[i]->other_target(); - __ cmp(r2, Operand(Smi::FromInt(JUMPING + i))); - if (!function_return_is_shadowed_ && i == kReturnShadowIndex) { - JumpTarget skip; - skip.Branch(ne); - frame_->PrepareForReturn(); - original->Jump(); - skip.Bind(); - } else { - original->Branch(eq); - } - } - } - - if (has_valid_frame()) { - // Check if we need to rethrow the exception. - JumpTarget exit; - __ cmp(r2, Operand(Smi::FromInt(THROWING))); - exit.Branch(ne); - - // Rethrow exception. - frame_->EmitPush(r0); - frame_->CallRuntime(Runtime::kReThrow, 1); - - // Done. - exit.Bind(); - } - ASSERT(!has_valid_frame() || frame_->height() == original_height); -} - - -void CodeGenerator::VisitDebuggerStatement(DebuggerStatement* node) { -#ifdef DEBUG - int original_height = frame_->height(); -#endif - Comment cmnt(masm_, "[ DebuggerStatament"); - CodeForStatementPosition(node); -#ifdef ENABLE_DEBUGGER_SUPPORT - frame_->DebugBreak(); -#endif - // Ignore the return value. - ASSERT(frame_->height() == original_height); -} - - -void CodeGenerator::InstantiateFunction( - Handle<SharedFunctionInfo> function_info, - bool pretenure) { - // Use the fast case closure allocation code that allocates in new - // space for nested functions that don't need literals cloning. - if (scope()->is_function_scope() && - function_info->num_literals() == 0 && - !pretenure) { - FastNewClosureStub stub; - frame_->EmitPush(Operand(function_info)); - frame_->SpillAll(); - frame_->CallStub(&stub, 1); - frame_->EmitPush(r0); - } else { - // Create a new closure. - frame_->EmitPush(cp); - frame_->EmitPush(Operand(function_info)); - frame_->EmitPush(Operand(pretenure - ? Factory::true_value() - : Factory::false_value())); - frame_->CallRuntime(Runtime::kNewClosure, 3); - frame_->EmitPush(r0); - } -} - - -void CodeGenerator::VisitFunctionLiteral(FunctionLiteral* node) { -#ifdef DEBUG - int original_height = frame_->height(); -#endif - Comment cmnt(masm_, "[ FunctionLiteral"); - - // Build the function info and instantiate it. - Handle<SharedFunctionInfo> function_info = - Compiler::BuildFunctionInfo(node, script()); - if (function_info.is_null()) { - SetStackOverflow(); - ASSERT(frame_->height() == original_height); - return; - } - InstantiateFunction(function_info, node->pretenure()); - ASSERT_EQ(original_height + 1, frame_->height()); -} - - -void CodeGenerator::VisitSharedFunctionInfoLiteral( - SharedFunctionInfoLiteral* node) { -#ifdef DEBUG - int original_height = frame_->height(); -#endif - Comment cmnt(masm_, "[ SharedFunctionInfoLiteral"); - InstantiateFunction(node->shared_function_info(), false); - ASSERT_EQ(original_height + 1, frame_->height()); -} - - -void CodeGenerator::VisitConditional(Conditional* node) { -#ifdef DEBUG - int original_height = frame_->height(); -#endif - Comment cmnt(masm_, "[ Conditional"); - JumpTarget then; - JumpTarget else_; - LoadCondition(node->condition(), &then, &else_, true); - if (has_valid_frame()) { - Branch(false, &else_); - } - if (has_valid_frame() || then.is_linked()) { - then.Bind(); - Load(node->then_expression()); - } - if (else_.is_linked()) { - JumpTarget exit; - if (has_valid_frame()) exit.Jump(); - else_.Bind(); - Load(node->else_expression()); - if (exit.is_linked()) exit.Bind(); - } - ASSERT_EQ(original_height + 1, frame_->height()); -} - - -void CodeGenerator::LoadFromSlot(Slot* slot, TypeofState typeof_state) { - if (slot->type() == Slot::LOOKUP) { - ASSERT(slot->var()->is_dynamic()); - - // JumpTargets do not yet support merging frames so the frame must be - // spilled when jumping to these targets. - JumpTarget slow; - JumpTarget done; - - // Generate fast case for loading from slots that correspond to - // local/global variables or arguments unless they are shadowed by - // eval-introduced bindings. - EmitDynamicLoadFromSlotFastCase(slot, - typeof_state, - &slow, - &done); - - slow.Bind(); - frame_->EmitPush(cp); - frame_->EmitPush(Operand(slot->var()->name())); - - if (typeof_state == INSIDE_TYPEOF) { - frame_->CallRuntime(Runtime::kLoadContextSlotNoReferenceError, 2); - } else { - frame_->CallRuntime(Runtime::kLoadContextSlot, 2); - } - - done.Bind(); - frame_->EmitPush(r0); - - } else { - Register scratch = VirtualFrame::scratch0(); - TypeInfo info = type_info(slot); - frame_->EmitPush(SlotOperand(slot, scratch), info); - - if (slot->var()->mode() == Variable::CONST) { - // Const slots may contain 'the hole' value (the constant hasn't been - // initialized yet) which needs to be converted into the 'undefined' - // value. - Comment cmnt(masm_, "[ Unhole const"); - Register tos = frame_->PopToRegister(); - __ LoadRoot(ip, Heap::kTheHoleValueRootIndex); - __ cmp(tos, ip); - __ LoadRoot(tos, Heap::kUndefinedValueRootIndex, eq); - frame_->EmitPush(tos); - } - } -} - - -void CodeGenerator::LoadFromSlotCheckForArguments(Slot* slot, - TypeofState state) { - VirtualFrame::RegisterAllocationScope scope(this); - LoadFromSlot(slot, state); - - // Bail out quickly if we're not using lazy arguments allocation. - if (ArgumentsMode() != LAZY_ARGUMENTS_ALLOCATION) return; - - // ... or if the slot isn't a non-parameter arguments slot. - if (slot->type() == Slot::PARAMETER || !slot->is_arguments()) return; - - // Load the loaded value from the stack into a register but leave it on the - // stack. - Register tos = frame_->Peek(); - - // If the loaded value is the sentinel that indicates that we - // haven't loaded the arguments object yet, we need to do it now. - JumpTarget exit; - __ LoadRoot(ip, Heap::kArgumentsMarkerRootIndex); - __ cmp(tos, ip); - exit.Branch(ne); - frame_->Drop(); - StoreArgumentsObject(false); - exit.Bind(); -} - - -void CodeGenerator::StoreToSlot(Slot* slot, InitState init_state) { - ASSERT(slot != NULL); - VirtualFrame::RegisterAllocationScope scope(this); - if (slot->type() == Slot::LOOKUP) { - ASSERT(slot->var()->is_dynamic()); - - // For now, just do a runtime call. - frame_->EmitPush(cp); - frame_->EmitPush(Operand(slot->var()->name())); - - if (init_state == CONST_INIT) { - // Same as the case for a normal store, but ignores attribute - // (e.g. READ_ONLY) of context slot so that we can initialize - // const properties (introduced via eval("const foo = (some - // expr);")). Also, uses the current function context instead of - // the top context. - // - // Note that we must declare the foo upon entry of eval(), via a - // context slot declaration, but we cannot initialize it at the - // same time, because the const declaration may be at the end of - // the eval code (sigh...) and the const variable may have been - // used before (where its value is 'undefined'). Thus, we can only - // do the initialization when we actually encounter the expression - // and when the expression operands are defined and valid, and - // thus we need the split into 2 operations: declaration of the - // context slot followed by initialization. - frame_->CallRuntime(Runtime::kInitializeConstContextSlot, 3); - } else { - frame_->EmitPush(Operand(Smi::FromInt(strict_mode_flag()))); - frame_->CallRuntime(Runtime::kStoreContextSlot, 4); - } - // Storing a variable must keep the (new) value on the expression - // stack. This is necessary for compiling assignment expressions. - frame_->EmitPush(r0); - - } else { - ASSERT(!slot->var()->is_dynamic()); - Register scratch = VirtualFrame::scratch0(); - Register scratch2 = VirtualFrame::scratch1(); - - // The frame must be spilled when branching to this target. - JumpTarget exit; - - if (init_state == CONST_INIT) { - ASSERT(slot->var()->mode() == Variable::CONST); - // Only the first const initialization must be executed (the slot - // still contains 'the hole' value). When the assignment is - // executed, the code is identical to a normal store (see below). - Comment cmnt(masm_, "[ Init const"); - __ ldr(scratch, SlotOperand(slot, scratch)); - __ LoadRoot(ip, Heap::kTheHoleValueRootIndex); - __ cmp(scratch, ip); - exit.Branch(ne); - } - - // We must execute the store. Storing a variable must keep the - // (new) value on the stack. This is necessary for compiling - // assignment expressions. - // - // Note: We will reach here even with slot->var()->mode() == - // Variable::CONST because of const declarations which will - // initialize consts to 'the hole' value and by doing so, end up - // calling this code. r2 may be loaded with context; used below in - // RecordWrite. - Register tos = frame_->Peek(); - __ str(tos, SlotOperand(slot, scratch)); - if (slot->type() == Slot::CONTEXT) { - // Skip write barrier if the written value is a smi. - __ tst(tos, Operand(kSmiTagMask)); - // We don't use tos any more after here. - exit.Branch(eq); - // scratch is loaded with context when calling SlotOperand above. - int offset = FixedArray::kHeaderSize + slot->index() * kPointerSize; - // We need an extra register. Until we have a way to do that in the - // virtual frame we will cheat and ask for a free TOS register. - Register scratch3 = frame_->GetTOSRegister(); - __ RecordWrite(scratch, Operand(offset), scratch2, scratch3); - } - // If we definitely did not jump over the assignment, we do not need - // to bind the exit label. Doing so can defeat peephole - // optimization. - if (init_state == CONST_INIT || slot->type() == Slot::CONTEXT) { - exit.Bind(); - } - } -} - - -void CodeGenerator::LoadFromGlobalSlotCheckExtensions(Slot* slot, - TypeofState typeof_state, - JumpTarget* slow) { - // Check that no extension objects have been created by calls to - // eval from the current scope to the global scope. - Register tmp = frame_->scratch0(); - Register tmp2 = frame_->scratch1(); - Register context = cp; - Scope* s = scope(); - while (s != NULL) { - if (s->num_heap_slots() > 0) { - if (s->calls_eval()) { - frame_->SpillAll(); - // Check that extension is NULL. - __ ldr(tmp2, ContextOperand(context, Context::EXTENSION_INDEX)); - __ tst(tmp2, tmp2); - slow->Branch(ne); - } - // Load next context in chain. - __ ldr(tmp, ContextOperand(context, Context::CLOSURE_INDEX)); - __ ldr(tmp, FieldMemOperand(tmp, JSFunction::kContextOffset)); - context = tmp; - } - // If no outer scope calls eval, we do not need to check more - // context extensions. - if (!s->outer_scope_calls_eval() || s->is_eval_scope()) break; - s = s->outer_scope(); - } - - if (s->is_eval_scope()) { - frame_->SpillAll(); - Label next, fast; - __ Move(tmp, context); - __ bind(&next); - // Terminate at global context. - __ ldr(tmp2, FieldMemOperand(tmp, HeapObject::kMapOffset)); - __ LoadRoot(ip, Heap::kGlobalContextMapRootIndex); - __ cmp(tmp2, ip); - __ b(eq, &fast); - // Check that extension is NULL. - __ ldr(tmp2, ContextOperand(tmp, Context::EXTENSION_INDEX)); - __ tst(tmp2, tmp2); - slow->Branch(ne); - // Load next context in chain. - __ ldr(tmp, ContextOperand(tmp, Context::CLOSURE_INDEX)); - __ ldr(tmp, FieldMemOperand(tmp, JSFunction::kContextOffset)); - __ b(&next); - __ bind(&fast); - } - - // Load the global object. - LoadGlobal(); - // Setup the name register and call load IC. - frame_->CallLoadIC(slot->var()->name(), - typeof_state == INSIDE_TYPEOF - ? RelocInfo::CODE_TARGET - : RelocInfo::CODE_TARGET_CONTEXT); -} - - -void CodeGenerator::EmitDynamicLoadFromSlotFastCase(Slot* slot, - TypeofState typeof_state, - JumpTarget* slow, - JumpTarget* done) { - // Generate fast-case code for variables that might be shadowed by - // eval-introduced variables. Eval is used a lot without - // introducing variables. In those cases, we do not want to - // perform a runtime call for all variables in the scope - // containing the eval. - if (slot->var()->mode() == Variable::DYNAMIC_GLOBAL) { - LoadFromGlobalSlotCheckExtensions(slot, typeof_state, slow); - frame_->SpillAll(); - done->Jump(); - - } else if (slot->var()->mode() == Variable::DYNAMIC_LOCAL) { - frame_->SpillAll(); - Slot* potential_slot = slot->var()->local_if_not_shadowed()->AsSlot(); - Expression* rewrite = slot->var()->local_if_not_shadowed()->rewrite(); - if (potential_slot != NULL) { - // Generate fast case for locals that rewrite to slots. - __ ldr(r0, - ContextSlotOperandCheckExtensions(potential_slot, - r1, - r2, - slow)); - if (potential_slot->var()->mode() == Variable::CONST) { - __ LoadRoot(ip, Heap::kTheHoleValueRootIndex); - __ cmp(r0, ip); - __ LoadRoot(r0, Heap::kUndefinedValueRootIndex, eq); - } - done->Jump(); - } else if (rewrite != NULL) { - // Generate fast case for argument loads. - Property* property = rewrite->AsProperty(); - if (property != NULL) { - VariableProxy* obj_proxy = property->obj()->AsVariableProxy(); - Literal* key_literal = property->key()->AsLiteral(); - if (obj_proxy != NULL && - key_literal != NULL && - obj_proxy->IsArguments() && - key_literal->handle()->IsSmi()) { - // Load arguments object if there are no eval-introduced - // variables. Then load the argument from the arguments - // object using keyed load. - __ ldr(r0, - ContextSlotOperandCheckExtensions(obj_proxy->var()->AsSlot(), - r1, - r2, - slow)); - frame_->EmitPush(r0); - __ mov(r1, Operand(key_literal->handle())); - frame_->EmitPush(r1); - EmitKeyedLoad(); - done->Jump(); - } - } - } - } -} - - -void CodeGenerator::VisitSlot(Slot* node) { -#ifdef DEBUG - int original_height = frame_->height(); -#endif - Comment cmnt(masm_, "[ Slot"); - LoadFromSlotCheckForArguments(node, NOT_INSIDE_TYPEOF); - ASSERT_EQ(original_height + 1, frame_->height()); -} - - -void CodeGenerator::VisitVariableProxy(VariableProxy* node) { -#ifdef DEBUG - int original_height = frame_->height(); -#endif - Comment cmnt(masm_, "[ VariableProxy"); - - Variable* var = node->var(); - Expression* expr = var->rewrite(); - if (expr != NULL) { - Visit(expr); - } else { - ASSERT(var->is_global()); - Reference ref(this, node); - ref.GetValue(); - } - ASSERT_EQ(original_height + 1, frame_->height()); -} - - -void CodeGenerator::VisitLiteral(Literal* node) { -#ifdef DEBUG - int original_height = frame_->height(); -#endif - Comment cmnt(masm_, "[ Literal"); - Register reg = frame_->GetTOSRegister(); - bool is_smi = node->handle()->IsSmi(); - __ mov(reg, Operand(node->handle())); - frame_->EmitPush(reg, is_smi ? TypeInfo::Smi() : TypeInfo::Unknown()); - ASSERT_EQ(original_height + 1, frame_->height()); -} - - -void CodeGenerator::VisitRegExpLiteral(RegExpLiteral* node) { -#ifdef DEBUG - int original_height = frame_->height(); -#endif - Comment cmnt(masm_, "[ RexExp Literal"); - - Register tmp = VirtualFrame::scratch0(); - // Free up a TOS register that can be used to push the literal. - Register literal = frame_->GetTOSRegister(); - - // Retrieve the literal array and check the allocated entry. - - // Load the function of this activation. - __ ldr(tmp, frame_->Function()); - - // Load the literals array of the function. - __ ldr(tmp, FieldMemOperand(tmp, JSFunction::kLiteralsOffset)); - - // Load the literal at the ast saved index. - int literal_offset = - FixedArray::kHeaderSize + node->literal_index() * kPointerSize; - __ ldr(literal, FieldMemOperand(tmp, literal_offset)); - - JumpTarget materialized; - __ LoadRoot(ip, Heap::kUndefinedValueRootIndex); - __ cmp(literal, ip); - // This branch locks the virtual frame at the done label to match the - // one we have here, where the literal register is not on the stack and - // nothing is spilled. - materialized.Branch(ne); - - // If the entry is undefined we call the runtime system to compute - // the literal. - // literal array (0) - frame_->EmitPush(tmp); - // literal index (1) - frame_->EmitPush(Operand(Smi::FromInt(node->literal_index()))); - // RegExp pattern (2) - frame_->EmitPush(Operand(node->pattern())); - // RegExp flags (3) - frame_->EmitPush(Operand(node->flags())); - frame_->CallRuntime(Runtime::kMaterializeRegExpLiteral, 4); - __ Move(literal, r0); - - materialized.Bind(); - - frame_->EmitPush(literal); - int size = JSRegExp::kSize + JSRegExp::kInObjectFieldCount * kPointerSize; - frame_->EmitPush(Operand(Smi::FromInt(size))); - frame_->CallRuntime(Runtime::kAllocateInNewSpace, 1); - // TODO(lrn): Use AllocateInNewSpace macro with fallback to runtime. - // r0 is newly allocated space. - - // Reuse literal variable with (possibly) a new register, still holding - // the materialized boilerplate. - literal = frame_->PopToRegister(r0); - - __ CopyFields(r0, literal, tmp.bit(), size / kPointerSize); - - // Push the clone. - frame_->EmitPush(r0); - ASSERT_EQ(original_height + 1, frame_->height()); -} - - -void CodeGenerator::VisitObjectLiteral(ObjectLiteral* node) { -#ifdef DEBUG - int original_height = frame_->height(); -#endif - Comment cmnt(masm_, "[ ObjectLiteral"); - - Register literal = frame_->GetTOSRegister(); - // Load the function of this activation. - __ ldr(literal, frame_->Function()); - // Literal array. - __ ldr(literal, FieldMemOperand(literal, JSFunction::kLiteralsOffset)); - frame_->EmitPush(literal); - // Literal index. - frame_->EmitPush(Operand(Smi::FromInt(node->literal_index()))); - // Constant properties. - frame_->EmitPush(Operand(node->constant_properties())); - // Should the object literal have fast elements? - frame_->EmitPush(Operand(Smi::FromInt(node->fast_elements() ? 1 : 0))); - if (node->depth() > 1) { - frame_->CallRuntime(Runtime::kCreateObjectLiteral, 4); - } else { - frame_->CallRuntime(Runtime::kCreateObjectLiteralShallow, 4); - } - frame_->EmitPush(r0); // save the result - - // Mark all computed expressions that are bound to a key that - // is shadowed by a later occurrence of the same key. For the - // marked expressions, no store code is emitted. - node->CalculateEmitStore(); - - for (int i = 0; i < node->properties()->length(); i++) { - // At the start of each iteration, the top of stack contains - // the newly created object literal. - ObjectLiteral::Property* property = node->properties()->at(i); - Literal* key = property->key(); - Expression* value = property->value(); - switch (property->kind()) { - case ObjectLiteral::Property::CONSTANT: - break; - case ObjectLiteral::Property::MATERIALIZED_LITERAL: - if (CompileTimeValue::IsCompileTimeValue(property->value())) break; - // else fall through - case ObjectLiteral::Property::COMPUTED: - if (key->handle()->IsSymbol()) { - Handle<Code> ic(Builtins::builtin(Builtins::StoreIC_Initialize)); - Load(value); - if (property->emit_store()) { - frame_->PopToR0(); - // Fetch the object literal. - frame_->SpillAllButCopyTOSToR1(); - __ mov(r2, Operand(key->handle())); - frame_->CallCodeObject(ic, RelocInfo::CODE_TARGET, 0); - } else { - frame_->Drop(); - } - break; - } - // else fall through - case ObjectLiteral::Property::PROTOTYPE: { - frame_->Dup(); - Load(key); - Load(value); - if (property->emit_store()) { - frame_->EmitPush(Operand(Smi::FromInt(NONE))); // PropertyAttributes - frame_->CallRuntime(Runtime::kSetProperty, 4); - } else { - frame_->Drop(3); - } - break; - } - case ObjectLiteral::Property::SETTER: { - frame_->Dup(); - Load(key); - frame_->EmitPush(Operand(Smi::FromInt(1))); - Load(value); - frame_->CallRuntime(Runtime::kDefineAccessor, 4); - break; - } - case ObjectLiteral::Property::GETTER: { - frame_->Dup(); - Load(key); - frame_->EmitPush(Operand(Smi::FromInt(0))); - Load(value); - frame_->CallRuntime(Runtime::kDefineAccessor, 4); - break; - } - } - } - ASSERT_EQ(original_height + 1, frame_->height()); -} - - -void CodeGenerator::VisitArrayLiteral(ArrayLiteral* node) { -#ifdef DEBUG - int original_height = frame_->height(); -#endif - Comment cmnt(masm_, "[ ArrayLiteral"); - - Register tos = frame_->GetTOSRegister(); - // Load the function of this activation. - __ ldr(tos, frame_->Function()); - // Load the literals array of the function. - __ ldr(tos, FieldMemOperand(tos, JSFunction::kLiteralsOffset)); - frame_->EmitPush(tos); - frame_->EmitPush(Operand(Smi::FromInt(node->literal_index()))); - frame_->EmitPush(Operand(node->constant_elements())); - int length = node->values()->length(); - if (node->constant_elements()->map() == Heap::fixed_cow_array_map()) { - FastCloneShallowArrayStub stub( - FastCloneShallowArrayStub::COPY_ON_WRITE_ELEMENTS, length); - frame_->CallStub(&stub, 3); - __ IncrementCounter(&Counters::cow_arrays_created_stub, 1, r1, r2); - } else if (node->depth() > 1) { - frame_->CallRuntime(Runtime::kCreateArrayLiteral, 3); - } else if (length > FastCloneShallowArrayStub::kMaximumClonedLength) { - frame_->CallRuntime(Runtime::kCreateArrayLiteralShallow, 3); - } else { - FastCloneShallowArrayStub stub( - FastCloneShallowArrayStub::CLONE_ELEMENTS, length); - frame_->CallStub(&stub, 3); - } - frame_->EmitPush(r0); // save the result - // r0: created object literal - - // Generate code to set the elements in the array that are not - // literals. - for (int i = 0; i < node->values()->length(); i++) { - Expression* value = node->values()->at(i); - - // If value is a literal the property value is already set in the - // boilerplate object. - if (value->AsLiteral() != NULL) continue; - // If value is a materialized literal the property value is already set - // in the boilerplate object if it is simple. - if (CompileTimeValue::IsCompileTimeValue(value)) continue; - - // The property must be set by generated code. - Load(value); - frame_->PopToR0(); - // Fetch the object literal. - frame_->SpillAllButCopyTOSToR1(); - - // Get the elements array. - __ ldr(r1, FieldMemOperand(r1, JSObject::kElementsOffset)); - - // Write to the indexed properties array. - int offset = i * kPointerSize + FixedArray::kHeaderSize; - __ str(r0, FieldMemOperand(r1, offset)); - - // Update the write barrier for the array address. - __ RecordWrite(r1, Operand(offset), r3, r2); - } - ASSERT_EQ(original_height + 1, frame_->height()); -} - - -void CodeGenerator::VisitCatchExtensionObject(CatchExtensionObject* node) { -#ifdef DEBUG - int original_height = frame_->height(); -#endif - // Call runtime routine to allocate the catch extension object and - // assign the exception value to the catch variable. - Comment cmnt(masm_, "[ CatchExtensionObject"); - Load(node->key()); - Load(node->value()); - frame_->CallRuntime(Runtime::kCreateCatchExtensionObject, 2); - frame_->EmitPush(r0); - ASSERT_EQ(original_height + 1, frame_->height()); -} - - -void CodeGenerator::EmitSlotAssignment(Assignment* node) { -#ifdef DEBUG - int original_height = frame_->height(); -#endif - Comment cmnt(masm(), "[ Variable Assignment"); - Variable* var = node->target()->AsVariableProxy()->AsVariable(); - ASSERT(var != NULL); - Slot* slot = var->AsSlot(); - ASSERT(slot != NULL); - - // Evaluate the right-hand side. - if (node->is_compound()) { - // For a compound assignment the right-hand side is a binary operation - // between the current property value and the actual right-hand side. - LoadFromSlotCheckForArguments(slot, NOT_INSIDE_TYPEOF); - - // Perform the binary operation. - Literal* literal = node->value()->AsLiteral(); - bool overwrite_value = node->value()->ResultOverwriteAllowed(); - if (literal != NULL && literal->handle()->IsSmi()) { - SmiOperation(node->binary_op(), - literal->handle(), - false, - overwrite_value ? OVERWRITE_RIGHT : NO_OVERWRITE); - } else { - GenerateInlineSmi inline_smi = - loop_nesting() > 0 ? GENERATE_INLINE_SMI : DONT_GENERATE_INLINE_SMI; - if (literal != NULL) { - ASSERT(!literal->handle()->IsSmi()); - inline_smi = DONT_GENERATE_INLINE_SMI; - } - Load(node->value()); - GenericBinaryOperation(node->binary_op(), - overwrite_value ? OVERWRITE_RIGHT : NO_OVERWRITE, - inline_smi); - } - } else { - Load(node->value()); - } - - // Perform the assignment. - if (var->mode() != Variable::CONST || node->op() == Token::INIT_CONST) { - CodeForSourcePosition(node->position()); - StoreToSlot(slot, - node->op() == Token::INIT_CONST ? CONST_INIT : NOT_CONST_INIT); - } - ASSERT_EQ(original_height + 1, frame_->height()); -} - - -void CodeGenerator::EmitNamedPropertyAssignment(Assignment* node) { -#ifdef DEBUG - int original_height = frame_->height(); -#endif - Comment cmnt(masm(), "[ Named Property Assignment"); - Variable* var = node->target()->AsVariableProxy()->AsVariable(); - Property* prop = node->target()->AsProperty(); - ASSERT(var == NULL || (prop == NULL && var->is_global())); - - // Initialize name and evaluate the receiver sub-expression if necessary. If - // the receiver is trivial it is not placed on the stack at this point, but - // loaded whenever actually needed. - Handle<String> name; - bool is_trivial_receiver = false; - if (var != NULL) { - name = var->name(); - } else { - Literal* lit = prop->key()->AsLiteral(); - ASSERT_NOT_NULL(lit); - name = Handle<String>::cast(lit->handle()); - // Do not materialize the receiver on the frame if it is trivial. - is_trivial_receiver = prop->obj()->IsTrivial(); - if (!is_trivial_receiver) Load(prop->obj()); - } - - // Change to slow case in the beginning of an initialization block to - // avoid the quadratic behavior of repeatedly adding fast properties. - if (node->starts_initialization_block()) { - // Initialization block consists of assignments of the form expr.x = ..., so - // this will never be an assignment to a variable, so there must be a - // receiver object. - ASSERT_EQ(NULL, var); - if (is_trivial_receiver) { - Load(prop->obj()); - } else { - frame_->Dup(); - } - frame_->CallRuntime(Runtime::kToSlowProperties, 1); - } - - // Change to fast case at the end of an initialization block. To prepare for - // that add an extra copy of the receiver to the frame, so that it can be - // converted back to fast case after the assignment. - if (node->ends_initialization_block() && !is_trivial_receiver) { - frame_->Dup(); - } - - // Stack layout: - // [tos] : receiver (only materialized if non-trivial) - // [tos+1] : receiver if at the end of an initialization block - - // Evaluate the right-hand side. - if (node->is_compound()) { - // For a compound assignment the right-hand side is a binary operation - // between the current property value and the actual right-hand side. - if (is_trivial_receiver) { - Load(prop->obj()); - } else if (var != NULL) { - LoadGlobal(); - } else { - frame_->Dup(); - } - EmitNamedLoad(name, var != NULL); - - // Perform the binary operation. - Literal* literal = node->value()->AsLiteral(); - bool overwrite_value = node->value()->ResultOverwriteAllowed(); - if (literal != NULL && literal->handle()->IsSmi()) { - SmiOperation(node->binary_op(), - literal->handle(), - false, - overwrite_value ? OVERWRITE_RIGHT : NO_OVERWRITE); - } else { - GenerateInlineSmi inline_smi = - loop_nesting() > 0 ? GENERATE_INLINE_SMI : DONT_GENERATE_INLINE_SMI; - if (literal != NULL) { - ASSERT(!literal->handle()->IsSmi()); - inline_smi = DONT_GENERATE_INLINE_SMI; - } - Load(node->value()); - GenericBinaryOperation(node->binary_op(), - overwrite_value ? OVERWRITE_RIGHT : NO_OVERWRITE, - inline_smi); - } - } else { - // For non-compound assignment just load the right-hand side. - Load(node->value()); - } - - // Stack layout: - // [tos] : value - // [tos+1] : receiver (only materialized if non-trivial) - // [tos+2] : receiver if at the end of an initialization block - - // Perform the assignment. It is safe to ignore constants here. - ASSERT(var == NULL || var->mode() != Variable::CONST); - ASSERT_NE(Token::INIT_CONST, node->op()); - if (is_trivial_receiver) { - // Load the receiver and swap with the value. - Load(prop->obj()); - Register t0 = frame_->PopToRegister(); - Register t1 = frame_->PopToRegister(t0); - frame_->EmitPush(t0); - frame_->EmitPush(t1); - } - CodeForSourcePosition(node->position()); - bool is_contextual = (var != NULL); - EmitNamedStore(name, is_contextual); - frame_->EmitPush(r0); - - // Change to fast case at the end of an initialization block. - if (node->ends_initialization_block()) { - ASSERT_EQ(NULL, var); - // The argument to the runtime call is the receiver. - if (is_trivial_receiver) { - Load(prop->obj()); - } else { - // A copy of the receiver is below the value of the assignment. Swap - // the receiver and the value of the assignment expression. - Register t0 = frame_->PopToRegister(); - Register t1 = frame_->PopToRegister(t0); - frame_->EmitPush(t0); - frame_->EmitPush(t1); - } - frame_->CallRuntime(Runtime::kToFastProperties, 1); - } - - // Stack layout: - // [tos] : result - - ASSERT_EQ(original_height + 1, frame_->height()); -} - - -void CodeGenerator::EmitKeyedPropertyAssignment(Assignment* node) { -#ifdef DEBUG - int original_height = frame_->height(); -#endif - Comment cmnt(masm_, "[ Keyed Property Assignment"); - Property* prop = node->target()->AsProperty(); - ASSERT_NOT_NULL(prop); - - // Evaluate the receiver subexpression. - Load(prop->obj()); - - WriteBarrierCharacter wb_info; - - // Change to slow case in the beginning of an initialization block to - // avoid the quadratic behavior of repeatedly adding fast properties. - if (node->starts_initialization_block()) { - frame_->Dup(); - frame_->CallRuntime(Runtime::kToSlowProperties, 1); - } - - // Change to fast case at the end of an initialization block. To prepare for - // that add an extra copy of the receiver to the frame, so that it can be - // converted back to fast case after the assignment. - if (node->ends_initialization_block()) { - frame_->Dup(); - } - - // Evaluate the key subexpression. - Load(prop->key()); - - // Stack layout: - // [tos] : key - // [tos+1] : receiver - // [tos+2] : receiver if at the end of an initialization block - // - // Evaluate the right-hand side. - if (node->is_compound()) { - // For a compound assignment the right-hand side is a binary operation - // between the current property value and the actual right-hand side. - // Duplicate receiver and key for loading the current property value. - frame_->Dup2(); - EmitKeyedLoad(); - frame_->EmitPush(r0); - - // Perform the binary operation. - Literal* literal = node->value()->AsLiteral(); - bool overwrite_value = node->value()->ResultOverwriteAllowed(); - if (literal != NULL && literal->handle()->IsSmi()) { - SmiOperation(node->binary_op(), - literal->handle(), - false, - overwrite_value ? OVERWRITE_RIGHT : NO_OVERWRITE); - } else { - GenerateInlineSmi inline_smi = - loop_nesting() > 0 ? GENERATE_INLINE_SMI : DONT_GENERATE_INLINE_SMI; - if (literal != NULL) { - ASSERT(!literal->handle()->IsSmi()); - inline_smi = DONT_GENERATE_INLINE_SMI; - } - Load(node->value()); - GenericBinaryOperation(node->binary_op(), - overwrite_value ? OVERWRITE_RIGHT : NO_OVERWRITE, - inline_smi); - } - wb_info = node->type()->IsLikelySmi() ? LIKELY_SMI : UNLIKELY_SMI; - } else { - // For non-compound assignment just load the right-hand side. - Load(node->value()); - wb_info = node->value()->AsLiteral() != NULL ? - NEVER_NEWSPACE : - (node->value()->type()->IsLikelySmi() ? LIKELY_SMI : UNLIKELY_SMI); - } - - // Stack layout: - // [tos] : value - // [tos+1] : key - // [tos+2] : receiver - // [tos+3] : receiver if at the end of an initialization block - - // Perform the assignment. It is safe to ignore constants here. - ASSERT(node->op() != Token::INIT_CONST); - CodeForSourcePosition(node->position()); - EmitKeyedStore(prop->key()->type(), wb_info); - frame_->EmitPush(r0); - - // Stack layout: - // [tos] : result - // [tos+1] : receiver if at the end of an initialization block - - // Change to fast case at the end of an initialization block. - if (node->ends_initialization_block()) { - // The argument to the runtime call is the extra copy of the receiver, - // which is below the value of the assignment. Swap the receiver and - // the value of the assignment expression. - Register t0 = frame_->PopToRegister(); - Register t1 = frame_->PopToRegister(t0); - frame_->EmitPush(t1); - frame_->EmitPush(t0); - frame_->CallRuntime(Runtime::kToFastProperties, 1); - } - - // Stack layout: - // [tos] : result - - ASSERT_EQ(original_height + 1, frame_->height()); -} - - -void CodeGenerator::VisitAssignment(Assignment* node) { - VirtualFrame::RegisterAllocationScope scope(this); -#ifdef DEBUG - int original_height = frame_->height(); -#endif - Comment cmnt(masm_, "[ Assignment"); - - Variable* var = node->target()->AsVariableProxy()->AsVariable(); - Property* prop = node->target()->AsProperty(); - - if (var != NULL && !var->is_global()) { - EmitSlotAssignment(node); - - } else if ((prop != NULL && prop->key()->IsPropertyName()) || - (var != NULL && var->is_global())) { - // Properties whose keys are property names and global variables are - // treated as named property references. We do not need to consider - // global 'this' because it is not a valid left-hand side. - EmitNamedPropertyAssignment(node); - - } else if (prop != NULL) { - // Other properties (including rewritten parameters for a function that - // uses arguments) are keyed property assignments. - EmitKeyedPropertyAssignment(node); - - } else { - // Invalid left-hand side. - Load(node->target()); - frame_->CallRuntime(Runtime::kThrowReferenceError, 1); - // The runtime call doesn't actually return but the code generator will - // still generate code and expects a certain frame height. - frame_->EmitPush(r0); - } - ASSERT_EQ(original_height + 1, frame_->height()); -} - - -void CodeGenerator::VisitThrow(Throw* node) { -#ifdef DEBUG - int original_height = frame_->height(); -#endif - Comment cmnt(masm_, "[ Throw"); - - Load(node->exception()); - CodeForSourcePosition(node->position()); - frame_->CallRuntime(Runtime::kThrow, 1); - frame_->EmitPush(r0); - ASSERT_EQ(original_height + 1, frame_->height()); -} - - -void CodeGenerator::VisitProperty(Property* node) { -#ifdef DEBUG - int original_height = frame_->height(); -#endif - Comment cmnt(masm_, "[ Property"); - - { Reference property(this, node); - property.GetValue(); - } - ASSERT_EQ(original_height + 1, frame_->height()); -} - - -void CodeGenerator::VisitCall(Call* node) { -#ifdef DEBUG - int original_height = frame_->height(); -#endif - Comment cmnt(masm_, "[ Call"); - - Expression* function = node->expression(); - ZoneList<Expression*>* args = node->arguments(); - - // Standard function call. - // Check if the function is a variable or a property. - Variable* var = function->AsVariableProxy()->AsVariable(); - Property* property = function->AsProperty(); - - // ------------------------------------------------------------------------ - // Fast-case: Use inline caching. - // --- - // According to ECMA-262, section 11.2.3, page 44, the function to call - // must be resolved after the arguments have been evaluated. The IC code - // automatically handles this by loading the arguments before the function - // is resolved in cache misses (this also holds for megamorphic calls). - // ------------------------------------------------------------------------ - - if (var != NULL && var->is_possibly_eval()) { - // ---------------------------------- - // JavaScript example: 'eval(arg)' // eval is not known to be shadowed - // ---------------------------------- - - // In a call to eval, we first call %ResolvePossiblyDirectEval to - // resolve the function we need to call and the receiver of the - // call. Then we call the resolved function using the given - // arguments. - - // Prepare stack for call to resolved function. - Load(function); - - // Allocate a frame slot for the receiver. - frame_->EmitPushRoot(Heap::kUndefinedValueRootIndex); - - // Load the arguments. - int arg_count = args->length(); - for (int i = 0; i < arg_count; i++) { - Load(args->at(i)); - } - - VirtualFrame::SpilledScope spilled_scope(frame_); - - // If we know that eval can only be shadowed by eval-introduced - // variables we attempt to load the global eval function directly - // in generated code. If we succeed, there is no need to perform a - // context lookup in the runtime system. - JumpTarget done; - if (var->AsSlot() != NULL && var->mode() == Variable::DYNAMIC_GLOBAL) { - ASSERT(var->AsSlot()->type() == Slot::LOOKUP); - JumpTarget slow; - // Prepare the stack for the call to - // ResolvePossiblyDirectEvalNoLookup by pushing the loaded - // function, the first argument to the eval call and the - // receiver. - LoadFromGlobalSlotCheckExtensions(var->AsSlot(), - NOT_INSIDE_TYPEOF, - &slow); - frame_->EmitPush(r0); - if (arg_count > 0) { - __ ldr(r1, MemOperand(sp, arg_count * kPointerSize)); - frame_->EmitPush(r1); - } else { - frame_->EmitPush(r2); - } - __ ldr(r1, frame_->Receiver()); - frame_->EmitPush(r1); - - // Push the strict mode flag. - frame_->EmitPush(Operand(Smi::FromInt(strict_mode_flag()))); - - frame_->CallRuntime(Runtime::kResolvePossiblyDirectEvalNoLookup, 4); - - done.Jump(); - slow.Bind(); - } - - // Prepare the stack for the call to ResolvePossiblyDirectEval by - // pushing the loaded function, the first argument to the eval - // call and the receiver. - __ ldr(r1, MemOperand(sp, arg_count * kPointerSize + kPointerSize)); - frame_->EmitPush(r1); - if (arg_count > 0) { - __ ldr(r1, MemOperand(sp, arg_count * kPointerSize)); - frame_->EmitPush(r1); - } else { - frame_->EmitPush(r2); - } - __ ldr(r1, frame_->Receiver()); - frame_->EmitPush(r1); - - // Push the strict mode flag. - frame_->EmitPush(Operand(Smi::FromInt(strict_mode_flag()))); - - // Resolve the call. - frame_->CallRuntime(Runtime::kResolvePossiblyDirectEval, 4); - - // If we generated fast-case code bind the jump-target where fast - // and slow case merge. - if (done.is_linked()) done.Bind(); - - // Touch up stack with the right values for the function and the receiver. - __ str(r0, MemOperand(sp, (arg_count + 1) * kPointerSize)); - __ str(r1, MemOperand(sp, arg_count * kPointerSize)); - - // Call the function. - CodeForSourcePosition(node->position()); - - InLoopFlag in_loop = loop_nesting() > 0 ? IN_LOOP : NOT_IN_LOOP; - CallFunctionStub call_function(arg_count, in_loop, RECEIVER_MIGHT_BE_VALUE); - frame_->CallStub(&call_function, arg_count + 1); - - __ ldr(cp, frame_->Context()); - // Remove the function from the stack. - frame_->Drop(); - frame_->EmitPush(r0); - - } else if (var != NULL && !var->is_this() && var->is_global()) { - // ---------------------------------- - // JavaScript example: 'foo(1, 2, 3)' // foo is global - // ---------------------------------- - // Pass the global object as the receiver and let the IC stub - // patch the stack to use the global proxy as 'this' in the - // invoked function. - LoadGlobal(); - - // Load the arguments. - int arg_count = args->length(); - for (int i = 0; i < arg_count; i++) { - Load(args->at(i)); - } - - VirtualFrame::SpilledScope spilled_scope(frame_); - // Setup the name register and call the IC initialization code. - __ mov(r2, Operand(var->name())); - InLoopFlag in_loop = loop_nesting() > 0 ? IN_LOOP : NOT_IN_LOOP; - Handle<Code> stub = StubCache::ComputeCallInitialize(arg_count, in_loop); - CodeForSourcePosition(node->position()); - frame_->CallCodeObject(stub, RelocInfo::CODE_TARGET_CONTEXT, - arg_count + 1); - __ ldr(cp, frame_->Context()); - frame_->EmitPush(r0); - - } else if (var != NULL && var->AsSlot() != NULL && - var->AsSlot()->type() == Slot::LOOKUP) { - // ---------------------------------- - // JavaScript examples: - // - // with (obj) foo(1, 2, 3) // foo may be in obj. - // - // function f() {}; - // function g() { - // eval(...); - // f(); // f could be in extension object. - // } - // ---------------------------------- - - JumpTarget slow, done; - - // Generate fast case for loading functions from slots that - // correspond to local/global variables or arguments unless they - // are shadowed by eval-introduced bindings. - EmitDynamicLoadFromSlotFastCase(var->AsSlot(), - NOT_INSIDE_TYPEOF, - &slow, - &done); - - slow.Bind(); - // Load the function - frame_->EmitPush(cp); - frame_->EmitPush(Operand(var->name())); - frame_->CallRuntime(Runtime::kLoadContextSlot, 2); - // r0: slot value; r1: receiver - - // Load the receiver. - frame_->EmitPush(r0); // function - frame_->EmitPush(r1); // receiver - - // If fast case code has been generated, emit code to push the - // function and receiver and have the slow path jump around this - // code. - if (done.is_linked()) { - JumpTarget call; - call.Jump(); - done.Bind(); - frame_->EmitPush(r0); // function - LoadGlobalReceiver(VirtualFrame::scratch0()); // receiver - call.Bind(); - } - - // Call the function. At this point, everything is spilled but the - // function and receiver are in r0 and r1. - CallWithArguments(args, NO_CALL_FUNCTION_FLAGS, node->position()); - frame_->EmitPush(r0); - - } else if (property != NULL) { - // Check if the key is a literal string. - Literal* literal = property->key()->AsLiteral(); - - if (literal != NULL && literal->handle()->IsSymbol()) { - // ------------------------------------------------------------------ - // JavaScript example: 'object.foo(1, 2, 3)' or 'map["key"](1, 2, 3)' - // ------------------------------------------------------------------ - - Handle<String> name = Handle<String>::cast(literal->handle()); - - if (ArgumentsMode() == LAZY_ARGUMENTS_ALLOCATION && - name->IsEqualTo(CStrVector("apply")) && - args->length() == 2 && - args->at(1)->AsVariableProxy() != NULL && - args->at(1)->AsVariableProxy()->IsArguments()) { - // Use the optimized Function.prototype.apply that avoids - // allocating lazily allocated arguments objects. - CallApplyLazy(property->obj(), - args->at(0), - args->at(1)->AsVariableProxy(), - node->position()); - - } else { - Load(property->obj()); // Receiver. - // Load the arguments. - int arg_count = args->length(); - for (int i = 0; i < arg_count; i++) { - Load(args->at(i)); - } - - VirtualFrame::SpilledScope spilled_scope(frame_); - // Set the name register and call the IC initialization code. - __ mov(r2, Operand(name)); - InLoopFlag in_loop = loop_nesting() > 0 ? IN_LOOP : NOT_IN_LOOP; - Handle<Code> stub = - StubCache::ComputeCallInitialize(arg_count, in_loop); - CodeForSourcePosition(node->position()); - frame_->CallCodeObject(stub, RelocInfo::CODE_TARGET, arg_count + 1); - __ ldr(cp, frame_->Context()); - frame_->EmitPush(r0); - } - - } else { - // ------------------------------------------- - // JavaScript example: 'array[index](1, 2, 3)' - // ------------------------------------------- - - // Load the receiver and name of the function. - Load(property->obj()); - Load(property->key()); - - if (property->is_synthetic()) { - EmitKeyedLoad(); - // Put the function below the receiver. - // Use the global receiver. - frame_->EmitPush(r0); // Function. - LoadGlobalReceiver(VirtualFrame::scratch0()); - // Call the function. - CallWithArguments(args, RECEIVER_MIGHT_BE_VALUE, node->position()); - frame_->EmitPush(r0); - } else { - // Swap the name of the function and the receiver on the stack to follow - // the calling convention for call ICs. - Register key = frame_->PopToRegister(); - Register receiver = frame_->PopToRegister(key); - frame_->EmitPush(key); - frame_->EmitPush(receiver); - - // Load the arguments. - int arg_count = args->length(); - for (int i = 0; i < arg_count; i++) { - Load(args->at(i)); - } - - // Load the key into r2 and call the IC initialization code. - InLoopFlag in_loop = loop_nesting() > 0 ? IN_LOOP : NOT_IN_LOOP; - Handle<Code> stub = - StubCache::ComputeKeyedCallInitialize(arg_count, in_loop); - CodeForSourcePosition(node->position()); - frame_->SpillAll(); - __ ldr(r2, frame_->ElementAt(arg_count + 1)); - frame_->CallCodeObject(stub, RelocInfo::CODE_TARGET, arg_count + 1); - frame_->Drop(); // Drop the key still on the stack. - __ ldr(cp, frame_->Context()); - frame_->EmitPush(r0); - } - } - - } else { - // ---------------------------------- - // JavaScript example: 'foo(1, 2, 3)' // foo is not global - // ---------------------------------- - - // Load the function. - Load(function); - - // Pass the global proxy as the receiver. - LoadGlobalReceiver(VirtualFrame::scratch0()); - - // Call the function. - CallWithArguments(args, NO_CALL_FUNCTION_FLAGS, node->position()); - frame_->EmitPush(r0); - } - ASSERT_EQ(original_height + 1, frame_->height()); -} - - -void CodeGenerator::VisitCallNew(CallNew* node) { -#ifdef DEBUG - int original_height = frame_->height(); -#endif - Comment cmnt(masm_, "[ CallNew"); - - // According to ECMA-262, section 11.2.2, page 44, the function - // expression in new calls must be evaluated before the - // arguments. This is different from ordinary calls, where the - // actual function to call is resolved after the arguments have been - // evaluated. - - // Push constructor on the stack. If it's not a function it's used as - // receiver for CALL_NON_FUNCTION, otherwise the value on the stack is - // ignored. - Load(node->expression()); - - // Push the arguments ("left-to-right") on the stack. - ZoneList<Expression*>* args = node->arguments(); - int arg_count = args->length(); - for (int i = 0; i < arg_count; i++) { - Load(args->at(i)); - } - - // Spill everything from here to simplify the implementation. - VirtualFrame::SpilledScope spilled_scope(frame_); - - // Load the argument count into r0 and the function into r1 as per - // calling convention. - __ mov(r0, Operand(arg_count)); - __ ldr(r1, frame_->ElementAt(arg_count)); - - // Call the construct call builtin that handles allocation and - // constructor invocation. - CodeForSourcePosition(node->position()); - Handle<Code> ic(Builtins::builtin(Builtins::JSConstructCall)); - frame_->CallCodeObject(ic, RelocInfo::CONSTRUCT_CALL, arg_count + 1); - frame_->EmitPush(r0); - - ASSERT_EQ(original_height + 1, frame_->height()); -} - - -void CodeGenerator::GenerateClassOf(ZoneList<Expression*>* args) { - Register scratch = VirtualFrame::scratch0(); - JumpTarget null, function, leave, non_function_constructor; - - // Load the object into register. - ASSERT(args->length() == 1); - Load(args->at(0)); - Register tos = frame_->PopToRegister(); - - // If the object is a smi, we return null. - __ tst(tos, Operand(kSmiTagMask)); - null.Branch(eq); - - // Check that the object is a JS object but take special care of JS - // functions to make sure they have 'Function' as their class. - __ CompareObjectType(tos, tos, scratch, FIRST_JS_OBJECT_TYPE); - null.Branch(lt); - - // As long as JS_FUNCTION_TYPE is the last instance type and it is - // right after LAST_JS_OBJECT_TYPE, we can avoid checking for - // LAST_JS_OBJECT_TYPE. - STATIC_ASSERT(LAST_TYPE == JS_FUNCTION_TYPE); - STATIC_ASSERT(JS_FUNCTION_TYPE == LAST_JS_OBJECT_TYPE + 1); - __ cmp(scratch, Operand(JS_FUNCTION_TYPE)); - function.Branch(eq); - - // Check if the constructor in the map is a function. - __ ldr(tos, FieldMemOperand(tos, Map::kConstructorOffset)); - __ CompareObjectType(tos, scratch, scratch, JS_FUNCTION_TYPE); - non_function_constructor.Branch(ne); - - // The tos register now contains the constructor function. Grab the - // instance class name from there. - __ ldr(tos, FieldMemOperand(tos, JSFunction::kSharedFunctionInfoOffset)); - __ ldr(tos, - FieldMemOperand(tos, SharedFunctionInfo::kInstanceClassNameOffset)); - frame_->EmitPush(tos); - leave.Jump(); - - // Functions have class 'Function'. - function.Bind(); - __ mov(tos, Operand(Factory::function_class_symbol())); - frame_->EmitPush(tos); - leave.Jump(); - - // Objects with a non-function constructor have class 'Object'. - non_function_constructor.Bind(); - __ mov(tos, Operand(Factory::Object_symbol())); - frame_->EmitPush(tos); - leave.Jump(); - - // Non-JS objects have class null. - null.Bind(); - __ LoadRoot(tos, Heap::kNullValueRootIndex); - frame_->EmitPush(tos); - - // All done. - leave.Bind(); -} - - -void CodeGenerator::GenerateValueOf(ZoneList<Expression*>* args) { - Register scratch = VirtualFrame::scratch0(); - JumpTarget leave; - - ASSERT(args->length() == 1); - Load(args->at(0)); - Register tos = frame_->PopToRegister(); // tos contains object. - // if (object->IsSmi()) return the object. - __ tst(tos, Operand(kSmiTagMask)); - leave.Branch(eq); - // It is a heap object - get map. If (!object->IsJSValue()) return the object. - __ CompareObjectType(tos, scratch, scratch, JS_VALUE_TYPE); - leave.Branch(ne); - // Load the value. - __ ldr(tos, FieldMemOperand(tos, JSValue::kValueOffset)); - leave.Bind(); - frame_->EmitPush(tos); -} - - -void CodeGenerator::GenerateSetValueOf(ZoneList<Expression*>* args) { - Register scratch1 = VirtualFrame::scratch0(); - Register scratch2 = VirtualFrame::scratch1(); - JumpTarget leave; - - ASSERT(args->length() == 2); - Load(args->at(0)); // Load the object. - Load(args->at(1)); // Load the value. - Register value = frame_->PopToRegister(); - Register object = frame_->PopToRegister(value); - // if (object->IsSmi()) return object. - __ tst(object, Operand(kSmiTagMask)); - leave.Branch(eq); - // It is a heap object - get map. If (!object->IsJSValue()) return the object. - __ CompareObjectType(object, scratch1, scratch1, JS_VALUE_TYPE); - leave.Branch(ne); - // Store the value. - __ str(value, FieldMemOperand(object, JSValue::kValueOffset)); - // Update the write barrier. - __ RecordWrite(object, - Operand(JSValue::kValueOffset - kHeapObjectTag), - scratch1, - scratch2); - // Leave. - leave.Bind(); - frame_->EmitPush(value); -} - - -void CodeGenerator::GenerateIsSmi(ZoneList<Expression*>* args) { - ASSERT(args->length() == 1); - Load(args->at(0)); - Register reg = frame_->PopToRegister(); - __ tst(reg, Operand(kSmiTagMask)); - cc_reg_ = eq; -} - - -void CodeGenerator::GenerateLog(ZoneList<Expression*>* args) { - // See comment in CodeGenerator::GenerateLog in codegen-ia32.cc. - ASSERT_EQ(args->length(), 3); -#ifdef ENABLE_LOGGING_AND_PROFILING - if (ShouldGenerateLog(args->at(0))) { - Load(args->at(1)); - Load(args->at(2)); - frame_->CallRuntime(Runtime::kLog, 2); - } -#endif - frame_->EmitPushRoot(Heap::kUndefinedValueRootIndex); -} - - -void CodeGenerator::GenerateIsNonNegativeSmi(ZoneList<Expression*>* args) { - ASSERT(args->length() == 1); - Load(args->at(0)); - Register reg = frame_->PopToRegister(); - __ tst(reg, Operand(kSmiTagMask | 0x80000000u)); - cc_reg_ = eq; -} - - -// Generates the Math.pow method. -void CodeGenerator::GenerateMathPow(ZoneList<Expression*>* args) { - ASSERT(args->length() == 2); - Load(args->at(0)); - Load(args->at(1)); - - if (!CpuFeatures::IsSupported(VFP3)) { - frame_->CallRuntime(Runtime::kMath_pow, 2); - frame_->EmitPush(r0); - } else { - CpuFeatures::Scope scope(VFP3); - JumpTarget runtime, done; - Label exponent_nonsmi, base_nonsmi, powi, not_minus_half, allocate_return; - - Register scratch1 = VirtualFrame::scratch0(); - Register scratch2 = VirtualFrame::scratch1(); - - // Get base and exponent to registers. - Register exponent = frame_->PopToRegister(); - Register base = frame_->PopToRegister(exponent); - Register heap_number_map = no_reg; - - // Set the frame for the runtime jump target. The code below jumps to the - // jump target label so the frame needs to be established before that. - ASSERT(runtime.entry_frame() == NULL); - runtime.set_entry_frame(frame_); - - __ JumpIfNotSmi(exponent, &exponent_nonsmi); - __ JumpIfNotSmi(base, &base_nonsmi); - - heap_number_map = r6; - __ LoadRoot(heap_number_map, Heap::kHeapNumberMapRootIndex); - - // Exponent is a smi and base is a smi. Get the smi value into vfp register - // d1. - __ SmiToDoubleVFPRegister(base, d1, scratch1, s0); - __ b(&powi); - - __ bind(&base_nonsmi); - // Exponent is smi and base is non smi. Get the double value from the base - // into vfp register d1. - __ ObjectToDoubleVFPRegister(base, d1, - scratch1, scratch2, heap_number_map, s0, - runtime.entry_label()); - - __ bind(&powi); - - // Load 1.0 into d0. - __ vmov(d0, 1.0); - - // Get the absolute untagged value of the exponent and use that for the - // calculation. - __ mov(scratch1, Operand(exponent, ASR, kSmiTagSize), SetCC); - // Negate if negative. - __ rsb(scratch1, scratch1, Operand(0, RelocInfo::NONE), LeaveCC, mi); - __ vmov(d2, d0, mi); // 1.0 needed in d2 later if exponent is negative. - - // Run through all the bits in the exponent. The result is calculated in d0 - // and d1 holds base^(bit^2). - Label more_bits; - __ bind(&more_bits); - __ mov(scratch1, Operand(scratch1, LSR, 1), SetCC); - __ vmul(d0, d0, d1, cs); // Multiply with base^(bit^2) if bit is set. - __ vmul(d1, d1, d1, ne); // Don't bother calculating next d1 if done. - __ b(ne, &more_bits); - - // If exponent is positive we are done. - __ cmp(exponent, Operand(0, RelocInfo::NONE)); - __ b(ge, &allocate_return); - - // If exponent is negative result is 1/result (d2 already holds 1.0 in that - // case). However if d0 has reached infinity this will not provide the - // correct result, so call runtime if that is the case. - __ mov(scratch2, Operand(0x7FF00000)); - __ mov(scratch1, Operand(0, RelocInfo::NONE)); - __ vmov(d1, scratch1, scratch2); // Load infinity into d1. - __ VFPCompareAndSetFlags(d0, d1); - runtime.Branch(eq); // d0 reached infinity. - __ vdiv(d0, d2, d0); - __ b(&allocate_return); - - __ bind(&exponent_nonsmi); - // Special handling of raising to the power of -0.5 and 0.5. First check - // that the value is a heap number and that the lower bits (which for both - // values are zero). - heap_number_map = r6; - __ LoadRoot(heap_number_map, Heap::kHeapNumberMapRootIndex); - __ ldr(scratch1, FieldMemOperand(exponent, HeapObject::kMapOffset)); - __ ldr(scratch2, FieldMemOperand(exponent, HeapNumber::kMantissaOffset)); - __ cmp(scratch1, heap_number_map); - runtime.Branch(ne); - __ tst(scratch2, scratch2); - runtime.Branch(ne); - - // Load the higher bits (which contains the floating point exponent). - __ ldr(scratch1, FieldMemOperand(exponent, HeapNumber::kExponentOffset)); - - // Compare exponent with -0.5. - __ cmp(scratch1, Operand(0xbfe00000)); - __ b(ne, ¬_minus_half); - - // Get the double value from the base into vfp register d0. - __ ObjectToDoubleVFPRegister(base, d0, - scratch1, scratch2, heap_number_map, s0, - runtime.entry_label(), - AVOID_NANS_AND_INFINITIES); - - // Convert -0 into +0 by adding +0. - __ vmov(d2, 0.0); - __ vadd(d0, d2, d0); - // Load 1.0 into d2. - __ vmov(d2, 1.0); - - // Calculate the reciprocal of the square root. - __ vsqrt(d0, d0); - __ vdiv(d0, d2, d0); - - __ b(&allocate_return); - - __ bind(¬_minus_half); - // Compare exponent with 0.5. - __ cmp(scratch1, Operand(0x3fe00000)); - runtime.Branch(ne); - - // Get the double value from the base into vfp register d0. - __ ObjectToDoubleVFPRegister(base, d0, - scratch1, scratch2, heap_number_map, s0, - runtime.entry_label(), - AVOID_NANS_AND_INFINITIES); - // Convert -0 into +0 by adding +0. - __ vmov(d2, 0.0); - __ vadd(d0, d2, d0); - __ vsqrt(d0, d0); - - __ bind(&allocate_return); - Register scratch3 = r5; - __ AllocateHeapNumberWithValue(scratch3, d0, scratch1, scratch2, - heap_number_map, runtime.entry_label()); - __ mov(base, scratch3); - done.Jump(); - - runtime.Bind(); - - // Push back the arguments again for the runtime call. - frame_->EmitPush(base); - frame_->EmitPush(exponent); - frame_->CallRuntime(Runtime::kMath_pow, 2); - __ Move(base, r0); - - done.Bind(); - frame_->EmitPush(base); - } -} - - -// Generates the Math.sqrt method. -void CodeGenerator::GenerateMathSqrt(ZoneList<Expression*>* args) { - ASSERT(args->length() == 1); - Load(args->at(0)); - - if (!CpuFeatures::IsSupported(VFP3)) { - frame_->CallRuntime(Runtime::kMath_sqrt, 1); - frame_->EmitPush(r0); - } else { - CpuFeatures::Scope scope(VFP3); - JumpTarget runtime, done; - - Register scratch1 = VirtualFrame::scratch0(); - Register scratch2 = VirtualFrame::scratch1(); - - // Get the value from the frame. - Register tos = frame_->PopToRegister(); - - // Set the frame for the runtime jump target. The code below jumps to the - // jump target label so the frame needs to be established before that. - ASSERT(runtime.entry_frame() == NULL); - runtime.set_entry_frame(frame_); - - Register heap_number_map = r6; - Register new_heap_number = r5; - __ LoadRoot(heap_number_map, Heap::kHeapNumberMapRootIndex); - - // Get the double value from the heap number into vfp register d0. - __ ObjectToDoubleVFPRegister(tos, d0, - scratch1, scratch2, heap_number_map, s0, - runtime.entry_label()); - - // Calculate the square root of d0 and place result in a heap number object. - __ vsqrt(d0, d0); - __ AllocateHeapNumberWithValue(new_heap_number, - d0, - scratch1, scratch2, - heap_number_map, - runtime.entry_label()); - __ mov(tos, Operand(new_heap_number)); - done.Jump(); - - runtime.Bind(); - // Push back the argument again for the runtime call. - frame_->EmitPush(tos); - frame_->CallRuntime(Runtime::kMath_sqrt, 1); - __ Move(tos, r0); - - done.Bind(); - frame_->EmitPush(tos); - } -} - - -class DeferredStringCharCodeAt : public DeferredCode { - public: - DeferredStringCharCodeAt(Register object, - Register index, - Register scratch, - Register result) - : result_(result), - char_code_at_generator_(object, - index, - scratch, - result, - &need_conversion_, - &need_conversion_, - &index_out_of_range_, - STRING_INDEX_IS_NUMBER) {} - - StringCharCodeAtGenerator* fast_case_generator() { - return &char_code_at_generator_; - } - - virtual void Generate() { - VirtualFrameRuntimeCallHelper call_helper(frame_state()); - char_code_at_generator_.GenerateSlow(masm(), call_helper); - - __ bind(&need_conversion_); - // Move the undefined value into the result register, which will - // trigger conversion. - __ LoadRoot(result_, Heap::kUndefinedValueRootIndex); - __ jmp(exit_label()); - - __ bind(&index_out_of_range_); - // When the index is out of range, the spec requires us to return - // NaN. - __ LoadRoot(result_, Heap::kNanValueRootIndex); - __ jmp(exit_label()); - } - - private: - Register result_; - - Label need_conversion_; - Label index_out_of_range_; - - StringCharCodeAtGenerator char_code_at_generator_; -}; - - -// This generates code that performs a String.prototype.charCodeAt() call -// or returns a smi in order to trigger conversion. -void CodeGenerator::GenerateStringCharCodeAt(ZoneList<Expression*>* args) { - Comment(masm_, "[ GenerateStringCharCodeAt"); - ASSERT(args->length() == 2); - - Load(args->at(0)); - Load(args->at(1)); - - Register index = frame_->PopToRegister(); - Register object = frame_->PopToRegister(index); - - // We need two extra registers. - Register scratch = VirtualFrame::scratch0(); - Register result = VirtualFrame::scratch1(); - - DeferredStringCharCodeAt* deferred = - new DeferredStringCharCodeAt(object, - index, - scratch, - result); - deferred->fast_case_generator()->GenerateFast(masm_); - deferred->BindExit(); - frame_->EmitPush(result); -} - - -class DeferredStringCharFromCode : public DeferredCode { - public: - DeferredStringCharFromCode(Register code, - Register result) - : char_from_code_generator_(code, result) {} - - StringCharFromCodeGenerator* fast_case_generator() { - return &char_from_code_generator_; - } - - virtual void Generate() { - VirtualFrameRuntimeCallHelper call_helper(frame_state()); - char_from_code_generator_.GenerateSlow(masm(), call_helper); - } - - private: - StringCharFromCodeGenerator char_from_code_generator_; -}; - - -// Generates code for creating a one-char string from a char code. -void CodeGenerator::GenerateStringCharFromCode(ZoneList<Expression*>* args) { - Comment(masm_, "[ GenerateStringCharFromCode"); - ASSERT(args->length() == 1); - - Load(args->at(0)); - - Register result = frame_->GetTOSRegister(); - Register code = frame_->PopToRegister(result); - - DeferredStringCharFromCode* deferred = new DeferredStringCharFromCode( - code, result); - deferred->fast_case_generator()->GenerateFast(masm_); - deferred->BindExit(); - frame_->EmitPush(result); -} - - -class DeferredStringCharAt : public DeferredCode { - public: - DeferredStringCharAt(Register object, - Register index, - Register scratch1, - Register scratch2, - Register result) - : result_(result), - char_at_generator_(object, - index, - scratch1, - scratch2, - result, - &need_conversion_, - &need_conversion_, - &index_out_of_range_, - STRING_INDEX_IS_NUMBER) {} - - StringCharAtGenerator* fast_case_generator() { - return &char_at_generator_; - } - - virtual void Generate() { - VirtualFrameRuntimeCallHelper call_helper(frame_state()); - char_at_generator_.GenerateSlow(masm(), call_helper); - - __ bind(&need_conversion_); - // Move smi zero into the result register, which will trigger - // conversion. - __ mov(result_, Operand(Smi::FromInt(0))); - __ jmp(exit_label()); - - __ bind(&index_out_of_range_); - // When the index is out of range, the spec requires us to return - // the empty string. - __ LoadRoot(result_, Heap::kEmptyStringRootIndex); - __ jmp(exit_label()); - } - - private: - Register result_; - - Label need_conversion_; - Label index_out_of_range_; - - StringCharAtGenerator char_at_generator_; -}; - - -// This generates code that performs a String.prototype.charAt() call -// or returns a smi in order to trigger conversion. -void CodeGenerator::GenerateStringCharAt(ZoneList<Expression*>* args) { - Comment(masm_, "[ GenerateStringCharAt"); - ASSERT(args->length() == 2); - - Load(args->at(0)); - Load(args->at(1)); - - Register index = frame_->PopToRegister(); - Register object = frame_->PopToRegister(index); - - // We need three extra registers. - Register scratch1 = VirtualFrame::scratch0(); - Register scratch2 = VirtualFrame::scratch1(); - // Use r6 without notifying the virtual frame. - Register result = r6; - - DeferredStringCharAt* deferred = - new DeferredStringCharAt(object, - index, - scratch1, - scratch2, - result); - deferred->fast_case_generator()->GenerateFast(masm_); - deferred->BindExit(); - frame_->EmitPush(result); -} - - -void CodeGenerator::GenerateIsArray(ZoneList<Expression*>* args) { - ASSERT(args->length() == 1); - Load(args->at(0)); - JumpTarget answer; - // We need the CC bits to come out as not_equal in the case where the - // object is a smi. This can't be done with the usual test opcode so - // we use XOR to get the right CC bits. - Register possible_array = frame_->PopToRegister(); - Register scratch = VirtualFrame::scratch0(); - __ and_(scratch, possible_array, Operand(kSmiTagMask)); - __ eor(scratch, scratch, Operand(kSmiTagMask), SetCC); - answer.Branch(ne); - // It is a heap object - get the map. Check if the object is a JS array. - __ CompareObjectType(possible_array, scratch, scratch, JS_ARRAY_TYPE); - answer.Bind(); - cc_reg_ = eq; -} - - -void CodeGenerator::GenerateIsRegExp(ZoneList<Expression*>* args) { - ASSERT(args->length() == 1); - Load(args->at(0)); - JumpTarget answer; - // We need the CC bits to come out as not_equal in the case where the - // object is a smi. This can't be done with the usual test opcode so - // we use XOR to get the right CC bits. - Register possible_regexp = frame_->PopToRegister(); - Register scratch = VirtualFrame::scratch0(); - __ and_(scratch, possible_regexp, Operand(kSmiTagMask)); - __ eor(scratch, scratch, Operand(kSmiTagMask), SetCC); - answer.Branch(ne); - // It is a heap object - get the map. Check if the object is a regexp. - __ CompareObjectType(possible_regexp, scratch, scratch, JS_REGEXP_TYPE); - answer.Bind(); - cc_reg_ = eq; -} - - -void CodeGenerator::GenerateIsObject(ZoneList<Expression*>* args) { - // This generates a fast version of: - // (typeof(arg) === 'object' || %_ClassOf(arg) == 'RegExp') - ASSERT(args->length() == 1); - Load(args->at(0)); - Register possible_object = frame_->PopToRegister(); - __ tst(possible_object, Operand(kSmiTagMask)); - false_target()->Branch(eq); - - __ LoadRoot(ip, Heap::kNullValueRootIndex); - __ cmp(possible_object, ip); - true_target()->Branch(eq); - - Register map_reg = VirtualFrame::scratch0(); - __ ldr(map_reg, FieldMemOperand(possible_object, HeapObject::kMapOffset)); - // Undetectable objects behave like undefined when tested with typeof. - __ ldrb(possible_object, FieldMemOperand(map_reg, Map::kBitFieldOffset)); - __ tst(possible_object, Operand(1 << Map::kIsUndetectable)); - false_target()->Branch(ne); - - __ ldrb(possible_object, FieldMemOperand(map_reg, Map::kInstanceTypeOffset)); - __ cmp(possible_object, Operand(FIRST_JS_OBJECT_TYPE)); - false_target()->Branch(lt); - __ cmp(possible_object, Operand(LAST_JS_OBJECT_TYPE)); - cc_reg_ = le; -} - - -void CodeGenerator::GenerateIsSpecObject(ZoneList<Expression*>* args) { - // This generates a fast version of: - // (typeof(arg) === 'object' || %_ClassOf(arg) == 'RegExp' || - // typeof(arg) == function). - // It includes undetectable objects (as opposed to IsObject). - ASSERT(args->length() == 1); - Load(args->at(0)); - Register value = frame_->PopToRegister(); - __ tst(value, Operand(kSmiTagMask)); - false_target()->Branch(eq); - // Check that this is an object. - __ ldr(value, FieldMemOperand(value, HeapObject::kMapOffset)); - __ ldrb(value, FieldMemOperand(value, Map::kInstanceTypeOffset)); - __ cmp(value, Operand(FIRST_JS_OBJECT_TYPE)); - cc_reg_ = ge; -} - - -// Deferred code to check whether the String JavaScript object is safe for using -// default value of. This code is called after the bit caching this information -// in the map has been checked with the map for the object in the map_result_ -// register. On return the register map_result_ contains 1 for true and 0 for -// false. -class DeferredIsStringWrapperSafeForDefaultValueOf : public DeferredCode { - public: - DeferredIsStringWrapperSafeForDefaultValueOf(Register object, - Register map_result, - Register scratch1, - Register scratch2) - : object_(object), - map_result_(map_result), - scratch1_(scratch1), - scratch2_(scratch2) { } - - virtual void Generate() { - Label false_result; - - // Check that map is loaded as expected. - if (FLAG_debug_code) { - __ ldr(ip, FieldMemOperand(object_, HeapObject::kMapOffset)); - __ cmp(map_result_, ip); - __ Assert(eq, "Map not in expected register"); - } - - // Check for fast case object. Generate false result for slow case object. - __ ldr(scratch1_, FieldMemOperand(object_, JSObject::kPropertiesOffset)); - __ ldr(scratch1_, FieldMemOperand(scratch1_, HeapObject::kMapOffset)); - __ LoadRoot(ip, Heap::kHashTableMapRootIndex); - __ cmp(scratch1_, ip); - __ b(eq, &false_result); - - // Look for valueOf symbol in the descriptor array, and indicate false if - // found. The type is not checked, so if it is a transition it is a false - // negative. - __ ldr(map_result_, - FieldMemOperand(map_result_, Map::kInstanceDescriptorsOffset)); - __ ldr(scratch2_, FieldMemOperand(map_result_, FixedArray::kLengthOffset)); - // map_result_: descriptor array - // scratch2_: length of descriptor array - // Calculate the end of the descriptor array. - STATIC_ASSERT(kSmiTag == 0); - STATIC_ASSERT(kSmiTagSize == 1); - STATIC_ASSERT(kPointerSize == 4); - __ add(scratch1_, - map_result_, - Operand(FixedArray::kHeaderSize - kHeapObjectTag)); - __ add(scratch1_, - scratch1_, - Operand(scratch2_, LSL, kPointerSizeLog2 - kSmiTagSize)); - - // Calculate location of the first key name. - __ add(map_result_, - map_result_, - Operand(FixedArray::kHeaderSize - kHeapObjectTag + - DescriptorArray::kFirstIndex * kPointerSize)); - // Loop through all the keys in the descriptor array. If one of these is the - // symbol valueOf the result is false. - Label entry, loop; - // The use of ip to store the valueOf symbol asumes that it is not otherwise - // used in the loop below. - __ mov(ip, Operand(Factory::value_of_symbol())); - __ jmp(&entry); - __ bind(&loop); - __ ldr(scratch2_, MemOperand(map_result_, 0)); - __ cmp(scratch2_, ip); - __ b(eq, &false_result); - __ add(map_result_, map_result_, Operand(kPointerSize)); - __ bind(&entry); - __ cmp(map_result_, Operand(scratch1_)); - __ b(ne, &loop); - - // Reload map as register map_result_ was used as temporary above. - __ ldr(map_result_, FieldMemOperand(object_, HeapObject::kMapOffset)); - - // If a valueOf property is not found on the object check that it's - // prototype is the un-modified String prototype. If not result is false. - __ ldr(scratch1_, FieldMemOperand(map_result_, Map::kPrototypeOffset)); - __ tst(scratch1_, Operand(kSmiTagMask)); - __ b(eq, &false_result); - __ ldr(scratch1_, FieldMemOperand(scratch1_, HeapObject::kMapOffset)); - __ ldr(scratch2_, - ContextOperand(cp, Context::GLOBAL_INDEX)); - __ ldr(scratch2_, - FieldMemOperand(scratch2_, GlobalObject::kGlobalContextOffset)); - __ ldr(scratch2_, - ContextOperand( - scratch2_, Context::STRING_FUNCTION_PROTOTYPE_MAP_INDEX)); - __ cmp(scratch1_, scratch2_); - __ b(ne, &false_result); - - // Set the bit in the map to indicate that it has been checked safe for - // default valueOf and set true result. - __ ldrb(scratch1_, FieldMemOperand(map_result_, Map::kBitField2Offset)); - __ orr(scratch1_, - scratch1_, - Operand(1 << Map::kStringWrapperSafeForDefaultValueOf)); - __ strb(scratch1_, FieldMemOperand(map_result_, Map::kBitField2Offset)); - __ mov(map_result_, Operand(1)); - __ jmp(exit_label()); - __ bind(&false_result); - // Set false result. - __ mov(map_result_, Operand(0, RelocInfo::NONE)); - } - - private: - Register object_; - Register map_result_; - Register scratch1_; - Register scratch2_; -}; - - -void CodeGenerator::GenerateIsStringWrapperSafeForDefaultValueOf( - ZoneList<Expression*>* args) { - ASSERT(args->length() == 1); - Load(args->at(0)); - Register obj = frame_->PopToRegister(); // Pop the string wrapper. - if (FLAG_debug_code) { - __ AbortIfSmi(obj); - } - - // Check whether this map has already been checked to be safe for default - // valueOf. - Register map_result = VirtualFrame::scratch0(); - __ ldr(map_result, FieldMemOperand(obj, HeapObject::kMapOffset)); - __ ldrb(ip, FieldMemOperand(map_result, Map::kBitField2Offset)); - __ tst(ip, Operand(1 << Map::kStringWrapperSafeForDefaultValueOf)); - true_target()->Branch(ne); - - // We need an additional two scratch registers for the deferred code. - Register scratch1 = VirtualFrame::scratch1(); - // Use r6 without notifying the virtual frame. - Register scratch2 = r6; - - DeferredIsStringWrapperSafeForDefaultValueOf* deferred = - new DeferredIsStringWrapperSafeForDefaultValueOf( - obj, map_result, scratch1, scratch2); - deferred->Branch(eq); - deferred->BindExit(); - __ tst(map_result, Operand(map_result)); - cc_reg_ = ne; -} - - -void CodeGenerator::GenerateIsFunction(ZoneList<Expression*>* args) { - // This generates a fast version of: - // (%_ClassOf(arg) === 'Function') - ASSERT(args->length() == 1); - Load(args->at(0)); - Register possible_function = frame_->PopToRegister(); - __ tst(possible_function, Operand(kSmiTagMask)); - false_target()->Branch(eq); - Register map_reg = VirtualFrame::scratch0(); - Register scratch = VirtualFrame::scratch1(); - __ CompareObjectType(possible_function, map_reg, scratch, JS_FUNCTION_TYPE); - cc_reg_ = eq; -} - - -void CodeGenerator::GenerateIsUndetectableObject(ZoneList<Expression*>* args) { - ASSERT(args->length() == 1); - Load(args->at(0)); - Register possible_undetectable = frame_->PopToRegister(); - __ tst(possible_undetectable, Operand(kSmiTagMask)); - false_target()->Branch(eq); - Register scratch = VirtualFrame::scratch0(); - __ ldr(scratch, - FieldMemOperand(possible_undetectable, HeapObject::kMapOffset)); - __ ldrb(scratch, FieldMemOperand(scratch, Map::kBitFieldOffset)); - __ tst(scratch, Operand(1 << Map::kIsUndetectable)); - cc_reg_ = ne; -} - - -void CodeGenerator::GenerateIsConstructCall(ZoneList<Expression*>* args) { - ASSERT(args->length() == 0); - - Register scratch0 = VirtualFrame::scratch0(); - Register scratch1 = VirtualFrame::scratch1(); - // Get the frame pointer for the calling frame. - __ ldr(scratch0, MemOperand(fp, StandardFrameConstants::kCallerFPOffset)); - - // Skip the arguments adaptor frame if it exists. - __ ldr(scratch1, - MemOperand(scratch0, StandardFrameConstants::kContextOffset)); - __ cmp(scratch1, Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR))); - __ ldr(scratch0, - MemOperand(scratch0, StandardFrameConstants::kCallerFPOffset), eq); - - // Check the marker in the calling frame. - __ ldr(scratch1, - MemOperand(scratch0, StandardFrameConstants::kMarkerOffset)); - __ cmp(scratch1, Operand(Smi::FromInt(StackFrame::CONSTRUCT))); - cc_reg_ = eq; -} - - -void CodeGenerator::GenerateArgumentsLength(ZoneList<Expression*>* args) { - ASSERT(args->length() == 0); - - Register tos = frame_->GetTOSRegister(); - Register scratch0 = VirtualFrame::scratch0(); - Register scratch1 = VirtualFrame::scratch1(); - - // Check if the calling frame is an arguments adaptor frame. - __ ldr(scratch0, - MemOperand(fp, StandardFrameConstants::kCallerFPOffset)); - __ ldr(scratch1, - MemOperand(scratch0, StandardFrameConstants::kContextOffset)); - __ cmp(scratch1, Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR))); - - // Get the number of formal parameters. - __ mov(tos, Operand(Smi::FromInt(scope()->num_parameters())), LeaveCC, ne); - - // Arguments adaptor case: Read the arguments length from the - // adaptor frame. - __ ldr(tos, - MemOperand(scratch0, ArgumentsAdaptorFrameConstants::kLengthOffset), - eq); - - frame_->EmitPush(tos); -} - - -void CodeGenerator::GenerateArguments(ZoneList<Expression*>* args) { - ASSERT(args->length() == 1); - - // Satisfy contract with ArgumentsAccessStub: - // Load the key into r1 and the formal parameters count into r0. - Load(args->at(0)); - frame_->PopToR1(); - frame_->SpillAll(); - __ mov(r0, Operand(Smi::FromInt(scope()->num_parameters()))); - - // Call the shared stub to get to arguments[key]. - ArgumentsAccessStub stub(ArgumentsAccessStub::READ_ELEMENT); - frame_->CallStub(&stub, 0); - frame_->EmitPush(r0); -} - - -void CodeGenerator::GenerateRandomHeapNumber( - ZoneList<Expression*>* args) { - VirtualFrame::SpilledScope spilled_scope(frame_); - ASSERT(args->length() == 0); - - Label slow_allocate_heapnumber; - Label heapnumber_allocated; - - __ LoadRoot(r6, Heap::kHeapNumberMapRootIndex); - __ AllocateHeapNumber(r4, r1, r2, r6, &slow_allocate_heapnumber); - __ jmp(&heapnumber_allocated); - - __ bind(&slow_allocate_heapnumber); - // Allocate a heap number. - __ CallRuntime(Runtime::kNumberAlloc, 0); - __ mov(r4, Operand(r0)); - - __ bind(&heapnumber_allocated); - - // Convert 32 random bits in r0 to 0.(32 random bits) in a double - // by computing: - // ( 1.(20 0s)(32 random bits) x 2^20 ) - (1.0 x 2^20)). - if (CpuFeatures::IsSupported(VFP3)) { - __ PrepareCallCFunction(0, r1); - __ CallCFunction(ExternalReference::random_uint32_function(), 0); - - CpuFeatures::Scope scope(VFP3); - // 0x41300000 is the top half of 1.0 x 2^20 as a double. - // Create this constant using mov/orr to avoid PC relative load. - __ mov(r1, Operand(0x41000000)); - __ orr(r1, r1, Operand(0x300000)); - // Move 0x41300000xxxxxxxx (x = random bits) to VFP. - __ vmov(d7, r0, r1); - // Move 0x4130000000000000 to VFP. - __ mov(r0, Operand(0, RelocInfo::NONE)); - __ vmov(d8, r0, r1); - // Subtract and store the result in the heap number. - __ vsub(d7, d7, d8); - __ sub(r0, r4, Operand(kHeapObjectTag)); - __ vstr(d7, r0, HeapNumber::kValueOffset); - frame_->EmitPush(r4); - } else { - __ mov(r0, Operand(r4)); - __ PrepareCallCFunction(1, r1); - __ CallCFunction( - ExternalReference::fill_heap_number_with_random_function(), 1); - frame_->EmitPush(r0); - } -} - - -void CodeGenerator::GenerateStringAdd(ZoneList<Expression*>* args) { - ASSERT_EQ(2, args->length()); - - Load(args->at(0)); - Load(args->at(1)); - - StringAddStub stub(NO_STRING_ADD_FLAGS); - frame_->SpillAll(); - frame_->CallStub(&stub, 2); - frame_->EmitPush(r0); -} - - -void CodeGenerator::GenerateSubString(ZoneList<Expression*>* args) { - ASSERT_EQ(3, args->length()); - - Load(args->at(0)); - Load(args->at(1)); - Load(args->at(2)); - - SubStringStub stub; - frame_->SpillAll(); - frame_->CallStub(&stub, 3); - frame_->EmitPush(r0); -} - - -void CodeGenerator::GenerateStringCompare(ZoneList<Expression*>* args) { - ASSERT_EQ(2, args->length()); - - Load(args->at(0)); - Load(args->at(1)); - - StringCompareStub stub; - frame_->SpillAll(); - frame_->CallStub(&stub, 2); - frame_->EmitPush(r0); -} - - -void CodeGenerator::GenerateRegExpExec(ZoneList<Expression*>* args) { - ASSERT_EQ(4, args->length()); - - Load(args->at(0)); - Load(args->at(1)); - Load(args->at(2)); - Load(args->at(3)); - RegExpExecStub stub; - frame_->SpillAll(); - frame_->CallStub(&stub, 4); - frame_->EmitPush(r0); -} - - -void CodeGenerator::GenerateRegExpConstructResult(ZoneList<Expression*>* args) { - ASSERT_EQ(3, args->length()); - - Load(args->at(0)); // Size of array, smi. - Load(args->at(1)); // "index" property value. - Load(args->at(2)); // "input" property value. - RegExpConstructResultStub stub; - frame_->SpillAll(); - frame_->CallStub(&stub, 3); - frame_->EmitPush(r0); -} - - -class DeferredSearchCache: public DeferredCode { - public: - DeferredSearchCache(Register dst, Register cache, Register key) - : dst_(dst), cache_(cache), key_(key) { - set_comment("[ DeferredSearchCache"); - } - - virtual void Generate(); - - private: - Register dst_, cache_, key_; -}; - - -void DeferredSearchCache::Generate() { - __ Push(cache_, key_); - __ CallRuntime(Runtime::kGetFromCache, 2); - __ Move(dst_, r0); -} - - -void CodeGenerator::GenerateGetFromCache(ZoneList<Expression*>* args) { - ASSERT_EQ(2, args->length()); - - ASSERT_NE(NULL, args->at(0)->AsLiteral()); - int cache_id = Smi::cast(*(args->at(0)->AsLiteral()->handle()))->value(); - - Handle<FixedArray> jsfunction_result_caches( - Top::global_context()->jsfunction_result_caches()); - if (jsfunction_result_caches->length() <= cache_id) { - __ Abort("Attempt to use undefined cache."); - frame_->EmitPushRoot(Heap::kUndefinedValueRootIndex); - return; - } - - Load(args->at(1)); - - frame_->PopToR1(); - frame_->SpillAll(); - Register key = r1; // Just poped to r1 - Register result = r0; // Free, as frame has just been spilled. - Register scratch1 = VirtualFrame::scratch0(); - Register scratch2 = VirtualFrame::scratch1(); - - __ ldr(scratch1, ContextOperand(cp, Context::GLOBAL_INDEX)); - __ ldr(scratch1, - FieldMemOperand(scratch1, GlobalObject::kGlobalContextOffset)); - __ ldr(scratch1, - ContextOperand(scratch1, Context::JSFUNCTION_RESULT_CACHES_INDEX)); - __ ldr(scratch1, - FieldMemOperand(scratch1, FixedArray::OffsetOfElementAt(cache_id))); - - DeferredSearchCache* deferred = - new DeferredSearchCache(result, scratch1, key); - - const int kFingerOffset = - FixedArray::OffsetOfElementAt(JSFunctionResultCache::kFingerIndex); - STATIC_ASSERT(kSmiTag == 0 && kSmiTagSize == 1); - __ ldr(result, FieldMemOperand(scratch1, kFingerOffset)); - // result now holds finger offset as a smi. - __ add(scratch2, scratch1, Operand(FixedArray::kHeaderSize - kHeapObjectTag)); - // scratch2 now points to the start of fixed array elements. - __ ldr(result, - MemOperand( - scratch2, result, LSL, kPointerSizeLog2 - kSmiTagSize, PreIndex)); - // Note side effect of PreIndex: scratch2 now points to the key of the pair. - __ cmp(key, result); - deferred->Branch(ne); - - __ ldr(result, MemOperand(scratch2, kPointerSize)); - - deferred->BindExit(); - frame_->EmitPush(result); -} - - -void CodeGenerator::GenerateNumberToString(ZoneList<Expression*>* args) { - ASSERT_EQ(args->length(), 1); - - // Load the argument on the stack and jump to the runtime. - Load(args->at(0)); - - NumberToStringStub stub; - frame_->SpillAll(); - frame_->CallStub(&stub, 1); - frame_->EmitPush(r0); -} - - -class DeferredSwapElements: public DeferredCode { - public: - DeferredSwapElements(Register object, Register index1, Register index2) - : object_(object), index1_(index1), index2_(index2) { - set_comment("[ DeferredSwapElements"); - } - - virtual void Generate(); - - private: - Register object_, index1_, index2_; -}; - - -void DeferredSwapElements::Generate() { - __ push(object_); - __ push(index1_); - __ push(index2_); - __ CallRuntime(Runtime::kSwapElements, 3); -} - - -void CodeGenerator::GenerateSwapElements(ZoneList<Expression*>* args) { - Comment cmnt(masm_, "[ GenerateSwapElements"); - - ASSERT_EQ(3, args->length()); - - Load(args->at(0)); - Load(args->at(1)); - Load(args->at(2)); - - VirtualFrame::SpilledScope spilled_scope(frame_); - - Register index2 = r2; - Register index1 = r1; - Register object = r0; - Register tmp1 = r3; - Register tmp2 = r4; - - frame_->EmitPop(index2); - frame_->EmitPop(index1); - frame_->EmitPop(object); - - DeferredSwapElements* deferred = - new DeferredSwapElements(object, index1, index2); - - // Fetch the map and check if array is in fast case. - // Check that object doesn't require security checks and - // has no indexed interceptor. - __ CompareObjectType(object, tmp1, tmp2, FIRST_JS_OBJECT_TYPE); - deferred->Branch(lt); - __ ldrb(tmp2, FieldMemOperand(tmp1, Map::kBitFieldOffset)); - __ tst(tmp2, Operand(KeyedLoadIC::kSlowCaseBitFieldMask)); - deferred->Branch(ne); - - // Check the object's elements are in fast case and writable. - __ ldr(tmp1, FieldMemOperand(object, JSObject::kElementsOffset)); - __ ldr(tmp2, FieldMemOperand(tmp1, HeapObject::kMapOffset)); - __ LoadRoot(ip, Heap::kFixedArrayMapRootIndex); - __ cmp(tmp2, ip); - deferred->Branch(ne); - - // Smi-tagging is equivalent to multiplying by 2. - STATIC_ASSERT(kSmiTag == 0); - STATIC_ASSERT(kSmiTagSize == 1); - - // Check that both indices are smis. - __ mov(tmp2, index1); - __ orr(tmp2, tmp2, index2); - __ tst(tmp2, Operand(kSmiTagMask)); - deferred->Branch(ne); - - // Check that both indices are valid. - __ ldr(tmp2, FieldMemOperand(object, JSArray::kLengthOffset)); - __ cmp(tmp2, index1); - __ cmp(tmp2, index2, hi); - deferred->Branch(ls); - - // Bring the offsets into the fixed array in tmp1 into index1 and - // index2. - __ mov(tmp2, Operand(FixedArray::kHeaderSize - kHeapObjectTag)); - __ add(index1, tmp2, Operand(index1, LSL, kPointerSizeLog2 - kSmiTagSize)); - __ add(index2, tmp2, Operand(index2, LSL, kPointerSizeLog2 - kSmiTagSize)); - - // Swap elements. - Register tmp3 = object; - object = no_reg; - __ ldr(tmp3, MemOperand(tmp1, index1)); - __ ldr(tmp2, MemOperand(tmp1, index2)); - __ str(tmp3, MemOperand(tmp1, index2)); - __ str(tmp2, MemOperand(tmp1, index1)); - - Label done; - __ InNewSpace(tmp1, tmp2, eq, &done); - // Possible optimization: do a check that both values are Smis - // (or them and test against Smi mask.) - - __ mov(tmp2, tmp1); - __ add(index1, index1, tmp1); - __ add(index2, index2, tmp1); - __ RecordWriteHelper(tmp1, index1, tmp3); - __ RecordWriteHelper(tmp2, index2, tmp3); - __ bind(&done); - - deferred->BindExit(); - __ LoadRoot(tmp1, Heap::kUndefinedValueRootIndex); - frame_->EmitPush(tmp1); -} - - -void CodeGenerator::GenerateCallFunction(ZoneList<Expression*>* args) { - Comment cmnt(masm_, "[ GenerateCallFunction"); - - ASSERT(args->length() >= 2); - - int n_args = args->length() - 2; // for receiver and function. - Load(args->at(0)); // receiver - for (int i = 0; i < n_args; i++) { - Load(args->at(i + 1)); - } - Load(args->at(n_args + 1)); // function - frame_->CallJSFunction(n_args); - frame_->EmitPush(r0); -} - - -void CodeGenerator::GenerateMathSin(ZoneList<Expression*>* args) { - ASSERT_EQ(args->length(), 1); - Load(args->at(0)); - if (CpuFeatures::IsSupported(VFP3)) { - TranscendentalCacheStub stub(TranscendentalCache::SIN); - frame_->SpillAllButCopyTOSToR0(); - frame_->CallStub(&stub, 1); - } else { - frame_->CallRuntime(Runtime::kMath_sin, 1); - } - frame_->EmitPush(r0); -} - - -void CodeGenerator::GenerateMathCos(ZoneList<Expression*>* args) { - ASSERT_EQ(args->length(), 1); - Load(args->at(0)); - if (CpuFeatures::IsSupported(VFP3)) { - TranscendentalCacheStub stub(TranscendentalCache::COS); - frame_->SpillAllButCopyTOSToR0(); - frame_->CallStub(&stub, 1); - } else { - frame_->CallRuntime(Runtime::kMath_cos, 1); - } - frame_->EmitPush(r0); -} - - -void CodeGenerator::GenerateMathLog(ZoneList<Expression*>* args) { - ASSERT_EQ(args->length(), 1); - Load(args->at(0)); - if (CpuFeatures::IsSupported(VFP3)) { - TranscendentalCacheStub stub(TranscendentalCache::LOG); - frame_->SpillAllButCopyTOSToR0(); - frame_->CallStub(&stub, 1); - } else { - frame_->CallRuntime(Runtime::kMath_log, 1); - } - frame_->EmitPush(r0); -} - - -void CodeGenerator::GenerateObjectEquals(ZoneList<Expression*>* args) { - ASSERT(args->length() == 2); - - // Load the two objects into registers and perform the comparison. - Load(args->at(0)); - Load(args->at(1)); - Register lhs = frame_->PopToRegister(); - Register rhs = frame_->PopToRegister(lhs); - __ cmp(lhs, rhs); - cc_reg_ = eq; -} - - -void CodeGenerator::GenerateIsRegExpEquivalent(ZoneList<Expression*>* args) { - ASSERT(args->length() == 2); - - // Load the two objects into registers and perform the comparison. - Load(args->at(0)); - Load(args->at(1)); - Register right = frame_->PopToRegister(); - Register left = frame_->PopToRegister(right); - Register tmp = frame_->scratch0(); - Register tmp2 = frame_->scratch1(); - - // Jumps to done must have the eq flag set if the test is successful - // and clear if the test has failed. - Label done; - - // Fail if either is a non-HeapObject. - __ cmp(left, Operand(right)); - __ b(eq, &done); - __ and_(tmp, left, Operand(right)); - __ eor(tmp, tmp, Operand(kSmiTagMask)); - __ tst(tmp, Operand(kSmiTagMask)); - __ b(ne, &done); - __ ldr(tmp, FieldMemOperand(left, HeapObject::kMapOffset)); - __ ldrb(tmp2, FieldMemOperand(tmp, Map::kInstanceTypeOffset)); - __ cmp(tmp2, Operand(JS_REGEXP_TYPE)); - __ b(ne, &done); - __ ldr(tmp2, FieldMemOperand(right, HeapObject::kMapOffset)); - __ cmp(tmp, Operand(tmp2)); - __ b(ne, &done); - __ ldr(tmp, FieldMemOperand(left, JSRegExp::kDataOffset)); - __ ldr(tmp2, FieldMemOperand(right, JSRegExp::kDataOffset)); - __ cmp(tmp, tmp2); - __ bind(&done); - cc_reg_ = eq; -} - - -void CodeGenerator::GenerateHasCachedArrayIndex(ZoneList<Expression*>* args) { - ASSERT(args->length() == 1); - Load(args->at(0)); - Register value = frame_->PopToRegister(); - Register tmp = frame_->scratch0(); - __ ldr(tmp, FieldMemOperand(value, String::kHashFieldOffset)); - __ tst(tmp, Operand(String::kContainsCachedArrayIndexMask)); - cc_reg_ = eq; -} - - -void CodeGenerator::GenerateGetCachedArrayIndex(ZoneList<Expression*>* args) { - ASSERT(args->length() == 1); - Load(args->at(0)); - Register value = frame_->PopToRegister(); - - __ ldr(value, FieldMemOperand(value, String::kHashFieldOffset)); - __ IndexFromHash(value, value); - frame_->EmitPush(value); -} - - -void CodeGenerator::GenerateFastAsciiArrayJoin(ZoneList<Expression*>* args) { - ASSERT(args->length() == 2); - Load(args->at(0)); - Register value = frame_->PopToRegister(); - __ LoadRoot(value, Heap::kUndefinedValueRootIndex); - frame_->EmitPush(value); -} - - -void CodeGenerator::VisitCallRuntime(CallRuntime* node) { -#ifdef DEBUG - int original_height = frame_->height(); -#endif - if (CheckForInlineRuntimeCall(node)) { - ASSERT((has_cc() && frame_->height() == original_height) || - (!has_cc() && frame_->height() == original_height + 1)); - return; - } - - ZoneList<Expression*>* args = node->arguments(); - Comment cmnt(masm_, "[ CallRuntime"); - Runtime::Function* function = node->function(); - - if (function == NULL) { - // Prepare stack for calling JS runtime function. - // Push the builtins object found in the current global object. - Register scratch = VirtualFrame::scratch0(); - __ ldr(scratch, GlobalObjectOperand()); - Register builtins = frame_->GetTOSRegister(); - __ ldr(builtins, FieldMemOperand(scratch, GlobalObject::kBuiltinsOffset)); - frame_->EmitPush(builtins); - } - - // Push the arguments ("left-to-right"). - int arg_count = args->length(); - for (int i = 0; i < arg_count; i++) { - Load(args->at(i)); - } - - VirtualFrame::SpilledScope spilled_scope(frame_); - - if (function == NULL) { - // Call the JS runtime function. - __ mov(r2, Operand(node->name())); - InLoopFlag in_loop = loop_nesting() > 0 ? IN_LOOP : NOT_IN_LOOP; - Handle<Code> stub = StubCache::ComputeCallInitialize(arg_count, in_loop); - frame_->CallCodeObject(stub, RelocInfo::CODE_TARGET, arg_count + 1); - __ ldr(cp, frame_->Context()); - frame_->EmitPush(r0); - } else { - // Call the C runtime function. - frame_->CallRuntime(function, arg_count); - frame_->EmitPush(r0); - } - ASSERT_EQ(original_height + 1, frame_->height()); -} - - -void CodeGenerator::VisitUnaryOperation(UnaryOperation* node) { -#ifdef DEBUG - int original_height = frame_->height(); -#endif - Comment cmnt(masm_, "[ UnaryOperation"); - - Token::Value op = node->op(); - - if (op == Token::NOT) { - LoadCondition(node->expression(), false_target(), true_target(), true); - // LoadCondition may (and usually does) leave a test and branch to - // be emitted by the caller. In that case, negate the condition. - if (has_cc()) cc_reg_ = NegateCondition(cc_reg_); - - } else if (op == Token::DELETE) { - Property* property = node->expression()->AsProperty(); - Variable* variable = node->expression()->AsVariableProxy()->AsVariable(); - if (property != NULL) { - Load(property->obj()); - Load(property->key()); - frame_->EmitPush(Operand(Smi::FromInt(strict_mode_flag()))); - frame_->InvokeBuiltin(Builtins::DELETE, CALL_JS, 3); - frame_->EmitPush(r0); - - } else if (variable != NULL) { - // Delete of an unqualified identifier is disallowed in strict mode - // but "delete this" is. - ASSERT(strict_mode_flag() == kNonStrictMode || variable->is_this()); - Slot* slot = variable->AsSlot(); - if (variable->is_global()) { - LoadGlobal(); - frame_->EmitPush(Operand(variable->name())); - frame_->EmitPush(Operand(Smi::FromInt(kNonStrictMode))); - frame_->InvokeBuiltin(Builtins::DELETE, CALL_JS, 3); - frame_->EmitPush(r0); - - } else if (slot != NULL && slot->type() == Slot::LOOKUP) { - // Delete from the context holding the named variable. - frame_->EmitPush(cp); - frame_->EmitPush(Operand(variable->name())); - frame_->CallRuntime(Runtime::kDeleteContextSlot, 2); - frame_->EmitPush(r0); - - } else { - // Default: Result of deleting non-global, not dynamically - // introduced variables is false. - frame_->EmitPushRoot(Heap::kFalseValueRootIndex); - } - - } else { - // Default: Result of deleting expressions is true. - Load(node->expression()); // may have side-effects - frame_->Drop(); - frame_->EmitPushRoot(Heap::kTrueValueRootIndex); - } - - } else if (op == Token::TYPEOF) { - // Special case for loading the typeof expression; see comment on - // LoadTypeofExpression(). - LoadTypeofExpression(node->expression()); - frame_->CallRuntime(Runtime::kTypeof, 1); - frame_->EmitPush(r0); // r0 has result - - } else { - bool can_overwrite = node->expression()->ResultOverwriteAllowed(); - UnaryOverwriteMode overwrite = - can_overwrite ? UNARY_OVERWRITE : UNARY_NO_OVERWRITE; - - bool no_negative_zero = node->expression()->no_negative_zero(); - Load(node->expression()); - switch (op) { - case Token::NOT: - case Token::DELETE: - case Token::TYPEOF: - UNREACHABLE(); // handled above - break; - - case Token::SUB: { - frame_->PopToR0(); - GenericUnaryOpStub stub( - Token::SUB, - overwrite, - NO_UNARY_FLAGS, - no_negative_zero ? kIgnoreNegativeZero : kStrictNegativeZero); - frame_->CallStub(&stub, 0); - frame_->EmitPush(r0); // r0 has result - break; - } - - case Token::BIT_NOT: { - Register tos = frame_->PopToRegister(); - JumpTarget not_smi_label; - JumpTarget continue_label; - // Smi check. - __ tst(tos, Operand(kSmiTagMask)); - not_smi_label.Branch(ne); - - __ mvn(tos, Operand(tos)); - __ bic(tos, tos, Operand(kSmiTagMask)); // Bit-clear inverted smi-tag. - frame_->EmitPush(tos); - // The fast case is the first to jump to the continue label, so it gets - // to decide the virtual frame layout. - continue_label.Jump(); - - not_smi_label.Bind(); - frame_->SpillAll(); - __ Move(r0, tos); - GenericUnaryOpStub stub(Token::BIT_NOT, - overwrite, - NO_UNARY_SMI_CODE_IN_STUB); - frame_->CallStub(&stub, 0); - frame_->EmitPush(r0); - - continue_label.Bind(); - break; - } - - case Token::VOID: - frame_->Drop(); - frame_->EmitPushRoot(Heap::kUndefinedValueRootIndex); - break; - - case Token::ADD: { - Register tos = frame_->Peek(); - // Smi check. - JumpTarget continue_label; - __ tst(tos, Operand(kSmiTagMask)); - continue_label.Branch(eq); - - frame_->InvokeBuiltin(Builtins::TO_NUMBER, CALL_JS, 1); - frame_->EmitPush(r0); - - continue_label.Bind(); - break; - } - default: - UNREACHABLE(); - } - } - ASSERT(!has_valid_frame() || - (has_cc() && frame_->height() == original_height) || - (!has_cc() && frame_->height() == original_height + 1)); -} - - -class DeferredCountOperation: public DeferredCode { - public: - DeferredCountOperation(Register value, - bool is_increment, - bool is_postfix, - int target_size) - : value_(value), - is_increment_(is_increment), - is_postfix_(is_postfix), - target_size_(target_size) {} - - virtual void Generate() { - VirtualFrame copied_frame(*frame_state()->frame()); - - Label slow; - // Check for smi operand. - __ tst(value_, Operand(kSmiTagMask)); - __ b(ne, &slow); - - // Revert optimistic increment/decrement. - if (is_increment_) { - __ sub(value_, value_, Operand(Smi::FromInt(1))); - } else { - __ add(value_, value_, Operand(Smi::FromInt(1))); - } - - // Slow case: Convert to number. At this point the - // value to be incremented is in the value register.. - __ bind(&slow); - - // Convert the operand to a number. - copied_frame.EmitPush(value_); - - copied_frame.InvokeBuiltin(Builtins::TO_NUMBER, CALL_JS, 1); - - if (is_postfix_) { - // Postfix: store to result (on the stack). - __ str(r0, MemOperand(sp, target_size_ * kPointerSize)); - } - - copied_frame.EmitPush(r0); - copied_frame.EmitPush(Operand(Smi::FromInt(1))); - - if (is_increment_) { - copied_frame.CallRuntime(Runtime::kNumberAdd, 2); - } else { - copied_frame.CallRuntime(Runtime::kNumberSub, 2); - } - - __ Move(value_, r0); - - copied_frame.MergeTo(frame_state()->frame()); - } - - private: - Register value_; - bool is_increment_; - bool is_postfix_; - int target_size_; -}; - - -void CodeGenerator::VisitCountOperation(CountOperation* node) { -#ifdef DEBUG - int original_height = frame_->height(); -#endif - Comment cmnt(masm_, "[ CountOperation"); - VirtualFrame::RegisterAllocationScope scope(this); - - bool is_postfix = node->is_postfix(); - bool is_increment = node->op() == Token::INC; - - Variable* var = node->expression()->AsVariableProxy()->AsVariable(); - bool is_const = (var != NULL && var->mode() == Variable::CONST); - bool is_slot = (var != NULL && var->mode() == Variable::VAR); - - if (!is_const && is_slot && type_info(var->AsSlot()).IsSmi()) { - // The type info declares that this variable is always a Smi. That - // means it is a Smi both before and after the increment/decrement. - // Lets make use of that to make a very minimal count. - Reference target(this, node->expression(), !is_const); - ASSERT(!target.is_illegal()); - target.GetValue(); // Pushes the value. - Register value = frame_->PopToRegister(); - if (is_postfix) frame_->EmitPush(value); - if (is_increment) { - __ add(value, value, Operand(Smi::FromInt(1))); - } else { - __ sub(value, value, Operand(Smi::FromInt(1))); - } - frame_->EmitPush(value); - target.SetValue(NOT_CONST_INIT, LIKELY_SMI); - if (is_postfix) frame_->Pop(); - ASSERT_EQ(original_height + 1, frame_->height()); - return; - } - - // If it's a postfix expression and its result is not ignored and the - // reference is non-trivial, then push a placeholder on the stack now - // to hold the result of the expression. - bool placeholder_pushed = false; - if (!is_slot && is_postfix) { - frame_->EmitPush(Operand(Smi::FromInt(0))); - placeholder_pushed = true; - } - - // A constant reference is not saved to, so a constant reference is not a - // compound assignment reference. - { Reference target(this, node->expression(), !is_const); - if (target.is_illegal()) { - // Spoof the virtual frame to have the expected height (one higher - // than on entry). - if (!placeholder_pushed) frame_->EmitPush(Operand(Smi::FromInt(0))); - ASSERT_EQ(original_height + 1, frame_->height()); - return; - } - - // This pushes 0, 1 or 2 words on the object to be used later when updating - // the target. It also pushes the current value of the target. - target.GetValue(); - - bool value_is_known_smi = frame_->KnownSmiAt(0); - Register value = frame_->PopToRegister(); - - // Postfix: Store the old value as the result. - if (placeholder_pushed) { - frame_->SetElementAt(value, target.size()); - } else if (is_postfix) { - frame_->EmitPush(value); - __ mov(VirtualFrame::scratch0(), value); - value = VirtualFrame::scratch0(); - } - - // We can't use any type information here since the virtual frame from the - // deferred code may have lost information and we can't merge a virtual - // frame with less specific type knowledge to a virtual frame with more - // specific knowledge that has already used that specific knowledge to - // generate code. - frame_->ForgetTypeInfo(); - - // The constructor here will capture the current virtual frame and use it to - // merge to after the deferred code has run. No virtual frame changes are - // allowed from here until the 'BindExit' below. - DeferredCode* deferred = - new DeferredCountOperation(value, - is_increment, - is_postfix, - target.size()); - if (!value_is_known_smi) { - // Check for smi operand. - __ tst(value, Operand(kSmiTagMask)); - - deferred->Branch(ne); - } - - // Perform optimistic increment/decrement. - if (is_increment) { - __ add(value, value, Operand(Smi::FromInt(1)), SetCC); - } else { - __ sub(value, value, Operand(Smi::FromInt(1)), SetCC); - } - - // If increment/decrement overflows, go to deferred code. - deferred->Branch(vs); - - deferred->BindExit(); - - // Store the new value in the target if not const. - // At this point the answer is in the value register. - frame_->EmitPush(value); - // Set the target with the result, leaving the result on - // top of the stack. Removes the target from the stack if - // it has a non-zero size. - if (!is_const) target.SetValue(NOT_CONST_INIT, LIKELY_SMI); - } - - // Postfix: Discard the new value and use the old. - if (is_postfix) frame_->Pop(); - ASSERT_EQ(original_height + 1, frame_->height()); -} - - -void CodeGenerator::GenerateLogicalBooleanOperation(BinaryOperation* node) { - // According to ECMA-262 section 11.11, page 58, the binary logical - // operators must yield the result of one of the two expressions - // before any ToBoolean() conversions. This means that the value - // produced by a && or || operator is not necessarily a boolean. - - // NOTE: If the left hand side produces a materialized value (not in - // the CC register), we force the right hand side to do the - // same. This is necessary because we may have to branch to the exit - // after evaluating the left hand side (due to the shortcut - // semantics), but the compiler must (statically) know if the result - // of compiling the binary operation is materialized or not. - if (node->op() == Token::AND) { - JumpTarget is_true; - LoadCondition(node->left(), &is_true, false_target(), false); - if (has_valid_frame() && !has_cc()) { - // The left-hand side result is on top of the virtual frame. - JumpTarget pop_and_continue; - JumpTarget exit; - - frame_->Dup(); - // Avoid popping the result if it converts to 'false' using the - // standard ToBoolean() conversion as described in ECMA-262, - // section 9.2, page 30. - ToBoolean(&pop_and_continue, &exit); - Branch(false, &exit); - - // Pop the result of evaluating the first part. - pop_and_continue.Bind(); - frame_->Pop(); - - // Evaluate right side expression. - is_true.Bind(); - Load(node->right()); - - // Exit (always with a materialized value). - exit.Bind(); - } else if (has_cc() || is_true.is_linked()) { - // The left-hand side is either (a) partially compiled to - // control flow with a final branch left to emit or (b) fully - // compiled to control flow and possibly true. - if (has_cc()) { - Branch(false, false_target()); - } - is_true.Bind(); - LoadCondition(node->right(), true_target(), false_target(), false); - } else { - // Nothing to do. - ASSERT(!has_valid_frame() && !has_cc() && !is_true.is_linked()); - } - - } else { - ASSERT(node->op() == Token::OR); - JumpTarget is_false; - LoadCondition(node->left(), true_target(), &is_false, false); - if (has_valid_frame() && !has_cc()) { - // The left-hand side result is on top of the virtual frame. - JumpTarget pop_and_continue; - JumpTarget exit; - - frame_->Dup(); - // Avoid popping the result if it converts to 'true' using the - // standard ToBoolean() conversion as described in ECMA-262, - // section 9.2, page 30. - ToBoolean(&exit, &pop_and_continue); - Branch(true, &exit); - - // Pop the result of evaluating the first part. - pop_and_continue.Bind(); - frame_->Pop(); - - // Evaluate right side expression. - is_false.Bind(); - Load(node->right()); - - // Exit (always with a materialized value). - exit.Bind(); - } else if (has_cc() || is_false.is_linked()) { - // The left-hand side is either (a) partially compiled to - // control flow with a final branch left to emit or (b) fully - // compiled to control flow and possibly false. - if (has_cc()) { - Branch(true, true_target()); - } - is_false.Bind(); - LoadCondition(node->right(), true_target(), false_target(), false); - } else { - // Nothing to do. - ASSERT(!has_valid_frame() && !has_cc() && !is_false.is_linked()); - } - } -} - - -void CodeGenerator::VisitBinaryOperation(BinaryOperation* node) { -#ifdef DEBUG - int original_height = frame_->height(); -#endif - Comment cmnt(masm_, "[ BinaryOperation"); - - if (node->op() == Token::AND || node->op() == Token::OR) { - GenerateLogicalBooleanOperation(node); - } else { - // Optimize for the case where (at least) one of the expressions - // is a literal small integer. - Literal* lliteral = node->left()->AsLiteral(); - Literal* rliteral = node->right()->AsLiteral(); - // NOTE: The code below assumes that the slow cases (calls to runtime) - // never return a constant/immutable object. - bool overwrite_left = node->left()->ResultOverwriteAllowed(); - bool overwrite_right = node->right()->ResultOverwriteAllowed(); - - if (rliteral != NULL && rliteral->handle()->IsSmi()) { - VirtualFrame::RegisterAllocationScope scope(this); - Load(node->left()); - if (frame_->KnownSmiAt(0)) overwrite_left = false; - SmiOperation(node->op(), - rliteral->handle(), - false, - overwrite_left ? OVERWRITE_LEFT : NO_OVERWRITE); - } else if (lliteral != NULL && lliteral->handle()->IsSmi()) { - VirtualFrame::RegisterAllocationScope scope(this); - Load(node->right()); - if (frame_->KnownSmiAt(0)) overwrite_right = false; - SmiOperation(node->op(), - lliteral->handle(), - true, - overwrite_right ? OVERWRITE_RIGHT : NO_OVERWRITE); - } else { - GenerateInlineSmi inline_smi = - loop_nesting() > 0 ? GENERATE_INLINE_SMI : DONT_GENERATE_INLINE_SMI; - if (lliteral != NULL) { - ASSERT(!lliteral->handle()->IsSmi()); - inline_smi = DONT_GENERATE_INLINE_SMI; - } - if (rliteral != NULL) { - ASSERT(!rliteral->handle()->IsSmi()); - inline_smi = DONT_GENERATE_INLINE_SMI; - } - VirtualFrame::RegisterAllocationScope scope(this); - OverwriteMode overwrite_mode = NO_OVERWRITE; - if (overwrite_left) { - overwrite_mode = OVERWRITE_LEFT; - } else if (overwrite_right) { - overwrite_mode = OVERWRITE_RIGHT; - } - Load(node->left()); - Load(node->right()); - GenericBinaryOperation(node->op(), overwrite_mode, inline_smi); - } - } - ASSERT(!has_valid_frame() || - (has_cc() && frame_->height() == original_height) || - (!has_cc() && frame_->height() == original_height + 1)); -} - - -void CodeGenerator::VisitThisFunction(ThisFunction* node) { -#ifdef DEBUG - int original_height = frame_->height(); -#endif - frame_->EmitPush(MemOperand(frame_->Function())); - ASSERT_EQ(original_height + 1, frame_->height()); -} - - -void CodeGenerator::VisitCompareOperation(CompareOperation* node) { -#ifdef DEBUG - int original_height = frame_->height(); -#endif - Comment cmnt(masm_, "[ CompareOperation"); - - VirtualFrame::RegisterAllocationScope nonspilled_scope(this); - - // Get the expressions from the node. - Expression* left = node->left(); - Expression* right = node->right(); - Token::Value op = node->op(); - - // To make typeof testing for natives implemented in JavaScript really - // efficient, we generate special code for expressions of the form: - // 'typeof <expression> == <string>'. - UnaryOperation* operation = left->AsUnaryOperation(); - if ((op == Token::EQ || op == Token::EQ_STRICT) && - (operation != NULL && operation->op() == Token::TYPEOF) && - (right->AsLiteral() != NULL && - right->AsLiteral()->handle()->IsString())) { - Handle<String> check(String::cast(*right->AsLiteral()->handle())); - - // Load the operand, move it to a register. - LoadTypeofExpression(operation->expression()); - Register tos = frame_->PopToRegister(); - - Register scratch = VirtualFrame::scratch0(); - - if (check->Equals(Heap::number_symbol())) { - __ tst(tos, Operand(kSmiTagMask)); - true_target()->Branch(eq); - __ ldr(tos, FieldMemOperand(tos, HeapObject::kMapOffset)); - __ LoadRoot(ip, Heap::kHeapNumberMapRootIndex); - __ cmp(tos, ip); - cc_reg_ = eq; - - } else if (check->Equals(Heap::string_symbol())) { - __ tst(tos, Operand(kSmiTagMask)); - false_target()->Branch(eq); - - __ ldr(tos, FieldMemOperand(tos, HeapObject::kMapOffset)); - - // It can be an undetectable string object. - __ ldrb(scratch, FieldMemOperand(tos, Map::kBitFieldOffset)); - __ and_(scratch, scratch, Operand(1 << Map::kIsUndetectable)); - __ cmp(scratch, Operand(1 << Map::kIsUndetectable)); - false_target()->Branch(eq); - - __ ldrb(scratch, FieldMemOperand(tos, Map::kInstanceTypeOffset)); - __ cmp(scratch, Operand(FIRST_NONSTRING_TYPE)); - cc_reg_ = lt; - - } else if (check->Equals(Heap::boolean_symbol())) { - __ LoadRoot(ip, Heap::kTrueValueRootIndex); - __ cmp(tos, ip); - true_target()->Branch(eq); - __ LoadRoot(ip, Heap::kFalseValueRootIndex); - __ cmp(tos, ip); - cc_reg_ = eq; - - } else if (check->Equals(Heap::undefined_symbol())) { - __ LoadRoot(ip, Heap::kUndefinedValueRootIndex); - __ cmp(tos, ip); - true_target()->Branch(eq); - - __ tst(tos, Operand(kSmiTagMask)); - false_target()->Branch(eq); - - // It can be an undetectable object. - __ ldr(tos, FieldMemOperand(tos, HeapObject::kMapOffset)); - __ ldrb(scratch, FieldMemOperand(tos, Map::kBitFieldOffset)); - __ and_(scratch, scratch, Operand(1 << Map::kIsUndetectable)); - __ cmp(scratch, Operand(1 << Map::kIsUndetectable)); - - cc_reg_ = eq; - - } else if (check->Equals(Heap::function_symbol())) { - __ tst(tos, Operand(kSmiTagMask)); - false_target()->Branch(eq); - Register map_reg = scratch; - __ CompareObjectType(tos, map_reg, tos, JS_FUNCTION_TYPE); - true_target()->Branch(eq); - // Regular expressions are callable so typeof == 'function'. - __ CompareInstanceType(map_reg, tos, JS_REGEXP_TYPE); - cc_reg_ = eq; - - } else if (check->Equals(Heap::object_symbol())) { - __ tst(tos, Operand(kSmiTagMask)); - false_target()->Branch(eq); - - __ LoadRoot(ip, Heap::kNullValueRootIndex); - __ cmp(tos, ip); - true_target()->Branch(eq); - - Register map_reg = scratch; - __ CompareObjectType(tos, map_reg, tos, JS_REGEXP_TYPE); - false_target()->Branch(eq); - - // It can be an undetectable object. - __ ldrb(tos, FieldMemOperand(map_reg, Map::kBitFieldOffset)); - __ and_(tos, tos, Operand(1 << Map::kIsUndetectable)); - __ cmp(tos, Operand(1 << Map::kIsUndetectable)); - false_target()->Branch(eq); - - __ ldrb(tos, FieldMemOperand(map_reg, Map::kInstanceTypeOffset)); - __ cmp(tos, Operand(FIRST_JS_OBJECT_TYPE)); - false_target()->Branch(lt); - __ cmp(tos, Operand(LAST_JS_OBJECT_TYPE)); - cc_reg_ = le; - - } else { - // Uncommon case: typeof testing against a string literal that is - // never returned from the typeof operator. - false_target()->Jump(); - } - ASSERT(!has_valid_frame() || - (has_cc() && frame_->height() == original_height)); - return; - } - - switch (op) { - case Token::EQ: - Comparison(eq, left, right, false); - break; - - case Token::LT: - Comparison(lt, left, right); - break; - - case Token::GT: - Comparison(gt, left, right); - break; - - case Token::LTE: - Comparison(le, left, right); - break; - - case Token::GTE: - Comparison(ge, left, right); - break; - - case Token::EQ_STRICT: - Comparison(eq, left, right, true); - break; - - case Token::IN: { - Load(left); - Load(right); - frame_->InvokeBuiltin(Builtins::IN, CALL_JS, 2); - frame_->EmitPush(r0); - break; - } - - case Token::INSTANCEOF: { - Load(left); - Load(right); - InstanceofStub stub(InstanceofStub::kNoFlags); - frame_->CallStub(&stub, 2); - // At this point if instanceof succeeded then r0 == 0. - __ tst(r0, Operand(r0)); - cc_reg_ = eq; - break; - } - - default: - UNREACHABLE(); - } - ASSERT((has_cc() && frame_->height() == original_height) || - (!has_cc() && frame_->height() == original_height + 1)); -} - - -void CodeGenerator::VisitCompareToNull(CompareToNull* node) { -#ifdef DEBUG - int original_height = frame_->height(); -#endif - Comment cmnt(masm_, "[ CompareToNull"); - - Load(node->expression()); - Register tos = frame_->PopToRegister(); - __ LoadRoot(ip, Heap::kNullValueRootIndex); - __ cmp(tos, ip); - - // The 'null' value is only equal to 'undefined' if using non-strict - // comparisons. - if (!node->is_strict()) { - true_target()->Branch(eq); - __ LoadRoot(ip, Heap::kUndefinedValueRootIndex); - __ cmp(tos, Operand(ip)); - true_target()->Branch(eq); - - __ tst(tos, Operand(kSmiTagMask)); - false_target()->Branch(eq); - - // It can be an undetectable object. - __ ldr(tos, FieldMemOperand(tos, HeapObject::kMapOffset)); - __ ldrb(tos, FieldMemOperand(tos, Map::kBitFieldOffset)); - __ and_(tos, tos, Operand(1 << Map::kIsUndetectable)); - __ cmp(tos, Operand(1 << Map::kIsUndetectable)); - } - - cc_reg_ = eq; - ASSERT(has_cc() && frame_->height() == original_height); -} - - -class DeferredReferenceGetNamedValue: public DeferredCode { - public: - explicit DeferredReferenceGetNamedValue(Register receiver, - Handle<String> name, - bool is_contextual) - : receiver_(receiver), - name_(name), - is_contextual_(is_contextual), - is_dont_delete_(false) { - set_comment(is_contextual - ? "[ DeferredReferenceGetNamedValue (contextual)" - : "[ DeferredReferenceGetNamedValue"); - } - - virtual void Generate(); - - void set_is_dont_delete(bool value) { - ASSERT(is_contextual_); - is_dont_delete_ = value; - } - - private: - Register receiver_; - Handle<String> name_; - bool is_contextual_; - bool is_dont_delete_; -}; - - -// Convention for this is that on entry the receiver is in a register that -// is not used by the stack. On exit the answer is found in that same -// register and the stack has the same height. -void DeferredReferenceGetNamedValue::Generate() { -#ifdef DEBUG - int expected_height = frame_state()->frame()->height(); -#endif - VirtualFrame copied_frame(*frame_state()->frame()); - copied_frame.SpillAll(); - - Register scratch1 = VirtualFrame::scratch0(); - Register scratch2 = VirtualFrame::scratch1(); - ASSERT(!receiver_.is(scratch1) && !receiver_.is(scratch2)); - __ DecrementCounter(&Counters::named_load_inline, 1, scratch1, scratch2); - __ IncrementCounter(&Counters::named_load_inline_miss, 1, scratch1, scratch2); - - // Ensure receiver in r0 and name in r2 to match load ic calling convention. - __ Move(r0, receiver_); - __ mov(r2, Operand(name_)); - - // The rest of the instructions in the deferred code must be together. - { Assembler::BlockConstPoolScope block_const_pool(masm_); - Handle<Code> ic(Builtins::builtin(Builtins::LoadIC_Initialize)); - RelocInfo::Mode mode = is_contextual_ - ? RelocInfo::CODE_TARGET_CONTEXT - : RelocInfo::CODE_TARGET; - __ Call(ic, mode); - // We must mark the code just after the call with the correct marker. - MacroAssembler::NopMarkerTypes code_marker; - if (is_contextual_) { - code_marker = is_dont_delete_ - ? MacroAssembler::PROPERTY_ACCESS_INLINED_CONTEXT_DONT_DELETE - : MacroAssembler::PROPERTY_ACCESS_INLINED_CONTEXT; - } else { - code_marker = MacroAssembler::PROPERTY_ACCESS_INLINED; - } - __ MarkCode(code_marker); - - // At this point the answer is in r0. We move it to the expected register - // if necessary. - __ Move(receiver_, r0); - - // Now go back to the frame that we entered with. This will not overwrite - // the receiver register since that register was not in use when we came - // in. The instructions emitted by this merge are skipped over by the - // inline load patching mechanism when looking for the branch instruction - // that tells it where the code to patch is. - copied_frame.MergeTo(frame_state()->frame()); - - // Block the constant pool for one more instruction after leaving this - // constant pool block scope to include the branch instruction ending the - // deferred code. - __ BlockConstPoolFor(1); - } - ASSERT_EQ(expected_height, frame_state()->frame()->height()); -} - - -class DeferredReferenceGetKeyedValue: public DeferredCode { - public: - DeferredReferenceGetKeyedValue(Register key, Register receiver) - : key_(key), receiver_(receiver) { - set_comment("[ DeferredReferenceGetKeyedValue"); - } - - virtual void Generate(); - - private: - Register key_; - Register receiver_; -}; - - -// Takes key and register in r0 and r1 or vice versa. Returns result -// in r0. -void DeferredReferenceGetKeyedValue::Generate() { - ASSERT((key_.is(r0) && receiver_.is(r1)) || - (key_.is(r1) && receiver_.is(r0))); - - VirtualFrame copied_frame(*frame_state()->frame()); - copied_frame.SpillAll(); - - Register scratch1 = VirtualFrame::scratch0(); - Register scratch2 = VirtualFrame::scratch1(); - __ DecrementCounter(&Counters::keyed_load_inline, 1, scratch1, scratch2); - __ IncrementCounter(&Counters::keyed_load_inline_miss, 1, scratch1, scratch2); - - // Ensure key in r0 and receiver in r1 to match keyed load ic calling - // convention. - if (key_.is(r1)) { - __ Swap(r0, r1, ip); - } - - // The rest of the instructions in the deferred code must be together. - { Assembler::BlockConstPoolScope block_const_pool(masm_); - // Call keyed load IC. It has the arguments key and receiver in r0 and r1. - Handle<Code> ic(Builtins::builtin(Builtins::KeyedLoadIC_Initialize)); - __ Call(ic, RelocInfo::CODE_TARGET); - // The call must be followed by a nop instruction to indicate that the - // keyed load has been inlined. - __ MarkCode(MacroAssembler::PROPERTY_ACCESS_INLINED); - - // Now go back to the frame that we entered with. This will not overwrite - // the receiver or key registers since they were not in use when we came - // in. The instructions emitted by this merge are skipped over by the - // inline load patching mechanism when looking for the branch instruction - // that tells it where the code to patch is. - copied_frame.MergeTo(frame_state()->frame()); - - // Block the constant pool for one more instruction after leaving this - // constant pool block scope to include the branch instruction ending the - // deferred code. - __ BlockConstPoolFor(1); - } -} - - -class DeferredReferenceSetKeyedValue: public DeferredCode { - public: - DeferredReferenceSetKeyedValue(Register value, - Register key, - Register receiver, - StrictModeFlag strict_mode) - : value_(value), - key_(key), - receiver_(receiver), - strict_mode_(strict_mode) { - set_comment("[ DeferredReferenceSetKeyedValue"); - } - - virtual void Generate(); - - private: - Register value_; - Register key_; - Register receiver_; - StrictModeFlag strict_mode_; -}; - - -void DeferredReferenceSetKeyedValue::Generate() { - Register scratch1 = VirtualFrame::scratch0(); - Register scratch2 = VirtualFrame::scratch1(); - __ DecrementCounter(&Counters::keyed_store_inline, 1, scratch1, scratch2); - __ IncrementCounter( - &Counters::keyed_store_inline_miss, 1, scratch1, scratch2); - - // Ensure value in r0, key in r1 and receiver in r2 to match keyed store ic - // calling convention. - if (value_.is(r1)) { - __ Swap(r0, r1, ip); - } - ASSERT(receiver_.is(r2)); - - // The rest of the instructions in the deferred code must be together. - { Assembler::BlockConstPoolScope block_const_pool(masm_); - // Call keyed store IC. It has the arguments value, key and receiver in r0, - // r1 and r2. - Handle<Code> ic(Builtins::builtin( - (strict_mode_ == kStrictMode) ? Builtins::KeyedStoreIC_Initialize_Strict - : Builtins::KeyedStoreIC_Initialize)); - __ Call(ic, RelocInfo::CODE_TARGET); - // The call must be followed by a nop instruction to indicate that the - // keyed store has been inlined. - __ MarkCode(MacroAssembler::PROPERTY_ACCESS_INLINED); - - // Block the constant pool for one more instruction after leaving this - // constant pool block scope to include the branch instruction ending the - // deferred code. - __ BlockConstPoolFor(1); - } -} - - -class DeferredReferenceSetNamedValue: public DeferredCode { - public: - DeferredReferenceSetNamedValue(Register value, - Register receiver, - Handle<String> name, - StrictModeFlag strict_mode) - : value_(value), - receiver_(receiver), - name_(name), - strict_mode_(strict_mode) { - set_comment("[ DeferredReferenceSetNamedValue"); - } - - virtual void Generate(); - - private: - Register value_; - Register receiver_; - Handle<String> name_; - StrictModeFlag strict_mode_; -}; - - -// Takes value in r0, receiver in r1 and returns the result (the -// value) in r0. -void DeferredReferenceSetNamedValue::Generate() { - // Record the entry frame and spill. - VirtualFrame copied_frame(*frame_state()->frame()); - copied_frame.SpillAll(); - - // Ensure value in r0, receiver in r1 to match store ic calling - // convention. - ASSERT(value_.is(r0) && receiver_.is(r1)); - __ mov(r2, Operand(name_)); - - // The rest of the instructions in the deferred code must be together. - { Assembler::BlockConstPoolScope block_const_pool(masm_); - // Call keyed store IC. It has the arguments value, key and receiver in r0, - // r1 and r2. - Handle<Code> ic(Builtins::builtin( - (strict_mode_ == kStrictMode) ? Builtins::StoreIC_Initialize_Strict - : Builtins::StoreIC_Initialize)); - __ Call(ic, RelocInfo::CODE_TARGET); - // The call must be followed by a nop instruction to indicate that the - // named store has been inlined. - __ MarkCode(MacroAssembler::PROPERTY_ACCESS_INLINED); - - // Go back to the frame we entered with. The instructions - // generated by this merge are skipped over by the inline store - // patching mechanism when looking for the branch instruction that - // tells it where the code to patch is. - copied_frame.MergeTo(frame_state()->frame()); - - // Block the constant pool for one more instruction after leaving this - // constant pool block scope to include the branch instruction ending the - // deferred code. - __ BlockConstPoolFor(1); - } -} - - -// Consumes the top of stack (the receiver) and pushes the result instead. -void CodeGenerator::EmitNamedLoad(Handle<String> name, bool is_contextual) { - bool contextual_load_in_builtin = - is_contextual && - (Bootstrapper::IsActive() || - (!info_->closure().is_null() && info_->closure()->IsBuiltin())); - - if (scope()->is_global_scope() || - loop_nesting() == 0 || - contextual_load_in_builtin) { - Comment cmnt(masm(), "[ Load from named Property"); - // Setup the name register and call load IC. - frame_->CallLoadIC(name, - is_contextual - ? RelocInfo::CODE_TARGET_CONTEXT - : RelocInfo::CODE_TARGET); - frame_->EmitPush(r0); // Push answer. - } else { - // Inline the in-object property case. - Comment cmnt(masm(), is_contextual - ? "[ Inlined contextual property load" - : "[ Inlined named property load"); - - // Counter will be decremented in the deferred code. Placed here to avoid - // having it in the instruction stream below where patching will occur. - if (is_contextual) { - __ IncrementCounter(&Counters::named_load_global_inline, 1, - frame_->scratch0(), frame_->scratch1()); - } else { - __ IncrementCounter(&Counters::named_load_inline, 1, - frame_->scratch0(), frame_->scratch1()); - } - - // The following instructions are the inlined load of an in-object property. - // Parts of this code is patched, so the exact instructions generated needs - // to be fixed. Therefore the instruction pool is blocked when generating - // this code - - // Load the receiver from the stack. - Register receiver = frame_->PopToRegister(); - - DeferredReferenceGetNamedValue* deferred = - new DeferredReferenceGetNamedValue(receiver, name, is_contextual); - - bool is_dont_delete = false; - if (is_contextual) { - if (!info_->closure().is_null()) { - // When doing lazy compilation we can check if the global cell - // already exists and use its "don't delete" status as a hint. - AssertNoAllocation no_gc; - v8::internal::GlobalObject* global_object = - info_->closure()->context()->global(); - LookupResult lookup; - global_object->LocalLookupRealNamedProperty(*name, &lookup); - if (lookup.IsProperty() && lookup.type() == NORMAL) { - ASSERT(lookup.holder() == global_object); - ASSERT(global_object->property_dictionary()->ValueAt( - lookup.GetDictionaryEntry())->IsJSGlobalPropertyCell()); - is_dont_delete = lookup.IsDontDelete(); - } - } - if (is_dont_delete) { - __ IncrementCounter(&Counters::dont_delete_hint_hit, 1, - frame_->scratch0(), frame_->scratch1()); - } - } - - { Assembler::BlockConstPoolScope block_const_pool(masm_); - if (!is_contextual) { - // Check that the receiver is a heap object. - __ tst(receiver, Operand(kSmiTagMask)); - deferred->Branch(eq); - } - - // Check for the_hole_value if necessary. - // Below we rely on the number of instructions generated, and we can't - // cope with the Check macro which does not generate a fixed number of - // instructions. - Label skip, check_the_hole, cont; - if (FLAG_debug_code && is_contextual && is_dont_delete) { - __ b(&skip); - __ bind(&check_the_hole); - __ Check(ne, "DontDelete cells can't contain the hole"); - __ b(&cont); - __ bind(&skip); - } - -#ifdef DEBUG - int InlinedNamedLoadInstructions = 5; - Label check_inlined_codesize; - masm_->bind(&check_inlined_codesize); -#endif - - Register scratch = VirtualFrame::scratch0(); - Register scratch2 = VirtualFrame::scratch1(); - - // Check the map. The null map used below is patched by the inline cache - // code. Therefore we can't use a LoadRoot call. - __ ldr(scratch, FieldMemOperand(receiver, HeapObject::kMapOffset)); - __ mov(scratch2, Operand(Factory::null_value())); - __ cmp(scratch, scratch2); - deferred->Branch(ne); - - if (is_contextual) { -#ifdef DEBUG - InlinedNamedLoadInstructions += 1; -#endif - // Load the (initially invalid) cell and get its value. - masm()->mov(receiver, Operand(Factory::null_value())); - __ ldr(receiver, - FieldMemOperand(receiver, JSGlobalPropertyCell::kValueOffset)); - - deferred->set_is_dont_delete(is_dont_delete); - - if (!is_dont_delete) { -#ifdef DEBUG - InlinedNamedLoadInstructions += 3; -#endif - __ cmp(receiver, Operand(Factory::the_hole_value())); - deferred->Branch(eq); - } else if (FLAG_debug_code) { -#ifdef DEBUG - InlinedNamedLoadInstructions += 3; -#endif - __ cmp(receiver, Operand(Factory::the_hole_value())); - __ b(&check_the_hole, eq); - __ bind(&cont); - } - } else { - // Initially use an invalid index. The index will be patched by the - // inline cache code. - __ ldr(receiver, MemOperand(receiver, 0)); - } - - // Make sure that the expected number of instructions are generated. - // If the code before is updated, the offsets in ic-arm.cc - // LoadIC::PatchInlinedContextualLoad and PatchInlinedLoad need - // to be updated. - ASSERT_EQ(InlinedNamedLoadInstructions, - masm_->InstructionsGeneratedSince(&check_inlined_codesize)); - } - - deferred->BindExit(); - // At this point the receiver register has the result, either from the - // deferred code or from the inlined code. - frame_->EmitPush(receiver); - } -} - - -void CodeGenerator::EmitNamedStore(Handle<String> name, bool is_contextual) { -#ifdef DEBUG - int expected_height = frame()->height() - (is_contextual ? 1 : 2); -#endif - - Result result; - if (is_contextual || scope()->is_global_scope() || loop_nesting() == 0) { - frame()->CallStoreIC(name, is_contextual, strict_mode_flag()); - } else { - // Inline the in-object property case. - JumpTarget slow, done; - - // Get the value and receiver from the stack. - frame()->PopToR0(); - Register value = r0; - frame()->PopToR1(); - Register receiver = r1; - - DeferredReferenceSetNamedValue* deferred = - new DeferredReferenceSetNamedValue( - value, receiver, name, strict_mode_flag()); - - // Check that the receiver is a heap object. - __ tst(receiver, Operand(kSmiTagMask)); - deferred->Branch(eq); - - // The following instructions are the part of the inlined - // in-object property store code which can be patched. Therefore - // the exact number of instructions generated must be fixed, so - // the constant pool is blocked while generating this code. - { Assembler::BlockConstPoolScope block_const_pool(masm_); - Register scratch0 = VirtualFrame::scratch0(); - Register scratch1 = VirtualFrame::scratch1(); - - // Check the map. Initially use an invalid map to force a - // failure. The map check will be patched in the runtime system. - __ ldr(scratch1, FieldMemOperand(receiver, HeapObject::kMapOffset)); - -#ifdef DEBUG - Label check_inlined_codesize; - masm_->bind(&check_inlined_codesize); -#endif - __ mov(scratch0, Operand(Factory::null_value())); - __ cmp(scratch0, scratch1); - deferred->Branch(ne); - - int offset = 0; - __ str(value, MemOperand(receiver, offset)); - - // Update the write barrier and record its size. We do not use - // the RecordWrite macro here because we want the offset - // addition instruction first to make it easy to patch. - Label record_write_start, record_write_done; - __ bind(&record_write_start); - // Add offset into the object. - __ add(scratch0, receiver, Operand(offset)); - // Test that the object is not in the new space. We cannot set - // region marks for new space pages. - __ InNewSpace(receiver, scratch1, eq, &record_write_done); - // Record the actual write. - __ RecordWriteHelper(receiver, scratch0, scratch1); - __ bind(&record_write_done); - // Clobber all input registers when running with the debug-code flag - // turned on to provoke errors. - if (FLAG_debug_code) { - __ mov(receiver, Operand(BitCast<int32_t>(kZapValue))); - __ mov(scratch0, Operand(BitCast<int32_t>(kZapValue))); - __ mov(scratch1, Operand(BitCast<int32_t>(kZapValue))); - } - // Check that this is the first inlined write barrier or that - // this inlined write barrier has the same size as all the other - // inlined write barriers. - ASSERT((inlined_write_barrier_size_ == -1) || - (inlined_write_barrier_size_ == - masm()->InstructionsGeneratedSince(&record_write_start))); - inlined_write_barrier_size_ = - masm()->InstructionsGeneratedSince(&record_write_start); - - // Make sure that the expected number of instructions are generated. - ASSERT_EQ(GetInlinedNamedStoreInstructionsAfterPatch(), - masm()->InstructionsGeneratedSince(&check_inlined_codesize)); - } - deferred->BindExit(); - } - ASSERT_EQ(expected_height, frame()->height()); -} - - -void CodeGenerator::EmitKeyedLoad() { - if (loop_nesting() == 0) { - Comment cmnt(masm_, "[ Load from keyed property"); - frame_->CallKeyedLoadIC(); - } else { - // Inline the keyed load. - Comment cmnt(masm_, "[ Inlined load from keyed property"); - - // Counter will be decremented in the deferred code. Placed here to avoid - // having it in the instruction stream below where patching will occur. - __ IncrementCounter(&Counters::keyed_load_inline, 1, - frame_->scratch0(), frame_->scratch1()); - - // Load the key and receiver from the stack. - bool key_is_known_smi = frame_->KnownSmiAt(0); - Register key = frame_->PopToRegister(); - Register receiver = frame_->PopToRegister(key); - - // The deferred code expects key and receiver in registers. - DeferredReferenceGetKeyedValue* deferred = - new DeferredReferenceGetKeyedValue(key, receiver); - - // Check that the receiver is a heap object. - __ tst(receiver, Operand(kSmiTagMask)); - deferred->Branch(eq); - - // The following instructions are the part of the inlined load keyed - // property code which can be patched. Therefore the exact number of - // instructions generated need to be fixed, so the constant pool is blocked - // while generating this code. - { Assembler::BlockConstPoolScope block_const_pool(masm_); - Register scratch1 = VirtualFrame::scratch0(); - Register scratch2 = VirtualFrame::scratch1(); - // Check the map. The null map used below is patched by the inline cache - // code. - __ ldr(scratch1, FieldMemOperand(receiver, HeapObject::kMapOffset)); - - // Check that the key is a smi. - if (!key_is_known_smi) { - __ tst(key, Operand(kSmiTagMask)); - deferred->Branch(ne); - } - -#ifdef DEBUG - Label check_inlined_codesize; - masm_->bind(&check_inlined_codesize); -#endif - __ mov(scratch2, Operand(Factory::null_value())); - __ cmp(scratch1, scratch2); - deferred->Branch(ne); - - // Get the elements array from the receiver. - __ ldr(scratch1, FieldMemOperand(receiver, JSObject::kElementsOffset)); - __ AssertFastElements(scratch1); - - // Check that key is within bounds. Use unsigned comparison to handle - // negative keys. - __ ldr(scratch2, FieldMemOperand(scratch1, FixedArray::kLengthOffset)); - __ cmp(scratch2, key); - deferred->Branch(ls); // Unsigned less equal. - - // Load and check that the result is not the hole (key is a smi). - __ LoadRoot(scratch2, Heap::kTheHoleValueRootIndex); - __ add(scratch1, - scratch1, - Operand(FixedArray::kHeaderSize - kHeapObjectTag)); - __ ldr(scratch1, - MemOperand(scratch1, key, LSL, - kPointerSizeLog2 - (kSmiTagSize + kSmiShiftSize))); - __ cmp(scratch1, scratch2); - deferred->Branch(eq); - - __ mov(r0, scratch1); - // Make sure that the expected number of instructions are generated. - ASSERT_EQ(GetInlinedKeyedLoadInstructionsAfterPatch(), - masm_->InstructionsGeneratedSince(&check_inlined_codesize)); - } - - deferred->BindExit(); - } -} - - -void CodeGenerator::EmitKeyedStore(StaticType* key_type, - WriteBarrierCharacter wb_info) { - // Generate inlined version of the keyed store if the code is in a loop - // and the key is likely to be a smi. - if (loop_nesting() > 0 && key_type->IsLikelySmi()) { - // Inline the keyed store. - Comment cmnt(masm_, "[ Inlined store to keyed property"); - - Register scratch1 = VirtualFrame::scratch0(); - Register scratch2 = VirtualFrame::scratch1(); - Register scratch3 = r3; - - // Counter will be decremented in the deferred code. Placed here to avoid - // having it in the instruction stream below where patching will occur. - __ IncrementCounter(&Counters::keyed_store_inline, 1, - scratch1, scratch2); - - - - // Load the value, key and receiver from the stack. - bool value_is_harmless = frame_->KnownSmiAt(0); - if (wb_info == NEVER_NEWSPACE) value_is_harmless = true; - bool key_is_smi = frame_->KnownSmiAt(1); - Register value = frame_->PopToRegister(); - Register key = frame_->PopToRegister(value); - VirtualFrame::SpilledScope spilled(frame_); - Register receiver = r2; - frame_->EmitPop(receiver); - -#ifdef DEBUG - bool we_remembered_the_write_barrier = value_is_harmless; -#endif - - // The deferred code expects value, key and receiver in registers. - DeferredReferenceSetKeyedValue* deferred = - new DeferredReferenceSetKeyedValue( - value, key, receiver, strict_mode_flag()); - - // Check that the value is a smi. As this inlined code does not set the - // write barrier it is only possible to store smi values. - if (!value_is_harmless) { - // If the value is not likely to be a Smi then let's test the fixed array - // for new space instead. See below. - if (wb_info == LIKELY_SMI) { - __ tst(value, Operand(kSmiTagMask)); - deferred->Branch(ne); -#ifdef DEBUG - we_remembered_the_write_barrier = true; -#endif - } - } - - if (!key_is_smi) { - // Check that the key is a smi. - __ tst(key, Operand(kSmiTagMask)); - deferred->Branch(ne); - } - - // Check that the receiver is a heap object. - __ tst(receiver, Operand(kSmiTagMask)); - deferred->Branch(eq); - - // Check that the receiver is a JSArray. - __ CompareObjectType(receiver, scratch1, scratch1, JS_ARRAY_TYPE); - deferred->Branch(ne); - - // Check that the key is within bounds. Both the key and the length of - // the JSArray are smis. Use unsigned comparison to handle negative keys. - __ ldr(scratch1, FieldMemOperand(receiver, JSArray::kLengthOffset)); - __ cmp(scratch1, key); - deferred->Branch(ls); // Unsigned less equal. - - // Get the elements array from the receiver. - __ ldr(scratch1, FieldMemOperand(receiver, JSObject::kElementsOffset)); - if (!value_is_harmless && wb_info != LIKELY_SMI) { - Label ok; - __ and_(scratch2, scratch1, Operand(ExternalReference::new_space_mask())); - __ cmp(scratch2, Operand(ExternalReference::new_space_start())); - __ tst(value, Operand(kSmiTagMask), ne); - deferred->Branch(ne); -#ifdef DEBUG - we_remembered_the_write_barrier = true; -#endif - } - // Check that the elements array is not a dictionary. - __ ldr(scratch2, FieldMemOperand(scratch1, JSObject::kMapOffset)); - // The following instructions are the part of the inlined store keyed - // property code which can be patched. Therefore the exact number of - // instructions generated need to be fixed, so the constant pool is blocked - // while generating this code. - { Assembler::BlockConstPoolScope block_const_pool(masm_); -#ifdef DEBUG - Label check_inlined_codesize; - masm_->bind(&check_inlined_codesize); -#endif - - // Read the fixed array map from the constant pool (not from the root - // array) so that the value can be patched. When debugging, we patch this - // comparison to always fail so that we will hit the IC call in the - // deferred code which will allow the debugger to break for fast case - // stores. - __ mov(scratch3, Operand(Factory::fixed_array_map())); - __ cmp(scratch2, scratch3); - deferred->Branch(ne); - - // Store the value. - __ add(scratch1, scratch1, - Operand(FixedArray::kHeaderSize - kHeapObjectTag)); - __ str(value, - MemOperand(scratch1, key, LSL, - kPointerSizeLog2 - (kSmiTagSize + kSmiShiftSize))); - - // Make sure that the expected number of instructions are generated. - ASSERT_EQ(kInlinedKeyedStoreInstructionsAfterPatch, - masm_->InstructionsGeneratedSince(&check_inlined_codesize)); - } - - ASSERT(we_remembered_the_write_barrier); - - // Make sure that r0 holds the value which is the result of the expression. - __ Move(r0, value); - - deferred->BindExit(); - } else { - frame()->CallKeyedStoreIC(strict_mode_flag()); - } -} - - -#ifdef DEBUG -bool CodeGenerator::HasValidEntryRegisters() { return true; } -#endif - - -#undef __ -#define __ ACCESS_MASM(masm) - -Handle<String> Reference::GetName() { - ASSERT(type_ == NAMED); - Property* property = expression_->AsProperty(); - if (property == NULL) { - // Global variable reference treated as a named property reference. - VariableProxy* proxy = expression_->AsVariableProxy(); - ASSERT(proxy->AsVariable() != NULL); - ASSERT(proxy->AsVariable()->is_global()); - return proxy->name(); - } else { - Literal* raw_name = property->key()->AsLiteral(); - ASSERT(raw_name != NULL); - return Handle<String>(String::cast(*raw_name->handle())); - } -} - - -void Reference::DupIfPersist() { - if (persist_after_get_) { - switch (type_) { - case KEYED: - cgen_->frame()->Dup2(); - break; - case NAMED: - cgen_->frame()->Dup(); - // Fall through. - case UNLOADED: - case ILLEGAL: - case SLOT: - // Do nothing. - ; - } - } else { - set_unloaded(); - } -} - - -void Reference::GetValue() { - ASSERT(cgen_->HasValidEntryRegisters()); - ASSERT(!is_illegal()); - ASSERT(!cgen_->has_cc()); - MacroAssembler* masm = cgen_->masm(); - Property* property = expression_->AsProperty(); - if (property != NULL) { - cgen_->CodeForSourcePosition(property->position()); - } - - switch (type_) { - case SLOT: { - Comment cmnt(masm, "[ Load from Slot"); - Slot* slot = expression_->AsVariableProxy()->AsVariable()->AsSlot(); - ASSERT(slot != NULL); - DupIfPersist(); - cgen_->LoadFromSlotCheckForArguments(slot, NOT_INSIDE_TYPEOF); - break; - } - - case NAMED: { - Variable* var = expression_->AsVariableProxy()->AsVariable(); - bool is_global = var != NULL; - ASSERT(!is_global || var->is_global()); - Handle<String> name = GetName(); - DupIfPersist(); - cgen_->EmitNamedLoad(name, is_global); - break; - } - - case KEYED: { - ASSERT(property != NULL); - DupIfPersist(); - cgen_->EmitKeyedLoad(); - cgen_->frame()->EmitPush(r0); - break; - } - - default: - UNREACHABLE(); - } -} - - -void Reference::SetValue(InitState init_state, WriteBarrierCharacter wb_info) { - ASSERT(!is_illegal()); - ASSERT(!cgen_->has_cc()); - MacroAssembler* masm = cgen_->masm(); - VirtualFrame* frame = cgen_->frame(); - Property* property = expression_->AsProperty(); - if (property != NULL) { - cgen_->CodeForSourcePosition(property->position()); - } - - switch (type_) { - case SLOT: { - Comment cmnt(masm, "[ Store to Slot"); - Slot* slot = expression_->AsVariableProxy()->AsVariable()->AsSlot(); - cgen_->StoreToSlot(slot, init_state); - set_unloaded(); - break; - } - - case NAMED: { - Comment cmnt(masm, "[ Store to named Property"); - cgen_->EmitNamedStore(GetName(), false); - frame->EmitPush(r0); - set_unloaded(); - break; - } - - case KEYED: { - Comment cmnt(masm, "[ Store to keyed Property"); - Property* property = expression_->AsProperty(); - ASSERT(property != NULL); - cgen_->CodeForSourcePosition(property->position()); - cgen_->EmitKeyedStore(property->key()->type(), wb_info); - frame->EmitPush(r0); - set_unloaded(); - break; - } - - default: - UNREACHABLE(); - } -} - - -const char* GenericBinaryOpStub::GetName() { - if (name_ != NULL) return name_; - const int len = 100; - name_ = Bootstrapper::AllocateAutoDeletedArray(len); - if (name_ == NULL) return "OOM"; - const char* op_name = Token::Name(op_); - const char* overwrite_name; - switch (mode_) { - case NO_OVERWRITE: overwrite_name = "Alloc"; break; - case OVERWRITE_RIGHT: overwrite_name = "OverwriteRight"; break; - case OVERWRITE_LEFT: overwrite_name = "OverwriteLeft"; break; - default: overwrite_name = "UnknownOverwrite"; break; - } - - OS::SNPrintF(Vector<char>(name_, len), - "GenericBinaryOpStub_%s_%s%s_%s", - op_name, - overwrite_name, - specialized_on_rhs_ ? "_ConstantRhs" : "", - BinaryOpIC::GetName(runtime_operands_type_)); - return name_; -} - - -#undef __ - } } // namespace v8::internal #endif // V8_TARGET_ARCH_ARM |