diff options
Diffstat (limited to 'deps/v8/src/crankshaft/arm64/lithium-gap-resolver-arm64.cc')
-rw-r--r-- | deps/v8/src/crankshaft/arm64/lithium-gap-resolver-arm64.cc | 294 |
1 files changed, 294 insertions, 0 deletions
diff --git a/deps/v8/src/crankshaft/arm64/lithium-gap-resolver-arm64.cc b/deps/v8/src/crankshaft/arm64/lithium-gap-resolver-arm64.cc new file mode 100644 index 0000000000..3ef9f63ab5 --- /dev/null +++ b/deps/v8/src/crankshaft/arm64/lithium-gap-resolver-arm64.cc @@ -0,0 +1,294 @@ +// Copyright 2013 the V8 project authors. All rights reserved. +// Use of this source code is governed by a BSD-style license that can be +// found in the LICENSE file. + +#include "src/crankshaft/arm64/delayed-masm-arm64-inl.h" +#include "src/crankshaft/arm64/lithium-codegen-arm64.h" +#include "src/crankshaft/arm64/lithium-gap-resolver-arm64.h" + +namespace v8 { +namespace internal { + +#define __ ACCESS_MASM((&masm_)) + + +void DelayedGapMasm::EndDelayedUse() { + DelayedMasm::EndDelayedUse(); + if (scratch_register_used()) { + DCHECK(ScratchRegister().Is(root)); + DCHECK(!pending()); + InitializeRootRegister(); + reset_scratch_register_used(); + } +} + + +LGapResolver::LGapResolver(LCodeGen* owner) + : cgen_(owner), masm_(owner, owner->masm()), moves_(32, owner->zone()), + root_index_(0), in_cycle_(false), saved_destination_(NULL) { +} + + +void LGapResolver::Resolve(LParallelMove* parallel_move) { + DCHECK(moves_.is_empty()); + DCHECK(!masm_.pending()); + + // Build up a worklist of moves. + BuildInitialMoveList(parallel_move); + + for (int i = 0; i < moves_.length(); ++i) { + LMoveOperands move = moves_[i]; + + // Skip constants to perform them last. They don't block other moves + // and skipping such moves with register destinations keeps those + // registers free for the whole algorithm. + if (!move.IsEliminated() && !move.source()->IsConstantOperand()) { + root_index_ = i; // Any cycle is found when we reach this move again. + PerformMove(i); + if (in_cycle_) RestoreValue(); + } + } + + // Perform the moves with constant sources. + for (int i = 0; i < moves_.length(); ++i) { + LMoveOperands move = moves_[i]; + + if (!move.IsEliminated()) { + DCHECK(move.source()->IsConstantOperand()); + EmitMove(i); + } + } + + __ EndDelayedUse(); + + moves_.Rewind(0); +} + + +void LGapResolver::BuildInitialMoveList(LParallelMove* parallel_move) { + // Perform a linear sweep of the moves to add them to the initial list of + // moves to perform, ignoring any move that is redundant (the source is + // the same as the destination, the destination is ignored and + // unallocated, or the move was already eliminated). + const ZoneList<LMoveOperands>* moves = parallel_move->move_operands(); + for (int i = 0; i < moves->length(); ++i) { + LMoveOperands move = moves->at(i); + if (!move.IsRedundant()) moves_.Add(move, cgen_->zone()); + } + Verify(); +} + + +void LGapResolver::PerformMove(int index) { + // Each call to this function performs a move and deletes it from the move + // graph. We first recursively perform any move blocking this one. We + // mark a move as "pending" on entry to PerformMove in order to detect + // cycles in the move graph. + LMoveOperands& current_move = moves_[index]; + + DCHECK(!current_move.IsPending()); + DCHECK(!current_move.IsRedundant()); + + // Clear this move's destination to indicate a pending move. The actual + // destination is saved in a stack allocated local. Multiple moves can + // be pending because this function is recursive. + DCHECK(current_move.source() != NULL); // Otherwise it will look eliminated. + LOperand* destination = current_move.destination(); + current_move.set_destination(NULL); + + // Perform a depth-first traversal of the move graph to resolve + // dependencies. Any unperformed, unpending move with a source the same + // as this one's destination blocks this one so recursively perform all + // such moves. + for (int i = 0; i < moves_.length(); ++i) { + LMoveOperands other_move = moves_[i]; + if (other_move.Blocks(destination) && !other_move.IsPending()) { + PerformMove(i); + // If there is a blocking, pending move it must be moves_[root_index_] + // and all other moves with the same source as moves_[root_index_] are + // sucessfully executed (because they are cycle-free) by this loop. + } + } + + // We are about to resolve this move and don't need it marked as + // pending, so restore its destination. + current_move.set_destination(destination); + + // The move may be blocked on a pending move, which must be the starting move. + // In this case, we have a cycle, and we save the source of this move to + // a scratch register to break it. + LMoveOperands other_move = moves_[root_index_]; + if (other_move.Blocks(destination)) { + DCHECK(other_move.IsPending()); + BreakCycle(index); + return; + } + + // This move is no longer blocked. + EmitMove(index); +} + + +void LGapResolver::Verify() { +#ifdef ENABLE_SLOW_DCHECKS + // No operand should be the destination for more than one move. + for (int i = 0; i < moves_.length(); ++i) { + LOperand* destination = moves_[i].destination(); + for (int j = i + 1; j < moves_.length(); ++j) { + SLOW_DCHECK(!destination->Equals(moves_[j].destination())); + } + } +#endif +} + + +void LGapResolver::BreakCycle(int index) { + DCHECK(moves_[index].destination()->Equals(moves_[root_index_].source())); + DCHECK(!in_cycle_); + + // We save in a register the source of that move and we remember its + // destination. Then we mark this move as resolved so the cycle is + // broken and we can perform the other moves. + in_cycle_ = true; + LOperand* source = moves_[index].source(); + saved_destination_ = moves_[index].destination(); + + if (source->IsRegister()) { + AcquireSavedValueRegister(); + __ Mov(SavedValueRegister(), cgen_->ToRegister(source)); + } else if (source->IsStackSlot()) { + AcquireSavedValueRegister(); + __ Load(SavedValueRegister(), cgen_->ToMemOperand(source)); + } else if (source->IsDoubleRegister()) { + __ Fmov(SavedFPValueRegister(), cgen_->ToDoubleRegister(source)); + } else if (source->IsDoubleStackSlot()) { + __ Load(SavedFPValueRegister(), cgen_->ToMemOperand(source)); + } else { + UNREACHABLE(); + } + + // Mark this move as resolved. + // This move will be actually performed by moving the saved value to this + // move's destination in LGapResolver::RestoreValue(). + moves_[index].Eliminate(); +} + + +void LGapResolver::RestoreValue() { + DCHECK(in_cycle_); + DCHECK(saved_destination_ != NULL); + + if (saved_destination_->IsRegister()) { + __ Mov(cgen_->ToRegister(saved_destination_), SavedValueRegister()); + ReleaseSavedValueRegister(); + } else if (saved_destination_->IsStackSlot()) { + __ Store(SavedValueRegister(), cgen_->ToMemOperand(saved_destination_)); + ReleaseSavedValueRegister(); + } else if (saved_destination_->IsDoubleRegister()) { + __ Fmov(cgen_->ToDoubleRegister(saved_destination_), + SavedFPValueRegister()); + } else if (saved_destination_->IsDoubleStackSlot()) { + __ Store(SavedFPValueRegister(), cgen_->ToMemOperand(saved_destination_)); + } else { + UNREACHABLE(); + } + + in_cycle_ = false; + saved_destination_ = NULL; +} + + +void LGapResolver::EmitMove(int index) { + LOperand* source = moves_[index].source(); + LOperand* destination = moves_[index].destination(); + + // Dispatch on the source and destination operand kinds. Not all + // combinations are possible. + + if (source->IsRegister()) { + Register source_register = cgen_->ToRegister(source); + if (destination->IsRegister()) { + __ Mov(cgen_->ToRegister(destination), source_register); + } else { + DCHECK(destination->IsStackSlot()); + __ Store(source_register, cgen_->ToMemOperand(destination)); + } + + } else if (source->IsStackSlot()) { + MemOperand source_operand = cgen_->ToMemOperand(source); + if (destination->IsRegister()) { + __ Load(cgen_->ToRegister(destination), source_operand); + } else { + DCHECK(destination->IsStackSlot()); + EmitStackSlotMove(index); + } + + } else if (source->IsConstantOperand()) { + LConstantOperand* constant_source = LConstantOperand::cast(source); + if (destination->IsRegister()) { + Register dst = cgen_->ToRegister(destination); + if (cgen_->IsSmi(constant_source)) { + __ Mov(dst, cgen_->ToSmi(constant_source)); + } else if (cgen_->IsInteger32Constant(constant_source)) { + __ Mov(dst, cgen_->ToInteger32(constant_source)); + } else { + __ LoadObject(dst, cgen_->ToHandle(constant_source)); + } + } else if (destination->IsDoubleRegister()) { + DoubleRegister result = cgen_->ToDoubleRegister(destination); + __ Fmov(result, cgen_->ToDouble(constant_source)); + } else { + DCHECK(destination->IsStackSlot()); + DCHECK(!in_cycle_); // Constant moves happen after all cycles are gone. + if (cgen_->IsSmi(constant_source)) { + Smi* smi = cgen_->ToSmi(constant_source); + __ StoreConstant(reinterpret_cast<intptr_t>(smi), + cgen_->ToMemOperand(destination)); + } else if (cgen_->IsInteger32Constant(constant_source)) { + __ StoreConstant(cgen_->ToInteger32(constant_source), + cgen_->ToMemOperand(destination)); + } else { + Handle<Object> handle = cgen_->ToHandle(constant_source); + AllowDeferredHandleDereference smi_object_check; + if (handle->IsSmi()) { + Object* obj = *handle; + DCHECK(!obj->IsHeapObject()); + __ StoreConstant(reinterpret_cast<intptr_t>(obj), + cgen_->ToMemOperand(destination)); + } else { + AcquireSavedValueRegister(); + __ LoadObject(SavedValueRegister(), handle); + __ Store(SavedValueRegister(), cgen_->ToMemOperand(destination)); + ReleaseSavedValueRegister(); + } + } + } + + } else if (source->IsDoubleRegister()) { + DoubleRegister src = cgen_->ToDoubleRegister(source); + if (destination->IsDoubleRegister()) { + __ Fmov(cgen_->ToDoubleRegister(destination), src); + } else { + DCHECK(destination->IsDoubleStackSlot()); + __ Store(src, cgen_->ToMemOperand(destination)); + } + + } else if (source->IsDoubleStackSlot()) { + MemOperand src = cgen_->ToMemOperand(source); + if (destination->IsDoubleRegister()) { + __ Load(cgen_->ToDoubleRegister(destination), src); + } else { + DCHECK(destination->IsDoubleStackSlot()); + EmitStackSlotMove(index); + } + + } else { + UNREACHABLE(); + } + + // The move has been emitted, we can eliminate it. + moves_[index].Eliminate(); +} + +} // namespace internal +} // namespace v8 |