diff options
Diffstat (limited to 'deps/v8/src/assembler-arm.cc')
-rw-r--r-- | deps/v8/src/assembler-arm.cc | 1471 |
1 files changed, 1471 insertions, 0 deletions
diff --git a/deps/v8/src/assembler-arm.cc b/deps/v8/src/assembler-arm.cc new file mode 100644 index 0000000000..ba7638ec17 --- /dev/null +++ b/deps/v8/src/assembler-arm.cc @@ -0,0 +1,1471 @@ +// Copyright (c) 1994-2006 Sun Microsystems Inc. +// All Rights Reserved. +// +// Redistribution and use in source and binary forms, with or without +// modification, are permitted provided that the following conditions +// are met: +// +// - Redistributions of source code must retain the above copyright notice, +// this list of conditions and the following disclaimer. +// +// - Redistribution in binary form must reproduce the above copyright +// notice, this list of conditions and the following disclaimer in the +// documentation and/or other materials provided with the +// distribution. +// +// - Neither the name of Sun Microsystems or the names of contributors may +// be used to endorse or promote products derived from this software without +// specific prior written permission. +// +// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS +// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT +// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS +// FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE +// COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, +// INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES +// (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR +// SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) +// HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, +// STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) +// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED +// OF THE POSSIBILITY OF SUCH DAMAGE. + +// The original source code covered by the above license above has been modified +// significantly by Google Inc. +// Copyright 2006-2008 the V8 project authors. All rights reserved. + +#include "v8.h" + +#include "assembler-arm-inl.h" +#include "serialize.h" + +namespace v8 { namespace internal { + +// ----------------------------------------------------------------------------- +// Implementation of Register and CRegister + +Register no_reg = { -1 }; + +Register r0 = { 0 }; +Register r1 = { 1 }; +Register r2 = { 2 }; +Register r3 = { 3 }; +Register r4 = { 4 }; +Register r5 = { 5 }; +Register r6 = { 6 }; +Register r7 = { 7 }; +Register r8 = { 8 }; +Register r9 = { 9 }; +Register r10 = { 10 }; +Register fp = { 11 }; +Register ip = { 12 }; +Register sp = { 13 }; +Register lr = { 14 }; +Register pc = { 15 }; + + +CRegister no_creg = { -1 }; + +CRegister cr0 = { 0 }; +CRegister cr1 = { 1 }; +CRegister cr2 = { 2 }; +CRegister cr3 = { 3 }; +CRegister cr4 = { 4 }; +CRegister cr5 = { 5 }; +CRegister cr6 = { 6 }; +CRegister cr7 = { 7 }; +CRegister cr8 = { 8 }; +CRegister cr9 = { 9 }; +CRegister cr10 = { 10 }; +CRegister cr11 = { 11 }; +CRegister cr12 = { 12 }; +CRegister cr13 = { 13 }; +CRegister cr14 = { 14 }; +CRegister cr15 = { 15 }; + + +// ----------------------------------------------------------------------------- +// Implementation of RelocInfo + +const int RelocInfo::kApplyMask = 0; + + +void RelocInfo::PatchCode(byte* instructions, int instruction_count) { + // Patch the code at the current address with the supplied instructions. + UNIMPLEMENTED(); +} + + +// Patch the code at the current PC with a call to the target address. +// Additional guard instructions can be added if required. +void RelocInfo::PatchCodeWithCall(Address target, int guard_bytes) { + // Patch the code at the current address with a call to the target. + UNIMPLEMENTED(); +} + + +// ----------------------------------------------------------------------------- +// Implementation of Operand and MemOperand +// See assembler-arm-inl.h for inlined constructors + +Operand::Operand(Handle<Object> handle) { + rm_ = no_reg; + // Verify all Objects referred by code are NOT in new space. + Object* obj = *handle; + ASSERT(!Heap::InNewSpace(obj)); + if (obj->IsHeapObject()) { + imm32_ = reinterpret_cast<intptr_t>(handle.location()); + rmode_ = RelocInfo::EMBEDDED_OBJECT; + } else { + // no relocation needed + imm32_ = reinterpret_cast<intptr_t>(obj); + rmode_ = RelocInfo::NONE; + } +} + + +Operand::Operand(Register rm, ShiftOp shift_op, int shift_imm) { + ASSERT(is_uint5(shift_imm)); + ASSERT(shift_op != ROR || shift_imm != 0); // use RRX if you mean it + rm_ = rm; + rs_ = no_reg; + shift_op_ = shift_op; + shift_imm_ = shift_imm & 31; + if (shift_op == RRX) { + // encoded as ROR with shift_imm == 0 + ASSERT(shift_imm == 0); + shift_op_ = ROR; + shift_imm_ = 0; + } +} + + +Operand::Operand(Register rm, ShiftOp shift_op, Register rs) { + ASSERT(shift_op != RRX); + rm_ = rm; + rs_ = no_reg; + shift_op_ = shift_op; + rs_ = rs; +} + + +MemOperand::MemOperand(Register rn, int32_t offset, AddrMode am) { + rn_ = rn; + rm_ = no_reg; + offset_ = offset; + am_ = am; +} + +MemOperand::MemOperand(Register rn, Register rm, AddrMode am) { + rn_ = rn; + rm_ = rm; + shift_op_ = LSL; + shift_imm_ = 0; + am_ = am; +} + + +MemOperand::MemOperand(Register rn, Register rm, + ShiftOp shift_op, int shift_imm, AddrMode am) { + ASSERT(is_uint5(shift_imm)); + rn_ = rn; + rm_ = rm; + shift_op_ = shift_op; + shift_imm_ = shift_imm & 31; + am_ = am; +} + + +// ----------------------------------------------------------------------------- +// Implementation of Assembler + +// Instruction encoding bits +enum { + H = 1 << 5, // halfword (or byte) + S6 = 1 << 6, // signed (or unsigned) + L = 1 << 20, // load (or store) + S = 1 << 20, // set condition code (or leave unchanged) + W = 1 << 21, // writeback base register (or leave unchanged) + A = 1 << 21, // accumulate in multiply instruction (or not) + B = 1 << 22, // unsigned byte (or word) + N = 1 << 22, // long (or short) + U = 1 << 23, // positive (or negative) offset/index + P = 1 << 24, // offset/pre-indexed addressing (or post-indexed addressing) + I = 1 << 25, // immediate shifter operand (or not) + + B4 = 1 << 4, + B5 = 1 << 5, + B7 = 1 << 7, + B8 = 1 << 8, + B12 = 1 << 12, + B16 = 1 << 16, + B20 = 1 << 20, + B21 = 1 << 21, + B22 = 1 << 22, + B23 = 1 << 23, + B24 = 1 << 24, + B25 = 1 << 25, + B26 = 1 << 26, + B27 = 1 << 27, + + // Instruction bit masks + RdMask = 15 << 12, // in str instruction + CondMask = 15 << 28, + OpCodeMask = 15 << 21, // in data-processing instructions + Imm24Mask = (1 << 24) - 1, + Off12Mask = (1 << 12) - 1, + // Reserved condition + nv = 15 << 28 +}; + + +// add(sp, sp, 4) instruction (aka Pop()) +static const Instr kPopInstruction = + al | 4 * B21 | 4 | LeaveCC | I | sp.code() * B16 | sp.code() * B12; +// str(r, MemOperand(sp, 4, NegPreIndex), al) instruction (aka push(r)) +// register r is not encoded. +static const Instr kPushRegPattern = + al | B26 | 4 | NegPreIndex | sp.code() * B16; +// ldr(r, MemOperand(sp, 4, PostIndex), al) instruction (aka pop(r)) +// register r is not encoded. +static const Instr kPopRegPattern = + al | B26 | L | 4 | PostIndex | sp.code() * B16; + +// spare_buffer_ +static const int kMinimalBufferSize = 4*KB; +static byte* spare_buffer_ = NULL; + +Assembler::Assembler(void* buffer, int buffer_size) { + if (buffer == NULL) { + // do our own buffer management + if (buffer_size <= kMinimalBufferSize) { + buffer_size = kMinimalBufferSize; + + if (spare_buffer_ != NULL) { + buffer = spare_buffer_; + spare_buffer_ = NULL; + } + } + if (buffer == NULL) { + buffer_ = NewArray<byte>(buffer_size); + } else { + buffer_ = static_cast<byte*>(buffer); + } + buffer_size_ = buffer_size; + own_buffer_ = true; + + } else { + // use externally provided buffer instead + ASSERT(buffer_size > 0); + buffer_ = static_cast<byte*>(buffer); + buffer_size_ = buffer_size; + own_buffer_ = false; + } + + // setup buffer pointers + ASSERT(buffer_ != NULL); + pc_ = buffer_; + reloc_info_writer.Reposition(buffer_ + buffer_size, pc_); + num_prinfo_ = 0; + next_buffer_check_ = 0; + no_const_pool_before_ = 0; + last_const_pool_end_ = 0; + last_bound_pos_ = 0; + current_statement_position_ = RelocInfo::kNoPosition; + current_position_ = RelocInfo::kNoPosition; + written_statement_position_ = current_statement_position_; + written_position_ = current_position_; +} + + +Assembler::~Assembler() { + if (own_buffer_) { + if (spare_buffer_ == NULL && buffer_size_ == kMinimalBufferSize) { + spare_buffer_ = buffer_; + } else { + DeleteArray(buffer_); + } + } +} + + +void Assembler::GetCode(CodeDesc* desc) { + // emit constant pool if necessary + CheckConstPool(true, false); + ASSERT(num_prinfo_ == 0); + + // setup desc + desc->buffer = buffer_; + desc->buffer_size = buffer_size_; + desc->instr_size = pc_offset(); + desc->reloc_size = (buffer_ + buffer_size_) - reloc_info_writer.pos(); +} + + +void Assembler::Align(int m) { + ASSERT(m >= 4 && IsPowerOf2(m)); + while ((pc_offset() & (m - 1)) != 0) { + nop(); + } +} + + +// Labels refer to positions in the (to be) generated code. +// There are bound, linked, and unused labels. +// +// Bound labels refer to known positions in the already +// generated code. pos() is the position the label refers to. +// +// Linked labels refer to unknown positions in the code +// to be generated; pos() is the position of the last +// instruction using the label. + + +// The link chain is terminated by a negative code position (must be aligned) +const int kEndOfChain = -4; + + +int Assembler::target_at(int pos) { + Instr instr = instr_at(pos); + ASSERT((instr & 7*B25) == 5*B25); // b, bl, or blx imm24 + int imm26 = ((instr & Imm24Mask) << 8) >> 6; + if ((instr & CondMask) == nv && (instr & B24) != 0) + // blx uses bit 24 to encode bit 2 of imm26 + imm26 += 2; + + return pos + 8 + imm26; +} + + +void Assembler::target_at_put(int pos, int target_pos) { + int imm26 = target_pos - pos - 8; + Instr instr = instr_at(pos); + ASSERT((instr & 7*B25) == 5*B25); // b, bl, or blx imm24 + if ((instr & CondMask) == nv) { + // blx uses bit 24 to encode bit 2 of imm26 + ASSERT((imm26 & 1) == 0); + instr = (instr & ~(B24 | Imm24Mask)) | ((imm26 & 2) >> 1)*B24; + } else { + ASSERT((imm26 & 3) == 0); + instr &= ~Imm24Mask; + } + int imm24 = imm26 >> 2; + ASSERT(is_int24(imm24)); + instr_at_put(pos, instr | (imm24 & Imm24Mask)); +} + + +void Assembler::print(Label* L) { + if (L->is_unused()) { + PrintF("unused label\n"); + } else if (L->is_bound()) { + PrintF("bound label to %d\n", L->pos()); + } else if (L->is_linked()) { + Label l = *L; + PrintF("unbound label"); + while (l.is_linked()) { + PrintF("@ %d ", l.pos()); + Instr instr = instr_at(l.pos()); + ASSERT((instr & 7*B25) == 5*B25); // b, bl, or blx + int cond = instr & CondMask; + const char* b; + const char* c; + if (cond == nv) { + b = "blx"; + c = ""; + } else { + if ((instr & B24) != 0) + b = "bl"; + else + b = "b"; + + switch (cond) { + case eq: c = "eq"; break; + case ne: c = "ne"; break; + case hs: c = "hs"; break; + case lo: c = "lo"; break; + case mi: c = "mi"; break; + case pl: c = "pl"; break; + case vs: c = "vs"; break; + case vc: c = "vc"; break; + case hi: c = "hi"; break; + case ls: c = "ls"; break; + case ge: c = "ge"; break; + case lt: c = "lt"; break; + case gt: c = "gt"; break; + case le: c = "le"; break; + case al: c = ""; break; + default: + c = ""; + UNREACHABLE(); + } + } + PrintF("%s%s\n", b, c); + next(&l); + } + } else { + PrintF("label in inconsistent state (pos = %d)\n", L->pos_); + } +} + + +void Assembler::bind_to(Label* L, int pos) { + ASSERT(0 <= pos && pos <= pc_offset()); // must have a valid binding position + while (L->is_linked()) { + int fixup_pos = L->pos(); + next(L); // call next before overwriting link with target at fixup_pos + target_at_put(fixup_pos, pos); + } + L->bind_to(pos); + + // Keep track of the last bound label so we don't eliminate any instructions + // before a bound label. + if (pos > last_bound_pos_) + last_bound_pos_ = pos; +} + + +void Assembler::link_to(Label* L, Label* appendix) { + if (appendix->is_linked()) { + if (L->is_linked()) { + // append appendix to L's list + int fixup_pos; + int link = L->pos(); + do { + fixup_pos = link; + link = target_at(fixup_pos); + } while (link > 0); + ASSERT(link == kEndOfChain); + target_at_put(fixup_pos, appendix->pos()); + } else { + // L is empty, simply use appendix + *L = *appendix; + } + } + appendix->Unuse(); // appendix should not be used anymore +} + + +void Assembler::bind(Label* L) { + ASSERT(!L->is_bound()); // label can only be bound once + bind_to(L, pc_offset()); +} + + +void Assembler::next(Label* L) { + ASSERT(L->is_linked()); + int link = target_at(L->pos()); + if (link > 0) { + L->link_to(link); + } else { + ASSERT(link == kEndOfChain); + L->Unuse(); + } +} + + +// Low-level code emission routines depending on the addressing mode +static bool fits_shifter(uint32_t imm32, + uint32_t* rotate_imm, + uint32_t* immed_8, + Instr* instr) { + // imm32 must be unsigned + for (int rot = 0; rot < 16; rot++) { + uint32_t imm8 = (imm32 << 2*rot) | (imm32 >> (32 - 2*rot)); + if ((imm8 <= 0xff)) { + *rotate_imm = rot; + *immed_8 = imm8; + return true; + } + } + // if the opcode is mov or mvn and if ~imm32 fits, change the opcode + if (instr != NULL && (*instr & 0xd*B21) == 0xd*B21) { + if (fits_shifter(~imm32, rotate_imm, immed_8, NULL)) { + *instr ^= 0x2*B21; + return true; + } + } + return false; +} + + +void Assembler::addrmod1(Instr instr, + Register rn, + Register rd, + const Operand& x) { + CheckBuffer(); + ASSERT((instr & ~(CondMask | OpCodeMask | S)) == 0); + if (!x.rm_.is_valid()) { + // immediate + uint32_t rotate_imm; + uint32_t immed_8; + if ((x.rmode_ != RelocInfo::NONE && + x.rmode_ != RelocInfo::EXTERNAL_REFERENCE) || + !fits_shifter(x.imm32_, &rotate_imm, &immed_8, &instr)) { + // The immediate operand cannot be encoded as a shifter operand, so load + // it first to register ip and change the original instruction to use ip. + // However, if the original instruction is a 'mov rd, x' (not setting the + // condition code), then replace it with a 'ldr rd, [pc]' + RecordRelocInfo(x.rmode_, x.imm32_); + CHECK(!rn.is(ip)); // rn should never be ip, or will be trashed + Condition cond = static_cast<Condition>(instr & CondMask); + if ((instr & ~CondMask) == 13*B21) { // mov, S not set + ldr(rd, MemOperand(pc, 0), cond); + } else { + ldr(ip, MemOperand(pc, 0), cond); + addrmod1(instr, rn, rd, Operand(ip)); + } + return; + } + instr |= I | rotate_imm*B8 | immed_8; + } else if (!x.rs_.is_valid()) { + // immediate shift + instr |= x.shift_imm_*B7 | x.shift_op_ | x.rm_.code(); + } else { + // register shift + ASSERT(!rn.is(pc) && !rd.is(pc) && !x.rm_.is(pc) && !x.rs_.is(pc)); + instr |= x.rs_.code()*B8 | x.shift_op_ | B4 | x.rm_.code(); + } + emit(instr | rn.code()*B16 | rd.code()*B12); + if (rn.is(pc) || x.rm_.is(pc)) + // block constant pool emission for one instruction after reading pc + BlockConstPoolBefore(pc_offset() + kInstrSize); +} + + +void Assembler::addrmod2(Instr instr, Register rd, const MemOperand& x) { + ASSERT((instr & ~(CondMask | B | L)) == B26); + int am = x.am_; + if (!x.rm_.is_valid()) { + // immediate offset + int offset_12 = x.offset_; + if (offset_12 < 0) { + offset_12 = -offset_12; + am ^= U; + } + if (!is_uint12(offset_12)) { + // immediate offset cannot be encoded, load it first to register ip + // rn (and rd in a load) should never be ip, or will be trashed + ASSERT(!x.rn_.is(ip) && ((instr & L) == L || !rd.is(ip))); + mov(ip, Operand(x.offset_), LeaveCC, + static_cast<Condition>(instr & CondMask)); + addrmod2(instr, rd, MemOperand(x.rn_, ip, x.am_)); + return; + } + ASSERT(offset_12 >= 0); // no masking needed + instr |= offset_12; + } else { + // register offset (shift_imm_ and shift_op_ are 0) or scaled + // register offset the constructors make sure than both shift_imm_ + // and shift_op_ are initialized + ASSERT(!x.rm_.is(pc)); + instr |= B25 | x.shift_imm_*B7 | x.shift_op_ | x.rm_.code(); + } + ASSERT((am & (P|W)) == P || !x.rn_.is(pc)); // no pc base with writeback + emit(instr | am | x.rn_.code()*B16 | rd.code()*B12); +} + + +void Assembler::addrmod3(Instr instr, Register rd, const MemOperand& x) { + ASSERT((instr & ~(CondMask | L | S6 | H)) == (B4 | B7)); + ASSERT(x.rn_.is_valid()); + int am = x.am_; + if (!x.rm_.is_valid()) { + // immediate offset + int offset_8 = x.offset_; + if (offset_8 < 0) { + offset_8 = -offset_8; + am ^= U; + } + if (!is_uint8(offset_8)) { + // immediate offset cannot be encoded, load it first to register ip + // rn (and rd in a load) should never be ip, or will be trashed + ASSERT(!x.rn_.is(ip) && ((instr & L) == L || !rd.is(ip))); + mov(ip, Operand(x.offset_), LeaveCC, + static_cast<Condition>(instr & CondMask)); + addrmod3(instr, rd, MemOperand(x.rn_, ip, x.am_)); + return; + } + ASSERT(offset_8 >= 0); // no masking needed + instr |= B | (offset_8 >> 4)*B8 | (offset_8 & 0xf); + } else if (x.shift_imm_ != 0) { + // scaled register offset not supported, load index first + // rn (and rd in a load) should never be ip, or will be trashed + ASSERT(!x.rn_.is(ip) && ((instr & L) == L || !rd.is(ip))); + mov(ip, Operand(x.rm_, x.shift_op_, x.shift_imm_), LeaveCC, + static_cast<Condition>(instr & CondMask)); + addrmod3(instr, rd, MemOperand(x.rn_, ip, x.am_)); + return; + } else { + // register offset + ASSERT((am & (P|W)) == P || !x.rm_.is(pc)); // no pc index with writeback + instr |= x.rm_.code(); + } + ASSERT((am & (P|W)) == P || !x.rn_.is(pc)); // no pc base with writeback + emit(instr | am | x.rn_.code()*B16 | rd.code()*B12); +} + + +void Assembler::addrmod4(Instr instr, Register rn, RegList rl) { + ASSERT((instr & ~(CondMask | P | U | W | L)) == B27); + ASSERT(rl != 0); + ASSERT(!rn.is(pc)); + emit(instr | rn.code()*B16 | rl); +} + + +void Assembler::addrmod5(Instr instr, CRegister crd, const MemOperand& x) { + // unindexed addressing is not encoded by this function + ASSERT((instr & ~(CondMask | P | U | N | W | L)) == (B27 | B26)); + ASSERT(x.rn_.is_valid() && !x.rm_.is_valid()); + int am = x.am_; + int offset_8 = x.offset_; + ASSERT((offset_8 & 3) == 0); // offset must be an aligned word offset + offset_8 >>= 2; + if (offset_8 < 0) { + offset_8 = -offset_8; + am ^= U; + } + ASSERT(is_uint8(offset_8)); // unsigned word offset must fit in a byte + ASSERT((am & (P|W)) == P || !x.rn_.is(pc)); // no pc base with writeback + + // post-indexed addressing requires W == 1; different than in addrmod2/3 + if ((am & P) == 0) + am |= W; + + ASSERT(offset_8 >= 0); // no masking needed + emit(instr | am | x.rn_.code()*B16 | crd.code()*B12 | offset_8); +} + + +int Assembler::branch_offset(Label* L, bool jump_elimination_allowed) { + int target_pos; + if (L->is_bound()) { + target_pos = L->pos(); + } else { + if (L->is_linked()) { + target_pos = L->pos(); // L's link + } else { + target_pos = kEndOfChain; + } + L->link_to(pc_offset()); + } + + // Block the emission of the constant pool, since the branch instruction must + // be emitted at the pc offset recorded by the label + BlockConstPoolBefore(pc_offset() + kInstrSize); + + return target_pos - pc_offset() - 8; +} + + +// Branch instructions +void Assembler::b(int branch_offset, Condition cond) { + ASSERT((branch_offset & 3) == 0); + int imm24 = branch_offset >> 2; + ASSERT(is_int24(imm24)); + emit(cond | B27 | B25 | (imm24 & Imm24Mask)); + + if (cond == al) + // dead code is a good location to emit the constant pool + CheckConstPool(false, false); +} + + +void Assembler::bl(int branch_offset, Condition cond) { + ASSERT((branch_offset & 3) == 0); + int imm24 = branch_offset >> 2; + ASSERT(is_int24(imm24)); + emit(cond | B27 | B25 | B24 | (imm24 & Imm24Mask)); +} + + +void Assembler::blx(int branch_offset) { // v5 and above + ASSERT((branch_offset & 1) == 0); + int h = ((branch_offset & 2) >> 1)*B24; + int imm24 = branch_offset >> 2; + ASSERT(is_int24(imm24)); + emit(15 << 28 | B27 | B25 | h | (imm24 & Imm24Mask)); +} + + +void Assembler::blx(Register target, Condition cond) { // v5 and above + ASSERT(!target.is(pc)); + emit(cond | B24 | B21 | 15*B16 | 15*B12 | 15*B8 | 3*B4 | target.code()); +} + + +void Assembler::bx(Register target, Condition cond) { // v5 and above, plus v4t + ASSERT(!target.is(pc)); // use of pc is actually allowed, but discouraged + emit(cond | B24 | B21 | 15*B16 | 15*B12 | 15*B8 | B4 | target.code()); +} + + +// Data-processing instructions +void Assembler::and_(Register dst, Register src1, const Operand& src2, + SBit s, Condition cond) { + addrmod1(cond | 0*B21 | s, src1, dst, src2); +} + + +void Assembler::eor(Register dst, Register src1, const Operand& src2, + SBit s, Condition cond) { + addrmod1(cond | 1*B21 | s, src1, dst, src2); +} + + +void Assembler::sub(Register dst, Register src1, const Operand& src2, + SBit s, Condition cond) { + addrmod1(cond | 2*B21 | s, src1, dst, src2); +} + + +void Assembler::rsb(Register dst, Register src1, const Operand& src2, + SBit s, Condition cond) { + addrmod1(cond | 3*B21 | s, src1, dst, src2); +} + + +void Assembler::add(Register dst, Register src1, const Operand& src2, + SBit s, Condition cond) { + addrmod1(cond | 4*B21 | s, src1, dst, src2); + + // Eliminate pattern: push(r), pop() + // str(src, MemOperand(sp, 4, NegPreIndex), al); + // add(sp, sp, Operand(kPointerSize)); + // Both instructions can be eliminated. + int pattern_size = 2 * kInstrSize; + if (FLAG_push_pop_elimination && + last_bound_pos_ <= (pc_offset() - pattern_size) && + reloc_info_writer.last_pc() <= (pc_ - pattern_size) && + // pattern + instr_at(pc_ - 1 * kInstrSize) == kPopInstruction && + (instr_at(pc_ - 2 * kInstrSize) & ~RdMask) == kPushRegPattern) { + pc_ -= 2 * kInstrSize; + if (FLAG_print_push_pop_elimination) { + PrintF("%x push(reg)/pop() eliminated\n", pc_offset()); + } + } +} + + +void Assembler::adc(Register dst, Register src1, const Operand& src2, + SBit s, Condition cond) { + addrmod1(cond | 5*B21 | s, src1, dst, src2); +} + + +void Assembler::sbc(Register dst, Register src1, const Operand& src2, + SBit s, Condition cond) { + addrmod1(cond | 6*B21 | s, src1, dst, src2); +} + + +void Assembler::rsc(Register dst, Register src1, const Operand& src2, + SBit s, Condition cond) { + addrmod1(cond | 7*B21 | s, src1, dst, src2); +} + + +void Assembler::tst(Register src1, const Operand& src2, Condition cond) { + addrmod1(cond | 8*B21 | S, src1, r0, src2); +} + + +void Assembler::teq(Register src1, const Operand& src2, Condition cond) { + addrmod1(cond | 9*B21 | S, src1, r0, src2); +} + + +void Assembler::cmp(Register src1, const Operand& src2, Condition cond) { + addrmod1(cond | 10*B21 | S, src1, r0, src2); +} + + +void Assembler::cmn(Register src1, const Operand& src2, Condition cond) { + addrmod1(cond | 11*B21 | S, src1, r0, src2); +} + + +void Assembler::orr(Register dst, Register src1, const Operand& src2, + SBit s, Condition cond) { + addrmod1(cond | 12*B21 | s, src1, dst, src2); +} + + +void Assembler::mov(Register dst, const Operand& src, SBit s, Condition cond) { + addrmod1(cond | 13*B21 | s, r0, dst, src); +} + + +void Assembler::bic(Register dst, Register src1, const Operand& src2, + SBit s, Condition cond) { + addrmod1(cond | 14*B21 | s, src1, dst, src2); +} + + +void Assembler::mvn(Register dst, const Operand& src, SBit s, Condition cond) { + addrmod1(cond | 15*B21 | s, r0, dst, src); +} + + +// Multiply instructions +void Assembler::mla(Register dst, Register src1, Register src2, Register srcA, + SBit s, Condition cond) { + ASSERT(!dst.is(pc) && !src1.is(pc) && !src2.is(pc) && !srcA.is(pc)); + ASSERT(!dst.is(src1)); + emit(cond | A | s | dst.code()*B16 | srcA.code()*B12 | + src2.code()*B8 | B7 | B4 | src1.code()); +} + + +void Assembler::mul(Register dst, Register src1, Register src2, + SBit s, Condition cond) { + ASSERT(!dst.is(pc) && !src1.is(pc) && !src2.is(pc)); + ASSERT(!dst.is(src1)); + emit(cond | s | dst.code()*B16 | src2.code()*B8 | B7 | B4 | src1.code()); +} + + +void Assembler::smlal(Register dstL, + Register dstH, + Register src1, + Register src2, + SBit s, + Condition cond) { + ASSERT(!dstL.is(pc) && !dstH.is(pc) && !src1.is(pc) && !src2.is(pc)); + ASSERT(!dstL.is(dstH) && !dstH.is(src1) && !src1.is(dstL)); + emit(cond | B23 | B22 | A | s | dstH.code()*B16 | dstL.code()*B12 | + src2.code()*B8 | B7 | B4 | src1.code()); +} + + +void Assembler::smull(Register dstL, + Register dstH, + Register src1, + Register src2, + SBit s, + Condition cond) { + ASSERT(!dstL.is(pc) && !dstH.is(pc) && !src1.is(pc) && !src2.is(pc)); + ASSERT(!dstL.is(dstH) && !dstH.is(src1) && !src1.is(dstL)); + emit(cond | B23 | B22 | s | dstH.code()*B16 | dstL.code()*B12 | + src2.code()*B8 | B7 | B4 | src1.code()); +} + + +void Assembler::umlal(Register dstL, + Register dstH, + Register src1, + Register src2, + SBit s, + Condition cond) { + ASSERT(!dstL.is(pc) && !dstH.is(pc) && !src1.is(pc) && !src2.is(pc)); + ASSERT(!dstL.is(dstH) && !dstH.is(src1) && !src1.is(dstL)); + emit(cond | B23 | A | s | dstH.code()*B16 | dstL.code()*B12 | + src2.code()*B8 | B7 | B4 | src1.code()); +} + + +void Assembler::umull(Register dstL, + Register dstH, + Register src1, + Register src2, + SBit s, + Condition cond) { + ASSERT(!dstL.is(pc) && !dstH.is(pc) && !src1.is(pc) && !src2.is(pc)); + ASSERT(!dstL.is(dstH) && !dstH.is(src1) && !src1.is(dstL)); + emit(cond | B23 | s | dstH.code()*B16 | dstL.code()*B12 | + src2.code()*B8 | B7 | B4 | src1.code()); +} + + +// Miscellaneous arithmetic instructions +void Assembler::clz(Register dst, Register src, Condition cond) { + // v5 and above. + ASSERT(!dst.is(pc) && !src.is(pc)); + emit(cond | B24 | B22 | B21 | 15*B16 | dst.code()*B12 | + 15*B8 | B4 | src.code()); +} + + +// Status register access instructions +void Assembler::mrs(Register dst, SRegister s, Condition cond) { + ASSERT(!dst.is(pc)); + emit(cond | B24 | s | 15*B16 | dst.code()*B12); +} + + +void Assembler::msr(SRegisterFieldMask fields, const Operand& src, + Condition cond) { + ASSERT(fields >= B16 && fields < B20); // at least one field set + Instr instr; + if (!src.rm_.is_valid()) { + // immediate + uint32_t rotate_imm; + uint32_t immed_8; + if ((src.rmode_ != RelocInfo::NONE && + src.rmode_ != RelocInfo::EXTERNAL_REFERENCE)|| + !fits_shifter(src.imm32_, &rotate_imm, &immed_8, NULL)) { + // immediate operand cannot be encoded, load it first to register ip + RecordRelocInfo(src.rmode_, src.imm32_); + ldr(ip, MemOperand(pc, 0), cond); + msr(fields, Operand(ip), cond); + return; + } + instr = I | rotate_imm*B8 | immed_8; + } else { + ASSERT(!src.rs_.is_valid() && src.shift_imm_ == 0); // only rm allowed + instr = src.rm_.code(); + } + emit(cond | instr | B24 | B21 | fields | 15*B12); +} + + +// Load/Store instructions +void Assembler::ldr(Register dst, const MemOperand& src, Condition cond) { + addrmod2(cond | B26 | L, dst, src); + + // Eliminate pattern: push(r), pop(r) + // str(r, MemOperand(sp, 4, NegPreIndex), al) + // ldr(r, MemOperand(sp, 4, PostIndex), al) + // Both instructions can be eliminated. + int pattern_size = 2 * kInstrSize; + if (FLAG_push_pop_elimination && + last_bound_pos_ <= (pc_offset() - pattern_size) && + reloc_info_writer.last_pc() <= (pc_ - pattern_size) && + // pattern + instr_at(pc_ - 1 * kInstrSize) == (kPopRegPattern | dst.code() * B12) && + instr_at(pc_ - 2 * kInstrSize) == (kPushRegPattern | dst.code() * B12)) { + pc_ -= 2 * kInstrSize; + if (FLAG_print_push_pop_elimination) { + PrintF("%x push/pop (same reg) eliminated\n", pc_offset()); + } + } +} + + +void Assembler::str(Register src, const MemOperand& dst, Condition cond) { + addrmod2(cond | B26, src, dst); + + // Eliminate pattern: pop(), push(r) + // add sp, sp, #4 LeaveCC, al; str r, [sp, #-4], al + // -> str r, [sp, 0], al + int pattern_size = 2 * kInstrSize; + if (FLAG_push_pop_elimination && + last_bound_pos_ <= (pc_offset() - pattern_size) && + reloc_info_writer.last_pc() <= (pc_ - pattern_size) && + instr_at(pc_ - 1 * kInstrSize) == (kPushRegPattern | src.code() * B12) && + instr_at(pc_ - 2 * kInstrSize) == kPopInstruction) { + pc_ -= 2 * kInstrSize; + emit(al | B26 | 0 | Offset | sp.code() * B16 | src.code() * B12); + if (FLAG_print_push_pop_elimination) { + PrintF("%x pop()/push(reg) eliminated\n", pc_offset()); + } + } +} + + +void Assembler::ldrb(Register dst, const MemOperand& src, Condition cond) { + addrmod2(cond | B26 | B | L, dst, src); +} + + +void Assembler::strb(Register src, const MemOperand& dst, Condition cond) { + addrmod2(cond | B26 | B, src, dst); +} + + +void Assembler::ldrh(Register dst, const MemOperand& src, Condition cond) { + addrmod3(cond | L | B7 | H | B4, dst, src); +} + + +void Assembler::strh(Register src, const MemOperand& dst, Condition cond) { + addrmod3(cond | B7 | H | B4, src, dst); +} + + +void Assembler::ldrsb(Register dst, const MemOperand& src, Condition cond) { + addrmod3(cond | L | B7 | S6 | B4, dst, src); +} + + +void Assembler::ldrsh(Register dst, const MemOperand& src, Condition cond) { + addrmod3(cond | L | B7 | S6 | H | B4, dst, src); +} + + +// Load/Store multiple instructions +void Assembler::ldm(BlockAddrMode am, + Register base, + RegList dst, + Condition cond) { + // ABI stack constraint: ldmxx base, {..sp..} base != sp is not restartable + ASSERT(base.is(sp) || (dst & sp.bit()) == 0); + + addrmod4(cond | B27 | am | L, base, dst); + + // emit the constant pool after a function return implemented by ldm ..{..pc} + if (cond == al && (dst & pc.bit()) != 0) { + // There is a slight chance that the ldm instruction was actually a call, + // in which case it would be wrong to return into the constant pool; we + // recognize this case by checking if the emission of the pool was blocked + // at the pc of the ldm instruction by a mov lr, pc instruction; if this is + // the case, we emit a jump over the pool. + CheckConstPool(true, no_const_pool_before_ == pc_offset() - kInstrSize); + } +} + + +void Assembler::stm(BlockAddrMode am, + Register base, + RegList src, + Condition cond) { + addrmod4(cond | B27 | am, base, src); +} + + +// Semaphore instructions +void Assembler::swp(Register dst, Register src, Register base, Condition cond) { + ASSERT(!dst.is(pc) && !src.is(pc) && !base.is(pc)); + ASSERT(!dst.is(base) && !src.is(base)); + emit(cond | P | base.code()*B16 | dst.code()*B12 | + B7 | B4 | src.code()); +} + + +void Assembler::swpb(Register dst, + Register src, + Register base, + Condition cond) { + ASSERT(!dst.is(pc) && !src.is(pc) && !base.is(pc)); + ASSERT(!dst.is(base) && !src.is(base)); + emit(cond | P | B | base.code()*B16 | dst.code()*B12 | + B7 | B4 | src.code()); +} + + +// Exception-generating instructions and debugging support +void Assembler::stop(const char* msg) { +#if !defined(__arm__) + // The simulator handles these special instructions and stops execution. + emit(15 << 28 | ((intptr_t) msg)); +#else + // Just issue a simple break instruction for now. Alternatively we could use + // the swi(0x9f0001) instruction on Linux. + bkpt(0); +#endif +} + + +void Assembler::bkpt(uint32_t imm16) { // v5 and above + ASSERT(is_uint16(imm16)); + emit(al | B24 | B21 | (imm16 >> 4)*B8 | 7*B4 | (imm16 & 0xf)); +} + + +void Assembler::swi(uint32_t imm24, Condition cond) { + ASSERT(is_uint24(imm24)); + emit(cond | 15*B24 | imm24); +} + + +// Coprocessor instructions +void Assembler::cdp(Coprocessor coproc, + int opcode_1, + CRegister crd, + CRegister crn, + CRegister crm, + int opcode_2, + Condition cond) { + ASSERT(is_uint4(opcode_1) && is_uint3(opcode_2)); + emit(cond | B27 | B26 | B25 | (opcode_1 & 15)*B20 | crn.code()*B16 | + crd.code()*B12 | coproc*B8 | (opcode_2 & 7)*B5 | crm.code()); +} + + +void Assembler::cdp2(Coprocessor coproc, + int opcode_1, + CRegister crd, + CRegister crn, + CRegister crm, + int opcode_2) { // v5 and above + cdp(coproc, opcode_1, crd, crn, crm, opcode_2, static_cast<Condition>(nv)); +} + + +void Assembler::mcr(Coprocessor coproc, + int opcode_1, + Register rd, + CRegister crn, + CRegister crm, + int opcode_2, + Condition cond) { + ASSERT(is_uint3(opcode_1) && is_uint3(opcode_2)); + emit(cond | B27 | B26 | B25 | (opcode_1 & 7)*B21 | crn.code()*B16 | + rd.code()*B12 | coproc*B8 | (opcode_2 & 7)*B5 | B4 | crm.code()); +} + + +void Assembler::mcr2(Coprocessor coproc, + int opcode_1, + Register rd, + CRegister crn, + CRegister crm, + int opcode_2) { // v5 and above + mcr(coproc, opcode_1, rd, crn, crm, opcode_2, static_cast<Condition>(nv)); +} + + +void Assembler::mrc(Coprocessor coproc, + int opcode_1, + Register rd, + CRegister crn, + CRegister crm, + int opcode_2, + Condition cond) { + ASSERT(is_uint3(opcode_1) && is_uint3(opcode_2)); + emit(cond | B27 | B26 | B25 | (opcode_1 & 7)*B21 | L | crn.code()*B16 | + rd.code()*B12 | coproc*B8 | (opcode_2 & 7)*B5 | B4 | crm.code()); +} + + +void Assembler::mrc2(Coprocessor coproc, + int opcode_1, + Register rd, + CRegister crn, + CRegister crm, + int opcode_2) { // v5 and above + mrc(coproc, opcode_1, rd, crn, crm, opcode_2, static_cast<Condition>(nv)); +} + + +void Assembler::ldc(Coprocessor coproc, + CRegister crd, + const MemOperand& src, + LFlag l, + Condition cond) { + addrmod5(cond | B27 | B26 | l | L | coproc*B8, crd, src); +} + + +void Assembler::ldc(Coprocessor coproc, + CRegister crd, + Register rn, + int option, + LFlag l, + Condition cond) { + // unindexed addressing + ASSERT(is_uint8(option)); + emit(cond | B27 | B26 | U | l | L | rn.code()*B16 | crd.code()*B12 | + coproc*B8 | (option & 255)); +} + + +void Assembler::ldc2(Coprocessor coproc, + CRegister crd, + const MemOperand& src, + LFlag l) { // v5 and above + ldc(coproc, crd, src, l, static_cast<Condition>(nv)); +} + + +void Assembler::ldc2(Coprocessor coproc, + CRegister crd, + Register rn, + int option, + LFlag l) { // v5 and above + ldc(coproc, crd, rn, option, l, static_cast<Condition>(nv)); +} + + +void Assembler::stc(Coprocessor coproc, + CRegister crd, + const MemOperand& dst, + LFlag l, + Condition cond) { + addrmod5(cond | B27 | B26 | l | coproc*B8, crd, dst); +} + + +void Assembler::stc(Coprocessor coproc, + CRegister crd, + Register rn, + int option, + LFlag l, + Condition cond) { + // unindexed addressing + ASSERT(is_uint8(option)); + emit(cond | B27 | B26 | U | l | rn.code()*B16 | crd.code()*B12 | + coproc*B8 | (option & 255)); +} + + +void Assembler::stc2(Coprocessor + coproc, CRegister crd, + const MemOperand& dst, + LFlag l) { // v5 and above + stc(coproc, crd, dst, l, static_cast<Condition>(nv)); +} + + +void Assembler::stc2(Coprocessor coproc, + CRegister crd, + Register rn, + int option, + LFlag l) { // v5 and above + stc(coproc, crd, rn, option, l, static_cast<Condition>(nv)); +} + + +// Pseudo instructions +void Assembler::lea(Register dst, + const MemOperand& x, + SBit s, + Condition cond) { + int am = x.am_; + if (!x.rm_.is_valid()) { + // immediate offset + if ((am & P) == 0) // post indexing + mov(dst, Operand(x.rn_), s, cond); + else if ((am & U) == 0) // negative indexing + sub(dst, x.rn_, Operand(x.offset_), s, cond); + else + add(dst, x.rn_, Operand(x.offset_), s, cond); + } else { + // Register offset (shift_imm_ and shift_op_ are 0) or scaled + // register offset the constructors make sure than both shift_imm_ + // and shift_op_ are initialized. + ASSERT(!x.rm_.is(pc)); + if ((am & P) == 0) // post indexing + mov(dst, Operand(x.rn_), s, cond); + else if ((am & U) == 0) // negative indexing + sub(dst, x.rn_, Operand(x.rm_, x.shift_op_, x.shift_imm_), s, cond); + else + add(dst, x.rn_, Operand(x.rm_, x.shift_op_, x.shift_imm_), s, cond); + } +} + + +// Debugging +void Assembler::RecordComment(const char* msg) { + if (FLAG_debug_code) { + CheckBuffer(); + RecordRelocInfo(RelocInfo::COMMENT, reinterpret_cast<intptr_t>(msg)); + } +} + + +void Assembler::RecordPosition(int pos) { + if (pos == RelocInfo::kNoPosition) return; + ASSERT(pos >= 0); + current_position_ = pos; + WriteRecordedPositions(); +} + + +void Assembler::RecordStatementPosition(int pos) { + if (pos == RelocInfo::kNoPosition) return; + ASSERT(pos >= 0); + current_statement_position_ = pos; + WriteRecordedPositions(); +} + + +void Assembler::WriteRecordedPositions() { + // Write the statement position if it is different from what was written last + // time. + if (current_statement_position_ != written_statement_position_) { + CheckBuffer(); + RecordRelocInfo(RelocInfo::STATEMENT_POSITION, current_statement_position_); + written_statement_position_ = current_statement_position_; + } + + // Write the position if it is different from what was written last time and + // also different from the written statement position. + if (current_position_ != written_position_ && + current_position_ != written_statement_position_) { + CheckBuffer(); + RecordRelocInfo(RelocInfo::POSITION, current_position_); + written_position_ = current_position_; + } +} + + +void Assembler::GrowBuffer() { + if (!own_buffer_) FATAL("external code buffer is too small"); + + // compute new buffer size + CodeDesc desc; // the new buffer + if (buffer_size_ < 4*KB) { + desc.buffer_size = 4*KB; + } else if (buffer_size_ < 1*MB) { + desc.buffer_size = 2*buffer_size_; + } else { + desc.buffer_size = buffer_size_ + 1*MB; + } + CHECK_GT(desc.buffer_size, 0); // no overflow + + // setup new buffer + desc.buffer = NewArray<byte>(desc.buffer_size); + + desc.instr_size = pc_offset(); + desc.reloc_size = (buffer_ + buffer_size_) - reloc_info_writer.pos(); + + // copy the data + int pc_delta = desc.buffer - buffer_; + int rc_delta = (desc.buffer + desc.buffer_size) - (buffer_ + buffer_size_); + memmove(desc.buffer, buffer_, desc.instr_size); + memmove(reloc_info_writer.pos() + rc_delta, + reloc_info_writer.pos(), desc.reloc_size); + + // switch buffers + DeleteArray(buffer_); + buffer_ = desc.buffer; + buffer_size_ = desc.buffer_size; + pc_ += pc_delta; + reloc_info_writer.Reposition(reloc_info_writer.pos() + rc_delta, + reloc_info_writer.last_pc() + pc_delta); + + // none of our relocation types are pc relative pointing outside the code + // buffer nor pc absolute pointing inside the code buffer, so there is no need + // to relocate any emitted relocation entries + + // relocate pending relocation entries + for (int i = 0; i < num_prinfo_; i++) { + RelocInfo& rinfo = prinfo_[i]; + ASSERT(rinfo.rmode() != RelocInfo::COMMENT && + rinfo.rmode() != RelocInfo::POSITION); + rinfo.set_pc(rinfo.pc() + pc_delta); + } +} + + +void Assembler::RecordRelocInfo(RelocInfo::Mode rmode, intptr_t data) { + RelocInfo rinfo(pc_, rmode, data); // we do not try to reuse pool constants + if (rmode >= RelocInfo::COMMENT && rmode <= RelocInfo::STATEMENT_POSITION) { + // adjust code for new modes + ASSERT(RelocInfo::IsComment(rmode) || RelocInfo::IsPosition(rmode)); + // these modes do not need an entry in the constant pool + } else { + ASSERT(num_prinfo_ < kMaxNumPRInfo); + prinfo_[num_prinfo_++] = rinfo; + // Make sure the constant pool is not emitted in place of the next + // instruction for which we just recorded relocation info + BlockConstPoolBefore(pc_offset() + kInstrSize); + } + if (rinfo.rmode() != RelocInfo::NONE) { + // Don't record external references unless the heap will be serialized. + if (rmode == RelocInfo::EXTERNAL_REFERENCE && + !Serializer::enabled() && + !FLAG_debug_code) { + return; + } + ASSERT(buffer_space() >= kMaxRelocSize); // too late to grow buffer here + reloc_info_writer.Write(&rinfo); + } +} + + +void Assembler::CheckConstPool(bool force_emit, bool require_jump) { + // Calculate the offset of the next check. It will be overwritten + // when a const pool is generated or when const pools are being + // blocked for a specific range. + next_buffer_check_ = pc_offset() + kCheckConstInterval; + + // There is nothing to do if there are no pending relocation info entries + if (num_prinfo_ == 0) return; + + // We emit a constant pool at regular intervals of about kDistBetweenPools + // or when requested by parameter force_emit (e.g. after each function). + // We prefer not to emit a jump unless the max distance is reached or if we + // are running low on slots, which can happen if a lot of constants are being + // emitted (e.g. --debug-code and many static references). + int dist = pc_offset() - last_const_pool_end_; + if (!force_emit && dist < kMaxDistBetweenPools && + (require_jump || dist < kDistBetweenPools) && + // TODO(1236125): Cleanup the "magic" number below. We know that + // the code generation will test every kCheckConstIntervalInst. + // Thus we are safe as long as we generate less than 7 constant + // entries per instruction. + (num_prinfo_ < (kMaxNumPRInfo - (7 * kCheckConstIntervalInst)))) { + return; + } + + // If we did not return by now, we need to emit the constant pool soon. + + // However, some small sequences of instructions must not be broken up by the + // insertion of a constant pool; such sequences are protected by setting + // no_const_pool_before_, which is checked here. Also, recursive calls to + // CheckConstPool are blocked by no_const_pool_before_. + if (pc_offset() < no_const_pool_before_) { + // Emission is currently blocked; make sure we try again as soon as possible + next_buffer_check_ = no_const_pool_before_; + + // Something is wrong if emission is forced and blocked at the same time + ASSERT(!force_emit); + return; + } + + int jump_instr = require_jump ? kInstrSize : 0; + + // Check that the code buffer is large enough before emitting the constant + // pool and relocation information (include the jump over the pool and the + // constant pool marker). + int max_needed_space = + jump_instr + kInstrSize + num_prinfo_*(kInstrSize + kMaxRelocSize); + while (buffer_space() <= (max_needed_space + kGap)) GrowBuffer(); + + // Block recursive calls to CheckConstPool + BlockConstPoolBefore(pc_offset() + jump_instr + kInstrSize + + num_prinfo_*kInstrSize); + // Don't bother to check for the emit calls below. + next_buffer_check_ = no_const_pool_before_; + + // Emit jump over constant pool if necessary + Label after_pool; + if (require_jump) b(&after_pool); + + RecordComment("[ Constant Pool"); + + // Put down constant pool marker + // "Undefined instruction" as specified by A3.1 Instruction set encoding + emit(0x03000000 | num_prinfo_); + + // Emit constant pool entries + for (int i = 0; i < num_prinfo_; i++) { + RelocInfo& rinfo = prinfo_[i]; + ASSERT(rinfo.rmode() != RelocInfo::COMMENT && + rinfo.rmode() != RelocInfo::POSITION && + rinfo.rmode() != RelocInfo::STATEMENT_POSITION); + Instr instr = instr_at(rinfo.pc()); + // Instruction to patch must be a ldr/str [pc, #offset] + // P and U set, B and W clear, Rn == pc, offset12 still 0 + ASSERT((instr & (7*B25 | P | U | B | W | 15*B16 | Off12Mask)) == + (2*B25 | P | U | pc.code()*B16)); + int delta = pc_ - rinfo.pc() - 8; + ASSERT(delta >= -4); // instr could be ldr pc, [pc, #-4] followed by targ32 + if (delta < 0) { + instr &= ~U; + delta = -delta; + } + ASSERT(is_uint12(delta)); + instr_at_put(rinfo.pc(), instr + delta); + emit(rinfo.data()); + } + num_prinfo_ = 0; + last_const_pool_end_ = pc_offset(); + + RecordComment("]"); + + if (after_pool.is_linked()) { + bind(&after_pool); + } + + // Since a constant pool was just emitted, move the check offset forward by + // the standard interval. + next_buffer_check_ = pc_offset() + kCheckConstInterval; +} + + +} } // namespace v8::internal |