summaryrefslogtreecommitdiff
path: root/deps/v8/src/crankshaft/x87/lithium-codegen-x87.cc
diff options
context:
space:
mode:
Diffstat (limited to 'deps/v8/src/crankshaft/x87/lithium-codegen-x87.cc')
-rw-r--r--deps/v8/src/crankshaft/x87/lithium-codegen-x87.cc6275
1 files changed, 6275 insertions, 0 deletions
diff --git a/deps/v8/src/crankshaft/x87/lithium-codegen-x87.cc b/deps/v8/src/crankshaft/x87/lithium-codegen-x87.cc
new file mode 100644
index 0000000000..074628b5ef
--- /dev/null
+++ b/deps/v8/src/crankshaft/x87/lithium-codegen-x87.cc
@@ -0,0 +1,6275 @@
+// Copyright 2012 the V8 project authors. All rights reserved.
+// Use of this source code is governed by a BSD-style license that can be
+// found in the LICENSE file.
+
+#if V8_TARGET_ARCH_X87
+
+#include "src/crankshaft/x87/lithium-codegen-x87.h"
+
+#include "src/base/bits.h"
+#include "src/code-factory.h"
+#include "src/code-stubs.h"
+#include "src/codegen.h"
+#include "src/crankshaft/hydrogen-osr.h"
+#include "src/deoptimizer.h"
+#include "src/ic/ic.h"
+#include "src/ic/stub-cache.h"
+#include "src/profiler/cpu-profiler.h"
+#include "src/x87/frames-x87.h"
+
+namespace v8 {
+namespace internal {
+
+
+// When invoking builtins, we need to record the safepoint in the middle of
+// the invoke instruction sequence generated by the macro assembler.
+class SafepointGenerator final : public CallWrapper {
+ public:
+ SafepointGenerator(LCodeGen* codegen,
+ LPointerMap* pointers,
+ Safepoint::DeoptMode mode)
+ : codegen_(codegen),
+ pointers_(pointers),
+ deopt_mode_(mode) {}
+ virtual ~SafepointGenerator() {}
+
+ void BeforeCall(int call_size) const override {}
+
+ void AfterCall() const override {
+ codegen_->RecordSafepoint(pointers_, deopt_mode_);
+ }
+
+ private:
+ LCodeGen* codegen_;
+ LPointerMap* pointers_;
+ Safepoint::DeoptMode deopt_mode_;
+};
+
+
+#define __ masm()->
+
+bool LCodeGen::GenerateCode() {
+ LPhase phase("Z_Code generation", chunk());
+ DCHECK(is_unused());
+ status_ = GENERATING;
+
+ // Open a frame scope to indicate that there is a frame on the stack. The
+ // MANUAL indicates that the scope shouldn't actually generate code to set up
+ // the frame (that is done in GeneratePrologue).
+ FrameScope frame_scope(masm_, StackFrame::MANUAL);
+
+ support_aligned_spilled_doubles_ = info()->IsOptimizing();
+
+ dynamic_frame_alignment_ = info()->IsOptimizing() &&
+ ((chunk()->num_double_slots() > 2 &&
+ !chunk()->graph()->is_recursive()) ||
+ !info()->osr_ast_id().IsNone());
+
+ return GeneratePrologue() &&
+ GenerateBody() &&
+ GenerateDeferredCode() &&
+ GenerateJumpTable() &&
+ GenerateSafepointTable();
+}
+
+
+void LCodeGen::FinishCode(Handle<Code> code) {
+ DCHECK(is_done());
+ code->set_stack_slots(GetStackSlotCount());
+ code->set_safepoint_table_offset(safepoints_.GetCodeOffset());
+ PopulateDeoptimizationData(code);
+ if (info()->ShouldEnsureSpaceForLazyDeopt()) {
+ Deoptimizer::EnsureRelocSpaceForLazyDeoptimization(code);
+ }
+}
+
+
+#ifdef _MSC_VER
+void LCodeGen::MakeSureStackPagesMapped(int offset) {
+ const int kPageSize = 4 * KB;
+ for (offset -= kPageSize; offset > 0; offset -= kPageSize) {
+ __ mov(Operand(esp, offset), eax);
+ }
+}
+#endif
+
+
+bool LCodeGen::GeneratePrologue() {
+ DCHECK(is_generating());
+
+ if (info()->IsOptimizing()) {
+ ProfileEntryHookStub::MaybeCallEntryHook(masm_);
+
+#ifdef DEBUG
+ if (strlen(FLAG_stop_at) > 0 &&
+ info_->literal()->name()->IsUtf8EqualTo(CStrVector(FLAG_stop_at))) {
+ __ int3();
+ }
+#endif
+
+ if (support_aligned_spilled_doubles_ && dynamic_frame_alignment_) {
+ // Move state of dynamic frame alignment into edx.
+ __ Move(edx, Immediate(kNoAlignmentPadding));
+
+ Label do_not_pad, align_loop;
+ STATIC_ASSERT(kDoubleSize == 2 * kPointerSize);
+ // Align esp + 4 to a multiple of 2 * kPointerSize.
+ __ test(esp, Immediate(kPointerSize));
+ __ j(not_zero, &do_not_pad, Label::kNear);
+ __ push(Immediate(0));
+ __ mov(ebx, esp);
+ __ mov(edx, Immediate(kAlignmentPaddingPushed));
+ // Copy arguments, receiver, and return address.
+ __ mov(ecx, Immediate(scope()->num_parameters() + 2));
+
+ __ bind(&align_loop);
+ __ mov(eax, Operand(ebx, 1 * kPointerSize));
+ __ mov(Operand(ebx, 0), eax);
+ __ add(Operand(ebx), Immediate(kPointerSize));
+ __ dec(ecx);
+ __ j(not_zero, &align_loop, Label::kNear);
+ __ mov(Operand(ebx, 0), Immediate(kAlignmentZapValue));
+ __ bind(&do_not_pad);
+ }
+ }
+
+ info()->set_prologue_offset(masm_->pc_offset());
+ if (NeedsEagerFrame()) {
+ DCHECK(!frame_is_built_);
+ frame_is_built_ = true;
+ if (info()->IsStub()) {
+ __ StubPrologue();
+ } else {
+ __ Prologue(info()->IsCodePreAgingActive());
+ }
+ }
+
+ if (info()->IsOptimizing() &&
+ dynamic_frame_alignment_ &&
+ FLAG_debug_code) {
+ __ test(esp, Immediate(kPointerSize));
+ __ Assert(zero, kFrameIsExpectedToBeAligned);
+ }
+
+ // Reserve space for the stack slots needed by the code.
+ int slots = GetStackSlotCount();
+ DCHECK(slots != 0 || !info()->IsOptimizing());
+ if (slots > 0) {
+ if (slots == 1) {
+ if (dynamic_frame_alignment_) {
+ __ push(edx);
+ } else {
+ __ push(Immediate(kNoAlignmentPadding));
+ }
+ } else {
+ if (FLAG_debug_code) {
+ __ sub(Operand(esp), Immediate(slots * kPointerSize));
+#ifdef _MSC_VER
+ MakeSureStackPagesMapped(slots * kPointerSize);
+#endif
+ __ push(eax);
+ __ mov(Operand(eax), Immediate(slots));
+ Label loop;
+ __ bind(&loop);
+ __ mov(MemOperand(esp, eax, times_4, 0),
+ Immediate(kSlotsZapValue));
+ __ dec(eax);
+ __ j(not_zero, &loop);
+ __ pop(eax);
+ } else {
+ __ sub(Operand(esp), Immediate(slots * kPointerSize));
+#ifdef _MSC_VER
+ MakeSureStackPagesMapped(slots * kPointerSize);
+#endif
+ }
+
+ if (support_aligned_spilled_doubles_) {
+ Comment(";;; Store dynamic frame alignment tag for spilled doubles");
+ // Store dynamic frame alignment state in the first local.
+ int offset = JavaScriptFrameConstants::kDynamicAlignmentStateOffset;
+ if (dynamic_frame_alignment_) {
+ __ mov(Operand(ebp, offset), edx);
+ } else {
+ __ mov(Operand(ebp, offset), Immediate(kNoAlignmentPadding));
+ }
+ }
+ }
+ }
+
+ // Initailize FPU state.
+ __ fninit();
+
+ return !is_aborted();
+}
+
+
+void LCodeGen::DoPrologue(LPrologue* instr) {
+ Comment(";;; Prologue begin");
+
+ // Possibly allocate a local context.
+ if (info_->num_heap_slots() > 0) {
+ Comment(";;; Allocate local context");
+ bool need_write_barrier = true;
+ // Argument to NewContext is the function, which is still in edi.
+ int slots = info_->num_heap_slots() - Context::MIN_CONTEXT_SLOTS;
+ Safepoint::DeoptMode deopt_mode = Safepoint::kNoLazyDeopt;
+ if (info()->scope()->is_script_scope()) {
+ __ push(edi);
+ __ Push(info()->scope()->GetScopeInfo(info()->isolate()));
+ __ CallRuntime(Runtime::kNewScriptContext, 2);
+ deopt_mode = Safepoint::kLazyDeopt;
+ } else if (slots <= FastNewContextStub::kMaximumSlots) {
+ FastNewContextStub stub(isolate(), slots);
+ __ CallStub(&stub);
+ // Result of FastNewContextStub is always in new space.
+ need_write_barrier = false;
+ } else {
+ __ push(edi);
+ __ CallRuntime(Runtime::kNewFunctionContext, 1);
+ }
+ RecordSafepoint(deopt_mode);
+
+ // Context is returned in eax. It replaces the context passed to us.
+ // It's saved in the stack and kept live in esi.
+ __ mov(esi, eax);
+ __ mov(Operand(ebp, StandardFrameConstants::kContextOffset), eax);
+
+ // Copy parameters into context if necessary.
+ int num_parameters = scope()->num_parameters();
+ int first_parameter = scope()->has_this_declaration() ? -1 : 0;
+ for (int i = first_parameter; i < num_parameters; i++) {
+ Variable* var = (i == -1) ? scope()->receiver() : scope()->parameter(i);
+ if (var->IsContextSlot()) {
+ int parameter_offset = StandardFrameConstants::kCallerSPOffset +
+ (num_parameters - 1 - i) * kPointerSize;
+ // Load parameter from stack.
+ __ mov(eax, Operand(ebp, parameter_offset));
+ // Store it in the context.
+ int context_offset = Context::SlotOffset(var->index());
+ __ mov(Operand(esi, context_offset), eax);
+ // Update the write barrier. This clobbers eax and ebx.
+ if (need_write_barrier) {
+ __ RecordWriteContextSlot(esi, context_offset, eax, ebx,
+ kDontSaveFPRegs);
+ } else if (FLAG_debug_code) {
+ Label done;
+ __ JumpIfInNewSpace(esi, eax, &done, Label::kNear);
+ __ Abort(kExpectedNewSpaceObject);
+ __ bind(&done);
+ }
+ }
+ }
+ Comment(";;; End allocate local context");
+ }
+
+ Comment(";;; Prologue end");
+}
+
+
+void LCodeGen::GenerateOsrPrologue() {
+ // Generate the OSR entry prologue at the first unknown OSR value, or if there
+ // are none, at the OSR entrypoint instruction.
+ if (osr_pc_offset_ >= 0) return;
+
+ osr_pc_offset_ = masm()->pc_offset();
+
+ // Move state of dynamic frame alignment into edx.
+ __ Move(edx, Immediate(kNoAlignmentPadding));
+
+ if (support_aligned_spilled_doubles_ && dynamic_frame_alignment_) {
+ Label do_not_pad, align_loop;
+ // Align ebp + 4 to a multiple of 2 * kPointerSize.
+ __ test(ebp, Immediate(kPointerSize));
+ __ j(zero, &do_not_pad, Label::kNear);
+ __ push(Immediate(0));
+ __ mov(ebx, esp);
+ __ mov(edx, Immediate(kAlignmentPaddingPushed));
+
+ // Move all parts of the frame over one word. The frame consists of:
+ // unoptimized frame slots, alignment state, context, frame pointer, return
+ // address, receiver, and the arguments.
+ __ mov(ecx, Immediate(scope()->num_parameters() +
+ 5 + graph()->osr()->UnoptimizedFrameSlots()));
+
+ __ bind(&align_loop);
+ __ mov(eax, Operand(ebx, 1 * kPointerSize));
+ __ mov(Operand(ebx, 0), eax);
+ __ add(Operand(ebx), Immediate(kPointerSize));
+ __ dec(ecx);
+ __ j(not_zero, &align_loop, Label::kNear);
+ __ mov(Operand(ebx, 0), Immediate(kAlignmentZapValue));
+ __ sub(Operand(ebp), Immediate(kPointerSize));
+ __ bind(&do_not_pad);
+ }
+
+ // Save the first local, which is overwritten by the alignment state.
+ Operand alignment_loc = MemOperand(ebp, -3 * kPointerSize);
+ __ push(alignment_loc);
+
+ // Set the dynamic frame alignment state.
+ __ mov(alignment_loc, edx);
+
+ // Adjust the frame size, subsuming the unoptimized frame into the
+ // optimized frame.
+ int slots = GetStackSlotCount() - graph()->osr()->UnoptimizedFrameSlots();
+ DCHECK(slots >= 1);
+ __ sub(esp, Immediate((slots - 1) * kPointerSize));
+
+ // Initailize FPU state.
+ __ fninit();
+}
+
+
+void LCodeGen::GenerateBodyInstructionPre(LInstruction* instr) {
+ if (instr->IsCall()) {
+ EnsureSpaceForLazyDeopt(Deoptimizer::patch_size());
+ }
+ if (!instr->IsLazyBailout() && !instr->IsGap()) {
+ safepoints_.BumpLastLazySafepointIndex();
+ }
+ FlushX87StackIfNecessary(instr);
+}
+
+
+void LCodeGen::GenerateBodyInstructionPost(LInstruction* instr) {
+ // When return from function call, FPU should be initialized again.
+ if (instr->IsCall() && instr->ClobbersDoubleRegisters(isolate())) {
+ bool double_result = instr->HasDoubleRegisterResult();
+ if (double_result) {
+ __ lea(esp, Operand(esp, -kDoubleSize));
+ __ fstp_d(Operand(esp, 0));
+ }
+ __ fninit();
+ if (double_result) {
+ __ fld_d(Operand(esp, 0));
+ __ lea(esp, Operand(esp, kDoubleSize));
+ }
+ }
+ if (instr->IsGoto()) {
+ x87_stack_.LeavingBlock(current_block_, LGoto::cast(instr), this);
+ } else if (FLAG_debug_code && FLAG_enable_slow_asserts &&
+ !instr->IsGap() && !instr->IsReturn()) {
+ if (instr->ClobbersDoubleRegisters(isolate())) {
+ if (instr->HasDoubleRegisterResult()) {
+ DCHECK_EQ(1, x87_stack_.depth());
+ } else {
+ DCHECK_EQ(0, x87_stack_.depth());
+ }
+ }
+ __ VerifyX87StackDepth(x87_stack_.depth());
+ }
+}
+
+
+bool LCodeGen::GenerateJumpTable() {
+ if (!jump_table_.length()) return !is_aborted();
+
+ Label needs_frame;
+ Comment(";;; -------------------- Jump table --------------------");
+
+ for (int i = 0; i < jump_table_.length(); i++) {
+ Deoptimizer::JumpTableEntry* table_entry = &jump_table_[i];
+ __ bind(&table_entry->label);
+ Address entry = table_entry->address;
+ DeoptComment(table_entry->deopt_info);
+ if (table_entry->needs_frame) {
+ DCHECK(!info()->saves_caller_doubles());
+ __ push(Immediate(ExternalReference::ForDeoptEntry(entry)));
+ __ call(&needs_frame);
+ } else {
+ __ call(entry, RelocInfo::RUNTIME_ENTRY);
+ }
+ info()->LogDeoptCallPosition(masm()->pc_offset(),
+ table_entry->deopt_info.inlining_id);
+ }
+ if (needs_frame.is_linked()) {
+ __ bind(&needs_frame);
+
+ /* stack layout
+ 4: entry address
+ 3: return address <-- esp
+ 2: garbage
+ 1: garbage
+ 0: garbage
+ */
+ __ sub(esp, Immediate(kPointerSize)); // Reserve space for stub marker.
+ __ push(MemOperand(esp, kPointerSize)); // Copy return address.
+ __ push(MemOperand(esp, 3 * kPointerSize)); // Copy entry address.
+
+ /* stack layout
+ 4: entry address
+ 3: return address
+ 2: garbage
+ 1: return address
+ 0: entry address <-- esp
+ */
+ __ mov(MemOperand(esp, 4 * kPointerSize), ebp); // Save ebp.
+
+ // Copy context.
+ __ mov(ebp, MemOperand(ebp, StandardFrameConstants::kContextOffset));
+ __ mov(MemOperand(esp, 3 * kPointerSize), ebp);
+ // Fill ebp with the right stack frame address.
+ __ lea(ebp, MemOperand(esp, 4 * kPointerSize));
+
+ // This variant of deopt can only be used with stubs. Since we don't
+ // have a function pointer to install in the stack frame that we're
+ // building, install a special marker there instead.
+ DCHECK(info()->IsStub());
+ __ mov(MemOperand(esp, 2 * kPointerSize),
+ Immediate(Smi::FromInt(StackFrame::STUB)));
+
+ /* stack layout
+ 4: old ebp
+ 3: context pointer
+ 2: stub marker
+ 1: return address
+ 0: entry address <-- esp
+ */
+ __ ret(0); // Call the continuation without clobbering registers.
+ }
+ return !is_aborted();
+}
+
+
+bool LCodeGen::GenerateDeferredCode() {
+ DCHECK(is_generating());
+ if (deferred_.length() > 0) {
+ for (int i = 0; !is_aborted() && i < deferred_.length(); i++) {
+ LDeferredCode* code = deferred_[i];
+ X87Stack copy(code->x87_stack());
+ x87_stack_ = copy;
+
+ HValue* value =
+ instructions_->at(code->instruction_index())->hydrogen_value();
+ RecordAndWritePosition(
+ chunk()->graph()->SourcePositionToScriptPosition(value->position()));
+
+ Comment(";;; <@%d,#%d> "
+ "-------------------- Deferred %s --------------------",
+ code->instruction_index(),
+ code->instr()->hydrogen_value()->id(),
+ code->instr()->Mnemonic());
+ __ bind(code->entry());
+ if (NeedsDeferredFrame()) {
+ Comment(";;; Build frame");
+ DCHECK(!frame_is_built_);
+ DCHECK(info()->IsStub());
+ frame_is_built_ = true;
+ // Build the frame in such a way that esi isn't trashed.
+ __ push(ebp); // Caller's frame pointer.
+ __ push(Operand(ebp, StandardFrameConstants::kContextOffset));
+ __ push(Immediate(Smi::FromInt(StackFrame::STUB)));
+ __ lea(ebp, Operand(esp, 2 * kPointerSize));
+ Comment(";;; Deferred code");
+ }
+ code->Generate();
+ if (NeedsDeferredFrame()) {
+ __ bind(code->done());
+ Comment(";;; Destroy frame");
+ DCHECK(frame_is_built_);
+ frame_is_built_ = false;
+ __ mov(esp, ebp);
+ __ pop(ebp);
+ }
+ __ jmp(code->exit());
+ }
+ }
+
+ // Deferred code is the last part of the instruction sequence. Mark
+ // the generated code as done unless we bailed out.
+ if (!is_aborted()) status_ = DONE;
+ return !is_aborted();
+}
+
+
+bool LCodeGen::GenerateSafepointTable() {
+ DCHECK(is_done());
+ if (info()->ShouldEnsureSpaceForLazyDeopt()) {
+ // For lazy deoptimization we need space to patch a call after every call.
+ // Ensure there is always space for such patching, even if the code ends
+ // in a call.
+ int target_offset = masm()->pc_offset() + Deoptimizer::patch_size();
+ while (masm()->pc_offset() < target_offset) {
+ masm()->nop();
+ }
+ }
+ safepoints_.Emit(masm(), GetStackSlotCount());
+ return !is_aborted();
+}
+
+
+Register LCodeGen::ToRegister(int code) const {
+ return Register::from_code(code);
+}
+
+
+X87Register LCodeGen::ToX87Register(int code) const {
+ return X87Register::from_code(code);
+}
+
+
+void LCodeGen::X87LoadForUsage(X87Register reg) {
+ DCHECK(x87_stack_.Contains(reg));
+ x87_stack_.Fxch(reg);
+ x87_stack_.pop();
+}
+
+
+void LCodeGen::X87LoadForUsage(X87Register reg1, X87Register reg2) {
+ DCHECK(x87_stack_.Contains(reg1));
+ DCHECK(x87_stack_.Contains(reg2));
+ if (reg1.is(reg2) && x87_stack_.depth() == 1) {
+ __ fld(x87_stack_.st(reg1));
+ x87_stack_.push(reg1);
+ x87_stack_.pop();
+ x87_stack_.pop();
+ } else {
+ x87_stack_.Fxch(reg1, 1);
+ x87_stack_.Fxch(reg2);
+ x87_stack_.pop();
+ x87_stack_.pop();
+ }
+}
+
+
+int LCodeGen::X87Stack::GetLayout() {
+ int layout = stack_depth_;
+ for (int i = 0; i < stack_depth_; i++) {
+ layout |= (stack_[stack_depth_ - 1 - i].code() << ((i + 1) * 3));
+ }
+
+ return layout;
+}
+
+
+void LCodeGen::X87Stack::Fxch(X87Register reg, int other_slot) {
+ DCHECK(is_mutable_);
+ DCHECK(Contains(reg) && stack_depth_ > other_slot);
+ int i = ArrayIndex(reg);
+ int st = st2idx(i);
+ if (st != other_slot) {
+ int other_i = st2idx(other_slot);
+ X87Register other = stack_[other_i];
+ stack_[other_i] = reg;
+ stack_[i] = other;
+ if (st == 0) {
+ __ fxch(other_slot);
+ } else if (other_slot == 0) {
+ __ fxch(st);
+ } else {
+ __ fxch(st);
+ __ fxch(other_slot);
+ __ fxch(st);
+ }
+ }
+}
+
+
+int LCodeGen::X87Stack::st2idx(int pos) {
+ return stack_depth_ - pos - 1;
+}
+
+
+int LCodeGen::X87Stack::ArrayIndex(X87Register reg) {
+ for (int i = 0; i < stack_depth_; i++) {
+ if (stack_[i].is(reg)) return i;
+ }
+ UNREACHABLE();
+ return -1;
+}
+
+
+bool LCodeGen::X87Stack::Contains(X87Register reg) {
+ for (int i = 0; i < stack_depth_; i++) {
+ if (stack_[i].is(reg)) return true;
+ }
+ return false;
+}
+
+
+void LCodeGen::X87Stack::Free(X87Register reg) {
+ DCHECK(is_mutable_);
+ DCHECK(Contains(reg));
+ int i = ArrayIndex(reg);
+ int st = st2idx(i);
+ if (st > 0) {
+ // keep track of how fstp(i) changes the order of elements
+ int tos_i = st2idx(0);
+ stack_[i] = stack_[tos_i];
+ }
+ pop();
+ __ fstp(st);
+}
+
+
+void LCodeGen::X87Mov(X87Register dst, Operand src, X87OperandType opts) {
+ if (x87_stack_.Contains(dst)) {
+ x87_stack_.Fxch(dst);
+ __ fstp(0);
+ } else {
+ x87_stack_.push(dst);
+ }
+ X87Fld(src, opts);
+}
+
+
+void LCodeGen::X87Mov(X87Register dst, X87Register src, X87OperandType opts) {
+ if (x87_stack_.Contains(dst)) {
+ x87_stack_.Fxch(dst);
+ __ fstp(0);
+ x87_stack_.pop();
+ // Push ST(i) onto the FPU register stack
+ __ fld(x87_stack_.st(src));
+ x87_stack_.push(dst);
+ } else {
+ // Push ST(i) onto the FPU register stack
+ __ fld(x87_stack_.st(src));
+ x87_stack_.push(dst);
+ }
+}
+
+
+void LCodeGen::X87Fld(Operand src, X87OperandType opts) {
+ DCHECK(!src.is_reg_only());
+ switch (opts) {
+ case kX87DoubleOperand:
+ __ fld_d(src);
+ break;
+ case kX87FloatOperand:
+ __ fld_s(src);
+ break;
+ case kX87IntOperand:
+ __ fild_s(src);
+ break;
+ default:
+ UNREACHABLE();
+ }
+}
+
+
+void LCodeGen::X87Mov(Operand dst, X87Register src, X87OperandType opts) {
+ DCHECK(!dst.is_reg_only());
+ x87_stack_.Fxch(src);
+ switch (opts) {
+ case kX87DoubleOperand:
+ __ fst_d(dst);
+ break;
+ case kX87FloatOperand:
+ __ fst_s(dst);
+ break;
+ case kX87IntOperand:
+ __ fist_s(dst);
+ break;
+ default:
+ UNREACHABLE();
+ }
+}
+
+
+void LCodeGen::X87Stack::PrepareToWrite(X87Register reg) {
+ DCHECK(is_mutable_);
+ if (Contains(reg)) {
+ Free(reg);
+ }
+ // Mark this register as the next register to write to
+ stack_[stack_depth_] = reg;
+}
+
+
+void LCodeGen::X87Stack::CommitWrite(X87Register reg) {
+ DCHECK(is_mutable_);
+ // Assert the reg is prepared to write, but not on the virtual stack yet
+ DCHECK(!Contains(reg) && stack_[stack_depth_].is(reg) &&
+ stack_depth_ < X87Register::kMaxNumAllocatableRegisters);
+ stack_depth_++;
+}
+
+
+void LCodeGen::X87PrepareBinaryOp(
+ X87Register left, X87Register right, X87Register result) {
+ // You need to use DefineSameAsFirst for x87 instructions
+ DCHECK(result.is(left));
+ x87_stack_.Fxch(right, 1);
+ x87_stack_.Fxch(left);
+}
+
+
+void LCodeGen::X87Stack::FlushIfNecessary(LInstruction* instr, LCodeGen* cgen) {
+ if (stack_depth_ > 0 && instr->ClobbersDoubleRegisters(isolate())) {
+ bool double_inputs = instr->HasDoubleRegisterInput();
+
+ // Flush stack from tos down, since FreeX87() will mess with tos
+ for (int i = stack_depth_-1; i >= 0; i--) {
+ X87Register reg = stack_[i];
+ // Skip registers which contain the inputs for the next instruction
+ // when flushing the stack
+ if (double_inputs && instr->IsDoubleInput(reg, cgen)) {
+ continue;
+ }
+ Free(reg);
+ if (i < stack_depth_-1) i++;
+ }
+ }
+ if (instr->IsReturn()) {
+ while (stack_depth_ > 0) {
+ __ fstp(0);
+ stack_depth_--;
+ }
+ if (FLAG_debug_code && FLAG_enable_slow_asserts) __ VerifyX87StackDepth(0);
+ }
+}
+
+
+void LCodeGen::X87Stack::LeavingBlock(int current_block_id, LGoto* goto_instr,
+ LCodeGen* cgen) {
+ // For going to a joined block, an explicit LClobberDoubles is inserted before
+ // LGoto. Because all used x87 registers are spilled to stack slots. The
+ // ResolvePhis phase of register allocator could guarantee the two input's x87
+ // stacks have the same layout. So don't check stack_depth_ <= 1 here.
+ int goto_block_id = goto_instr->block_id();
+ if (current_block_id + 1 != goto_block_id) {
+ // If we have a value on the x87 stack on leaving a block, it must be a
+ // phi input. If the next block we compile is not the join block, we have
+ // to discard the stack state.
+ // Before discarding the stack state, we need to save it if the "goto block"
+ // has unreachable last predecessor when FLAG_unreachable_code_elimination.
+ if (FLAG_unreachable_code_elimination) {
+ int length = goto_instr->block()->predecessors()->length();
+ bool has_unreachable_last_predecessor = false;
+ for (int i = 0; i < length; i++) {
+ HBasicBlock* block = goto_instr->block()->predecessors()->at(i);
+ if (block->IsUnreachable() &&
+ (block->block_id() + 1) == goto_block_id) {
+ has_unreachable_last_predecessor = true;
+ }
+ }
+ if (has_unreachable_last_predecessor) {
+ if (cgen->x87_stack_map_.find(goto_block_id) ==
+ cgen->x87_stack_map_.end()) {
+ X87Stack* stack = new (cgen->zone()) X87Stack(*this);
+ cgen->x87_stack_map_.insert(std::make_pair(goto_block_id, stack));
+ }
+ }
+ }
+
+ // Discard the stack state.
+ stack_depth_ = 0;
+ }
+}
+
+
+void LCodeGen::EmitFlushX87ForDeopt() {
+ // The deoptimizer does not support X87 Registers. But as long as we
+ // deopt from a stub its not a problem, since we will re-materialize the
+ // original stub inputs, which can't be double registers.
+ // DCHECK(info()->IsStub());
+ if (FLAG_debug_code && FLAG_enable_slow_asserts) {
+ __ pushfd();
+ __ VerifyX87StackDepth(x87_stack_.depth());
+ __ popfd();
+ }
+
+ // Flush X87 stack in the deoptimizer entry.
+}
+
+
+Register LCodeGen::ToRegister(LOperand* op) const {
+ DCHECK(op->IsRegister());
+ return ToRegister(op->index());
+}
+
+
+X87Register LCodeGen::ToX87Register(LOperand* op) const {
+ DCHECK(op->IsDoubleRegister());
+ return ToX87Register(op->index());
+}
+
+
+int32_t LCodeGen::ToInteger32(LConstantOperand* op) const {
+ return ToRepresentation(op, Representation::Integer32());
+}
+
+
+int32_t LCodeGen::ToRepresentation(LConstantOperand* op,
+ const Representation& r) const {
+ HConstant* constant = chunk_->LookupConstant(op);
+ if (r.IsExternal()) {
+ return reinterpret_cast<int32_t>(
+ constant->ExternalReferenceValue().address());
+ }
+ int32_t value = constant->Integer32Value();
+ if (r.IsInteger32()) return value;
+ DCHECK(r.IsSmiOrTagged());
+ return reinterpret_cast<int32_t>(Smi::FromInt(value));
+}
+
+
+Handle<Object> LCodeGen::ToHandle(LConstantOperand* op) const {
+ HConstant* constant = chunk_->LookupConstant(op);
+ DCHECK(chunk_->LookupLiteralRepresentation(op).IsSmiOrTagged());
+ return constant->handle(isolate());
+}
+
+
+double LCodeGen::ToDouble(LConstantOperand* op) const {
+ HConstant* constant = chunk_->LookupConstant(op);
+ DCHECK(constant->HasDoubleValue());
+ return constant->DoubleValue();
+}
+
+
+ExternalReference LCodeGen::ToExternalReference(LConstantOperand* op) const {
+ HConstant* constant = chunk_->LookupConstant(op);
+ DCHECK(constant->HasExternalReferenceValue());
+ return constant->ExternalReferenceValue();
+}
+
+
+bool LCodeGen::IsInteger32(LConstantOperand* op) const {
+ return chunk_->LookupLiteralRepresentation(op).IsSmiOrInteger32();
+}
+
+
+bool LCodeGen::IsSmi(LConstantOperand* op) const {
+ return chunk_->LookupLiteralRepresentation(op).IsSmi();
+}
+
+
+static int ArgumentsOffsetWithoutFrame(int index) {
+ DCHECK(index < 0);
+ return -(index + 1) * kPointerSize + kPCOnStackSize;
+}
+
+
+Operand LCodeGen::ToOperand(LOperand* op) const {
+ if (op->IsRegister()) return Operand(ToRegister(op));
+ DCHECK(!op->IsDoubleRegister());
+ DCHECK(op->IsStackSlot() || op->IsDoubleStackSlot());
+ if (NeedsEagerFrame()) {
+ return Operand(ebp, StackSlotOffset(op->index()));
+ } else {
+ // Retrieve parameter without eager stack-frame relative to the
+ // stack-pointer.
+ return Operand(esp, ArgumentsOffsetWithoutFrame(op->index()));
+ }
+}
+
+
+Operand LCodeGen::HighOperand(LOperand* op) {
+ DCHECK(op->IsDoubleStackSlot());
+ if (NeedsEagerFrame()) {
+ return Operand(ebp, StackSlotOffset(op->index()) + kPointerSize);
+ } else {
+ // Retrieve parameter without eager stack-frame relative to the
+ // stack-pointer.
+ return Operand(
+ esp, ArgumentsOffsetWithoutFrame(op->index()) + kPointerSize);
+ }
+}
+
+
+void LCodeGen::WriteTranslation(LEnvironment* environment,
+ Translation* translation) {
+ if (environment == NULL) return;
+
+ // The translation includes one command per value in the environment.
+ int translation_size = environment->translation_size();
+
+ WriteTranslation(environment->outer(), translation);
+ WriteTranslationFrame(environment, translation);
+
+ int object_index = 0;
+ int dematerialized_index = 0;
+ for (int i = 0; i < translation_size; ++i) {
+ LOperand* value = environment->values()->at(i);
+ AddToTranslation(environment,
+ translation,
+ value,
+ environment->HasTaggedValueAt(i),
+ environment->HasUint32ValueAt(i),
+ &object_index,
+ &dematerialized_index);
+ }
+}
+
+
+void LCodeGen::AddToTranslation(LEnvironment* environment,
+ Translation* translation,
+ LOperand* op,
+ bool is_tagged,
+ bool is_uint32,
+ int* object_index_pointer,
+ int* dematerialized_index_pointer) {
+ if (op == LEnvironment::materialization_marker()) {
+ int object_index = (*object_index_pointer)++;
+ if (environment->ObjectIsDuplicateAt(object_index)) {
+ int dupe_of = environment->ObjectDuplicateOfAt(object_index);
+ translation->DuplicateObject(dupe_of);
+ return;
+ }
+ int object_length = environment->ObjectLengthAt(object_index);
+ if (environment->ObjectIsArgumentsAt(object_index)) {
+ translation->BeginArgumentsObject(object_length);
+ } else {
+ translation->BeginCapturedObject(object_length);
+ }
+ int dematerialized_index = *dematerialized_index_pointer;
+ int env_offset = environment->translation_size() + dematerialized_index;
+ *dematerialized_index_pointer += object_length;
+ for (int i = 0; i < object_length; ++i) {
+ LOperand* value = environment->values()->at(env_offset + i);
+ AddToTranslation(environment,
+ translation,
+ value,
+ environment->HasTaggedValueAt(env_offset + i),
+ environment->HasUint32ValueAt(env_offset + i),
+ object_index_pointer,
+ dematerialized_index_pointer);
+ }
+ return;
+ }
+
+ if (op->IsStackSlot()) {
+ int index = op->index();
+ if (index >= 0) {
+ index += StandardFrameConstants::kFixedFrameSize / kPointerSize;
+ }
+ if (is_tagged) {
+ translation->StoreStackSlot(index);
+ } else if (is_uint32) {
+ translation->StoreUint32StackSlot(index);
+ } else {
+ translation->StoreInt32StackSlot(index);
+ }
+ } else if (op->IsDoubleStackSlot()) {
+ int index = op->index();
+ if (index >= 0) {
+ index += StandardFrameConstants::kFixedFrameSize / kPointerSize;
+ }
+ translation->StoreDoubleStackSlot(index);
+ } else if (op->IsRegister()) {
+ Register reg = ToRegister(op);
+ if (is_tagged) {
+ translation->StoreRegister(reg);
+ } else if (is_uint32) {
+ translation->StoreUint32Register(reg);
+ } else {
+ translation->StoreInt32Register(reg);
+ }
+ } else if (op->IsDoubleRegister()) {
+ X87Register reg = ToX87Register(op);
+ translation->StoreDoubleRegister(reg);
+ } else if (op->IsConstantOperand()) {
+ HConstant* constant = chunk()->LookupConstant(LConstantOperand::cast(op));
+ int src_index = DefineDeoptimizationLiteral(constant->handle(isolate()));
+ translation->StoreLiteral(src_index);
+ } else {
+ UNREACHABLE();
+ }
+}
+
+
+void LCodeGen::CallCodeGeneric(Handle<Code> code,
+ RelocInfo::Mode mode,
+ LInstruction* instr,
+ SafepointMode safepoint_mode) {
+ DCHECK(instr != NULL);
+ __ call(code, mode);
+ RecordSafepointWithLazyDeopt(instr, safepoint_mode);
+
+ // Signal that we don't inline smi code before these stubs in the
+ // optimizing code generator.
+ if (code->kind() == Code::BINARY_OP_IC ||
+ code->kind() == Code::COMPARE_IC) {
+ __ nop();
+ }
+}
+
+
+void LCodeGen::CallCode(Handle<Code> code,
+ RelocInfo::Mode mode,
+ LInstruction* instr) {
+ CallCodeGeneric(code, mode, instr, RECORD_SIMPLE_SAFEPOINT);
+}
+
+
+void LCodeGen::CallRuntime(const Runtime::Function* fun, int argc,
+ LInstruction* instr, SaveFPRegsMode save_doubles) {
+ DCHECK(instr != NULL);
+ DCHECK(instr->HasPointerMap());
+
+ __ CallRuntime(fun, argc, save_doubles);
+
+ RecordSafepointWithLazyDeopt(instr, RECORD_SIMPLE_SAFEPOINT);
+
+ DCHECK(info()->is_calling());
+}
+
+
+void LCodeGen::LoadContextFromDeferred(LOperand* context) {
+ if (context->IsRegister()) {
+ if (!ToRegister(context).is(esi)) {
+ __ mov(esi, ToRegister(context));
+ }
+ } else if (context->IsStackSlot()) {
+ __ mov(esi, ToOperand(context));
+ } else if (context->IsConstantOperand()) {
+ HConstant* constant =
+ chunk_->LookupConstant(LConstantOperand::cast(context));
+ __ LoadObject(esi, Handle<Object>::cast(constant->handle(isolate())));
+ } else {
+ UNREACHABLE();
+ }
+}
+
+void LCodeGen::CallRuntimeFromDeferred(Runtime::FunctionId id,
+ int argc,
+ LInstruction* instr,
+ LOperand* context) {
+ LoadContextFromDeferred(context);
+
+ __ CallRuntimeSaveDoubles(id);
+ RecordSafepointWithRegisters(
+ instr->pointer_map(), argc, Safepoint::kNoLazyDeopt);
+
+ DCHECK(info()->is_calling());
+}
+
+
+void LCodeGen::RegisterEnvironmentForDeoptimization(
+ LEnvironment* environment, Safepoint::DeoptMode mode) {
+ environment->set_has_been_used();
+ if (!environment->HasBeenRegistered()) {
+ // Physical stack frame layout:
+ // -x ............. -4 0 ..................................... y
+ // [incoming arguments] [spill slots] [pushed outgoing arguments]
+
+ // Layout of the environment:
+ // 0 ..................................................... size-1
+ // [parameters] [locals] [expression stack including arguments]
+
+ // Layout of the translation:
+ // 0 ........................................................ size - 1 + 4
+ // [expression stack including arguments] [locals] [4 words] [parameters]
+ // |>------------ translation_size ------------<|
+
+ int frame_count = 0;
+ int jsframe_count = 0;
+ for (LEnvironment* e = environment; e != NULL; e = e->outer()) {
+ ++frame_count;
+ if (e->frame_type() == JS_FUNCTION) {
+ ++jsframe_count;
+ }
+ }
+ Translation translation(&translations_, frame_count, jsframe_count, zone());
+ WriteTranslation(environment, &translation);
+ int deoptimization_index = deoptimizations_.length();
+ int pc_offset = masm()->pc_offset();
+ environment->Register(deoptimization_index,
+ translation.index(),
+ (mode == Safepoint::kLazyDeopt) ? pc_offset : -1);
+ deoptimizations_.Add(environment, zone());
+ }
+}
+
+
+void LCodeGen::DeoptimizeIf(Condition cc, LInstruction* instr,
+ Deoptimizer::DeoptReason deopt_reason,
+ Deoptimizer::BailoutType bailout_type) {
+ LEnvironment* environment = instr->environment();
+ RegisterEnvironmentForDeoptimization(environment, Safepoint::kNoLazyDeopt);
+ DCHECK(environment->HasBeenRegistered());
+ int id = environment->deoptimization_index();
+ Address entry =
+ Deoptimizer::GetDeoptimizationEntry(isolate(), id, bailout_type);
+ if (entry == NULL) {
+ Abort(kBailoutWasNotPrepared);
+ return;
+ }
+
+ if (DeoptEveryNTimes()) {
+ ExternalReference count = ExternalReference::stress_deopt_count(isolate());
+ Label no_deopt;
+ __ pushfd();
+ __ push(eax);
+ __ mov(eax, Operand::StaticVariable(count));
+ __ sub(eax, Immediate(1));
+ __ j(not_zero, &no_deopt, Label::kNear);
+ if (FLAG_trap_on_deopt) __ int3();
+ __ mov(eax, Immediate(FLAG_deopt_every_n_times));
+ __ mov(Operand::StaticVariable(count), eax);
+ __ pop(eax);
+ __ popfd();
+ DCHECK(frame_is_built_);
+ // Put the x87 stack layout in TOS.
+ if (x87_stack_.depth() > 0) EmitFlushX87ForDeopt();
+ __ push(Immediate(x87_stack_.GetLayout()));
+ __ fild_s(MemOperand(esp, 0));
+ // Don't touch eflags.
+ __ lea(esp, Operand(esp, kPointerSize));
+ __ call(entry, RelocInfo::RUNTIME_ENTRY);
+ __ bind(&no_deopt);
+ __ mov(Operand::StaticVariable(count), eax);
+ __ pop(eax);
+ __ popfd();
+ }
+
+ // Put the x87 stack layout in TOS, so that we can save x87 fp registers in
+ // the correct location.
+ {
+ Label done;
+ if (cc != no_condition) __ j(NegateCondition(cc), &done, Label::kNear);
+ if (x87_stack_.depth() > 0) EmitFlushX87ForDeopt();
+
+ int x87_stack_layout = x87_stack_.GetLayout();
+ __ push(Immediate(x87_stack_layout));
+ __ fild_s(MemOperand(esp, 0));
+ // Don't touch eflags.
+ __ lea(esp, Operand(esp, kPointerSize));
+ __ bind(&done);
+ }
+
+ if (info()->ShouldTrapOnDeopt()) {
+ Label done;
+ if (cc != no_condition) __ j(NegateCondition(cc), &done, Label::kNear);
+ __ int3();
+ __ bind(&done);
+ }
+
+ Deoptimizer::DeoptInfo deopt_info = MakeDeoptInfo(instr, deopt_reason);
+
+ DCHECK(info()->IsStub() || frame_is_built_);
+ if (cc == no_condition && frame_is_built_) {
+ DeoptComment(deopt_info);
+ __ call(entry, RelocInfo::RUNTIME_ENTRY);
+ info()->LogDeoptCallPosition(masm()->pc_offset(), deopt_info.inlining_id);
+ } else {
+ Deoptimizer::JumpTableEntry table_entry(entry, deopt_info, bailout_type,
+ !frame_is_built_);
+ // We often have several deopts to the same entry, reuse the last
+ // jump entry if this is the case.
+ if (FLAG_trace_deopt || isolate()->cpu_profiler()->is_profiling() ||
+ jump_table_.is_empty() ||
+ !table_entry.IsEquivalentTo(jump_table_.last())) {
+ jump_table_.Add(table_entry, zone());
+ }
+ if (cc == no_condition) {
+ __ jmp(&jump_table_.last().label);
+ } else {
+ __ j(cc, &jump_table_.last().label);
+ }
+ }
+}
+
+
+void LCodeGen::DeoptimizeIf(Condition cc, LInstruction* instr,
+ Deoptimizer::DeoptReason deopt_reason) {
+ Deoptimizer::BailoutType bailout_type = info()->IsStub()
+ ? Deoptimizer::LAZY
+ : Deoptimizer::EAGER;
+ DeoptimizeIf(cc, instr, deopt_reason, bailout_type);
+}
+
+
+void LCodeGen::PopulateDeoptimizationData(Handle<Code> code) {
+ int length = deoptimizations_.length();
+ if (length == 0) return;
+ Handle<DeoptimizationInputData> data =
+ DeoptimizationInputData::New(isolate(), length, TENURED);
+
+ Handle<ByteArray> translations =
+ translations_.CreateByteArray(isolate()->factory());
+ data->SetTranslationByteArray(*translations);
+ data->SetInlinedFunctionCount(Smi::FromInt(inlined_function_count_));
+ data->SetOptimizationId(Smi::FromInt(info_->optimization_id()));
+ if (info_->IsOptimizing()) {
+ // Reference to shared function info does not change between phases.
+ AllowDeferredHandleDereference allow_handle_dereference;
+ data->SetSharedFunctionInfo(*info_->shared_info());
+ } else {
+ data->SetSharedFunctionInfo(Smi::FromInt(0));
+ }
+ data->SetWeakCellCache(Smi::FromInt(0));
+
+ Handle<FixedArray> literals =
+ factory()->NewFixedArray(deoptimization_literals_.length(), TENURED);
+ { AllowDeferredHandleDereference copy_handles;
+ for (int i = 0; i < deoptimization_literals_.length(); i++) {
+ literals->set(i, *deoptimization_literals_[i]);
+ }
+ data->SetLiteralArray(*literals);
+ }
+
+ data->SetOsrAstId(Smi::FromInt(info_->osr_ast_id().ToInt()));
+ data->SetOsrPcOffset(Smi::FromInt(osr_pc_offset_));
+
+ // Populate the deoptimization entries.
+ for (int i = 0; i < length; i++) {
+ LEnvironment* env = deoptimizations_[i];
+ data->SetAstId(i, env->ast_id());
+ data->SetTranslationIndex(i, Smi::FromInt(env->translation_index()));
+ data->SetArgumentsStackHeight(i,
+ Smi::FromInt(env->arguments_stack_height()));
+ data->SetPc(i, Smi::FromInt(env->pc_offset()));
+ }
+ code->set_deoptimization_data(*data);
+}
+
+
+void LCodeGen::PopulateDeoptimizationLiteralsWithInlinedFunctions() {
+ DCHECK_EQ(0, deoptimization_literals_.length());
+ for (auto function : chunk()->inlined_functions()) {
+ DefineDeoptimizationLiteral(function);
+ }
+ inlined_function_count_ = deoptimization_literals_.length();
+}
+
+
+void LCodeGen::RecordSafepointWithLazyDeopt(
+ LInstruction* instr, SafepointMode safepoint_mode) {
+ if (safepoint_mode == RECORD_SIMPLE_SAFEPOINT) {
+ RecordSafepoint(instr->pointer_map(), Safepoint::kLazyDeopt);
+ } else {
+ DCHECK(safepoint_mode == RECORD_SAFEPOINT_WITH_REGISTERS_AND_NO_ARGUMENTS);
+ RecordSafepointWithRegisters(
+ instr->pointer_map(), 0, Safepoint::kLazyDeopt);
+ }
+}
+
+
+void LCodeGen::RecordSafepoint(
+ LPointerMap* pointers,
+ Safepoint::Kind kind,
+ int arguments,
+ Safepoint::DeoptMode deopt_mode) {
+ DCHECK(kind == expected_safepoint_kind_);
+ const ZoneList<LOperand*>* operands = pointers->GetNormalizedOperands();
+ Safepoint safepoint =
+ safepoints_.DefineSafepoint(masm(), kind, arguments, deopt_mode);
+ for (int i = 0; i < operands->length(); i++) {
+ LOperand* pointer = operands->at(i);
+ if (pointer->IsStackSlot()) {
+ safepoint.DefinePointerSlot(pointer->index(), zone());
+ } else if (pointer->IsRegister() && (kind & Safepoint::kWithRegisters)) {
+ safepoint.DefinePointerRegister(ToRegister(pointer), zone());
+ }
+ }
+}
+
+
+void LCodeGen::RecordSafepoint(LPointerMap* pointers,
+ Safepoint::DeoptMode mode) {
+ RecordSafepoint(pointers, Safepoint::kSimple, 0, mode);
+}
+
+
+void LCodeGen::RecordSafepoint(Safepoint::DeoptMode mode) {
+ LPointerMap empty_pointers(zone());
+ RecordSafepoint(&empty_pointers, mode);
+}
+
+
+void LCodeGen::RecordSafepointWithRegisters(LPointerMap* pointers,
+ int arguments,
+ Safepoint::DeoptMode mode) {
+ RecordSafepoint(pointers, Safepoint::kWithRegisters, arguments, mode);
+}
+
+
+void LCodeGen::RecordAndWritePosition(int position) {
+ if (position == RelocInfo::kNoPosition) return;
+ masm()->positions_recorder()->RecordPosition(position);
+ masm()->positions_recorder()->WriteRecordedPositions();
+}
+
+
+static const char* LabelType(LLabel* label) {
+ if (label->is_loop_header()) return " (loop header)";
+ if (label->is_osr_entry()) return " (OSR entry)";
+ return "";
+}
+
+
+void LCodeGen::DoLabel(LLabel* label) {
+ Comment(";;; <@%d,#%d> -------------------- B%d%s --------------------",
+ current_instruction_,
+ label->hydrogen_value()->id(),
+ label->block_id(),
+ LabelType(label));
+ __ bind(label->label());
+ current_block_ = label->block_id();
+ if (label->block()->predecessors()->length() > 1) {
+ // A join block's x87 stack is that of its last visited predecessor.
+ // If the last visited predecessor block is unreachable, the stack state
+ // will be wrong. In such case, use the x87 stack of reachable predecessor.
+ X87StackMap::const_iterator it = x87_stack_map_.find(current_block_);
+ // Restore x87 stack.
+ if (it != x87_stack_map_.end()) {
+ x87_stack_ = *(it->second);
+ }
+ }
+ DoGap(label);
+}
+
+
+void LCodeGen::DoParallelMove(LParallelMove* move) {
+ resolver_.Resolve(move);
+}
+
+
+void LCodeGen::DoGap(LGap* gap) {
+ for (int i = LGap::FIRST_INNER_POSITION;
+ i <= LGap::LAST_INNER_POSITION;
+ i++) {
+ LGap::InnerPosition inner_pos = static_cast<LGap::InnerPosition>(i);
+ LParallelMove* move = gap->GetParallelMove(inner_pos);
+ if (move != NULL) DoParallelMove(move);
+ }
+}
+
+
+void LCodeGen::DoInstructionGap(LInstructionGap* instr) {
+ DoGap(instr);
+}
+
+
+void LCodeGen::DoParameter(LParameter* instr) {
+ // Nothing to do.
+}
+
+
+void LCodeGen::DoCallStub(LCallStub* instr) {
+ DCHECK(ToRegister(instr->context()).is(esi));
+ DCHECK(ToRegister(instr->result()).is(eax));
+ switch (instr->hydrogen()->major_key()) {
+ case CodeStub::RegExpExec: {
+ RegExpExecStub stub(isolate());
+ CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
+ break;
+ }
+ case CodeStub::SubString: {
+ SubStringStub stub(isolate());
+ CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
+ break;
+ }
+ default:
+ UNREACHABLE();
+ }
+}
+
+
+void LCodeGen::DoUnknownOSRValue(LUnknownOSRValue* instr) {
+ GenerateOsrPrologue();
+}
+
+
+void LCodeGen::DoModByPowerOf2I(LModByPowerOf2I* instr) {
+ Register dividend = ToRegister(instr->dividend());
+ int32_t divisor = instr->divisor();
+ DCHECK(dividend.is(ToRegister(instr->result())));
+
+ // Theoretically, a variation of the branch-free code for integer division by
+ // a power of 2 (calculating the remainder via an additional multiplication
+ // (which gets simplified to an 'and') and subtraction) should be faster, and
+ // this is exactly what GCC and clang emit. Nevertheless, benchmarks seem to
+ // indicate that positive dividends are heavily favored, so the branching
+ // version performs better.
+ HMod* hmod = instr->hydrogen();
+ int32_t mask = divisor < 0 ? -(divisor + 1) : (divisor - 1);
+ Label dividend_is_not_negative, done;
+ if (hmod->CheckFlag(HValue::kLeftCanBeNegative)) {
+ __ test(dividend, dividend);
+ __ j(not_sign, &dividend_is_not_negative, Label::kNear);
+ // Note that this is correct even for kMinInt operands.
+ __ neg(dividend);
+ __ and_(dividend, mask);
+ __ neg(dividend);
+ if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) {
+ DeoptimizeIf(zero, instr, Deoptimizer::kMinusZero);
+ }
+ __ jmp(&done, Label::kNear);
+ }
+
+ __ bind(&dividend_is_not_negative);
+ __ and_(dividend, mask);
+ __ bind(&done);
+}
+
+
+void LCodeGen::DoModByConstI(LModByConstI* instr) {
+ Register dividend = ToRegister(instr->dividend());
+ int32_t divisor = instr->divisor();
+ DCHECK(ToRegister(instr->result()).is(eax));
+
+ if (divisor == 0) {
+ DeoptimizeIf(no_condition, instr, Deoptimizer::kDivisionByZero);
+ return;
+ }
+
+ __ TruncatingDiv(dividend, Abs(divisor));
+ __ imul(edx, edx, Abs(divisor));
+ __ mov(eax, dividend);
+ __ sub(eax, edx);
+
+ // Check for negative zero.
+ HMod* hmod = instr->hydrogen();
+ if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) {
+ Label remainder_not_zero;
+ __ j(not_zero, &remainder_not_zero, Label::kNear);
+ __ cmp(dividend, Immediate(0));
+ DeoptimizeIf(less, instr, Deoptimizer::kMinusZero);
+ __ bind(&remainder_not_zero);
+ }
+}
+
+
+void LCodeGen::DoModI(LModI* instr) {
+ HMod* hmod = instr->hydrogen();
+
+ Register left_reg = ToRegister(instr->left());
+ DCHECK(left_reg.is(eax));
+ Register right_reg = ToRegister(instr->right());
+ DCHECK(!right_reg.is(eax));
+ DCHECK(!right_reg.is(edx));
+ Register result_reg = ToRegister(instr->result());
+ DCHECK(result_reg.is(edx));
+
+ Label done;
+ // Check for x % 0, idiv would signal a divide error. We have to
+ // deopt in this case because we can't return a NaN.
+ if (hmod->CheckFlag(HValue::kCanBeDivByZero)) {
+ __ test(right_reg, Operand(right_reg));
+ DeoptimizeIf(zero, instr, Deoptimizer::kDivisionByZero);
+ }
+
+ // Check for kMinInt % -1, idiv would signal a divide error. We
+ // have to deopt if we care about -0, because we can't return that.
+ if (hmod->CheckFlag(HValue::kCanOverflow)) {
+ Label no_overflow_possible;
+ __ cmp(left_reg, kMinInt);
+ __ j(not_equal, &no_overflow_possible, Label::kNear);
+ __ cmp(right_reg, -1);
+ if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) {
+ DeoptimizeIf(equal, instr, Deoptimizer::kMinusZero);
+ } else {
+ __ j(not_equal, &no_overflow_possible, Label::kNear);
+ __ Move(result_reg, Immediate(0));
+ __ jmp(&done, Label::kNear);
+ }
+ __ bind(&no_overflow_possible);
+ }
+
+ // Sign extend dividend in eax into edx:eax.
+ __ cdq();
+
+ // If we care about -0, test if the dividend is <0 and the result is 0.
+ if (hmod->CheckFlag(HValue::kBailoutOnMinusZero)) {
+ Label positive_left;
+ __ test(left_reg, Operand(left_reg));
+ __ j(not_sign, &positive_left, Label::kNear);
+ __ idiv(right_reg);
+ __ test(result_reg, Operand(result_reg));
+ DeoptimizeIf(zero, instr, Deoptimizer::kMinusZero);
+ __ jmp(&done, Label::kNear);
+ __ bind(&positive_left);
+ }
+ __ idiv(right_reg);
+ __ bind(&done);
+}
+
+
+void LCodeGen::DoDivByPowerOf2I(LDivByPowerOf2I* instr) {
+ Register dividend = ToRegister(instr->dividend());
+ int32_t divisor = instr->divisor();
+ Register result = ToRegister(instr->result());
+ DCHECK(divisor == kMinInt || base::bits::IsPowerOfTwo32(Abs(divisor)));
+ DCHECK(!result.is(dividend));
+
+ // Check for (0 / -x) that will produce negative zero.
+ HDiv* hdiv = instr->hydrogen();
+ if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero) && divisor < 0) {
+ __ test(dividend, dividend);
+ DeoptimizeIf(zero, instr, Deoptimizer::kMinusZero);
+ }
+ // Check for (kMinInt / -1).
+ if (hdiv->CheckFlag(HValue::kCanOverflow) && divisor == -1) {
+ __ cmp(dividend, kMinInt);
+ DeoptimizeIf(zero, instr, Deoptimizer::kOverflow);
+ }
+ // Deoptimize if remainder will not be 0.
+ if (!hdiv->CheckFlag(HInstruction::kAllUsesTruncatingToInt32) &&
+ divisor != 1 && divisor != -1) {
+ int32_t mask = divisor < 0 ? -(divisor + 1) : (divisor - 1);
+ __ test(dividend, Immediate(mask));
+ DeoptimizeIf(not_zero, instr, Deoptimizer::kLostPrecision);
+ }
+ __ Move(result, dividend);
+ int32_t shift = WhichPowerOf2Abs(divisor);
+ if (shift > 0) {
+ // The arithmetic shift is always OK, the 'if' is an optimization only.
+ if (shift > 1) __ sar(result, 31);
+ __ shr(result, 32 - shift);
+ __ add(result, dividend);
+ __ sar(result, shift);
+ }
+ if (divisor < 0) __ neg(result);
+}
+
+
+void LCodeGen::DoDivByConstI(LDivByConstI* instr) {
+ Register dividend = ToRegister(instr->dividend());
+ int32_t divisor = instr->divisor();
+ DCHECK(ToRegister(instr->result()).is(edx));
+
+ if (divisor == 0) {
+ DeoptimizeIf(no_condition, instr, Deoptimizer::kDivisionByZero);
+ return;
+ }
+
+ // Check for (0 / -x) that will produce negative zero.
+ HDiv* hdiv = instr->hydrogen();
+ if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero) && divisor < 0) {
+ __ test(dividend, dividend);
+ DeoptimizeIf(zero, instr, Deoptimizer::kMinusZero);
+ }
+
+ __ TruncatingDiv(dividend, Abs(divisor));
+ if (divisor < 0) __ neg(edx);
+
+ if (!hdiv->CheckFlag(HInstruction::kAllUsesTruncatingToInt32)) {
+ __ mov(eax, edx);
+ __ imul(eax, eax, divisor);
+ __ sub(eax, dividend);
+ DeoptimizeIf(not_equal, instr, Deoptimizer::kLostPrecision);
+ }
+}
+
+
+// TODO(svenpanne) Refactor this to avoid code duplication with DoFlooringDivI.
+void LCodeGen::DoDivI(LDivI* instr) {
+ HBinaryOperation* hdiv = instr->hydrogen();
+ Register dividend = ToRegister(instr->dividend());
+ Register divisor = ToRegister(instr->divisor());
+ Register remainder = ToRegister(instr->temp());
+ DCHECK(dividend.is(eax));
+ DCHECK(remainder.is(edx));
+ DCHECK(ToRegister(instr->result()).is(eax));
+ DCHECK(!divisor.is(eax));
+ DCHECK(!divisor.is(edx));
+
+ // Check for x / 0.
+ if (hdiv->CheckFlag(HValue::kCanBeDivByZero)) {
+ __ test(divisor, divisor);
+ DeoptimizeIf(zero, instr, Deoptimizer::kDivisionByZero);
+ }
+
+ // Check for (0 / -x) that will produce negative zero.
+ if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero)) {
+ Label dividend_not_zero;
+ __ test(dividend, dividend);
+ __ j(not_zero, &dividend_not_zero, Label::kNear);
+ __ test(divisor, divisor);
+ DeoptimizeIf(sign, instr, Deoptimizer::kMinusZero);
+ __ bind(&dividend_not_zero);
+ }
+
+ // Check for (kMinInt / -1).
+ if (hdiv->CheckFlag(HValue::kCanOverflow)) {
+ Label dividend_not_min_int;
+ __ cmp(dividend, kMinInt);
+ __ j(not_zero, &dividend_not_min_int, Label::kNear);
+ __ cmp(divisor, -1);
+ DeoptimizeIf(zero, instr, Deoptimizer::kOverflow);
+ __ bind(&dividend_not_min_int);
+ }
+
+ // Sign extend to edx (= remainder).
+ __ cdq();
+ __ idiv(divisor);
+
+ if (!hdiv->CheckFlag(HValue::kAllUsesTruncatingToInt32)) {
+ // Deoptimize if remainder is not 0.
+ __ test(remainder, remainder);
+ DeoptimizeIf(not_zero, instr, Deoptimizer::kLostPrecision);
+ }
+}
+
+
+void LCodeGen::DoFlooringDivByPowerOf2I(LFlooringDivByPowerOf2I* instr) {
+ Register dividend = ToRegister(instr->dividend());
+ int32_t divisor = instr->divisor();
+ DCHECK(dividend.is(ToRegister(instr->result())));
+
+ // If the divisor is positive, things are easy: There can be no deopts and we
+ // can simply do an arithmetic right shift.
+ if (divisor == 1) return;
+ int32_t shift = WhichPowerOf2Abs(divisor);
+ if (divisor > 1) {
+ __ sar(dividend, shift);
+ return;
+ }
+
+ // If the divisor is negative, we have to negate and handle edge cases.
+ __ neg(dividend);
+ if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
+ DeoptimizeIf(zero, instr, Deoptimizer::kMinusZero);
+ }
+
+ // Dividing by -1 is basically negation, unless we overflow.
+ if (divisor == -1) {
+ if (instr->hydrogen()->CheckFlag(HValue::kLeftCanBeMinInt)) {
+ DeoptimizeIf(overflow, instr, Deoptimizer::kOverflow);
+ }
+ return;
+ }
+
+ // If the negation could not overflow, simply shifting is OK.
+ if (!instr->hydrogen()->CheckFlag(HValue::kLeftCanBeMinInt)) {
+ __ sar(dividend, shift);
+ return;
+ }
+
+ Label not_kmin_int, done;
+ __ j(no_overflow, &not_kmin_int, Label::kNear);
+ __ mov(dividend, Immediate(kMinInt / divisor));
+ __ jmp(&done, Label::kNear);
+ __ bind(&not_kmin_int);
+ __ sar(dividend, shift);
+ __ bind(&done);
+}
+
+
+void LCodeGen::DoFlooringDivByConstI(LFlooringDivByConstI* instr) {
+ Register dividend = ToRegister(instr->dividend());
+ int32_t divisor = instr->divisor();
+ DCHECK(ToRegister(instr->result()).is(edx));
+
+ if (divisor == 0) {
+ DeoptimizeIf(no_condition, instr, Deoptimizer::kDivisionByZero);
+ return;
+ }
+
+ // Check for (0 / -x) that will produce negative zero.
+ HMathFloorOfDiv* hdiv = instr->hydrogen();
+ if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero) && divisor < 0) {
+ __ test(dividend, dividend);
+ DeoptimizeIf(zero, instr, Deoptimizer::kMinusZero);
+ }
+
+ // Easy case: We need no dynamic check for the dividend and the flooring
+ // division is the same as the truncating division.
+ if ((divisor > 0 && !hdiv->CheckFlag(HValue::kLeftCanBeNegative)) ||
+ (divisor < 0 && !hdiv->CheckFlag(HValue::kLeftCanBePositive))) {
+ __ TruncatingDiv(dividend, Abs(divisor));
+ if (divisor < 0) __ neg(edx);
+ return;
+ }
+
+ // In the general case we may need to adjust before and after the truncating
+ // division to get a flooring division.
+ Register temp = ToRegister(instr->temp3());
+ DCHECK(!temp.is(dividend) && !temp.is(eax) && !temp.is(edx));
+ Label needs_adjustment, done;
+ __ cmp(dividend, Immediate(0));
+ __ j(divisor > 0 ? less : greater, &needs_adjustment, Label::kNear);
+ __ TruncatingDiv(dividend, Abs(divisor));
+ if (divisor < 0) __ neg(edx);
+ __ jmp(&done, Label::kNear);
+ __ bind(&needs_adjustment);
+ __ lea(temp, Operand(dividend, divisor > 0 ? 1 : -1));
+ __ TruncatingDiv(temp, Abs(divisor));
+ if (divisor < 0) __ neg(edx);
+ __ dec(edx);
+ __ bind(&done);
+}
+
+
+// TODO(svenpanne) Refactor this to avoid code duplication with DoDivI.
+void LCodeGen::DoFlooringDivI(LFlooringDivI* instr) {
+ HBinaryOperation* hdiv = instr->hydrogen();
+ Register dividend = ToRegister(instr->dividend());
+ Register divisor = ToRegister(instr->divisor());
+ Register remainder = ToRegister(instr->temp());
+ Register result = ToRegister(instr->result());
+ DCHECK(dividend.is(eax));
+ DCHECK(remainder.is(edx));
+ DCHECK(result.is(eax));
+ DCHECK(!divisor.is(eax));
+ DCHECK(!divisor.is(edx));
+
+ // Check for x / 0.
+ if (hdiv->CheckFlag(HValue::kCanBeDivByZero)) {
+ __ test(divisor, divisor);
+ DeoptimizeIf(zero, instr, Deoptimizer::kDivisionByZero);
+ }
+
+ // Check for (0 / -x) that will produce negative zero.
+ if (hdiv->CheckFlag(HValue::kBailoutOnMinusZero)) {
+ Label dividend_not_zero;
+ __ test(dividend, dividend);
+ __ j(not_zero, &dividend_not_zero, Label::kNear);
+ __ test(divisor, divisor);
+ DeoptimizeIf(sign, instr, Deoptimizer::kMinusZero);
+ __ bind(&dividend_not_zero);
+ }
+
+ // Check for (kMinInt / -1).
+ if (hdiv->CheckFlag(HValue::kCanOverflow)) {
+ Label dividend_not_min_int;
+ __ cmp(dividend, kMinInt);
+ __ j(not_zero, &dividend_not_min_int, Label::kNear);
+ __ cmp(divisor, -1);
+ DeoptimizeIf(zero, instr, Deoptimizer::kOverflow);
+ __ bind(&dividend_not_min_int);
+ }
+
+ // Sign extend to edx (= remainder).
+ __ cdq();
+ __ idiv(divisor);
+
+ Label done;
+ __ test(remainder, remainder);
+ __ j(zero, &done, Label::kNear);
+ __ xor_(remainder, divisor);
+ __ sar(remainder, 31);
+ __ add(result, remainder);
+ __ bind(&done);
+}
+
+
+void LCodeGen::DoMulI(LMulI* instr) {
+ Register left = ToRegister(instr->left());
+ LOperand* right = instr->right();
+
+ if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
+ __ mov(ToRegister(instr->temp()), left);
+ }
+
+ if (right->IsConstantOperand()) {
+ // Try strength reductions on the multiplication.
+ // All replacement instructions are at most as long as the imul
+ // and have better latency.
+ int constant = ToInteger32(LConstantOperand::cast(right));
+ if (constant == -1) {
+ __ neg(left);
+ } else if (constant == 0) {
+ __ xor_(left, Operand(left));
+ } else if (constant == 2) {
+ __ add(left, Operand(left));
+ } else if (!instr->hydrogen()->CheckFlag(HValue::kCanOverflow)) {
+ // If we know that the multiplication can't overflow, it's safe to
+ // use instructions that don't set the overflow flag for the
+ // multiplication.
+ switch (constant) {
+ case 1:
+ // Do nothing.
+ break;
+ case 3:
+ __ lea(left, Operand(left, left, times_2, 0));
+ break;
+ case 4:
+ __ shl(left, 2);
+ break;
+ case 5:
+ __ lea(left, Operand(left, left, times_4, 0));
+ break;
+ case 8:
+ __ shl(left, 3);
+ break;
+ case 9:
+ __ lea(left, Operand(left, left, times_8, 0));
+ break;
+ case 16:
+ __ shl(left, 4);
+ break;
+ default:
+ __ imul(left, left, constant);
+ break;
+ }
+ } else {
+ __ imul(left, left, constant);
+ }
+ } else {
+ if (instr->hydrogen()->representation().IsSmi()) {
+ __ SmiUntag(left);
+ }
+ __ imul(left, ToOperand(right));
+ }
+
+ if (instr->hydrogen()->CheckFlag(HValue::kCanOverflow)) {
+ DeoptimizeIf(overflow, instr, Deoptimizer::kOverflow);
+ }
+
+ if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
+ // Bail out if the result is supposed to be negative zero.
+ Label done;
+ __ test(left, Operand(left));
+ __ j(not_zero, &done);
+ if (right->IsConstantOperand()) {
+ if (ToInteger32(LConstantOperand::cast(right)) < 0) {
+ DeoptimizeIf(no_condition, instr, Deoptimizer::kMinusZero);
+ } else if (ToInteger32(LConstantOperand::cast(right)) == 0) {
+ __ cmp(ToRegister(instr->temp()), Immediate(0));
+ DeoptimizeIf(less, instr, Deoptimizer::kMinusZero);
+ }
+ } else {
+ // Test the non-zero operand for negative sign.
+ __ or_(ToRegister(instr->temp()), ToOperand(right));
+ DeoptimizeIf(sign, instr, Deoptimizer::kMinusZero);
+ }
+ __ bind(&done);
+ }
+}
+
+
+void LCodeGen::DoBitI(LBitI* instr) {
+ LOperand* left = instr->left();
+ LOperand* right = instr->right();
+ DCHECK(left->Equals(instr->result()));
+ DCHECK(left->IsRegister());
+
+ if (right->IsConstantOperand()) {
+ int32_t right_operand =
+ ToRepresentation(LConstantOperand::cast(right),
+ instr->hydrogen()->representation());
+ switch (instr->op()) {
+ case Token::BIT_AND:
+ __ and_(ToRegister(left), right_operand);
+ break;
+ case Token::BIT_OR:
+ __ or_(ToRegister(left), right_operand);
+ break;
+ case Token::BIT_XOR:
+ if (right_operand == int32_t(~0)) {
+ __ not_(ToRegister(left));
+ } else {
+ __ xor_(ToRegister(left), right_operand);
+ }
+ break;
+ default:
+ UNREACHABLE();
+ break;
+ }
+ } else {
+ switch (instr->op()) {
+ case Token::BIT_AND:
+ __ and_(ToRegister(left), ToOperand(right));
+ break;
+ case Token::BIT_OR:
+ __ or_(ToRegister(left), ToOperand(right));
+ break;
+ case Token::BIT_XOR:
+ __ xor_(ToRegister(left), ToOperand(right));
+ break;
+ default:
+ UNREACHABLE();
+ break;
+ }
+ }
+}
+
+
+void LCodeGen::DoShiftI(LShiftI* instr) {
+ LOperand* left = instr->left();
+ LOperand* right = instr->right();
+ DCHECK(left->Equals(instr->result()));
+ DCHECK(left->IsRegister());
+ if (right->IsRegister()) {
+ DCHECK(ToRegister(right).is(ecx));
+
+ switch (instr->op()) {
+ case Token::ROR:
+ __ ror_cl(ToRegister(left));
+ break;
+ case Token::SAR:
+ __ sar_cl(ToRegister(left));
+ break;
+ case Token::SHR:
+ __ shr_cl(ToRegister(left));
+ if (instr->can_deopt()) {
+ __ test(ToRegister(left), ToRegister(left));
+ DeoptimizeIf(sign, instr, Deoptimizer::kNegativeValue);
+ }
+ break;
+ case Token::SHL:
+ __ shl_cl(ToRegister(left));
+ break;
+ default:
+ UNREACHABLE();
+ break;
+ }
+ } else {
+ int value = ToInteger32(LConstantOperand::cast(right));
+ uint8_t shift_count = static_cast<uint8_t>(value & 0x1F);
+ switch (instr->op()) {
+ case Token::ROR:
+ if (shift_count == 0 && instr->can_deopt()) {
+ __ test(ToRegister(left), ToRegister(left));
+ DeoptimizeIf(sign, instr, Deoptimizer::kNegativeValue);
+ } else {
+ __ ror(ToRegister(left), shift_count);
+ }
+ break;
+ case Token::SAR:
+ if (shift_count != 0) {
+ __ sar(ToRegister(left), shift_count);
+ }
+ break;
+ case Token::SHR:
+ if (shift_count != 0) {
+ __ shr(ToRegister(left), shift_count);
+ } else if (instr->can_deopt()) {
+ __ test(ToRegister(left), ToRegister(left));
+ DeoptimizeIf(sign, instr, Deoptimizer::kNegativeValue);
+ }
+ break;
+ case Token::SHL:
+ if (shift_count != 0) {
+ if (instr->hydrogen_value()->representation().IsSmi() &&
+ instr->can_deopt()) {
+ if (shift_count != 1) {
+ __ shl(ToRegister(left), shift_count - 1);
+ }
+ __ SmiTag(ToRegister(left));
+ DeoptimizeIf(overflow, instr, Deoptimizer::kOverflow);
+ } else {
+ __ shl(ToRegister(left), shift_count);
+ }
+ }
+ break;
+ default:
+ UNREACHABLE();
+ break;
+ }
+ }
+}
+
+
+void LCodeGen::DoSubI(LSubI* instr) {
+ LOperand* left = instr->left();
+ LOperand* right = instr->right();
+ DCHECK(left->Equals(instr->result()));
+
+ if (right->IsConstantOperand()) {
+ __ sub(ToOperand(left),
+ ToImmediate(right, instr->hydrogen()->representation()));
+ } else {
+ __ sub(ToRegister(left), ToOperand(right));
+ }
+ if (instr->hydrogen()->CheckFlag(HValue::kCanOverflow)) {
+ DeoptimizeIf(overflow, instr, Deoptimizer::kOverflow);
+ }
+}
+
+
+void LCodeGen::DoConstantI(LConstantI* instr) {
+ __ Move(ToRegister(instr->result()), Immediate(instr->value()));
+}
+
+
+void LCodeGen::DoConstantS(LConstantS* instr) {
+ __ Move(ToRegister(instr->result()), Immediate(instr->value()));
+}
+
+
+void LCodeGen::DoConstantD(LConstantD* instr) {
+ uint64_t const bits = instr->bits();
+ uint32_t const lower = static_cast<uint32_t>(bits);
+ uint32_t const upper = static_cast<uint32_t>(bits >> 32);
+ DCHECK(instr->result()->IsDoubleRegister());
+
+ __ push(Immediate(upper));
+ __ push(Immediate(lower));
+ X87Register reg = ToX87Register(instr->result());
+ X87Mov(reg, Operand(esp, 0));
+ __ add(Operand(esp), Immediate(kDoubleSize));
+}
+
+
+void LCodeGen::DoConstantE(LConstantE* instr) {
+ __ lea(ToRegister(instr->result()), Operand::StaticVariable(instr->value()));
+}
+
+
+void LCodeGen::DoConstantT(LConstantT* instr) {
+ Register reg = ToRegister(instr->result());
+ Handle<Object> object = instr->value(isolate());
+ AllowDeferredHandleDereference smi_check;
+ __ LoadObject(reg, object);
+}
+
+
+void LCodeGen::DoMapEnumLength(LMapEnumLength* instr) {
+ Register result = ToRegister(instr->result());
+ Register map = ToRegister(instr->value());
+ __ EnumLength(result, map);
+}
+
+
+void LCodeGen::DoDateField(LDateField* instr) {
+ Register object = ToRegister(instr->date());
+ Register result = ToRegister(instr->result());
+ Register scratch = ToRegister(instr->temp());
+ Smi* index = instr->index();
+ DCHECK(object.is(result));
+ DCHECK(object.is(eax));
+
+ if (index->value() == 0) {
+ __ mov(result, FieldOperand(object, JSDate::kValueOffset));
+ } else {
+ Label runtime, done;
+ if (index->value() < JSDate::kFirstUncachedField) {
+ ExternalReference stamp = ExternalReference::date_cache_stamp(isolate());
+ __ mov(scratch, Operand::StaticVariable(stamp));
+ __ cmp(scratch, FieldOperand(object, JSDate::kCacheStampOffset));
+ __ j(not_equal, &runtime, Label::kNear);
+ __ mov(result, FieldOperand(object, JSDate::kValueOffset +
+ kPointerSize * index->value()));
+ __ jmp(&done, Label::kNear);
+ }
+ __ bind(&runtime);
+ __ PrepareCallCFunction(2, scratch);
+ __ mov(Operand(esp, 0), object);
+ __ mov(Operand(esp, 1 * kPointerSize), Immediate(index));
+ __ CallCFunction(ExternalReference::get_date_field_function(isolate()), 2);
+ __ bind(&done);
+ }
+}
+
+
+Operand LCodeGen::BuildSeqStringOperand(Register string,
+ LOperand* index,
+ String::Encoding encoding) {
+ if (index->IsConstantOperand()) {
+ int offset = ToRepresentation(LConstantOperand::cast(index),
+ Representation::Integer32());
+ if (encoding == String::TWO_BYTE_ENCODING) {
+ offset *= kUC16Size;
+ }
+ STATIC_ASSERT(kCharSize == 1);
+ return FieldOperand(string, SeqString::kHeaderSize + offset);
+ }
+ return FieldOperand(
+ string, ToRegister(index),
+ encoding == String::ONE_BYTE_ENCODING ? times_1 : times_2,
+ SeqString::kHeaderSize);
+}
+
+
+void LCodeGen::DoSeqStringGetChar(LSeqStringGetChar* instr) {
+ String::Encoding encoding = instr->hydrogen()->encoding();
+ Register result = ToRegister(instr->result());
+ Register string = ToRegister(instr->string());
+
+ if (FLAG_debug_code) {
+ __ push(string);
+ __ mov(string, FieldOperand(string, HeapObject::kMapOffset));
+ __ movzx_b(string, FieldOperand(string, Map::kInstanceTypeOffset));
+
+ __ and_(string, Immediate(kStringRepresentationMask | kStringEncodingMask));
+ static const uint32_t one_byte_seq_type = kSeqStringTag | kOneByteStringTag;
+ static const uint32_t two_byte_seq_type = kSeqStringTag | kTwoByteStringTag;
+ __ cmp(string, Immediate(encoding == String::ONE_BYTE_ENCODING
+ ? one_byte_seq_type : two_byte_seq_type));
+ __ Check(equal, kUnexpectedStringType);
+ __ pop(string);
+ }
+
+ Operand operand = BuildSeqStringOperand(string, instr->index(), encoding);
+ if (encoding == String::ONE_BYTE_ENCODING) {
+ __ movzx_b(result, operand);
+ } else {
+ __ movzx_w(result, operand);
+ }
+}
+
+
+void LCodeGen::DoSeqStringSetChar(LSeqStringSetChar* instr) {
+ String::Encoding encoding = instr->hydrogen()->encoding();
+ Register string = ToRegister(instr->string());
+
+ if (FLAG_debug_code) {
+ Register value = ToRegister(instr->value());
+ Register index = ToRegister(instr->index());
+ static const uint32_t one_byte_seq_type = kSeqStringTag | kOneByteStringTag;
+ static const uint32_t two_byte_seq_type = kSeqStringTag | kTwoByteStringTag;
+ int encoding_mask =
+ instr->hydrogen()->encoding() == String::ONE_BYTE_ENCODING
+ ? one_byte_seq_type : two_byte_seq_type;
+ __ EmitSeqStringSetCharCheck(string, index, value, encoding_mask);
+ }
+
+ Operand operand = BuildSeqStringOperand(string, instr->index(), encoding);
+ if (instr->value()->IsConstantOperand()) {
+ int value = ToRepresentation(LConstantOperand::cast(instr->value()),
+ Representation::Integer32());
+ DCHECK_LE(0, value);
+ if (encoding == String::ONE_BYTE_ENCODING) {
+ DCHECK_LE(value, String::kMaxOneByteCharCode);
+ __ mov_b(operand, static_cast<int8_t>(value));
+ } else {
+ DCHECK_LE(value, String::kMaxUtf16CodeUnit);
+ __ mov_w(operand, static_cast<int16_t>(value));
+ }
+ } else {
+ Register value = ToRegister(instr->value());
+ if (encoding == String::ONE_BYTE_ENCODING) {
+ __ mov_b(operand, value);
+ } else {
+ __ mov_w(operand, value);
+ }
+ }
+}
+
+
+void LCodeGen::DoAddI(LAddI* instr) {
+ LOperand* left = instr->left();
+ LOperand* right = instr->right();
+
+ if (LAddI::UseLea(instr->hydrogen()) && !left->Equals(instr->result())) {
+ if (right->IsConstantOperand()) {
+ int32_t offset = ToRepresentation(LConstantOperand::cast(right),
+ instr->hydrogen()->representation());
+ __ lea(ToRegister(instr->result()), MemOperand(ToRegister(left), offset));
+ } else {
+ Operand address(ToRegister(left), ToRegister(right), times_1, 0);
+ __ lea(ToRegister(instr->result()), address);
+ }
+ } else {
+ if (right->IsConstantOperand()) {
+ __ add(ToOperand(left),
+ ToImmediate(right, instr->hydrogen()->representation()));
+ } else {
+ __ add(ToRegister(left), ToOperand(right));
+ }
+ if (instr->hydrogen()->CheckFlag(HValue::kCanOverflow)) {
+ DeoptimizeIf(overflow, instr, Deoptimizer::kOverflow);
+ }
+ }
+}
+
+
+void LCodeGen::DoMathMinMax(LMathMinMax* instr) {
+ LOperand* left = instr->left();
+ LOperand* right = instr->right();
+ DCHECK(left->Equals(instr->result()));
+ HMathMinMax::Operation operation = instr->hydrogen()->operation();
+ if (instr->hydrogen()->representation().IsSmiOrInteger32()) {
+ Label return_left;
+ Condition condition = (operation == HMathMinMax::kMathMin)
+ ? less_equal
+ : greater_equal;
+ if (right->IsConstantOperand()) {
+ Operand left_op = ToOperand(left);
+ Immediate immediate = ToImmediate(LConstantOperand::cast(instr->right()),
+ instr->hydrogen()->representation());
+ __ cmp(left_op, immediate);
+ __ j(condition, &return_left, Label::kNear);
+ __ mov(left_op, immediate);
+ } else {
+ Register left_reg = ToRegister(left);
+ Operand right_op = ToOperand(right);
+ __ cmp(left_reg, right_op);
+ __ j(condition, &return_left, Label::kNear);
+ __ mov(left_reg, right_op);
+ }
+ __ bind(&return_left);
+ } else {
+ DCHECK(instr->hydrogen()->representation().IsDouble());
+ Label check_nan_left, check_zero, return_left, return_right;
+ Condition condition = (operation == HMathMinMax::kMathMin) ? below : above;
+ X87Register left_reg = ToX87Register(left);
+ X87Register right_reg = ToX87Register(right);
+
+ X87PrepareBinaryOp(left_reg, right_reg, ToX87Register(instr->result()));
+ __ fld(1);
+ __ fld(1);
+ __ FCmp();
+ __ j(parity_even, &check_nan_left, Label::kNear); // At least one NaN.
+ __ j(equal, &check_zero, Label::kNear); // left == right.
+ __ j(condition, &return_left, Label::kNear);
+ __ jmp(&return_right, Label::kNear);
+
+ __ bind(&check_zero);
+ __ fld(0);
+ __ fldz();
+ __ FCmp();
+ __ j(not_equal, &return_left, Label::kNear); // left == right != 0.
+ // At this point, both left and right are either 0 or -0.
+ if (operation == HMathMinMax::kMathMin) {
+ // Push st0 and st1 to stack, then pop them to temp registers and OR them,
+ // load it to left.
+ Register scratch_reg = ToRegister(instr->temp());
+ __ fld(1);
+ __ fld(1);
+ __ sub(esp, Immediate(2 * kPointerSize));
+ __ fstp_s(MemOperand(esp, 0));
+ __ fstp_s(MemOperand(esp, kPointerSize));
+ __ pop(scratch_reg);
+ __ xor_(MemOperand(esp, 0), scratch_reg);
+ X87Mov(left_reg, MemOperand(esp, 0), kX87FloatOperand);
+ __ pop(scratch_reg); // restore esp
+ } else {
+ // Since we operate on +0 and/or -0, addsd and andsd have the same effect.
+ X87Fxch(left_reg);
+ __ fadd(1);
+ }
+ __ jmp(&return_left, Label::kNear);
+
+ __ bind(&check_nan_left);
+ __ fld(0);
+ __ fld(0);
+ __ FCmp(); // NaN check.
+ __ j(parity_even, &return_left, Label::kNear); // left == NaN.
+
+ __ bind(&return_right);
+ X87Fxch(left_reg);
+ X87Mov(left_reg, right_reg);
+
+ __ bind(&return_left);
+ }
+}
+
+
+void LCodeGen::DoArithmeticD(LArithmeticD* instr) {
+ X87Register left = ToX87Register(instr->left());
+ X87Register right = ToX87Register(instr->right());
+ X87Register result = ToX87Register(instr->result());
+ if (instr->op() != Token::MOD) {
+ X87PrepareBinaryOp(left, right, result);
+ }
+ // Set the precision control to double-precision.
+ __ X87SetFPUCW(0x027F);
+ switch (instr->op()) {
+ case Token::ADD:
+ __ fadd_i(1);
+ break;
+ case Token::SUB:
+ __ fsub_i(1);
+ break;
+ case Token::MUL:
+ __ fmul_i(1);
+ break;
+ case Token::DIV:
+ __ fdiv_i(1);
+ break;
+ case Token::MOD: {
+ // Pass two doubles as arguments on the stack.
+ __ PrepareCallCFunction(4, eax);
+ X87Mov(Operand(esp, 1 * kDoubleSize), right);
+ X87Mov(Operand(esp, 0), left);
+ X87Free(right);
+ DCHECK(left.is(result));
+ X87PrepareToWrite(result);
+ __ CallCFunction(
+ ExternalReference::mod_two_doubles_operation(isolate()),
+ 4);
+
+ // Return value is in st(0) on ia32.
+ X87CommitWrite(result);
+ break;
+ }
+ default:
+ UNREACHABLE();
+ break;
+ }
+
+ // Restore the default value of control word.
+ __ X87SetFPUCW(0x037F);
+}
+
+
+void LCodeGen::DoArithmeticT(LArithmeticT* instr) {
+ DCHECK(ToRegister(instr->context()).is(esi));
+ DCHECK(ToRegister(instr->left()).is(edx));
+ DCHECK(ToRegister(instr->right()).is(eax));
+ DCHECK(ToRegister(instr->result()).is(eax));
+
+ Handle<Code> code =
+ CodeFactory::BinaryOpIC(isolate(), instr->op(), instr->strength()).code();
+ CallCode(code, RelocInfo::CODE_TARGET, instr);
+}
+
+
+template<class InstrType>
+void LCodeGen::EmitBranch(InstrType instr, Condition cc) {
+ int left_block = instr->TrueDestination(chunk_);
+ int right_block = instr->FalseDestination(chunk_);
+
+ int next_block = GetNextEmittedBlock();
+
+ if (right_block == left_block || cc == no_condition) {
+ EmitGoto(left_block);
+ } else if (left_block == next_block) {
+ __ j(NegateCondition(cc), chunk_->GetAssemblyLabel(right_block));
+ } else if (right_block == next_block) {
+ __ j(cc, chunk_->GetAssemblyLabel(left_block));
+ } else {
+ __ j(cc, chunk_->GetAssemblyLabel(left_block));
+ __ jmp(chunk_->GetAssemblyLabel(right_block));
+ }
+}
+
+
+template <class InstrType>
+void LCodeGen::EmitTrueBranch(InstrType instr, Condition cc) {
+ int true_block = instr->TrueDestination(chunk_);
+ if (cc == no_condition) {
+ __ jmp(chunk_->GetAssemblyLabel(true_block));
+ } else {
+ __ j(cc, chunk_->GetAssemblyLabel(true_block));
+ }
+}
+
+
+template<class InstrType>
+void LCodeGen::EmitFalseBranch(InstrType instr, Condition cc) {
+ int false_block = instr->FalseDestination(chunk_);
+ if (cc == no_condition) {
+ __ jmp(chunk_->GetAssemblyLabel(false_block));
+ } else {
+ __ j(cc, chunk_->GetAssemblyLabel(false_block));
+ }
+}
+
+
+void LCodeGen::DoBranch(LBranch* instr) {
+ Representation r = instr->hydrogen()->value()->representation();
+ if (r.IsSmiOrInteger32()) {
+ Register reg = ToRegister(instr->value());
+ __ test(reg, Operand(reg));
+ EmitBranch(instr, not_zero);
+ } else if (r.IsDouble()) {
+ X87Register reg = ToX87Register(instr->value());
+ X87LoadForUsage(reg);
+ __ fldz();
+ __ FCmp();
+ EmitBranch(instr, not_zero);
+ } else {
+ DCHECK(r.IsTagged());
+ Register reg = ToRegister(instr->value());
+ HType type = instr->hydrogen()->value()->type();
+ if (type.IsBoolean()) {
+ DCHECK(!info()->IsStub());
+ __ cmp(reg, factory()->true_value());
+ EmitBranch(instr, equal);
+ } else if (type.IsSmi()) {
+ DCHECK(!info()->IsStub());
+ __ test(reg, Operand(reg));
+ EmitBranch(instr, not_equal);
+ } else if (type.IsJSArray()) {
+ DCHECK(!info()->IsStub());
+ EmitBranch(instr, no_condition);
+ } else if (type.IsHeapNumber()) {
+ UNREACHABLE();
+ } else if (type.IsString()) {
+ DCHECK(!info()->IsStub());
+ __ cmp(FieldOperand(reg, String::kLengthOffset), Immediate(0));
+ EmitBranch(instr, not_equal);
+ } else {
+ ToBooleanStub::Types expected = instr->hydrogen()->expected_input_types();
+ if (expected.IsEmpty()) expected = ToBooleanStub::Types::Generic();
+
+ if (expected.Contains(ToBooleanStub::UNDEFINED)) {
+ // undefined -> false.
+ __ cmp(reg, factory()->undefined_value());
+ __ j(equal, instr->FalseLabel(chunk_));
+ }
+ if (expected.Contains(ToBooleanStub::BOOLEAN)) {
+ // true -> true.
+ __ cmp(reg, factory()->true_value());
+ __ j(equal, instr->TrueLabel(chunk_));
+ // false -> false.
+ __ cmp(reg, factory()->false_value());
+ __ j(equal, instr->FalseLabel(chunk_));
+ }
+ if (expected.Contains(ToBooleanStub::NULL_TYPE)) {
+ // 'null' -> false.
+ __ cmp(reg, factory()->null_value());
+ __ j(equal, instr->FalseLabel(chunk_));
+ }
+
+ if (expected.Contains(ToBooleanStub::SMI)) {
+ // Smis: 0 -> false, all other -> true.
+ __ test(reg, Operand(reg));
+ __ j(equal, instr->FalseLabel(chunk_));
+ __ JumpIfSmi(reg, instr->TrueLabel(chunk_));
+ } else if (expected.NeedsMap()) {
+ // If we need a map later and have a Smi -> deopt.
+ __ test(reg, Immediate(kSmiTagMask));
+ DeoptimizeIf(zero, instr, Deoptimizer::kSmi);
+ }
+
+ Register map = no_reg; // Keep the compiler happy.
+ if (expected.NeedsMap()) {
+ map = ToRegister(instr->temp());
+ DCHECK(!map.is(reg));
+ __ mov(map, FieldOperand(reg, HeapObject::kMapOffset));
+
+ if (expected.CanBeUndetectable()) {
+ // Undetectable -> false.
+ __ test_b(FieldOperand(map, Map::kBitFieldOffset),
+ 1 << Map::kIsUndetectable);
+ __ j(not_zero, instr->FalseLabel(chunk_));
+ }
+ }
+
+ if (expected.Contains(ToBooleanStub::SPEC_OBJECT)) {
+ // spec object -> true.
+ __ CmpInstanceType(map, FIRST_SPEC_OBJECT_TYPE);
+ __ j(above_equal, instr->TrueLabel(chunk_));
+ }
+
+ if (expected.Contains(ToBooleanStub::STRING)) {
+ // String value -> false iff empty.
+ Label not_string;
+ __ CmpInstanceType(map, FIRST_NONSTRING_TYPE);
+ __ j(above_equal, &not_string, Label::kNear);
+ __ cmp(FieldOperand(reg, String::kLengthOffset), Immediate(0));
+ __ j(not_zero, instr->TrueLabel(chunk_));
+ __ jmp(instr->FalseLabel(chunk_));
+ __ bind(&not_string);
+ }
+
+ if (expected.Contains(ToBooleanStub::SYMBOL)) {
+ // Symbol value -> true.
+ __ CmpInstanceType(map, SYMBOL_TYPE);
+ __ j(equal, instr->TrueLabel(chunk_));
+ }
+
+ if (expected.Contains(ToBooleanStub::SIMD_VALUE)) {
+ // SIMD value -> true.
+ __ CmpInstanceType(map, SIMD128_VALUE_TYPE);
+ __ j(equal, instr->TrueLabel(chunk_));
+ }
+
+ if (expected.Contains(ToBooleanStub::HEAP_NUMBER)) {
+ // heap number -> false iff +0, -0, or NaN.
+ Label not_heap_number;
+ __ cmp(FieldOperand(reg, HeapObject::kMapOffset),
+ factory()->heap_number_map());
+ __ j(not_equal, &not_heap_number, Label::kNear);
+ __ fldz();
+ __ fld_d(FieldOperand(reg, HeapNumber::kValueOffset));
+ __ FCmp();
+ __ j(zero, instr->FalseLabel(chunk_));
+ __ jmp(instr->TrueLabel(chunk_));
+ __ bind(&not_heap_number);
+ }
+
+ if (!expected.IsGeneric()) {
+ // We've seen something for the first time -> deopt.
+ // This can only happen if we are not generic already.
+ DeoptimizeIf(no_condition, instr, Deoptimizer::kUnexpectedObject);
+ }
+ }
+ }
+}
+
+
+void LCodeGen::EmitGoto(int block) {
+ if (!IsNextEmittedBlock(block)) {
+ __ jmp(chunk_->GetAssemblyLabel(LookupDestination(block)));
+ }
+}
+
+
+void LCodeGen::DoClobberDoubles(LClobberDoubles* instr) {
+}
+
+
+void LCodeGen::DoGoto(LGoto* instr) {
+ EmitGoto(instr->block_id());
+}
+
+
+Condition LCodeGen::TokenToCondition(Token::Value op, bool is_unsigned) {
+ Condition cond = no_condition;
+ switch (op) {
+ case Token::EQ:
+ case Token::EQ_STRICT:
+ cond = equal;
+ break;
+ case Token::NE:
+ case Token::NE_STRICT:
+ cond = not_equal;
+ break;
+ case Token::LT:
+ cond = is_unsigned ? below : less;
+ break;
+ case Token::GT:
+ cond = is_unsigned ? above : greater;
+ break;
+ case Token::LTE:
+ cond = is_unsigned ? below_equal : less_equal;
+ break;
+ case Token::GTE:
+ cond = is_unsigned ? above_equal : greater_equal;
+ break;
+ case Token::IN:
+ case Token::INSTANCEOF:
+ default:
+ UNREACHABLE();
+ }
+ return cond;
+}
+
+
+void LCodeGen::DoCompareNumericAndBranch(LCompareNumericAndBranch* instr) {
+ LOperand* left = instr->left();
+ LOperand* right = instr->right();
+ bool is_unsigned =
+ instr->is_double() ||
+ instr->hydrogen()->left()->CheckFlag(HInstruction::kUint32) ||
+ instr->hydrogen()->right()->CheckFlag(HInstruction::kUint32);
+ Condition cc = TokenToCondition(instr->op(), is_unsigned);
+
+ if (left->IsConstantOperand() && right->IsConstantOperand()) {
+ // We can statically evaluate the comparison.
+ double left_val = ToDouble(LConstantOperand::cast(left));
+ double right_val = ToDouble(LConstantOperand::cast(right));
+ int next_block = EvalComparison(instr->op(), left_val, right_val) ?
+ instr->TrueDestination(chunk_) : instr->FalseDestination(chunk_);
+ EmitGoto(next_block);
+ } else {
+ if (instr->is_double()) {
+ X87LoadForUsage(ToX87Register(right), ToX87Register(left));
+ __ FCmp();
+ // Don't base result on EFLAGS when a NaN is involved. Instead
+ // jump to the false block.
+ __ j(parity_even, instr->FalseLabel(chunk_));
+ } else {
+ if (right->IsConstantOperand()) {
+ __ cmp(ToOperand(left),
+ ToImmediate(right, instr->hydrogen()->representation()));
+ } else if (left->IsConstantOperand()) {
+ __ cmp(ToOperand(right),
+ ToImmediate(left, instr->hydrogen()->representation()));
+ // We commuted the operands, so commute the condition.
+ cc = CommuteCondition(cc);
+ } else {
+ __ cmp(ToRegister(left), ToOperand(right));
+ }
+ }
+ EmitBranch(instr, cc);
+ }
+}
+
+
+void LCodeGen::DoCmpObjectEqAndBranch(LCmpObjectEqAndBranch* instr) {
+ Register left = ToRegister(instr->left());
+
+ if (instr->right()->IsConstantOperand()) {
+ Handle<Object> right = ToHandle(LConstantOperand::cast(instr->right()));
+ __ CmpObject(left, right);
+ } else {
+ Operand right = ToOperand(instr->right());
+ __ cmp(left, right);
+ }
+ EmitBranch(instr, equal);
+}
+
+
+void LCodeGen::DoCmpHoleAndBranch(LCmpHoleAndBranch* instr) {
+ if (instr->hydrogen()->representation().IsTagged()) {
+ Register input_reg = ToRegister(instr->object());
+ __ cmp(input_reg, factory()->the_hole_value());
+ EmitBranch(instr, equal);
+ return;
+ }
+
+ // Put the value to the top of stack
+ X87Register src = ToX87Register(instr->object());
+ X87LoadForUsage(src);
+ __ fld(0);
+ __ fld(0);
+ __ FCmp();
+ Label ok;
+ __ j(parity_even, &ok, Label::kNear);
+ __ fstp(0);
+ EmitFalseBranch(instr, no_condition);
+ __ bind(&ok);
+
+
+ __ sub(esp, Immediate(kDoubleSize));
+ __ fstp_d(MemOperand(esp, 0));
+
+ __ add(esp, Immediate(kDoubleSize));
+ int offset = sizeof(kHoleNanUpper32);
+ // x87 converts sNaN(0xfff7fffffff7ffff) to QNaN(0xfffffffffff7ffff),
+ // so we check the upper with 0xffffffff for hole as a temporary fix.
+ __ cmp(MemOperand(esp, -offset), Immediate(0xffffffff));
+ EmitBranch(instr, equal);
+}
+
+
+void LCodeGen::DoCompareMinusZeroAndBranch(LCompareMinusZeroAndBranch* instr) {
+ Representation rep = instr->hydrogen()->value()->representation();
+ DCHECK(!rep.IsInteger32());
+
+ if (rep.IsDouble()) {
+ X87Register input = ToX87Register(instr->value());
+ X87LoadForUsage(input);
+ __ FXamMinusZero();
+ EmitBranch(instr, equal);
+ } else {
+ Register value = ToRegister(instr->value());
+ Handle<Map> map = masm()->isolate()->factory()->heap_number_map();
+ __ CheckMap(value, map, instr->FalseLabel(chunk()), DO_SMI_CHECK);
+ __ cmp(FieldOperand(value, HeapNumber::kExponentOffset),
+ Immediate(0x1));
+ EmitFalseBranch(instr, no_overflow);
+ __ cmp(FieldOperand(value, HeapNumber::kMantissaOffset),
+ Immediate(0x00000000));
+ EmitBranch(instr, equal);
+ }
+}
+
+
+Condition LCodeGen::EmitIsString(Register input,
+ Register temp1,
+ Label* is_not_string,
+ SmiCheck check_needed = INLINE_SMI_CHECK) {
+ if (check_needed == INLINE_SMI_CHECK) {
+ __ JumpIfSmi(input, is_not_string);
+ }
+
+ Condition cond = masm_->IsObjectStringType(input, temp1, temp1);
+
+ return cond;
+}
+
+
+void LCodeGen::DoIsStringAndBranch(LIsStringAndBranch* instr) {
+ Register reg = ToRegister(instr->value());
+ Register temp = ToRegister(instr->temp());
+
+ SmiCheck check_needed =
+ instr->hydrogen()->value()->type().IsHeapObject()
+ ? OMIT_SMI_CHECK : INLINE_SMI_CHECK;
+
+ Condition true_cond = EmitIsString(
+ reg, temp, instr->FalseLabel(chunk_), check_needed);
+
+ EmitBranch(instr, true_cond);
+}
+
+
+void LCodeGen::DoIsSmiAndBranch(LIsSmiAndBranch* instr) {
+ Operand input = ToOperand(instr->value());
+
+ __ test(input, Immediate(kSmiTagMask));
+ EmitBranch(instr, zero);
+}
+
+
+void LCodeGen::DoIsUndetectableAndBranch(LIsUndetectableAndBranch* instr) {
+ Register input = ToRegister(instr->value());
+ Register temp = ToRegister(instr->temp());
+
+ if (!instr->hydrogen()->value()->type().IsHeapObject()) {
+ STATIC_ASSERT(kSmiTag == 0);
+ __ JumpIfSmi(input, instr->FalseLabel(chunk_));
+ }
+ __ mov(temp, FieldOperand(input, HeapObject::kMapOffset));
+ __ test_b(FieldOperand(temp, Map::kBitFieldOffset),
+ 1 << Map::kIsUndetectable);
+ EmitBranch(instr, not_zero);
+}
+
+
+static Condition ComputeCompareCondition(Token::Value op) {
+ switch (op) {
+ case Token::EQ_STRICT:
+ case Token::EQ:
+ return equal;
+ case Token::LT:
+ return less;
+ case Token::GT:
+ return greater;
+ case Token::LTE:
+ return less_equal;
+ case Token::GTE:
+ return greater_equal;
+ default:
+ UNREACHABLE();
+ return no_condition;
+ }
+}
+
+
+void LCodeGen::DoStringCompareAndBranch(LStringCompareAndBranch* instr) {
+ DCHECK(ToRegister(instr->context()).is(esi));
+ DCHECK(ToRegister(instr->left()).is(edx));
+ DCHECK(ToRegister(instr->right()).is(eax));
+
+ Handle<Code> code = CodeFactory::StringCompare(isolate()).code();
+ CallCode(code, RelocInfo::CODE_TARGET, instr);
+ __ test(eax, eax);
+
+ EmitBranch(instr, ComputeCompareCondition(instr->op()));
+}
+
+
+static InstanceType TestType(HHasInstanceTypeAndBranch* instr) {
+ InstanceType from = instr->from();
+ InstanceType to = instr->to();
+ if (from == FIRST_TYPE) return to;
+ DCHECK(from == to || to == LAST_TYPE);
+ return from;
+}
+
+
+static Condition BranchCondition(HHasInstanceTypeAndBranch* instr) {
+ InstanceType from = instr->from();
+ InstanceType to = instr->to();
+ if (from == to) return equal;
+ if (to == LAST_TYPE) return above_equal;
+ if (from == FIRST_TYPE) return below_equal;
+ UNREACHABLE();
+ return equal;
+}
+
+
+void LCodeGen::DoHasInstanceTypeAndBranch(LHasInstanceTypeAndBranch* instr) {
+ Register input = ToRegister(instr->value());
+ Register temp = ToRegister(instr->temp());
+
+ if (!instr->hydrogen()->value()->type().IsHeapObject()) {
+ __ JumpIfSmi(input, instr->FalseLabel(chunk_));
+ }
+
+ __ CmpObjectType(input, TestType(instr->hydrogen()), temp);
+ EmitBranch(instr, BranchCondition(instr->hydrogen()));
+}
+
+
+void LCodeGen::DoGetCachedArrayIndex(LGetCachedArrayIndex* instr) {
+ Register input = ToRegister(instr->value());
+ Register result = ToRegister(instr->result());
+
+ __ AssertString(input);
+
+ __ mov(result, FieldOperand(input, String::kHashFieldOffset));
+ __ IndexFromHash(result, result);
+}
+
+
+void LCodeGen::DoHasCachedArrayIndexAndBranch(
+ LHasCachedArrayIndexAndBranch* instr) {
+ Register input = ToRegister(instr->value());
+
+ __ test(FieldOperand(input, String::kHashFieldOffset),
+ Immediate(String::kContainsCachedArrayIndexMask));
+ EmitBranch(instr, equal);
+}
+
+
+// Branches to a label or falls through with the answer in the z flag. Trashes
+// the temp registers, but not the input.
+void LCodeGen::EmitClassOfTest(Label* is_true,
+ Label* is_false,
+ Handle<String>class_name,
+ Register input,
+ Register temp,
+ Register temp2) {
+ DCHECK(!input.is(temp));
+ DCHECK(!input.is(temp2));
+ DCHECK(!temp.is(temp2));
+ __ JumpIfSmi(input, is_false);
+
+ if (String::Equals(isolate()->factory()->Function_string(), class_name)) {
+ // Assuming the following assertions, we can use the same compares to test
+ // for both being a function type and being in the object type range.
+ STATIC_ASSERT(NUM_OF_CALLABLE_SPEC_OBJECT_TYPES == 2);
+ STATIC_ASSERT(FIRST_NONCALLABLE_SPEC_OBJECT_TYPE ==
+ FIRST_SPEC_OBJECT_TYPE + 1);
+ STATIC_ASSERT(LAST_NONCALLABLE_SPEC_OBJECT_TYPE ==
+ LAST_SPEC_OBJECT_TYPE - 1);
+ STATIC_ASSERT(LAST_SPEC_OBJECT_TYPE == LAST_TYPE);
+ __ CmpObjectType(input, FIRST_SPEC_OBJECT_TYPE, temp);
+ __ j(below, is_false);
+ __ j(equal, is_true);
+ __ CmpInstanceType(temp, LAST_SPEC_OBJECT_TYPE);
+ __ j(equal, is_true);
+ } else {
+ // Faster code path to avoid two compares: subtract lower bound from the
+ // actual type and do a signed compare with the width of the type range.
+ __ mov(temp, FieldOperand(input, HeapObject::kMapOffset));
+ __ movzx_b(temp2, FieldOperand(temp, Map::kInstanceTypeOffset));
+ __ sub(Operand(temp2), Immediate(FIRST_NONCALLABLE_SPEC_OBJECT_TYPE));
+ __ cmp(Operand(temp2), Immediate(LAST_NONCALLABLE_SPEC_OBJECT_TYPE -
+ FIRST_NONCALLABLE_SPEC_OBJECT_TYPE));
+ __ j(above, is_false);
+ }
+
+ // Now we are in the FIRST-LAST_NONCALLABLE_SPEC_OBJECT_TYPE range.
+ // Check if the constructor in the map is a function.
+ __ GetMapConstructor(temp, temp, temp2);
+ // Objects with a non-function constructor have class 'Object'.
+ __ CmpInstanceType(temp2, JS_FUNCTION_TYPE);
+ if (String::Equals(class_name, isolate()->factory()->Object_string())) {
+ __ j(not_equal, is_true);
+ } else {
+ __ j(not_equal, is_false);
+ }
+
+ // temp now contains the constructor function. Grab the
+ // instance class name from there.
+ __ mov(temp, FieldOperand(temp, JSFunction::kSharedFunctionInfoOffset));
+ __ mov(temp, FieldOperand(temp,
+ SharedFunctionInfo::kInstanceClassNameOffset));
+ // The class name we are testing against is internalized since it's a literal.
+ // The name in the constructor is internalized because of the way the context
+ // is booted. This routine isn't expected to work for random API-created
+ // classes and it doesn't have to because you can't access it with natives
+ // syntax. Since both sides are internalized it is sufficient to use an
+ // identity comparison.
+ __ cmp(temp, class_name);
+ // End with the answer in the z flag.
+}
+
+
+void LCodeGen::DoClassOfTestAndBranch(LClassOfTestAndBranch* instr) {
+ Register input = ToRegister(instr->value());
+ Register temp = ToRegister(instr->temp());
+ Register temp2 = ToRegister(instr->temp2());
+
+ Handle<String> class_name = instr->hydrogen()->class_name();
+
+ EmitClassOfTest(instr->TrueLabel(chunk_), instr->FalseLabel(chunk_),
+ class_name, input, temp, temp2);
+
+ EmitBranch(instr, equal);
+}
+
+
+void LCodeGen::DoCmpMapAndBranch(LCmpMapAndBranch* instr) {
+ Register reg = ToRegister(instr->value());
+ __ cmp(FieldOperand(reg, HeapObject::kMapOffset), instr->map());
+ EmitBranch(instr, equal);
+}
+
+
+void LCodeGen::DoInstanceOf(LInstanceOf* instr) {
+ DCHECK(ToRegister(instr->context()).is(esi));
+ DCHECK(ToRegister(instr->left()).is(InstanceOfDescriptor::LeftRegister()));
+ DCHECK(ToRegister(instr->right()).is(InstanceOfDescriptor::RightRegister()));
+ DCHECK(ToRegister(instr->result()).is(eax));
+ InstanceOfStub stub(isolate());
+ CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
+}
+
+
+void LCodeGen::DoHasInPrototypeChainAndBranch(
+ LHasInPrototypeChainAndBranch* instr) {
+ Register const object = ToRegister(instr->object());
+ Register const object_map = ToRegister(instr->scratch());
+ Register const object_prototype = object_map;
+ Register const prototype = ToRegister(instr->prototype());
+
+ // The {object} must be a spec object. It's sufficient to know that {object}
+ // is not a smi, since all other non-spec objects have {null} prototypes and
+ // will be ruled out below.
+ if (instr->hydrogen()->ObjectNeedsSmiCheck()) {
+ __ test(object, Immediate(kSmiTagMask));
+ EmitFalseBranch(instr, zero);
+ }
+
+ // Loop through the {object}s prototype chain looking for the {prototype}.
+ __ mov(object_map, FieldOperand(object, HeapObject::kMapOffset));
+ Label loop;
+ __ bind(&loop);
+ __ mov(object_prototype, FieldOperand(object_map, Map::kPrototypeOffset));
+ __ cmp(object_prototype, prototype);
+ EmitTrueBranch(instr, equal);
+ __ cmp(object_prototype, factory()->null_value());
+ EmitFalseBranch(instr, equal);
+ __ mov(object_map, FieldOperand(object_prototype, HeapObject::kMapOffset));
+ __ jmp(&loop);
+}
+
+
+void LCodeGen::DoCmpT(LCmpT* instr) {
+ Token::Value op = instr->op();
+
+ Handle<Code> ic =
+ CodeFactory::CompareIC(isolate(), op, instr->strength()).code();
+ CallCode(ic, RelocInfo::CODE_TARGET, instr);
+
+ Condition condition = ComputeCompareCondition(op);
+ Label true_value, done;
+ __ test(eax, Operand(eax));
+ __ j(condition, &true_value, Label::kNear);
+ __ mov(ToRegister(instr->result()), factory()->false_value());
+ __ jmp(&done, Label::kNear);
+ __ bind(&true_value);
+ __ mov(ToRegister(instr->result()), factory()->true_value());
+ __ bind(&done);
+}
+
+
+void LCodeGen::EmitReturn(LReturn* instr, bool dynamic_frame_alignment) {
+ int extra_value_count = dynamic_frame_alignment ? 2 : 1;
+
+ if (instr->has_constant_parameter_count()) {
+ int parameter_count = ToInteger32(instr->constant_parameter_count());
+ if (dynamic_frame_alignment && FLAG_debug_code) {
+ __ cmp(Operand(esp,
+ (parameter_count + extra_value_count) * kPointerSize),
+ Immediate(kAlignmentZapValue));
+ __ Assert(equal, kExpectedAlignmentMarker);
+ }
+ __ Ret((parameter_count + extra_value_count) * kPointerSize, ecx);
+ } else {
+ DCHECK(info()->IsStub()); // Functions would need to drop one more value.
+ Register reg = ToRegister(instr->parameter_count());
+ // The argument count parameter is a smi
+ __ SmiUntag(reg);
+ Register return_addr_reg = reg.is(ecx) ? ebx : ecx;
+ if (dynamic_frame_alignment && FLAG_debug_code) {
+ DCHECK(extra_value_count == 2);
+ __ cmp(Operand(esp, reg, times_pointer_size,
+ extra_value_count * kPointerSize),
+ Immediate(kAlignmentZapValue));
+ __ Assert(equal, kExpectedAlignmentMarker);
+ }
+
+ // emit code to restore stack based on instr->parameter_count()
+ __ pop(return_addr_reg); // save return address
+ if (dynamic_frame_alignment) {
+ __ inc(reg); // 1 more for alignment
+ }
+ __ shl(reg, kPointerSizeLog2);
+ __ add(esp, reg);
+ __ jmp(return_addr_reg);
+ }
+}
+
+
+void LCodeGen::DoReturn(LReturn* instr) {
+ if (FLAG_trace && info()->IsOptimizing()) {
+ // Preserve the return value on the stack and rely on the runtime call
+ // to return the value in the same register. We're leaving the code
+ // managed by the register allocator and tearing down the frame, it's
+ // safe to write to the context register.
+ __ push(eax);
+ __ mov(esi, Operand(ebp, StandardFrameConstants::kContextOffset));
+ __ CallRuntime(Runtime::kTraceExit, 1);
+ }
+ if (dynamic_frame_alignment_) {
+ // Fetch the state of the dynamic frame alignment.
+ __ mov(edx, Operand(ebp,
+ JavaScriptFrameConstants::kDynamicAlignmentStateOffset));
+ }
+ if (NeedsEagerFrame()) {
+ __ mov(esp, ebp);
+ __ pop(ebp);
+ }
+ if (dynamic_frame_alignment_) {
+ Label no_padding;
+ __ cmp(edx, Immediate(kNoAlignmentPadding));
+ __ j(equal, &no_padding, Label::kNear);
+
+ EmitReturn(instr, true);
+ __ bind(&no_padding);
+ }
+
+ EmitReturn(instr, false);
+}
+
+
+template <class T>
+void LCodeGen::EmitVectorLoadICRegisters(T* instr) {
+ Register vector_register = ToRegister(instr->temp_vector());
+ Register slot_register = LoadWithVectorDescriptor::SlotRegister();
+ DCHECK(vector_register.is(LoadWithVectorDescriptor::VectorRegister()));
+ DCHECK(slot_register.is(eax));
+
+ AllowDeferredHandleDereference vector_structure_check;
+ Handle<TypeFeedbackVector> vector = instr->hydrogen()->feedback_vector();
+ __ mov(vector_register, vector);
+ // No need to allocate this register.
+ FeedbackVectorSlot slot = instr->hydrogen()->slot();
+ int index = vector->GetIndex(slot);
+ __ mov(slot_register, Immediate(Smi::FromInt(index)));
+}
+
+
+template <class T>
+void LCodeGen::EmitVectorStoreICRegisters(T* instr) {
+ Register vector_register = ToRegister(instr->temp_vector());
+ Register slot_register = ToRegister(instr->temp_slot());
+
+ AllowDeferredHandleDereference vector_structure_check;
+ Handle<TypeFeedbackVector> vector = instr->hydrogen()->feedback_vector();
+ __ mov(vector_register, vector);
+ FeedbackVectorSlot slot = instr->hydrogen()->slot();
+ int index = vector->GetIndex(slot);
+ __ mov(slot_register, Immediate(Smi::FromInt(index)));
+}
+
+
+void LCodeGen::DoLoadGlobalGeneric(LLoadGlobalGeneric* instr) {
+ DCHECK(ToRegister(instr->context()).is(esi));
+ DCHECK(ToRegister(instr->global_object())
+ .is(LoadDescriptor::ReceiverRegister()));
+ DCHECK(ToRegister(instr->result()).is(eax));
+
+ __ mov(LoadDescriptor::NameRegister(), instr->name());
+ EmitVectorLoadICRegisters<LLoadGlobalGeneric>(instr);
+ Handle<Code> ic =
+ CodeFactory::LoadICInOptimizedCode(isolate(), instr->typeof_mode(),
+ SLOPPY, PREMONOMORPHIC).code();
+ CallCode(ic, RelocInfo::CODE_TARGET, instr);
+}
+
+
+void LCodeGen::DoLoadContextSlot(LLoadContextSlot* instr) {
+ Register context = ToRegister(instr->context());
+ Register result = ToRegister(instr->result());
+ __ mov(result, ContextOperand(context, instr->slot_index()));
+
+ if (instr->hydrogen()->RequiresHoleCheck()) {
+ __ cmp(result, factory()->the_hole_value());
+ if (instr->hydrogen()->DeoptimizesOnHole()) {
+ DeoptimizeIf(equal, instr, Deoptimizer::kHole);
+ } else {
+ Label is_not_hole;
+ __ j(not_equal, &is_not_hole, Label::kNear);
+ __ mov(result, factory()->undefined_value());
+ __ bind(&is_not_hole);
+ }
+ }
+}
+
+
+void LCodeGen::DoStoreContextSlot(LStoreContextSlot* instr) {
+ Register context = ToRegister(instr->context());
+ Register value = ToRegister(instr->value());
+
+ Label skip_assignment;
+
+ Operand target = ContextOperand(context, instr->slot_index());
+ if (instr->hydrogen()->RequiresHoleCheck()) {
+ __ cmp(target, factory()->the_hole_value());
+ if (instr->hydrogen()->DeoptimizesOnHole()) {
+ DeoptimizeIf(equal, instr, Deoptimizer::kHole);
+ } else {
+ __ j(not_equal, &skip_assignment, Label::kNear);
+ }
+ }
+
+ __ mov(target, value);
+ if (instr->hydrogen()->NeedsWriteBarrier()) {
+ SmiCheck check_needed =
+ instr->hydrogen()->value()->type().IsHeapObject()
+ ? OMIT_SMI_CHECK : INLINE_SMI_CHECK;
+ Register temp = ToRegister(instr->temp());
+ int offset = Context::SlotOffset(instr->slot_index());
+ __ RecordWriteContextSlot(context, offset, value, temp, kSaveFPRegs,
+ EMIT_REMEMBERED_SET, check_needed);
+ }
+
+ __ bind(&skip_assignment);
+}
+
+
+void LCodeGen::DoLoadNamedField(LLoadNamedField* instr) {
+ HObjectAccess access = instr->hydrogen()->access();
+ int offset = access.offset();
+
+ if (access.IsExternalMemory()) {
+ Register result = ToRegister(instr->result());
+ MemOperand operand = instr->object()->IsConstantOperand()
+ ? MemOperand::StaticVariable(ToExternalReference(
+ LConstantOperand::cast(instr->object())))
+ : MemOperand(ToRegister(instr->object()), offset);
+ __ Load(result, operand, access.representation());
+ return;
+ }
+
+ Register object = ToRegister(instr->object());
+ if (instr->hydrogen()->representation().IsDouble()) {
+ X87Mov(ToX87Register(instr->result()), FieldOperand(object, offset));
+ return;
+ }
+
+ Register result = ToRegister(instr->result());
+ if (!access.IsInobject()) {
+ __ mov(result, FieldOperand(object, JSObject::kPropertiesOffset));
+ object = result;
+ }
+ __ Load(result, FieldOperand(object, offset), access.representation());
+}
+
+
+void LCodeGen::EmitPushTaggedOperand(LOperand* operand) {
+ DCHECK(!operand->IsDoubleRegister());
+ if (operand->IsConstantOperand()) {
+ Handle<Object> object = ToHandle(LConstantOperand::cast(operand));
+ AllowDeferredHandleDereference smi_check;
+ if (object->IsSmi()) {
+ __ Push(Handle<Smi>::cast(object));
+ } else {
+ __ PushHeapObject(Handle<HeapObject>::cast(object));
+ }
+ } else if (operand->IsRegister()) {
+ __ push(ToRegister(operand));
+ } else {
+ __ push(ToOperand(operand));
+ }
+}
+
+
+void LCodeGen::DoLoadNamedGeneric(LLoadNamedGeneric* instr) {
+ DCHECK(ToRegister(instr->context()).is(esi));
+ DCHECK(ToRegister(instr->object()).is(LoadDescriptor::ReceiverRegister()));
+ DCHECK(ToRegister(instr->result()).is(eax));
+
+ __ mov(LoadDescriptor::NameRegister(), instr->name());
+ EmitVectorLoadICRegisters<LLoadNamedGeneric>(instr);
+ Handle<Code> ic =
+ CodeFactory::LoadICInOptimizedCode(
+ isolate(), NOT_INSIDE_TYPEOF, instr->hydrogen()->language_mode(),
+ instr->hydrogen()->initialization_state()).code();
+ CallCode(ic, RelocInfo::CODE_TARGET, instr);
+}
+
+
+void LCodeGen::DoLoadFunctionPrototype(LLoadFunctionPrototype* instr) {
+ Register function = ToRegister(instr->function());
+ Register temp = ToRegister(instr->temp());
+ Register result = ToRegister(instr->result());
+
+ // Get the prototype or initial map from the function.
+ __ mov(result,
+ FieldOperand(function, JSFunction::kPrototypeOrInitialMapOffset));
+
+ // Check that the function has a prototype or an initial map.
+ __ cmp(Operand(result), Immediate(factory()->the_hole_value()));
+ DeoptimizeIf(equal, instr, Deoptimizer::kHole);
+
+ // If the function does not have an initial map, we're done.
+ Label done;
+ __ CmpObjectType(result, MAP_TYPE, temp);
+ __ j(not_equal, &done, Label::kNear);
+
+ // Get the prototype from the initial map.
+ __ mov(result, FieldOperand(result, Map::kPrototypeOffset));
+
+ // All done.
+ __ bind(&done);
+}
+
+
+void LCodeGen::DoLoadRoot(LLoadRoot* instr) {
+ Register result = ToRegister(instr->result());
+ __ LoadRoot(result, instr->index());
+}
+
+
+void LCodeGen::DoAccessArgumentsAt(LAccessArgumentsAt* instr) {
+ Register arguments = ToRegister(instr->arguments());
+ Register result = ToRegister(instr->result());
+ if (instr->length()->IsConstantOperand() &&
+ instr->index()->IsConstantOperand()) {
+ int const_index = ToInteger32(LConstantOperand::cast(instr->index()));
+ int const_length = ToInteger32(LConstantOperand::cast(instr->length()));
+ int index = (const_length - const_index) + 1;
+ __ mov(result, Operand(arguments, index * kPointerSize));
+ } else {
+ Register length = ToRegister(instr->length());
+ Operand index = ToOperand(instr->index());
+ // There are two words between the frame pointer and the last argument.
+ // Subtracting from length accounts for one of them add one more.
+ __ sub(length, index);
+ __ mov(result, Operand(arguments, length, times_4, kPointerSize));
+ }
+}
+
+
+void LCodeGen::DoLoadKeyedExternalArray(LLoadKeyed* instr) {
+ ElementsKind elements_kind = instr->elements_kind();
+ LOperand* key = instr->key();
+ if (!key->IsConstantOperand() &&
+ ExternalArrayOpRequiresTemp(instr->hydrogen()->key()->representation(),
+ elements_kind)) {
+ __ SmiUntag(ToRegister(key));
+ }
+ Operand operand(BuildFastArrayOperand(
+ instr->elements(),
+ key,
+ instr->hydrogen()->key()->representation(),
+ elements_kind,
+ instr->base_offset()));
+ if (elements_kind == FLOAT32_ELEMENTS) {
+ X87Mov(ToX87Register(instr->result()), operand, kX87FloatOperand);
+ } else if (elements_kind == FLOAT64_ELEMENTS) {
+ X87Mov(ToX87Register(instr->result()), operand);
+ } else {
+ Register result(ToRegister(instr->result()));
+ switch (elements_kind) {
+ case INT8_ELEMENTS:
+ __ movsx_b(result, operand);
+ break;
+ case UINT8_ELEMENTS:
+ case UINT8_CLAMPED_ELEMENTS:
+ __ movzx_b(result, operand);
+ break;
+ case INT16_ELEMENTS:
+ __ movsx_w(result, operand);
+ break;
+ case UINT16_ELEMENTS:
+ __ movzx_w(result, operand);
+ break;
+ case INT32_ELEMENTS:
+ __ mov(result, operand);
+ break;
+ case UINT32_ELEMENTS:
+ __ mov(result, operand);
+ if (!instr->hydrogen()->CheckFlag(HInstruction::kUint32)) {
+ __ test(result, Operand(result));
+ DeoptimizeIf(negative, instr, Deoptimizer::kNegativeValue);
+ }
+ break;
+ case FLOAT32_ELEMENTS:
+ case FLOAT64_ELEMENTS:
+ case FAST_SMI_ELEMENTS:
+ case FAST_ELEMENTS:
+ case FAST_DOUBLE_ELEMENTS:
+ case FAST_HOLEY_SMI_ELEMENTS:
+ case FAST_HOLEY_ELEMENTS:
+ case FAST_HOLEY_DOUBLE_ELEMENTS:
+ case DICTIONARY_ELEMENTS:
+ case FAST_SLOPPY_ARGUMENTS_ELEMENTS:
+ case SLOW_SLOPPY_ARGUMENTS_ELEMENTS:
+ UNREACHABLE();
+ break;
+ }
+ }
+}
+
+
+void LCodeGen::DoLoadKeyedFixedDoubleArray(LLoadKeyed* instr) {
+ if (instr->hydrogen()->RequiresHoleCheck()) {
+ Operand hole_check_operand = BuildFastArrayOperand(
+ instr->elements(), instr->key(),
+ instr->hydrogen()->key()->representation(),
+ FAST_DOUBLE_ELEMENTS,
+ instr->base_offset() + sizeof(kHoleNanLower32));
+ __ cmp(hole_check_operand, Immediate(kHoleNanUpper32));
+ DeoptimizeIf(equal, instr, Deoptimizer::kHole);
+ }
+
+ Operand double_load_operand = BuildFastArrayOperand(
+ instr->elements(),
+ instr->key(),
+ instr->hydrogen()->key()->representation(),
+ FAST_DOUBLE_ELEMENTS,
+ instr->base_offset());
+ X87Mov(ToX87Register(instr->result()), double_load_operand);
+}
+
+
+void LCodeGen::DoLoadKeyedFixedArray(LLoadKeyed* instr) {
+ Register result = ToRegister(instr->result());
+
+ // Load the result.
+ __ mov(result,
+ BuildFastArrayOperand(instr->elements(), instr->key(),
+ instr->hydrogen()->key()->representation(),
+ FAST_ELEMENTS, instr->base_offset()));
+
+ // Check for the hole value.
+ if (instr->hydrogen()->RequiresHoleCheck()) {
+ if (IsFastSmiElementsKind(instr->hydrogen()->elements_kind())) {
+ __ test(result, Immediate(kSmiTagMask));
+ DeoptimizeIf(not_equal, instr, Deoptimizer::kNotASmi);
+ } else {
+ __ cmp(result, factory()->the_hole_value());
+ DeoptimizeIf(equal, instr, Deoptimizer::kHole);
+ }
+ } else if (instr->hydrogen()->hole_mode() == CONVERT_HOLE_TO_UNDEFINED) {
+ DCHECK(instr->hydrogen()->elements_kind() == FAST_HOLEY_ELEMENTS);
+ Label done;
+ __ cmp(result, factory()->the_hole_value());
+ __ j(not_equal, &done);
+ if (info()->IsStub()) {
+ // A stub can safely convert the hole to undefined only if the array
+ // protector cell contains (Smi) Isolate::kArrayProtectorValid. Otherwise
+ // it needs to bail out.
+ __ mov(result, isolate()->factory()->array_protector());
+ __ cmp(FieldOperand(result, PropertyCell::kValueOffset),
+ Immediate(Smi::FromInt(Isolate::kArrayProtectorValid)));
+ DeoptimizeIf(not_equal, instr, Deoptimizer::kHole);
+ }
+ __ mov(result, isolate()->factory()->undefined_value());
+ __ bind(&done);
+ }
+}
+
+
+void LCodeGen::DoLoadKeyed(LLoadKeyed* instr) {
+ if (instr->is_fixed_typed_array()) {
+ DoLoadKeyedExternalArray(instr);
+ } else if (instr->hydrogen()->representation().IsDouble()) {
+ DoLoadKeyedFixedDoubleArray(instr);
+ } else {
+ DoLoadKeyedFixedArray(instr);
+ }
+}
+
+
+Operand LCodeGen::BuildFastArrayOperand(
+ LOperand* elements_pointer,
+ LOperand* key,
+ Representation key_representation,
+ ElementsKind elements_kind,
+ uint32_t base_offset) {
+ Register elements_pointer_reg = ToRegister(elements_pointer);
+ int element_shift_size = ElementsKindToShiftSize(elements_kind);
+ int shift_size = element_shift_size;
+ if (key->IsConstantOperand()) {
+ int constant_value = ToInteger32(LConstantOperand::cast(key));
+ if (constant_value & 0xF0000000) {
+ Abort(kArrayIndexConstantValueTooBig);
+ }
+ return Operand(elements_pointer_reg,
+ ((constant_value) << shift_size)
+ + base_offset);
+ } else {
+ // Take the tag bit into account while computing the shift size.
+ if (key_representation.IsSmi() && (shift_size >= 1)) {
+ shift_size -= kSmiTagSize;
+ }
+ ScaleFactor scale_factor = static_cast<ScaleFactor>(shift_size);
+ return Operand(elements_pointer_reg,
+ ToRegister(key),
+ scale_factor,
+ base_offset);
+ }
+}
+
+
+void LCodeGen::DoLoadKeyedGeneric(LLoadKeyedGeneric* instr) {
+ DCHECK(ToRegister(instr->context()).is(esi));
+ DCHECK(ToRegister(instr->object()).is(LoadDescriptor::ReceiverRegister()));
+ DCHECK(ToRegister(instr->key()).is(LoadDescriptor::NameRegister()));
+
+ if (instr->hydrogen()->HasVectorAndSlot()) {
+ EmitVectorLoadICRegisters<LLoadKeyedGeneric>(instr);
+ }
+
+ Handle<Code> ic = CodeFactory::KeyedLoadICInOptimizedCode(
+ isolate(), instr->hydrogen()->language_mode(),
+ instr->hydrogen()->initialization_state()).code();
+ CallCode(ic, RelocInfo::CODE_TARGET, instr);
+}
+
+
+void LCodeGen::DoArgumentsElements(LArgumentsElements* instr) {
+ Register result = ToRegister(instr->result());
+
+ if (instr->hydrogen()->from_inlined()) {
+ __ lea(result, Operand(esp, -2 * kPointerSize));
+ } else {
+ // Check for arguments adapter frame.
+ Label done, adapted;
+ __ mov(result, Operand(ebp, StandardFrameConstants::kCallerFPOffset));
+ __ mov(result, Operand(result, StandardFrameConstants::kContextOffset));
+ __ cmp(Operand(result),
+ Immediate(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
+ __ j(equal, &adapted, Label::kNear);
+
+ // No arguments adaptor frame.
+ __ mov(result, Operand(ebp));
+ __ jmp(&done, Label::kNear);
+
+ // Arguments adaptor frame present.
+ __ bind(&adapted);
+ __ mov(result, Operand(ebp, StandardFrameConstants::kCallerFPOffset));
+
+ // Result is the frame pointer for the frame if not adapted and for the real
+ // frame below the adaptor frame if adapted.
+ __ bind(&done);
+ }
+}
+
+
+void LCodeGen::DoArgumentsLength(LArgumentsLength* instr) {
+ Operand elem = ToOperand(instr->elements());
+ Register result = ToRegister(instr->result());
+
+ Label done;
+
+ // If no arguments adaptor frame the number of arguments is fixed.
+ __ cmp(ebp, elem);
+ __ mov(result, Immediate(scope()->num_parameters()));
+ __ j(equal, &done, Label::kNear);
+
+ // Arguments adaptor frame present. Get argument length from there.
+ __ mov(result, Operand(ebp, StandardFrameConstants::kCallerFPOffset));
+ __ mov(result, Operand(result,
+ ArgumentsAdaptorFrameConstants::kLengthOffset));
+ __ SmiUntag(result);
+
+ // Argument length is in result register.
+ __ bind(&done);
+}
+
+
+void LCodeGen::DoWrapReceiver(LWrapReceiver* instr) {
+ Register receiver = ToRegister(instr->receiver());
+ Register function = ToRegister(instr->function());
+
+ // If the receiver is null or undefined, we have to pass the global
+ // object as a receiver to normal functions. Values have to be
+ // passed unchanged to builtins and strict-mode functions.
+ Label receiver_ok, global_object;
+ Register scratch = ToRegister(instr->temp());
+
+ if (!instr->hydrogen()->known_function()) {
+ // Do not transform the receiver to object for strict mode
+ // functions.
+ __ mov(scratch,
+ FieldOperand(function, JSFunction::kSharedFunctionInfoOffset));
+ __ test_b(FieldOperand(scratch, SharedFunctionInfo::kStrictModeByteOffset),
+ 1 << SharedFunctionInfo::kStrictModeBitWithinByte);
+ __ j(not_equal, &receiver_ok);
+
+ // Do not transform the receiver to object for builtins.
+ __ test_b(FieldOperand(scratch, SharedFunctionInfo::kNativeByteOffset),
+ 1 << SharedFunctionInfo::kNativeBitWithinByte);
+ __ j(not_equal, &receiver_ok);
+ }
+
+ // Normal function. Replace undefined or null with global receiver.
+ __ cmp(receiver, factory()->null_value());
+ __ j(equal, &global_object);
+ __ cmp(receiver, factory()->undefined_value());
+ __ j(equal, &global_object);
+
+ // The receiver should be a JS object.
+ __ test(receiver, Immediate(kSmiTagMask));
+ DeoptimizeIf(equal, instr, Deoptimizer::kSmi);
+ __ CmpObjectType(receiver, FIRST_SPEC_OBJECT_TYPE, scratch);
+ DeoptimizeIf(below, instr, Deoptimizer::kNotAJavaScriptObject);
+
+ __ jmp(&receiver_ok, Label::kNear);
+ __ bind(&global_object);
+ __ mov(receiver, FieldOperand(function, JSFunction::kContextOffset));
+ const int global_offset = Context::SlotOffset(Context::GLOBAL_OBJECT_INDEX);
+ __ mov(receiver, Operand(receiver, global_offset));
+ const int proxy_offset = JSGlobalObject::kGlobalProxyOffset;
+ __ mov(receiver, FieldOperand(receiver, proxy_offset));
+ __ bind(&receiver_ok);
+}
+
+
+void LCodeGen::DoApplyArguments(LApplyArguments* instr) {
+ Register receiver = ToRegister(instr->receiver());
+ Register function = ToRegister(instr->function());
+ Register length = ToRegister(instr->length());
+ Register elements = ToRegister(instr->elements());
+ DCHECK(receiver.is(eax)); // Used for parameter count.
+ DCHECK(function.is(edi)); // Required by InvokeFunction.
+ DCHECK(ToRegister(instr->result()).is(eax));
+
+ // Copy the arguments to this function possibly from the
+ // adaptor frame below it.
+ const uint32_t kArgumentsLimit = 1 * KB;
+ __ cmp(length, kArgumentsLimit);
+ DeoptimizeIf(above, instr, Deoptimizer::kTooManyArguments);
+
+ __ push(receiver);
+ __ mov(receiver, length);
+
+ // Loop through the arguments pushing them onto the execution
+ // stack.
+ Label invoke, loop;
+ // length is a small non-negative integer, due to the test above.
+ __ test(length, Operand(length));
+ __ j(zero, &invoke, Label::kNear);
+ __ bind(&loop);
+ __ push(Operand(elements, length, times_pointer_size, 1 * kPointerSize));
+ __ dec(length);
+ __ j(not_zero, &loop);
+
+ // Invoke the function.
+ __ bind(&invoke);
+ DCHECK(instr->HasPointerMap());
+ LPointerMap* pointers = instr->pointer_map();
+ SafepointGenerator safepoint_generator(
+ this, pointers, Safepoint::kLazyDeopt);
+ ParameterCount actual(eax);
+ __ InvokeFunction(function, actual, CALL_FUNCTION, safepoint_generator);
+}
+
+
+void LCodeGen::DoDebugBreak(LDebugBreak* instr) {
+ __ int3();
+}
+
+
+void LCodeGen::DoPushArgument(LPushArgument* instr) {
+ LOperand* argument = instr->value();
+ EmitPushTaggedOperand(argument);
+}
+
+
+void LCodeGen::DoDrop(LDrop* instr) {
+ __ Drop(instr->count());
+}
+
+
+void LCodeGen::DoThisFunction(LThisFunction* instr) {
+ Register result = ToRegister(instr->result());
+ __ mov(result, Operand(ebp, JavaScriptFrameConstants::kFunctionOffset));
+}
+
+
+void LCodeGen::DoContext(LContext* instr) {
+ Register result = ToRegister(instr->result());
+ if (info()->IsOptimizing()) {
+ __ mov(result, Operand(ebp, StandardFrameConstants::kContextOffset));
+ } else {
+ // If there is no frame, the context must be in esi.
+ DCHECK(result.is(esi));
+ }
+}
+
+
+void LCodeGen::DoDeclareGlobals(LDeclareGlobals* instr) {
+ DCHECK(ToRegister(instr->context()).is(esi));
+ __ push(Immediate(instr->hydrogen()->pairs()));
+ __ push(Immediate(Smi::FromInt(instr->hydrogen()->flags())));
+ CallRuntime(Runtime::kDeclareGlobals, 2, instr);
+}
+
+
+void LCodeGen::CallKnownFunction(Handle<JSFunction> function,
+ int formal_parameter_count, int arity,
+ LInstruction* instr) {
+ bool dont_adapt_arguments =
+ formal_parameter_count == SharedFunctionInfo::kDontAdaptArgumentsSentinel;
+ bool can_invoke_directly =
+ dont_adapt_arguments || formal_parameter_count == arity;
+
+ Register function_reg = edi;
+
+ if (can_invoke_directly) {
+ // Change context.
+ __ mov(esi, FieldOperand(function_reg, JSFunction::kContextOffset));
+
+ // Always initialize eax to the number of actual arguments.
+ __ mov(eax, arity);
+
+ // Invoke function directly.
+ if (function.is_identical_to(info()->closure())) {
+ __ CallSelf();
+ } else {
+ __ call(FieldOperand(function_reg, JSFunction::kCodeEntryOffset));
+ }
+ RecordSafepointWithLazyDeopt(instr, RECORD_SIMPLE_SAFEPOINT);
+ } else {
+ // We need to adapt arguments.
+ LPointerMap* pointers = instr->pointer_map();
+ SafepointGenerator generator(
+ this, pointers, Safepoint::kLazyDeopt);
+ ParameterCount count(arity);
+ ParameterCount expected(formal_parameter_count);
+ __ InvokeFunction(function_reg, expected, count, CALL_FUNCTION, generator);
+ }
+}
+
+
+void LCodeGen::DoCallWithDescriptor(LCallWithDescriptor* instr) {
+ DCHECK(ToRegister(instr->result()).is(eax));
+
+ if (instr->hydrogen()->IsTailCall()) {
+ if (NeedsEagerFrame()) __ leave();
+
+ if (instr->target()->IsConstantOperand()) {
+ LConstantOperand* target = LConstantOperand::cast(instr->target());
+ Handle<Code> code = Handle<Code>::cast(ToHandle(target));
+ __ jmp(code, RelocInfo::CODE_TARGET);
+ } else {
+ DCHECK(instr->target()->IsRegister());
+ Register target = ToRegister(instr->target());
+ __ add(target, Immediate(Code::kHeaderSize - kHeapObjectTag));
+ __ jmp(target);
+ }
+ } else {
+ LPointerMap* pointers = instr->pointer_map();
+ SafepointGenerator generator(this, pointers, Safepoint::kLazyDeopt);
+
+ if (instr->target()->IsConstantOperand()) {
+ LConstantOperand* target = LConstantOperand::cast(instr->target());
+ Handle<Code> code = Handle<Code>::cast(ToHandle(target));
+ generator.BeforeCall(__ CallSize(code, RelocInfo::CODE_TARGET));
+ __ call(code, RelocInfo::CODE_TARGET);
+ } else {
+ DCHECK(instr->target()->IsRegister());
+ Register target = ToRegister(instr->target());
+ generator.BeforeCall(__ CallSize(Operand(target)));
+ __ add(target, Immediate(Code::kHeaderSize - kHeapObjectTag));
+ __ call(target);
+ }
+ generator.AfterCall();
+ }
+}
+
+
+void LCodeGen::DoCallJSFunction(LCallJSFunction* instr) {
+ DCHECK(ToRegister(instr->function()).is(edi));
+ DCHECK(ToRegister(instr->result()).is(eax));
+
+ __ mov(eax, instr->arity());
+
+ // Change context.
+ __ mov(esi, FieldOperand(edi, JSFunction::kContextOffset));
+
+ bool is_self_call = false;
+ if (instr->hydrogen()->function()->IsConstant()) {
+ HConstant* fun_const = HConstant::cast(instr->hydrogen()->function());
+ Handle<JSFunction> jsfun =
+ Handle<JSFunction>::cast(fun_const->handle(isolate()));
+ is_self_call = jsfun.is_identical_to(info()->closure());
+ }
+
+ if (is_self_call) {
+ __ CallSelf();
+ } else {
+ __ call(FieldOperand(edi, JSFunction::kCodeEntryOffset));
+ }
+
+ RecordSafepointWithLazyDeopt(instr, RECORD_SIMPLE_SAFEPOINT);
+}
+
+
+void LCodeGen::DoDeferredMathAbsTaggedHeapNumber(LMathAbs* instr) {
+ Register input_reg = ToRegister(instr->value());
+ __ cmp(FieldOperand(input_reg, HeapObject::kMapOffset),
+ factory()->heap_number_map());
+ DeoptimizeIf(not_equal, instr, Deoptimizer::kNotAHeapNumber);
+
+ Label slow, allocated, done;
+ Register tmp = input_reg.is(eax) ? ecx : eax;
+ Register tmp2 = tmp.is(ecx) ? edx : input_reg.is(ecx) ? edx : ecx;
+
+ // Preserve the value of all registers.
+ PushSafepointRegistersScope scope(this);
+
+ __ mov(tmp, FieldOperand(input_reg, HeapNumber::kExponentOffset));
+ // Check the sign of the argument. If the argument is positive, just
+ // return it. We do not need to patch the stack since |input| and
+ // |result| are the same register and |input| will be restored
+ // unchanged by popping safepoint registers.
+ __ test(tmp, Immediate(HeapNumber::kSignMask));
+ __ j(zero, &done, Label::kNear);
+
+ __ AllocateHeapNumber(tmp, tmp2, no_reg, &slow);
+ __ jmp(&allocated, Label::kNear);
+
+ // Slow case: Call the runtime system to do the number allocation.
+ __ bind(&slow);
+ CallRuntimeFromDeferred(Runtime::kAllocateHeapNumber, 0,
+ instr, instr->context());
+ // Set the pointer to the new heap number in tmp.
+ if (!tmp.is(eax)) __ mov(tmp, eax);
+ // Restore input_reg after call to runtime.
+ __ LoadFromSafepointRegisterSlot(input_reg, input_reg);
+
+ __ bind(&allocated);
+ __ mov(tmp2, FieldOperand(input_reg, HeapNumber::kExponentOffset));
+ __ and_(tmp2, ~HeapNumber::kSignMask);
+ __ mov(FieldOperand(tmp, HeapNumber::kExponentOffset), tmp2);
+ __ mov(tmp2, FieldOperand(input_reg, HeapNumber::kMantissaOffset));
+ __ mov(FieldOperand(tmp, HeapNumber::kMantissaOffset), tmp2);
+ __ StoreToSafepointRegisterSlot(input_reg, tmp);
+
+ __ bind(&done);
+}
+
+
+void LCodeGen::EmitIntegerMathAbs(LMathAbs* instr) {
+ Register input_reg = ToRegister(instr->value());
+ __ test(input_reg, Operand(input_reg));
+ Label is_positive;
+ __ j(not_sign, &is_positive, Label::kNear);
+ __ neg(input_reg); // Sets flags.
+ DeoptimizeIf(negative, instr, Deoptimizer::kOverflow);
+ __ bind(&is_positive);
+}
+
+
+void LCodeGen::DoMathAbs(LMathAbs* instr) {
+ // Class for deferred case.
+ class DeferredMathAbsTaggedHeapNumber final : public LDeferredCode {
+ public:
+ DeferredMathAbsTaggedHeapNumber(LCodeGen* codegen,
+ LMathAbs* instr,
+ const X87Stack& x87_stack)
+ : LDeferredCode(codegen, x87_stack), instr_(instr) { }
+ void Generate() override {
+ codegen()->DoDeferredMathAbsTaggedHeapNumber(instr_);
+ }
+ LInstruction* instr() override { return instr_; }
+
+ private:
+ LMathAbs* instr_;
+ };
+
+ DCHECK(instr->value()->Equals(instr->result()));
+ Representation r = instr->hydrogen()->value()->representation();
+
+ if (r.IsDouble()) {
+ X87Register value = ToX87Register(instr->value());
+ X87Fxch(value);
+ __ fabs();
+ } else if (r.IsSmiOrInteger32()) {
+ EmitIntegerMathAbs(instr);
+ } else { // Tagged case.
+ DeferredMathAbsTaggedHeapNumber* deferred =
+ new(zone()) DeferredMathAbsTaggedHeapNumber(this, instr, x87_stack_);
+ Register input_reg = ToRegister(instr->value());
+ // Smi check.
+ __ JumpIfNotSmi(input_reg, deferred->entry());
+ EmitIntegerMathAbs(instr);
+ __ bind(deferred->exit());
+ }
+}
+
+
+void LCodeGen::DoMathFloor(LMathFloor* instr) {
+ Register output_reg = ToRegister(instr->result());
+ X87Register input_reg = ToX87Register(instr->value());
+ X87Fxch(input_reg);
+
+ Label not_minus_zero, done;
+ // Deoptimize on unordered.
+ __ fldz();
+ __ fld(1);
+ __ FCmp();
+ DeoptimizeIf(parity_even, instr, Deoptimizer::kNaN);
+ __ j(below, &not_minus_zero, Label::kNear);
+
+ if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
+ // Check for negative zero.
+ __ j(not_equal, &not_minus_zero, Label::kNear);
+ // +- 0.0.
+ __ fld(0);
+ __ FXamSign();
+ DeoptimizeIf(not_zero, instr, Deoptimizer::kMinusZero);
+ __ Move(output_reg, Immediate(0));
+ __ jmp(&done, Label::kFar);
+ }
+
+ // Positive input.
+ // rc=01B, round down.
+ __ bind(&not_minus_zero);
+ __ fnclex();
+ __ X87SetRC(0x0400);
+ __ sub(esp, Immediate(kPointerSize));
+ __ fist_s(Operand(esp, 0));
+ __ pop(output_reg);
+ __ X87CheckIA();
+ DeoptimizeIf(equal, instr, Deoptimizer::kOverflow);
+ __ fnclex();
+ __ X87SetRC(0x0000);
+ __ bind(&done);
+}
+
+
+void LCodeGen::DoMathRound(LMathRound* instr) {
+ X87Register input_reg = ToX87Register(instr->value());
+ Register result = ToRegister(instr->result());
+ X87Fxch(input_reg);
+ Label below_one_half, below_minus_one_half, done;
+
+ ExternalReference one_half = ExternalReference::address_of_one_half();
+ ExternalReference minus_one_half =
+ ExternalReference::address_of_minus_one_half();
+
+ __ fld_d(Operand::StaticVariable(one_half));
+ __ fld(1);
+ __ FCmp();
+ __ j(carry, &below_one_half);
+
+ // Use rounds towards zero, since 0.5 <= x, we use floor(0.5 + x)
+ __ fld(0);
+ __ fadd_d(Operand::StaticVariable(one_half));
+ // rc=11B, round toward zero.
+ __ X87SetRC(0x0c00);
+ __ sub(esp, Immediate(kPointerSize));
+ // Clear exception bits.
+ __ fnclex();
+ __ fistp_s(MemOperand(esp, 0));
+ // Check overflow.
+ __ X87CheckIA();
+ __ pop(result);
+ DeoptimizeIf(equal, instr, Deoptimizer::kConversionOverflow);
+ __ fnclex();
+ // Restore round mode.
+ __ X87SetRC(0x0000);
+ __ jmp(&done);
+
+ __ bind(&below_one_half);
+ __ fld_d(Operand::StaticVariable(minus_one_half));
+ __ fld(1);
+ __ FCmp();
+ __ j(carry, &below_minus_one_half);
+ // We return 0 for the input range [+0, 0.5[, or [-0.5, 0.5[ if
+ // we can ignore the difference between a result of -0 and +0.
+ if (instr->hydrogen()->CheckFlag(HValue::kBailoutOnMinusZero)) {
+ // If the sign is positive, we return +0.
+ __ fld(0);
+ __ FXamSign();
+ DeoptimizeIf(not_zero, instr, Deoptimizer::kMinusZero);
+ }
+ __ Move(result, Immediate(0));
+ __ jmp(&done);
+
+ __ bind(&below_minus_one_half);
+ __ fld(0);
+ __ fadd_d(Operand::StaticVariable(one_half));
+ // rc=01B, round down.
+ __ X87SetRC(0x0400);
+ __ sub(esp, Immediate(kPointerSize));
+ // Clear exception bits.
+ __ fnclex();
+ __ fistp_s(MemOperand(esp, 0));
+ // Check overflow.
+ __ X87CheckIA();
+ __ pop(result);
+ DeoptimizeIf(equal, instr, Deoptimizer::kConversionOverflow);
+ __ fnclex();
+ // Restore round mode.
+ __ X87SetRC(0x0000);
+
+ __ bind(&done);
+}
+
+
+void LCodeGen::DoMathFround(LMathFround* instr) {
+ X87Register input_reg = ToX87Register(instr->value());
+ X87Fxch(input_reg);
+ __ sub(esp, Immediate(kPointerSize));
+ __ fstp_s(MemOperand(esp, 0));
+ X87Fld(MemOperand(esp, 0), kX87FloatOperand);
+ __ add(esp, Immediate(kPointerSize));
+}
+
+
+void LCodeGen::DoMathSqrt(LMathSqrt* instr) {
+ X87Register input = ToX87Register(instr->value());
+ X87Register result_reg = ToX87Register(instr->result());
+ Register temp_result = ToRegister(instr->temp1());
+ Register temp = ToRegister(instr->temp2());
+ Label slow, done, smi, finish;
+ DCHECK(result_reg.is(input));
+
+ // Store input into Heap number and call runtime function kMathExpRT.
+ if (FLAG_inline_new) {
+ __ AllocateHeapNumber(temp_result, temp, no_reg, &slow);
+ __ jmp(&done, Label::kNear);
+ }
+
+ // Slow case: Call the runtime system to do the number allocation.
+ __ bind(&slow);
+ {
+ // TODO(3095996): Put a valid pointer value in the stack slot where the
+ // result register is stored, as this register is in the pointer map, but
+ // contains an integer value.
+ __ Move(temp_result, Immediate(0));
+
+ // Preserve the value of all registers.
+ PushSafepointRegistersScope scope(this);
+
+ __ mov(esi, Operand(ebp, StandardFrameConstants::kContextOffset));
+ __ CallRuntimeSaveDoubles(Runtime::kAllocateHeapNumber);
+ RecordSafepointWithRegisters(
+ instr->pointer_map(), 0, Safepoint::kNoLazyDeopt);
+ __ StoreToSafepointRegisterSlot(temp_result, eax);
+ }
+ __ bind(&done);
+ X87LoadForUsage(input);
+ __ fstp_d(FieldOperand(temp_result, HeapNumber::kValueOffset));
+
+ {
+ // Preserve the value of all registers.
+ PushSafepointRegistersScope scope(this);
+
+ __ mov(esi, Operand(ebp, StandardFrameConstants::kContextOffset));
+ __ push(temp_result);
+ __ CallRuntimeSaveDoubles(Runtime::kMathSqrt);
+ RecordSafepointWithRegisters(instr->pointer_map(), 1,
+ Safepoint::kNoLazyDeopt);
+ __ StoreToSafepointRegisterSlot(temp_result, eax);
+ }
+ X87PrepareToWrite(result_reg);
+ // return value of MathExpRT is Smi or Heap Number.
+ __ JumpIfSmi(temp_result, &smi);
+ // Heap number(double)
+ __ fld_d(FieldOperand(temp_result, HeapNumber::kValueOffset));
+ __ jmp(&finish);
+ // SMI
+ __ bind(&smi);
+ __ SmiUntag(temp_result);
+ __ push(temp_result);
+ __ fild_s(MemOperand(esp, 0));
+ __ pop(temp_result);
+ __ bind(&finish);
+ X87CommitWrite(result_reg);
+}
+
+
+void LCodeGen::DoMathPowHalf(LMathPowHalf* instr) {
+ X87Register input_reg = ToX87Register(instr->value());
+ DCHECK(ToX87Register(instr->result()).is(input_reg));
+ X87Fxch(input_reg);
+ // Note that according to ECMA-262 15.8.2.13:
+ // Math.pow(-Infinity, 0.5) == Infinity
+ // Math.sqrt(-Infinity) == NaN
+ Label done, sqrt;
+ // Check base for -Infinity. C3 == 0, C2 == 1, C1 == 1 and C0 == 1
+ __ fxam();
+ __ push(eax);
+ __ fnstsw_ax();
+ __ and_(eax, Immediate(0x4700));
+ __ cmp(eax, Immediate(0x0700));
+ __ j(not_equal, &sqrt, Label::kNear);
+ // If input is -Infinity, return Infinity.
+ __ fchs();
+ __ jmp(&done, Label::kNear);
+
+ // Square root.
+ __ bind(&sqrt);
+ __ fldz();
+ __ faddp(); // Convert -0 to +0.
+ __ fsqrt();
+ __ bind(&done);
+ __ pop(eax);
+}
+
+
+void LCodeGen::DoPower(LPower* instr) {
+ Representation exponent_type = instr->hydrogen()->right()->representation();
+ X87Register result = ToX87Register(instr->result());
+ // Having marked this as a call, we can use any registers.
+ X87Register base = ToX87Register(instr->left());
+ ExternalReference one_half = ExternalReference::address_of_one_half();
+
+ if (exponent_type.IsSmi()) {
+ Register exponent = ToRegister(instr->right());
+ X87LoadForUsage(base);
+ __ SmiUntag(exponent);
+ __ push(exponent);
+ __ fild_s(MemOperand(esp, 0));
+ __ pop(exponent);
+ } else if (exponent_type.IsTagged()) {
+ Register exponent = ToRegister(instr->right());
+ Register temp = exponent.is(ecx) ? eax : ecx;
+ Label no_deopt, done;
+ X87LoadForUsage(base);
+ __ JumpIfSmi(exponent, &no_deopt);
+ __ CmpObjectType(exponent, HEAP_NUMBER_TYPE, temp);
+ DeoptimizeIf(not_equal, instr, Deoptimizer::kNotAHeapNumber);
+ // Heap number(double)
+ __ fld_d(FieldOperand(exponent, HeapNumber::kValueOffset));
+ __ jmp(&done);
+ // SMI
+ __ bind(&no_deopt);
+ __ SmiUntag(exponent);
+ __ push(exponent);
+ __ fild_s(MemOperand(esp, 0));
+ __ pop(exponent);
+ __ bind(&done);
+ } else if (exponent_type.IsInteger32()) {
+ Register exponent = ToRegister(instr->right());
+ X87LoadForUsage(base);
+ __ push(exponent);
+ __ fild_s(MemOperand(esp, 0));
+ __ pop(exponent);
+ } else {
+ DCHECK(exponent_type.IsDouble());
+ X87Register exponent_double = ToX87Register(instr->right());
+ X87LoadForUsage(base, exponent_double);
+ }
+
+ // FP data stack {base, exponent(TOS)}.
+ // Handle (exponent==+-0.5 && base == -0).
+ Label not_plus_0;
+ __ fld(0);
+ __ fabs();
+ X87Fld(Operand::StaticVariable(one_half), kX87DoubleOperand);
+ __ FCmp();
+ __ j(parity_even, &not_plus_0, Label::kNear); // NaN.
+ __ j(not_equal, &not_plus_0, Label::kNear);
+ __ fldz();
+ // FP data stack {base, exponent(TOS), zero}.
+ __ faddp(2);
+ __ bind(&not_plus_0);
+
+ {
+ __ PrepareCallCFunction(4, eax);
+ __ fstp_d(MemOperand(esp, kDoubleSize)); // Exponent value.
+ __ fstp_d(MemOperand(esp, 0)); // Base value.
+ X87PrepareToWrite(result);
+ __ CallCFunction(ExternalReference::power_double_double_function(isolate()),
+ 4);
+ // Return value is in st(0) on ia32.
+ X87CommitWrite(result);
+ }
+}
+
+
+void LCodeGen::DoMathLog(LMathLog* instr) {
+ DCHECK(instr->value()->Equals(instr->result()));
+ X87Register input_reg = ToX87Register(instr->value());
+ X87Fxch(input_reg);
+
+ Label positive, done, zero, nan_result;
+ __ fldz();
+ __ fld(1);
+ __ FCmp();
+ __ j(below, &nan_result, Label::kNear);
+ __ j(equal, &zero, Label::kNear);
+ // Positive input.
+ // {input, ln2}.
+ __ fldln2();
+ // {ln2, input}.
+ __ fxch();
+ // {result}.
+ __ fyl2x();
+ __ jmp(&done, Label::kNear);
+
+ __ bind(&nan_result);
+ X87PrepareToWrite(input_reg);
+ __ push(Immediate(0xffffffff));
+ __ push(Immediate(0x7fffffff));
+ __ fld_d(MemOperand(esp, 0));
+ __ lea(esp, Operand(esp, kDoubleSize));
+ X87CommitWrite(input_reg);
+ __ jmp(&done, Label::kNear);
+
+ __ bind(&zero);
+ ExternalReference ninf = ExternalReference::address_of_negative_infinity();
+ X87PrepareToWrite(input_reg);
+ __ fld_d(Operand::StaticVariable(ninf));
+ X87CommitWrite(input_reg);
+
+ __ bind(&done);
+}
+
+
+void LCodeGen::DoMathClz32(LMathClz32* instr) {
+ Register input = ToRegister(instr->value());
+ Register result = ToRegister(instr->result());
+
+ __ Lzcnt(result, input);
+}
+
+
+void LCodeGen::DoMathExp(LMathExp* instr) {
+ X87Register input = ToX87Register(instr->value());
+ X87Register result_reg = ToX87Register(instr->result());
+ Register temp_result = ToRegister(instr->temp1());
+ Register temp = ToRegister(instr->temp2());
+ Label slow, done, smi, finish;
+ DCHECK(result_reg.is(input));
+
+ // Store input into Heap number and call runtime function kMathExpRT.
+ if (FLAG_inline_new) {
+ __ AllocateHeapNumber(temp_result, temp, no_reg, &slow);
+ __ jmp(&done, Label::kNear);
+ }
+
+ // Slow case: Call the runtime system to do the number allocation.
+ __ bind(&slow);
+ {
+ // TODO(3095996): Put a valid pointer value in the stack slot where the
+ // result register is stored, as this register is in the pointer map, but
+ // contains an integer value.
+ __ Move(temp_result, Immediate(0));
+
+ // Preserve the value of all registers.
+ PushSafepointRegistersScope scope(this);
+
+ __ mov(esi, Operand(ebp, StandardFrameConstants::kContextOffset));
+ __ CallRuntimeSaveDoubles(Runtime::kAllocateHeapNumber);
+ RecordSafepointWithRegisters(instr->pointer_map(), 0,
+ Safepoint::kNoLazyDeopt);
+ __ StoreToSafepointRegisterSlot(temp_result, eax);
+ }
+ __ bind(&done);
+ X87LoadForUsage(input);
+ __ fstp_d(FieldOperand(temp_result, HeapNumber::kValueOffset));
+
+ {
+ // Preserve the value of all registers.
+ PushSafepointRegistersScope scope(this);
+
+ __ mov(esi, Operand(ebp, StandardFrameConstants::kContextOffset));
+ __ push(temp_result);
+ __ CallRuntimeSaveDoubles(Runtime::kMathExpRT);
+ RecordSafepointWithRegisters(instr->pointer_map(), 1,
+ Safepoint::kNoLazyDeopt);
+ __ StoreToSafepointRegisterSlot(temp_result, eax);
+ }
+ X87PrepareToWrite(result_reg);
+ // return value of MathExpRT is Smi or Heap Number.
+ __ JumpIfSmi(temp_result, &smi);
+ // Heap number(double)
+ __ fld_d(FieldOperand(temp_result, HeapNumber::kValueOffset));
+ __ jmp(&finish);
+ // SMI
+ __ bind(&smi);
+ __ SmiUntag(temp_result);
+ __ push(temp_result);
+ __ fild_s(MemOperand(esp, 0));
+ __ pop(temp_result);
+ __ bind(&finish);
+ X87CommitWrite(result_reg);
+}
+
+
+void LCodeGen::DoInvokeFunction(LInvokeFunction* instr) {
+ DCHECK(ToRegister(instr->context()).is(esi));
+ DCHECK(ToRegister(instr->function()).is(edi));
+ DCHECK(instr->HasPointerMap());
+
+ Handle<JSFunction> known_function = instr->hydrogen()->known_function();
+ if (known_function.is_null()) {
+ LPointerMap* pointers = instr->pointer_map();
+ SafepointGenerator generator(
+ this, pointers, Safepoint::kLazyDeopt);
+ ParameterCount count(instr->arity());
+ __ InvokeFunction(edi, count, CALL_FUNCTION, generator);
+ } else {
+ CallKnownFunction(known_function,
+ instr->hydrogen()->formal_parameter_count(),
+ instr->arity(), instr);
+ }
+}
+
+
+void LCodeGen::DoCallFunction(LCallFunction* instr) {
+ DCHECK(ToRegister(instr->context()).is(esi));
+ DCHECK(ToRegister(instr->function()).is(edi));
+ DCHECK(ToRegister(instr->result()).is(eax));
+
+ int arity = instr->arity();
+ ConvertReceiverMode mode = instr->hydrogen()->convert_mode();
+ if (instr->hydrogen()->HasVectorAndSlot()) {
+ Register slot_register = ToRegister(instr->temp_slot());
+ Register vector_register = ToRegister(instr->temp_vector());
+ DCHECK(slot_register.is(edx));
+ DCHECK(vector_register.is(ebx));
+
+ AllowDeferredHandleDereference vector_structure_check;
+ Handle<TypeFeedbackVector> vector = instr->hydrogen()->feedback_vector();
+ int index = vector->GetIndex(instr->hydrogen()->slot());
+
+ __ mov(vector_register, vector);
+ __ mov(slot_register, Immediate(Smi::FromInt(index)));
+
+ Handle<Code> ic =
+ CodeFactory::CallICInOptimizedCode(isolate(), arity, mode).code();
+ CallCode(ic, RelocInfo::CODE_TARGET, instr);
+ } else {
+ __ Set(eax, arity);
+ CallCode(isolate()->builtins()->Call(mode), RelocInfo::CODE_TARGET, instr);
+ }
+}
+
+
+void LCodeGen::DoCallNew(LCallNew* instr) {
+ DCHECK(ToRegister(instr->context()).is(esi));
+ DCHECK(ToRegister(instr->constructor()).is(edi));
+ DCHECK(ToRegister(instr->result()).is(eax));
+
+ // No cell in ebx for construct type feedback in optimized code
+ __ mov(ebx, isolate()->factory()->undefined_value());
+ CallConstructStub stub(isolate(), NO_CALL_CONSTRUCTOR_FLAGS);
+ __ Move(eax, Immediate(instr->arity()));
+ CallCode(stub.GetCode(), RelocInfo::CONSTRUCT_CALL, instr);
+}
+
+
+void LCodeGen::DoCallNewArray(LCallNewArray* instr) {
+ DCHECK(ToRegister(instr->context()).is(esi));
+ DCHECK(ToRegister(instr->constructor()).is(edi));
+ DCHECK(ToRegister(instr->result()).is(eax));
+
+ __ Move(eax, Immediate(instr->arity()));
+ if (instr->arity() == 1) {
+ // We only need the allocation site for the case we have a length argument.
+ // The case may bail out to the runtime, which will determine the correct
+ // elements kind with the site.
+ __ mov(ebx, instr->hydrogen()->site());
+ } else {
+ __ mov(ebx, isolate()->factory()->undefined_value());
+ }
+
+ ElementsKind kind = instr->hydrogen()->elements_kind();
+ AllocationSiteOverrideMode override_mode =
+ (AllocationSite::GetMode(kind) == TRACK_ALLOCATION_SITE)
+ ? DISABLE_ALLOCATION_SITES
+ : DONT_OVERRIDE;
+
+ if (instr->arity() == 0) {
+ ArrayNoArgumentConstructorStub stub(isolate(), kind, override_mode);
+ CallCode(stub.GetCode(), RelocInfo::CONSTRUCT_CALL, instr);
+ } else if (instr->arity() == 1) {
+ Label done;
+ if (IsFastPackedElementsKind(kind)) {
+ Label packed_case;
+ // We might need a change here
+ // look at the first argument
+ __ mov(ecx, Operand(esp, 0));
+ __ test(ecx, ecx);
+ __ j(zero, &packed_case, Label::kNear);
+
+ ElementsKind holey_kind = GetHoleyElementsKind(kind);
+ ArraySingleArgumentConstructorStub stub(isolate(),
+ holey_kind,
+ override_mode);
+ CallCode(stub.GetCode(), RelocInfo::CONSTRUCT_CALL, instr);
+ __ jmp(&done, Label::kNear);
+ __ bind(&packed_case);
+ }
+
+ ArraySingleArgumentConstructorStub stub(isolate(), kind, override_mode);
+ CallCode(stub.GetCode(), RelocInfo::CONSTRUCT_CALL, instr);
+ __ bind(&done);
+ } else {
+ ArrayNArgumentsConstructorStub stub(isolate(), kind, override_mode);
+ CallCode(stub.GetCode(), RelocInfo::CONSTRUCT_CALL, instr);
+ }
+}
+
+
+void LCodeGen::DoCallRuntime(LCallRuntime* instr) {
+ DCHECK(ToRegister(instr->context()).is(esi));
+ CallRuntime(instr->function(), instr->arity(), instr, instr->save_doubles());
+}
+
+
+void LCodeGen::DoStoreCodeEntry(LStoreCodeEntry* instr) {
+ Register function = ToRegister(instr->function());
+ Register code_object = ToRegister(instr->code_object());
+ __ lea(code_object, FieldOperand(code_object, Code::kHeaderSize));
+ __ mov(FieldOperand(function, JSFunction::kCodeEntryOffset), code_object);
+}
+
+
+void LCodeGen::DoInnerAllocatedObject(LInnerAllocatedObject* instr) {
+ Register result = ToRegister(instr->result());
+ Register base = ToRegister(instr->base_object());
+ if (instr->offset()->IsConstantOperand()) {
+ LConstantOperand* offset = LConstantOperand::cast(instr->offset());
+ __ lea(result, Operand(base, ToInteger32(offset)));
+ } else {
+ Register offset = ToRegister(instr->offset());
+ __ lea(result, Operand(base, offset, times_1, 0));
+ }
+}
+
+
+void LCodeGen::DoStoreNamedField(LStoreNamedField* instr) {
+ Representation representation = instr->hydrogen()->field_representation();
+
+ HObjectAccess access = instr->hydrogen()->access();
+ int offset = access.offset();
+
+ if (access.IsExternalMemory()) {
+ DCHECK(!instr->hydrogen()->NeedsWriteBarrier());
+ MemOperand operand = instr->object()->IsConstantOperand()
+ ? MemOperand::StaticVariable(
+ ToExternalReference(LConstantOperand::cast(instr->object())))
+ : MemOperand(ToRegister(instr->object()), offset);
+ if (instr->value()->IsConstantOperand()) {
+ LConstantOperand* operand_value = LConstantOperand::cast(instr->value());
+ __ mov(operand, Immediate(ToInteger32(operand_value)));
+ } else {
+ Register value = ToRegister(instr->value());
+ __ Store(value, operand, representation);
+ }
+ return;
+ }
+
+ Register object = ToRegister(instr->object());
+ __ AssertNotSmi(object);
+ DCHECK(!representation.IsSmi() ||
+ !instr->value()->IsConstantOperand() ||
+ IsSmi(LConstantOperand::cast(instr->value())));
+ if (representation.IsDouble()) {
+ DCHECK(access.IsInobject());
+ DCHECK(!instr->hydrogen()->has_transition());
+ DCHECK(!instr->hydrogen()->NeedsWriteBarrier());
+ X87Register value = ToX87Register(instr->value());
+ X87Mov(FieldOperand(object, offset), value);
+ return;
+ }
+
+ if (instr->hydrogen()->has_transition()) {
+ Handle<Map> transition = instr->hydrogen()->transition_map();
+ AddDeprecationDependency(transition);
+ __ mov(FieldOperand(object, HeapObject::kMapOffset), transition);
+ if (instr->hydrogen()->NeedsWriteBarrierForMap()) {
+ Register temp = ToRegister(instr->temp());
+ Register temp_map = ToRegister(instr->temp_map());
+ __ mov(temp_map, transition);
+ __ mov(FieldOperand(object, HeapObject::kMapOffset), temp_map);
+ // Update the write barrier for the map field.
+ __ RecordWriteForMap(object, transition, temp_map, temp, kSaveFPRegs);
+ }
+ }
+
+ // Do the store.
+ Register write_register = object;
+ if (!access.IsInobject()) {
+ write_register = ToRegister(instr->temp());
+ __ mov(write_register, FieldOperand(object, JSObject::kPropertiesOffset));
+ }
+
+ MemOperand operand = FieldOperand(write_register, offset);
+ if (instr->value()->IsConstantOperand()) {
+ LConstantOperand* operand_value = LConstantOperand::cast(instr->value());
+ if (operand_value->IsRegister()) {
+ Register value = ToRegister(operand_value);
+ __ Store(value, operand, representation);
+ } else if (representation.IsInteger32() || representation.IsExternal()) {
+ Immediate immediate = ToImmediate(operand_value, representation);
+ DCHECK(!instr->hydrogen()->NeedsWriteBarrier());
+ __ mov(operand, immediate);
+ } else {
+ Handle<Object> handle_value = ToHandle(operand_value);
+ DCHECK(!instr->hydrogen()->NeedsWriteBarrier());
+ __ mov(operand, handle_value);
+ }
+ } else {
+ Register value = ToRegister(instr->value());
+ __ Store(value, operand, representation);
+ }
+
+ if (instr->hydrogen()->NeedsWriteBarrier()) {
+ Register value = ToRegister(instr->value());
+ Register temp = access.IsInobject() ? ToRegister(instr->temp()) : object;
+ // Update the write barrier for the object for in-object properties.
+ __ RecordWriteField(write_register, offset, value, temp, kSaveFPRegs,
+ EMIT_REMEMBERED_SET,
+ instr->hydrogen()->SmiCheckForWriteBarrier(),
+ instr->hydrogen()->PointersToHereCheckForValue());
+ }
+}
+
+
+void LCodeGen::DoStoreNamedGeneric(LStoreNamedGeneric* instr) {
+ DCHECK(ToRegister(instr->context()).is(esi));
+ DCHECK(ToRegister(instr->object()).is(StoreDescriptor::ReceiverRegister()));
+ DCHECK(ToRegister(instr->value()).is(StoreDescriptor::ValueRegister()));
+
+ if (instr->hydrogen()->HasVectorAndSlot()) {
+ EmitVectorStoreICRegisters<LStoreNamedGeneric>(instr);
+ }
+
+ __ mov(StoreDescriptor::NameRegister(), instr->name());
+ Handle<Code> ic = CodeFactory::StoreICInOptimizedCode(
+ isolate(), instr->language_mode(),
+ instr->hydrogen()->initialization_state()).code();
+ CallCode(ic, RelocInfo::CODE_TARGET, instr);
+}
+
+
+void LCodeGen::DoBoundsCheck(LBoundsCheck* instr) {
+ Condition cc = instr->hydrogen()->allow_equality() ? above : above_equal;
+ if (instr->index()->IsConstantOperand()) {
+ __ cmp(ToOperand(instr->length()),
+ ToImmediate(LConstantOperand::cast(instr->index()),
+ instr->hydrogen()->length()->representation()));
+ cc = CommuteCondition(cc);
+ } else if (instr->length()->IsConstantOperand()) {
+ __ cmp(ToOperand(instr->index()),
+ ToImmediate(LConstantOperand::cast(instr->length()),
+ instr->hydrogen()->index()->representation()));
+ } else {
+ __ cmp(ToRegister(instr->index()), ToOperand(instr->length()));
+ }
+ if (FLAG_debug_code && instr->hydrogen()->skip_check()) {
+ Label done;
+ __ j(NegateCondition(cc), &done, Label::kNear);
+ __ int3();
+ __ bind(&done);
+ } else {
+ DeoptimizeIf(cc, instr, Deoptimizer::kOutOfBounds);
+ }
+}
+
+
+void LCodeGen::DoStoreKeyedExternalArray(LStoreKeyed* instr) {
+ ElementsKind elements_kind = instr->elements_kind();
+ LOperand* key = instr->key();
+ if (!key->IsConstantOperand() &&
+ ExternalArrayOpRequiresTemp(instr->hydrogen()->key()->representation(),
+ elements_kind)) {
+ __ SmiUntag(ToRegister(key));
+ }
+ Operand operand(BuildFastArrayOperand(
+ instr->elements(),
+ key,
+ instr->hydrogen()->key()->representation(),
+ elements_kind,
+ instr->base_offset()));
+ if (elements_kind == FLOAT32_ELEMENTS) {
+ X87Mov(operand, ToX87Register(instr->value()), kX87FloatOperand);
+ } else if (elements_kind == FLOAT64_ELEMENTS) {
+ uint64_t int_val = kHoleNanInt64;
+ int32_t lower = static_cast<int32_t>(int_val);
+ int32_t upper = static_cast<int32_t>(int_val >> (kBitsPerInt));
+ Operand operand2 = BuildFastArrayOperand(
+ instr->elements(), instr->key(),
+ instr->hydrogen()->key()->representation(), elements_kind,
+ instr->base_offset() + kPointerSize);
+
+ Label no_special_nan_handling, done;
+ X87Register value = ToX87Register(instr->value());
+ X87Fxch(value);
+ __ lea(esp, Operand(esp, -kDoubleSize));
+ __ fst_d(MemOperand(esp, 0));
+ __ lea(esp, Operand(esp, kDoubleSize));
+ int offset = sizeof(kHoleNanUpper32);
+ // x87 converts sNaN(0xfff7fffffff7ffff) to QNaN(0xfffffffffff7ffff),
+ // so we check the upper with 0xffffffff for hole as a temporary fix.
+ __ cmp(MemOperand(esp, -offset), Immediate(0xffffffff));
+ __ j(not_equal, &no_special_nan_handling, Label::kNear);
+ __ mov(operand, Immediate(lower));
+ __ mov(operand2, Immediate(upper));
+ __ jmp(&done, Label::kNear);
+
+ __ bind(&no_special_nan_handling);
+ __ fst_d(operand);
+ __ bind(&done);
+ } else {
+ Register value = ToRegister(instr->value());
+ switch (elements_kind) {
+ case UINT8_ELEMENTS:
+ case INT8_ELEMENTS:
+ case UINT8_CLAMPED_ELEMENTS:
+ __ mov_b(operand, value);
+ break;
+ case UINT16_ELEMENTS:
+ case INT16_ELEMENTS:
+ __ mov_w(operand, value);
+ break;
+ case UINT32_ELEMENTS:
+ case INT32_ELEMENTS:
+ __ mov(operand, value);
+ break;
+ case FLOAT32_ELEMENTS:
+ case FLOAT64_ELEMENTS:
+ case FAST_SMI_ELEMENTS:
+ case FAST_ELEMENTS:
+ case FAST_DOUBLE_ELEMENTS:
+ case FAST_HOLEY_SMI_ELEMENTS:
+ case FAST_HOLEY_ELEMENTS:
+ case FAST_HOLEY_DOUBLE_ELEMENTS:
+ case DICTIONARY_ELEMENTS:
+ case FAST_SLOPPY_ARGUMENTS_ELEMENTS:
+ case SLOW_SLOPPY_ARGUMENTS_ELEMENTS:
+ UNREACHABLE();
+ break;
+ }
+ }
+}
+
+
+void LCodeGen::DoStoreKeyedFixedDoubleArray(LStoreKeyed* instr) {
+ Operand double_store_operand = BuildFastArrayOperand(
+ instr->elements(),
+ instr->key(),
+ instr->hydrogen()->key()->representation(),
+ FAST_DOUBLE_ELEMENTS,
+ instr->base_offset());
+
+ uint64_t int_val = kHoleNanInt64;
+ int32_t lower = static_cast<int32_t>(int_val);
+ int32_t upper = static_cast<int32_t>(int_val >> (kBitsPerInt));
+ Operand double_store_operand2 = BuildFastArrayOperand(
+ instr->elements(), instr->key(),
+ instr->hydrogen()->key()->representation(), FAST_DOUBLE_ELEMENTS,
+ instr->base_offset() + kPointerSize);
+
+ if (instr->hydrogen()->IsConstantHoleStore()) {
+ // This means we should store the (double) hole. No floating point
+ // registers required.
+ __ mov(double_store_operand, Immediate(lower));
+ __ mov(double_store_operand2, Immediate(upper));
+ } else {
+ Label no_special_nan_handling, done;
+ X87Register value = ToX87Register(instr->value());
+ X87Fxch(value);
+
+ if (instr->NeedsCanonicalization()) {
+ __ fld(0);
+ __ fld(0);
+ __ FCmp();
+ __ j(parity_odd, &no_special_nan_handling, Label::kNear);
+ // All NaNs are Canonicalized to 0x7fffffffffffffff
+ __ mov(double_store_operand, Immediate(0xffffffff));
+ __ mov(double_store_operand2, Immediate(0x7fffffff));
+ __ jmp(&done, Label::kNear);
+ } else {
+ __ lea(esp, Operand(esp, -kDoubleSize));
+ __ fst_d(MemOperand(esp, 0));
+ __ lea(esp, Operand(esp, kDoubleSize));
+ int offset = sizeof(kHoleNanUpper32);
+ // x87 converts sNaN(0xfff7fffffff7ffff) to QNaN(0xfffffffffff7ffff),
+ // so we check the upper with 0xffffffff for hole as a temporary fix.
+ __ cmp(MemOperand(esp, -offset), Immediate(0xffffffff));
+ __ j(not_equal, &no_special_nan_handling, Label::kNear);
+ __ mov(double_store_operand, Immediate(lower));
+ __ mov(double_store_operand2, Immediate(upper));
+ __ jmp(&done, Label::kNear);
+ }
+ __ bind(&no_special_nan_handling);
+ __ fst_d(double_store_operand);
+ __ bind(&done);
+ }
+}
+
+
+void LCodeGen::DoStoreKeyedFixedArray(LStoreKeyed* instr) {
+ Register elements = ToRegister(instr->elements());
+ Register key = instr->key()->IsRegister() ? ToRegister(instr->key()) : no_reg;
+
+ Operand operand = BuildFastArrayOperand(
+ instr->elements(),
+ instr->key(),
+ instr->hydrogen()->key()->representation(),
+ FAST_ELEMENTS,
+ instr->base_offset());
+ if (instr->value()->IsRegister()) {
+ __ mov(operand, ToRegister(instr->value()));
+ } else {
+ LConstantOperand* operand_value = LConstantOperand::cast(instr->value());
+ if (IsSmi(operand_value)) {
+ Immediate immediate = ToImmediate(operand_value, Representation::Smi());
+ __ mov(operand, immediate);
+ } else {
+ DCHECK(!IsInteger32(operand_value));
+ Handle<Object> handle_value = ToHandle(operand_value);
+ __ mov(operand, handle_value);
+ }
+ }
+
+ if (instr->hydrogen()->NeedsWriteBarrier()) {
+ DCHECK(instr->value()->IsRegister());
+ Register value = ToRegister(instr->value());
+ DCHECK(!instr->key()->IsConstantOperand());
+ SmiCheck check_needed =
+ instr->hydrogen()->value()->type().IsHeapObject()
+ ? OMIT_SMI_CHECK : INLINE_SMI_CHECK;
+ // Compute address of modified element and store it into key register.
+ __ lea(key, operand);
+ __ RecordWrite(elements, key, value, kSaveFPRegs, EMIT_REMEMBERED_SET,
+ check_needed,
+ instr->hydrogen()->PointersToHereCheckForValue());
+ }
+}
+
+
+void LCodeGen::DoStoreKeyed(LStoreKeyed* instr) {
+ // By cases...external, fast-double, fast
+ if (instr->is_fixed_typed_array()) {
+ DoStoreKeyedExternalArray(instr);
+ } else if (instr->hydrogen()->value()->representation().IsDouble()) {
+ DoStoreKeyedFixedDoubleArray(instr);
+ } else {
+ DoStoreKeyedFixedArray(instr);
+ }
+}
+
+
+void LCodeGen::DoStoreKeyedGeneric(LStoreKeyedGeneric* instr) {
+ DCHECK(ToRegister(instr->context()).is(esi));
+ DCHECK(ToRegister(instr->object()).is(StoreDescriptor::ReceiverRegister()));
+ DCHECK(ToRegister(instr->key()).is(StoreDescriptor::NameRegister()));
+ DCHECK(ToRegister(instr->value()).is(StoreDescriptor::ValueRegister()));
+
+ if (instr->hydrogen()->HasVectorAndSlot()) {
+ EmitVectorStoreICRegisters<LStoreKeyedGeneric>(instr);
+ }
+
+ Handle<Code> ic = CodeFactory::KeyedStoreICInOptimizedCode(
+ isolate(), instr->language_mode(),
+ instr->hydrogen()->initialization_state()).code();
+ CallCode(ic, RelocInfo::CODE_TARGET, instr);
+}
+
+
+void LCodeGen::DoTrapAllocationMemento(LTrapAllocationMemento* instr) {
+ Register object = ToRegister(instr->object());
+ Register temp = ToRegister(instr->temp());
+ Label no_memento_found;
+ __ TestJSArrayForAllocationMemento(object, temp, &no_memento_found);
+ DeoptimizeIf(equal, instr, Deoptimizer::kMementoFound);
+ __ bind(&no_memento_found);
+}
+
+
+void LCodeGen::DoMaybeGrowElements(LMaybeGrowElements* instr) {
+ class DeferredMaybeGrowElements final : public LDeferredCode {
+ public:
+ DeferredMaybeGrowElements(LCodeGen* codegen,
+ LMaybeGrowElements* instr,
+ const X87Stack& x87_stack)
+ : LDeferredCode(codegen, x87_stack), instr_(instr) {}
+ void Generate() override { codegen()->DoDeferredMaybeGrowElements(instr_); }
+ LInstruction* instr() override { return instr_; }
+
+ private:
+ LMaybeGrowElements* instr_;
+ };
+
+ Register result = eax;
+ DeferredMaybeGrowElements* deferred =
+ new (zone()) DeferredMaybeGrowElements(this, instr, x87_stack_);
+ LOperand* key = instr->key();
+ LOperand* current_capacity = instr->current_capacity();
+
+ DCHECK(instr->hydrogen()->key()->representation().IsInteger32());
+ DCHECK(instr->hydrogen()->current_capacity()->representation().IsInteger32());
+ DCHECK(key->IsConstantOperand() || key->IsRegister());
+ DCHECK(current_capacity->IsConstantOperand() ||
+ current_capacity->IsRegister());
+
+ if (key->IsConstantOperand() && current_capacity->IsConstantOperand()) {
+ int32_t constant_key = ToInteger32(LConstantOperand::cast(key));
+ int32_t constant_capacity =
+ ToInteger32(LConstantOperand::cast(current_capacity));
+ if (constant_key >= constant_capacity) {
+ // Deferred case.
+ __ jmp(deferred->entry());
+ }
+ } else if (key->IsConstantOperand()) {
+ int32_t constant_key = ToInteger32(LConstantOperand::cast(key));
+ __ cmp(ToOperand(current_capacity), Immediate(constant_key));
+ __ j(less_equal, deferred->entry());
+ } else if (current_capacity->IsConstantOperand()) {
+ int32_t constant_capacity =
+ ToInteger32(LConstantOperand::cast(current_capacity));
+ __ cmp(ToRegister(key), Immediate(constant_capacity));
+ __ j(greater_equal, deferred->entry());
+ } else {
+ __ cmp(ToRegister(key), ToRegister(current_capacity));
+ __ j(greater_equal, deferred->entry());
+ }
+
+ __ mov(result, ToOperand(instr->elements()));
+ __ bind(deferred->exit());
+}
+
+
+void LCodeGen::DoDeferredMaybeGrowElements(LMaybeGrowElements* instr) {
+ // TODO(3095996): Get rid of this. For now, we need to make the
+ // result register contain a valid pointer because it is already
+ // contained in the register pointer map.
+ Register result = eax;
+ __ Move(result, Immediate(0));
+
+ // We have to call a stub.
+ {
+ PushSafepointRegistersScope scope(this);
+ if (instr->object()->IsRegister()) {
+ __ Move(result, ToRegister(instr->object()));
+ } else {
+ __ mov(result, ToOperand(instr->object()));
+ }
+
+ LOperand* key = instr->key();
+ if (key->IsConstantOperand()) {
+ __ mov(ebx, ToImmediate(key, Representation::Smi()));
+ } else {
+ __ Move(ebx, ToRegister(key));
+ __ SmiTag(ebx);
+ }
+
+ GrowArrayElementsStub stub(isolate(), instr->hydrogen()->is_js_array(),
+ instr->hydrogen()->kind());
+ __ CallStub(&stub);
+ RecordSafepointWithLazyDeopt(
+ instr, RECORD_SAFEPOINT_WITH_REGISTERS_AND_NO_ARGUMENTS);
+ __ StoreToSafepointRegisterSlot(result, result);
+ }
+
+ // Deopt on smi, which means the elements array changed to dictionary mode.
+ __ test(result, Immediate(kSmiTagMask));
+ DeoptimizeIf(equal, instr, Deoptimizer::kSmi);
+}
+
+
+void LCodeGen::DoTransitionElementsKind(LTransitionElementsKind* instr) {
+ Register object_reg = ToRegister(instr->object());
+
+ Handle<Map> from_map = instr->original_map();
+ Handle<Map> to_map = instr->transitioned_map();
+ ElementsKind from_kind = instr->from_kind();
+ ElementsKind to_kind = instr->to_kind();
+
+ Label not_applicable;
+ bool is_simple_map_transition =
+ IsSimpleMapChangeTransition(from_kind, to_kind);
+ Label::Distance branch_distance =
+ is_simple_map_transition ? Label::kNear : Label::kFar;
+ __ cmp(FieldOperand(object_reg, HeapObject::kMapOffset), from_map);
+ __ j(not_equal, &not_applicable, branch_distance);
+ if (is_simple_map_transition) {
+ Register new_map_reg = ToRegister(instr->new_map_temp());
+ __ mov(FieldOperand(object_reg, HeapObject::kMapOffset),
+ Immediate(to_map));
+ // Write barrier.
+ DCHECK_NOT_NULL(instr->temp());
+ __ RecordWriteForMap(object_reg, to_map, new_map_reg,
+ ToRegister(instr->temp()), kDontSaveFPRegs);
+ } else {
+ DCHECK(ToRegister(instr->context()).is(esi));
+ DCHECK(object_reg.is(eax));
+ PushSafepointRegistersScope scope(this);
+ __ mov(ebx, to_map);
+ bool is_js_array = from_map->instance_type() == JS_ARRAY_TYPE;
+ TransitionElementsKindStub stub(isolate(), from_kind, to_kind, is_js_array);
+ __ CallStub(&stub);
+ RecordSafepointWithLazyDeopt(instr,
+ RECORD_SAFEPOINT_WITH_REGISTERS_AND_NO_ARGUMENTS);
+ }
+ __ bind(&not_applicable);
+}
+
+
+void LCodeGen::DoStringCharCodeAt(LStringCharCodeAt* instr) {
+ class DeferredStringCharCodeAt final : public LDeferredCode {
+ public:
+ DeferredStringCharCodeAt(LCodeGen* codegen,
+ LStringCharCodeAt* instr,
+ const X87Stack& x87_stack)
+ : LDeferredCode(codegen, x87_stack), instr_(instr) { }
+ void Generate() override { codegen()->DoDeferredStringCharCodeAt(instr_); }
+ LInstruction* instr() override { return instr_; }
+
+ private:
+ LStringCharCodeAt* instr_;
+ };
+
+ DeferredStringCharCodeAt* deferred =
+ new(zone()) DeferredStringCharCodeAt(this, instr, x87_stack_);
+
+ StringCharLoadGenerator::Generate(masm(),
+ factory(),
+ ToRegister(instr->string()),
+ ToRegister(instr->index()),
+ ToRegister(instr->result()),
+ deferred->entry());
+ __ bind(deferred->exit());
+}
+
+
+void LCodeGen::DoDeferredStringCharCodeAt(LStringCharCodeAt* instr) {
+ Register string = ToRegister(instr->string());
+ Register result = ToRegister(instr->result());
+
+ // TODO(3095996): Get rid of this. For now, we need to make the
+ // result register contain a valid pointer because it is already
+ // contained in the register pointer map.
+ __ Move(result, Immediate(0));
+
+ PushSafepointRegistersScope scope(this);
+ __ push(string);
+ // Push the index as a smi. This is safe because of the checks in
+ // DoStringCharCodeAt above.
+ STATIC_ASSERT(String::kMaxLength <= Smi::kMaxValue);
+ if (instr->index()->IsConstantOperand()) {
+ Immediate immediate = ToImmediate(LConstantOperand::cast(instr->index()),
+ Representation::Smi());
+ __ push(immediate);
+ } else {
+ Register index = ToRegister(instr->index());
+ __ SmiTag(index);
+ __ push(index);
+ }
+ CallRuntimeFromDeferred(Runtime::kStringCharCodeAtRT, 2,
+ instr, instr->context());
+ __ AssertSmi(eax);
+ __ SmiUntag(eax);
+ __ StoreToSafepointRegisterSlot(result, eax);
+}
+
+
+void LCodeGen::DoStringCharFromCode(LStringCharFromCode* instr) {
+ class DeferredStringCharFromCode final : public LDeferredCode {
+ public:
+ DeferredStringCharFromCode(LCodeGen* codegen,
+ LStringCharFromCode* instr,
+ const X87Stack& x87_stack)
+ : LDeferredCode(codegen, x87_stack), instr_(instr) { }
+ void Generate() override {
+ codegen()->DoDeferredStringCharFromCode(instr_);
+ }
+ LInstruction* instr() override { return instr_; }
+
+ private:
+ LStringCharFromCode* instr_;
+ };
+
+ DeferredStringCharFromCode* deferred =
+ new(zone()) DeferredStringCharFromCode(this, instr, x87_stack_);
+
+ DCHECK(instr->hydrogen()->value()->representation().IsInteger32());
+ Register char_code = ToRegister(instr->char_code());
+ Register result = ToRegister(instr->result());
+ DCHECK(!char_code.is(result));
+
+ __ cmp(char_code, String::kMaxOneByteCharCode);
+ __ j(above, deferred->entry());
+ __ Move(result, Immediate(factory()->single_character_string_cache()));
+ __ mov(result, FieldOperand(result,
+ char_code, times_pointer_size,
+ FixedArray::kHeaderSize));
+ __ cmp(result, factory()->undefined_value());
+ __ j(equal, deferred->entry());
+ __ bind(deferred->exit());
+}
+
+
+void LCodeGen::DoDeferredStringCharFromCode(LStringCharFromCode* instr) {
+ Register char_code = ToRegister(instr->char_code());
+ Register result = ToRegister(instr->result());
+
+ // TODO(3095996): Get rid of this. For now, we need to make the
+ // result register contain a valid pointer because it is already
+ // contained in the register pointer map.
+ __ Move(result, Immediate(0));
+
+ PushSafepointRegistersScope scope(this);
+ __ SmiTag(char_code);
+ __ push(char_code);
+ CallRuntimeFromDeferred(Runtime::kStringCharFromCode, 1, instr,
+ instr->context());
+ __ StoreToSafepointRegisterSlot(result, eax);
+}
+
+
+void LCodeGen::DoStringAdd(LStringAdd* instr) {
+ DCHECK(ToRegister(instr->context()).is(esi));
+ DCHECK(ToRegister(instr->left()).is(edx));
+ DCHECK(ToRegister(instr->right()).is(eax));
+ StringAddStub stub(isolate(),
+ instr->hydrogen()->flags(),
+ instr->hydrogen()->pretenure_flag());
+ CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
+}
+
+
+void LCodeGen::DoInteger32ToDouble(LInteger32ToDouble* instr) {
+ LOperand* input = instr->value();
+ LOperand* output = instr->result();
+ DCHECK(input->IsRegister() || input->IsStackSlot());
+ DCHECK(output->IsDoubleRegister());
+ if (input->IsRegister()) {
+ Register input_reg = ToRegister(input);
+ __ push(input_reg);
+ X87Mov(ToX87Register(output), Operand(esp, 0), kX87IntOperand);
+ __ pop(input_reg);
+ } else {
+ X87Mov(ToX87Register(output), ToOperand(input), kX87IntOperand);
+ }
+}
+
+
+void LCodeGen::DoUint32ToDouble(LUint32ToDouble* instr) {
+ LOperand* input = instr->value();
+ LOperand* output = instr->result();
+ X87Register res = ToX87Register(output);
+ X87PrepareToWrite(res);
+ __ LoadUint32NoSSE2(ToRegister(input));
+ X87CommitWrite(res);
+}
+
+
+void LCodeGen::DoNumberTagI(LNumberTagI* instr) {
+ class DeferredNumberTagI final : public LDeferredCode {
+ public:
+ DeferredNumberTagI(LCodeGen* codegen,
+ LNumberTagI* instr,
+ const X87Stack& x87_stack)
+ : LDeferredCode(codegen, x87_stack), instr_(instr) { }
+ void Generate() override {
+ codegen()->DoDeferredNumberTagIU(instr_, instr_->value(), instr_->temp(),
+ SIGNED_INT32);
+ }
+ LInstruction* instr() override { return instr_; }
+
+ private:
+ LNumberTagI* instr_;
+ };
+
+ LOperand* input = instr->value();
+ DCHECK(input->IsRegister() && input->Equals(instr->result()));
+ Register reg = ToRegister(input);
+
+ DeferredNumberTagI* deferred =
+ new(zone()) DeferredNumberTagI(this, instr, x87_stack_);
+ __ SmiTag(reg);
+ __ j(overflow, deferred->entry());
+ __ bind(deferred->exit());
+}
+
+
+void LCodeGen::DoNumberTagU(LNumberTagU* instr) {
+ class DeferredNumberTagU final : public LDeferredCode {
+ public:
+ DeferredNumberTagU(LCodeGen* codegen,
+ LNumberTagU* instr,
+ const X87Stack& x87_stack)
+ : LDeferredCode(codegen, x87_stack), instr_(instr) { }
+ void Generate() override {
+ codegen()->DoDeferredNumberTagIU(instr_, instr_->value(), instr_->temp(),
+ UNSIGNED_INT32);
+ }
+ LInstruction* instr() override { return instr_; }
+
+ private:
+ LNumberTagU* instr_;
+ };
+
+ LOperand* input = instr->value();
+ DCHECK(input->IsRegister() && input->Equals(instr->result()));
+ Register reg = ToRegister(input);
+
+ DeferredNumberTagU* deferred =
+ new(zone()) DeferredNumberTagU(this, instr, x87_stack_);
+ __ cmp(reg, Immediate(Smi::kMaxValue));
+ __ j(above, deferred->entry());
+ __ SmiTag(reg);
+ __ bind(deferred->exit());
+}
+
+
+void LCodeGen::DoDeferredNumberTagIU(LInstruction* instr,
+ LOperand* value,
+ LOperand* temp,
+ IntegerSignedness signedness) {
+ Label done, slow;
+ Register reg = ToRegister(value);
+ Register tmp = ToRegister(temp);
+
+ if (signedness == SIGNED_INT32) {
+ // There was overflow, so bits 30 and 31 of the original integer
+ // disagree. Try to allocate a heap number in new space and store
+ // the value in there. If that fails, call the runtime system.
+ __ SmiUntag(reg);
+ __ xor_(reg, 0x80000000);
+ __ push(reg);
+ __ fild_s(Operand(esp, 0));
+ __ pop(reg);
+ } else {
+ // There's no fild variant for unsigned values, so zero-extend to a 64-bit
+ // int manually.
+ __ push(Immediate(0));
+ __ push(reg);
+ __ fild_d(Operand(esp, 0));
+ __ pop(reg);
+ __ pop(reg);
+ }
+
+ if (FLAG_inline_new) {
+ __ AllocateHeapNumber(reg, tmp, no_reg, &slow);
+ __ jmp(&done, Label::kNear);
+ }
+
+ // Slow case: Call the runtime system to do the number allocation.
+ __ bind(&slow);
+ {
+ // TODO(3095996): Put a valid pointer value in the stack slot where the
+ // result register is stored, as this register is in the pointer map, but
+ // contains an integer value.
+ __ Move(reg, Immediate(0));
+
+ // Preserve the value of all registers.
+ PushSafepointRegistersScope scope(this);
+
+ // NumberTagI and NumberTagD use the context from the frame, rather than
+ // the environment's HContext or HInlinedContext value.
+ // They only call Runtime::kAllocateHeapNumber.
+ // The corresponding HChange instructions are added in a phase that does
+ // not have easy access to the local context.
+ __ mov(esi, Operand(ebp, StandardFrameConstants::kContextOffset));
+ __ CallRuntimeSaveDoubles(Runtime::kAllocateHeapNumber);
+ RecordSafepointWithRegisters(
+ instr->pointer_map(), 0, Safepoint::kNoLazyDeopt);
+ __ StoreToSafepointRegisterSlot(reg, eax);
+ }
+
+ __ bind(&done);
+ __ fstp_d(FieldOperand(reg, HeapNumber::kValueOffset));
+}
+
+
+void LCodeGen::DoNumberTagD(LNumberTagD* instr) {
+ class DeferredNumberTagD final : public LDeferredCode {
+ public:
+ DeferredNumberTagD(LCodeGen* codegen,
+ LNumberTagD* instr,
+ const X87Stack& x87_stack)
+ : LDeferredCode(codegen, x87_stack), instr_(instr) { }
+ void Generate() override { codegen()->DoDeferredNumberTagD(instr_); }
+ LInstruction* instr() override { return instr_; }
+
+ private:
+ LNumberTagD* instr_;
+ };
+
+ Register reg = ToRegister(instr->result());
+
+ // Put the value to the top of stack
+ X87Register src = ToX87Register(instr->value());
+ // Don't use X87LoadForUsage here, which is only used by Instruction which
+ // clobbers fp registers.
+ x87_stack_.Fxch(src);
+
+ DeferredNumberTagD* deferred =
+ new(zone()) DeferredNumberTagD(this, instr, x87_stack_);
+ if (FLAG_inline_new) {
+ Register tmp = ToRegister(instr->temp());
+ __ AllocateHeapNumber(reg, tmp, no_reg, deferred->entry());
+ } else {
+ __ jmp(deferred->entry());
+ }
+ __ bind(deferred->exit());
+ __ fst_d(FieldOperand(reg, HeapNumber::kValueOffset));
+}
+
+
+void LCodeGen::DoDeferredNumberTagD(LNumberTagD* instr) {
+ // TODO(3095996): Get rid of this. For now, we need to make the
+ // result register contain a valid pointer because it is already
+ // contained in the register pointer map.
+ Register reg = ToRegister(instr->result());
+ __ Move(reg, Immediate(0));
+
+ PushSafepointRegistersScope scope(this);
+ // NumberTagI and NumberTagD use the context from the frame, rather than
+ // the environment's HContext or HInlinedContext value.
+ // They only call Runtime::kAllocateHeapNumber.
+ // The corresponding HChange instructions are added in a phase that does
+ // not have easy access to the local context.
+ __ mov(esi, Operand(ebp, StandardFrameConstants::kContextOffset));
+ __ CallRuntimeSaveDoubles(Runtime::kAllocateHeapNumber);
+ RecordSafepointWithRegisters(
+ instr->pointer_map(), 0, Safepoint::kNoLazyDeopt);
+ __ StoreToSafepointRegisterSlot(reg, eax);
+}
+
+
+void LCodeGen::DoSmiTag(LSmiTag* instr) {
+ HChange* hchange = instr->hydrogen();
+ Register input = ToRegister(instr->value());
+ if (hchange->CheckFlag(HValue::kCanOverflow) &&
+ hchange->value()->CheckFlag(HValue::kUint32)) {
+ __ test(input, Immediate(0xc0000000));
+ DeoptimizeIf(not_zero, instr, Deoptimizer::kOverflow);
+ }
+ __ SmiTag(input);
+ if (hchange->CheckFlag(HValue::kCanOverflow) &&
+ !hchange->value()->CheckFlag(HValue::kUint32)) {
+ DeoptimizeIf(overflow, instr, Deoptimizer::kOverflow);
+ }
+}
+
+
+void LCodeGen::DoSmiUntag(LSmiUntag* instr) {
+ LOperand* input = instr->value();
+ Register result = ToRegister(input);
+ DCHECK(input->IsRegister() && input->Equals(instr->result()));
+ if (instr->needs_check()) {
+ __ test(result, Immediate(kSmiTagMask));
+ DeoptimizeIf(not_zero, instr, Deoptimizer::kNotASmi);
+ } else {
+ __ AssertSmi(result);
+ }
+ __ SmiUntag(result);
+}
+
+
+void LCodeGen::EmitNumberUntagDNoSSE2(LNumberUntagD* instr, Register input_reg,
+ Register temp_reg, X87Register res_reg,
+ NumberUntagDMode mode) {
+ bool can_convert_undefined_to_nan =
+ instr->hydrogen()->can_convert_undefined_to_nan();
+ bool deoptimize_on_minus_zero = instr->hydrogen()->deoptimize_on_minus_zero();
+
+ Label load_smi, done;
+
+ X87PrepareToWrite(res_reg);
+ if (mode == NUMBER_CANDIDATE_IS_ANY_TAGGED) {
+ // Smi check.
+ __ JumpIfSmi(input_reg, &load_smi);
+
+ // Heap number map check.
+ __ cmp(FieldOperand(input_reg, HeapObject::kMapOffset),
+ factory()->heap_number_map());
+ if (!can_convert_undefined_to_nan) {
+ DeoptimizeIf(not_equal, instr, Deoptimizer::kNotAHeapNumber);
+ } else {
+ Label heap_number, convert;
+ __ j(equal, &heap_number);
+
+ // Convert undefined (or hole) to NaN.
+ __ cmp(input_reg, factory()->undefined_value());
+ DeoptimizeIf(not_equal, instr, Deoptimizer::kNotAHeapNumberUndefined);
+
+ __ bind(&convert);
+ __ push(Immediate(0xffffffff));
+ __ push(Immediate(0x7fffffff));
+ __ fld_d(MemOperand(esp, 0));
+ __ lea(esp, Operand(esp, kDoubleSize));
+ __ jmp(&done, Label::kNear);
+
+ __ bind(&heap_number);
+ }
+ // Heap number to x87 conversion.
+ __ fld_d(FieldOperand(input_reg, HeapNumber::kValueOffset));
+ if (deoptimize_on_minus_zero) {
+ __ fldz();
+ __ FCmp();
+ __ fld_d(FieldOperand(input_reg, HeapNumber::kValueOffset));
+ __ j(not_zero, &done, Label::kNear);
+
+ // Use general purpose registers to check if we have -0.0
+ __ mov(temp_reg, FieldOperand(input_reg, HeapNumber::kExponentOffset));
+ __ test(temp_reg, Immediate(HeapNumber::kSignMask));
+ __ j(zero, &done, Label::kNear);
+
+ // Pop FPU stack before deoptimizing.
+ __ fstp(0);
+ DeoptimizeIf(not_zero, instr, Deoptimizer::kMinusZero);
+ }
+ __ jmp(&done, Label::kNear);
+ } else {
+ DCHECK(mode == NUMBER_CANDIDATE_IS_SMI);
+ }
+
+ __ bind(&load_smi);
+ // Clobbering a temp is faster than re-tagging the
+ // input register since we avoid dependencies.
+ __ mov(temp_reg, input_reg);
+ __ SmiUntag(temp_reg); // Untag smi before converting to float.
+ __ push(temp_reg);
+ __ fild_s(Operand(esp, 0));
+ __ add(esp, Immediate(kPointerSize));
+ __ bind(&done);
+ X87CommitWrite(res_reg);
+}
+
+
+void LCodeGen::DoDeferredTaggedToI(LTaggedToI* instr, Label* done) {
+ Register input_reg = ToRegister(instr->value());
+
+ // The input was optimistically untagged; revert it.
+ STATIC_ASSERT(kSmiTagSize == 1);
+ __ lea(input_reg, Operand(input_reg, times_2, kHeapObjectTag));
+
+ if (instr->truncating()) {
+ Label no_heap_number, check_bools, check_false;
+
+ // Heap number map check.
+ __ cmp(FieldOperand(input_reg, HeapObject::kMapOffset),
+ factory()->heap_number_map());
+ __ j(not_equal, &no_heap_number, Label::kNear);
+ __ TruncateHeapNumberToI(input_reg, input_reg);
+ __ jmp(done);
+
+ __ bind(&no_heap_number);
+ // Check for Oddballs. Undefined/False is converted to zero and True to one
+ // for truncating conversions.
+ __ cmp(input_reg, factory()->undefined_value());
+ __ j(not_equal, &check_bools, Label::kNear);
+ __ Move(input_reg, Immediate(0));
+ __ jmp(done);
+
+ __ bind(&check_bools);
+ __ cmp(input_reg, factory()->true_value());
+ __ j(not_equal, &check_false, Label::kNear);
+ __ Move(input_reg, Immediate(1));
+ __ jmp(done);
+
+ __ bind(&check_false);
+ __ cmp(input_reg, factory()->false_value());
+ DeoptimizeIf(not_equal, instr,
+ Deoptimizer::kNotAHeapNumberUndefinedBoolean);
+ __ Move(input_reg, Immediate(0));
+ } else {
+ // TODO(olivf) Converting a number on the fpu is actually quite slow. We
+ // should first try a fast conversion and then bailout to this slow case.
+ __ cmp(FieldOperand(input_reg, HeapObject::kMapOffset),
+ isolate()->factory()->heap_number_map());
+ DeoptimizeIf(not_equal, instr, Deoptimizer::kNotAHeapNumber);
+
+ __ sub(esp, Immediate(kPointerSize));
+ __ fld_d(FieldOperand(input_reg, HeapNumber::kValueOffset));
+
+ if (instr->hydrogen()->GetMinusZeroMode() == FAIL_ON_MINUS_ZERO) {
+ Label no_precision_lost, not_nan, zero_check;
+ __ fld(0);
+
+ __ fist_s(MemOperand(esp, 0));
+ __ fild_s(MemOperand(esp, 0));
+ __ FCmp();
+ __ pop(input_reg);
+
+ __ j(equal, &no_precision_lost, Label::kNear);
+ __ fstp(0);
+ DeoptimizeIf(no_condition, instr, Deoptimizer::kLostPrecision);
+ __ bind(&no_precision_lost);
+
+ __ j(parity_odd, &not_nan);
+ __ fstp(0);
+ DeoptimizeIf(no_condition, instr, Deoptimizer::kNaN);
+ __ bind(&not_nan);
+
+ __ test(input_reg, Operand(input_reg));
+ __ j(zero, &zero_check, Label::kNear);
+ __ fstp(0);
+ __ jmp(done);
+
+ __ bind(&zero_check);
+ // To check for minus zero, we load the value again as float, and check
+ // if that is still 0.
+ __ sub(esp, Immediate(kPointerSize));
+ __ fstp_s(Operand(esp, 0));
+ __ pop(input_reg);
+ __ test(input_reg, Operand(input_reg));
+ DeoptimizeIf(not_zero, instr, Deoptimizer::kMinusZero);
+ } else {
+ __ fist_s(MemOperand(esp, 0));
+ __ fild_s(MemOperand(esp, 0));
+ __ FCmp();
+ __ pop(input_reg);
+ DeoptimizeIf(not_equal, instr, Deoptimizer::kLostPrecision);
+ DeoptimizeIf(parity_even, instr, Deoptimizer::kNaN);
+ }
+ }
+}
+
+
+void LCodeGen::DoTaggedToI(LTaggedToI* instr) {
+ class DeferredTaggedToI final : public LDeferredCode {
+ public:
+ DeferredTaggedToI(LCodeGen* codegen,
+ LTaggedToI* instr,
+ const X87Stack& x87_stack)
+ : LDeferredCode(codegen, x87_stack), instr_(instr) { }
+ void Generate() override { codegen()->DoDeferredTaggedToI(instr_, done()); }
+ LInstruction* instr() override { return instr_; }
+
+ private:
+ LTaggedToI* instr_;
+ };
+
+ LOperand* input = instr->value();
+ DCHECK(input->IsRegister());
+ Register input_reg = ToRegister(input);
+ DCHECK(input_reg.is(ToRegister(instr->result())));
+
+ if (instr->hydrogen()->value()->representation().IsSmi()) {
+ __ SmiUntag(input_reg);
+ } else {
+ DeferredTaggedToI* deferred =
+ new(zone()) DeferredTaggedToI(this, instr, x87_stack_);
+ // Optimistically untag the input.
+ // If the input is a HeapObject, SmiUntag will set the carry flag.
+ STATIC_ASSERT(kSmiTagSize == 1 && kSmiTag == 0);
+ __ SmiUntag(input_reg);
+ // Branch to deferred code if the input was tagged.
+ // The deferred code will take care of restoring the tag.
+ __ j(carry, deferred->entry());
+ __ bind(deferred->exit());
+ }
+}
+
+
+void LCodeGen::DoNumberUntagD(LNumberUntagD* instr) {
+ LOperand* input = instr->value();
+ DCHECK(input->IsRegister());
+ LOperand* temp = instr->temp();
+ DCHECK(temp->IsRegister());
+ LOperand* result = instr->result();
+ DCHECK(result->IsDoubleRegister());
+
+ Register input_reg = ToRegister(input);
+ Register temp_reg = ToRegister(temp);
+
+ HValue* value = instr->hydrogen()->value();
+ NumberUntagDMode mode = value->representation().IsSmi()
+ ? NUMBER_CANDIDATE_IS_SMI : NUMBER_CANDIDATE_IS_ANY_TAGGED;
+
+ EmitNumberUntagDNoSSE2(instr, input_reg, temp_reg, ToX87Register(result),
+ mode);
+}
+
+
+void LCodeGen::DoDoubleToI(LDoubleToI* instr) {
+ LOperand* input = instr->value();
+ DCHECK(input->IsDoubleRegister());
+ LOperand* result = instr->result();
+ DCHECK(result->IsRegister());
+ Register result_reg = ToRegister(result);
+
+ if (instr->truncating()) {
+ X87Register input_reg = ToX87Register(input);
+ X87Fxch(input_reg);
+ __ TruncateX87TOSToI(result_reg);
+ } else {
+ Label lost_precision, is_nan, minus_zero, done;
+ X87Register input_reg = ToX87Register(input);
+ X87Fxch(input_reg);
+ __ X87TOSToI(result_reg, instr->hydrogen()->GetMinusZeroMode(),
+ &lost_precision, &is_nan, &minus_zero);
+ __ jmp(&done);
+ __ bind(&lost_precision);
+ DeoptimizeIf(no_condition, instr, Deoptimizer::kLostPrecision);
+ __ bind(&is_nan);
+ DeoptimizeIf(no_condition, instr, Deoptimizer::kNaN);
+ __ bind(&minus_zero);
+ DeoptimizeIf(no_condition, instr, Deoptimizer::kMinusZero);
+ __ bind(&done);
+ }
+}
+
+
+void LCodeGen::DoDoubleToSmi(LDoubleToSmi* instr) {
+ LOperand* input = instr->value();
+ DCHECK(input->IsDoubleRegister());
+ LOperand* result = instr->result();
+ DCHECK(result->IsRegister());
+ Register result_reg = ToRegister(result);
+
+ Label lost_precision, is_nan, minus_zero, done;
+ X87Register input_reg = ToX87Register(input);
+ X87Fxch(input_reg);
+ __ X87TOSToI(result_reg, instr->hydrogen()->GetMinusZeroMode(),
+ &lost_precision, &is_nan, &minus_zero);
+ __ jmp(&done);
+ __ bind(&lost_precision);
+ DeoptimizeIf(no_condition, instr, Deoptimizer::kLostPrecision);
+ __ bind(&is_nan);
+ DeoptimizeIf(no_condition, instr, Deoptimizer::kNaN);
+ __ bind(&minus_zero);
+ DeoptimizeIf(no_condition, instr, Deoptimizer::kMinusZero);
+ __ bind(&done);
+ __ SmiTag(result_reg);
+ DeoptimizeIf(overflow, instr, Deoptimizer::kOverflow);
+}
+
+
+void LCodeGen::DoCheckSmi(LCheckSmi* instr) {
+ LOperand* input = instr->value();
+ __ test(ToOperand(input), Immediate(kSmiTagMask));
+ DeoptimizeIf(not_zero, instr, Deoptimizer::kNotASmi);
+}
+
+
+void LCodeGen::DoCheckNonSmi(LCheckNonSmi* instr) {
+ if (!instr->hydrogen()->value()->type().IsHeapObject()) {
+ LOperand* input = instr->value();
+ __ test(ToOperand(input), Immediate(kSmiTagMask));
+ DeoptimizeIf(zero, instr, Deoptimizer::kSmi);
+ }
+}
+
+
+void LCodeGen::DoCheckArrayBufferNotNeutered(
+ LCheckArrayBufferNotNeutered* instr) {
+ Register view = ToRegister(instr->view());
+ Register scratch = ToRegister(instr->scratch());
+
+ __ mov(scratch, FieldOperand(view, JSArrayBufferView::kBufferOffset));
+ __ test_b(FieldOperand(scratch, JSArrayBuffer::kBitFieldOffset),
+ 1 << JSArrayBuffer::WasNeutered::kShift);
+ DeoptimizeIf(not_zero, instr, Deoptimizer::kOutOfBounds);
+}
+
+
+void LCodeGen::DoCheckInstanceType(LCheckInstanceType* instr) {
+ Register input = ToRegister(instr->value());
+ Register temp = ToRegister(instr->temp());
+
+ __ mov(temp, FieldOperand(input, HeapObject::kMapOffset));
+
+ if (instr->hydrogen()->is_interval_check()) {
+ InstanceType first;
+ InstanceType last;
+ instr->hydrogen()->GetCheckInterval(&first, &last);
+
+ __ cmpb(FieldOperand(temp, Map::kInstanceTypeOffset),
+ static_cast<int8_t>(first));
+
+ // If there is only one type in the interval check for equality.
+ if (first == last) {
+ DeoptimizeIf(not_equal, instr, Deoptimizer::kWrongInstanceType);
+ } else {
+ DeoptimizeIf(below, instr, Deoptimizer::kWrongInstanceType);
+ // Omit check for the last type.
+ if (last != LAST_TYPE) {
+ __ cmpb(FieldOperand(temp, Map::kInstanceTypeOffset),
+ static_cast<int8_t>(last));
+ DeoptimizeIf(above, instr, Deoptimizer::kWrongInstanceType);
+ }
+ }
+ } else {
+ uint8_t mask;
+ uint8_t tag;
+ instr->hydrogen()->GetCheckMaskAndTag(&mask, &tag);
+
+ if (base::bits::IsPowerOfTwo32(mask)) {
+ DCHECK(tag == 0 || base::bits::IsPowerOfTwo32(tag));
+ __ test_b(FieldOperand(temp, Map::kInstanceTypeOffset), mask);
+ DeoptimizeIf(tag == 0 ? not_zero : zero, instr,
+ Deoptimizer::kWrongInstanceType);
+ } else {
+ __ movzx_b(temp, FieldOperand(temp, Map::kInstanceTypeOffset));
+ __ and_(temp, mask);
+ __ cmp(temp, tag);
+ DeoptimizeIf(not_equal, instr, Deoptimizer::kWrongInstanceType);
+ }
+ }
+}
+
+
+void LCodeGen::DoCheckValue(LCheckValue* instr) {
+ Handle<HeapObject> object = instr->hydrogen()->object().handle();
+ if (instr->hydrogen()->object_in_new_space()) {
+ Register reg = ToRegister(instr->value());
+ Handle<Cell> cell = isolate()->factory()->NewCell(object);
+ __ cmp(reg, Operand::ForCell(cell));
+ } else {
+ Operand operand = ToOperand(instr->value());
+ __ cmp(operand, object);
+ }
+ DeoptimizeIf(not_equal, instr, Deoptimizer::kValueMismatch);
+}
+
+
+void LCodeGen::DoDeferredInstanceMigration(LCheckMaps* instr, Register object) {
+ {
+ PushSafepointRegistersScope scope(this);
+ __ push(object);
+ __ xor_(esi, esi);
+ __ CallRuntimeSaveDoubles(Runtime::kTryMigrateInstance);
+ RecordSafepointWithRegisters(
+ instr->pointer_map(), 1, Safepoint::kNoLazyDeopt);
+
+ __ test(eax, Immediate(kSmiTagMask));
+ }
+ DeoptimizeIf(zero, instr, Deoptimizer::kInstanceMigrationFailed);
+}
+
+
+void LCodeGen::DoCheckMaps(LCheckMaps* instr) {
+ class DeferredCheckMaps final : public LDeferredCode {
+ public:
+ DeferredCheckMaps(LCodeGen* codegen,
+ LCheckMaps* instr,
+ Register object,
+ const X87Stack& x87_stack)
+ : LDeferredCode(codegen, x87_stack), instr_(instr), object_(object) {
+ SetExit(check_maps());
+ }
+ void Generate() override {
+ codegen()->DoDeferredInstanceMigration(instr_, object_);
+ }
+ Label* check_maps() { return &check_maps_; }
+ LInstruction* instr() override { return instr_; }
+
+ private:
+ LCheckMaps* instr_;
+ Label check_maps_;
+ Register object_;
+ };
+
+ if (instr->hydrogen()->IsStabilityCheck()) {
+ const UniqueSet<Map>* maps = instr->hydrogen()->maps();
+ for (int i = 0; i < maps->size(); ++i) {
+ AddStabilityDependency(maps->at(i).handle());
+ }
+ return;
+ }
+
+ LOperand* input = instr->value();
+ DCHECK(input->IsRegister());
+ Register reg = ToRegister(input);
+
+ DeferredCheckMaps* deferred = NULL;
+ if (instr->hydrogen()->HasMigrationTarget()) {
+ deferred = new(zone()) DeferredCheckMaps(this, instr, reg, x87_stack_);
+ __ bind(deferred->check_maps());
+ }
+
+ const UniqueSet<Map>* maps = instr->hydrogen()->maps();
+ Label success;
+ for (int i = 0; i < maps->size() - 1; i++) {
+ Handle<Map> map = maps->at(i).handle();
+ __ CompareMap(reg, map);
+ __ j(equal, &success, Label::kNear);
+ }
+
+ Handle<Map> map = maps->at(maps->size() - 1).handle();
+ __ CompareMap(reg, map);
+ if (instr->hydrogen()->HasMigrationTarget()) {
+ __ j(not_equal, deferred->entry());
+ } else {
+ DeoptimizeIf(not_equal, instr, Deoptimizer::kWrongMap);
+ }
+
+ __ bind(&success);
+}
+
+
+void LCodeGen::DoClampDToUint8(LClampDToUint8* instr) {
+ X87Register value_reg = ToX87Register(instr->unclamped());
+ Register result_reg = ToRegister(instr->result());
+ X87Fxch(value_reg);
+ __ ClampTOSToUint8(result_reg);
+}
+
+
+void LCodeGen::DoClampIToUint8(LClampIToUint8* instr) {
+ DCHECK(instr->unclamped()->Equals(instr->result()));
+ Register value_reg = ToRegister(instr->result());
+ __ ClampUint8(value_reg);
+}
+
+
+void LCodeGen::DoClampTToUint8NoSSE2(LClampTToUint8NoSSE2* instr) {
+ Register input_reg = ToRegister(instr->unclamped());
+ Register result_reg = ToRegister(instr->result());
+ Register scratch = ToRegister(instr->scratch());
+ Register scratch2 = ToRegister(instr->scratch2());
+ Register scratch3 = ToRegister(instr->scratch3());
+ Label is_smi, done, heap_number, valid_exponent,
+ largest_value, zero_result, maybe_nan_or_infinity;
+
+ __ JumpIfSmi(input_reg, &is_smi);
+
+ // Check for heap number
+ __ cmp(FieldOperand(input_reg, HeapObject::kMapOffset),
+ factory()->heap_number_map());
+ __ j(equal, &heap_number, Label::kNear);
+
+ // Check for undefined. Undefined is converted to zero for clamping
+ // conversions.
+ __ cmp(input_reg, factory()->undefined_value());
+ DeoptimizeIf(not_equal, instr, Deoptimizer::kNotAHeapNumberUndefined);
+ __ jmp(&zero_result, Label::kNear);
+
+ // Heap number
+ __ bind(&heap_number);
+
+ // Surprisingly, all of the hand-crafted bit-manipulations below are much
+ // faster than the x86 FPU built-in instruction, especially since "banker's
+ // rounding" would be additionally very expensive
+
+ // Get exponent word.
+ __ mov(scratch, FieldOperand(input_reg, HeapNumber::kExponentOffset));
+ __ mov(scratch3, FieldOperand(input_reg, HeapNumber::kMantissaOffset));
+
+ // Test for negative values --> clamp to zero
+ __ test(scratch, scratch);
+ __ j(negative, &zero_result, Label::kNear);
+
+ // Get exponent alone in scratch2.
+ __ mov(scratch2, scratch);
+ __ and_(scratch2, HeapNumber::kExponentMask);
+ __ shr(scratch2, HeapNumber::kExponentShift);
+ __ j(zero, &zero_result, Label::kNear);
+ __ sub(scratch2, Immediate(HeapNumber::kExponentBias - 1));
+ __ j(negative, &zero_result, Label::kNear);
+
+ const uint32_t non_int8_exponent = 7;
+ __ cmp(scratch2, Immediate(non_int8_exponent + 1));
+ // If the exponent is too big, check for special values.
+ __ j(greater, &maybe_nan_or_infinity, Label::kNear);
+
+ __ bind(&valid_exponent);
+ // Exponent word in scratch, exponent in scratch2. We know that 0 <= exponent
+ // < 7. The shift bias is the number of bits to shift the mantissa such that
+ // with an exponent of 7 such the that top-most one is in bit 30, allowing
+ // detection the rounding overflow of a 255.5 to 256 (bit 31 goes from 0 to
+ // 1).
+ int shift_bias = (30 - HeapNumber::kExponentShift) - 7 - 1;
+ __ lea(result_reg, MemOperand(scratch2, shift_bias));
+ // Here result_reg (ecx) is the shift, scratch is the exponent word. Get the
+ // top bits of the mantissa.
+ __ and_(scratch, HeapNumber::kMantissaMask);
+ // Put back the implicit 1 of the mantissa
+ __ or_(scratch, 1 << HeapNumber::kExponentShift);
+ // Shift up to round
+ __ shl_cl(scratch);
+ // Use "banker's rounding" to spec: If fractional part of number is 0.5, then
+ // use the bit in the "ones" place and add it to the "halves" place, which has
+ // the effect of rounding to even.
+ __ mov(scratch2, scratch);
+ const uint32_t one_half_bit_shift = 30 - sizeof(uint8_t) * 8;
+ const uint32_t one_bit_shift = one_half_bit_shift + 1;
+ __ and_(scratch2, Immediate((1 << one_bit_shift) - 1));
+ __ cmp(scratch2, Immediate(1 << one_half_bit_shift));
+ Label no_round;
+ __ j(less, &no_round, Label::kNear);
+ Label round_up;
+ __ mov(scratch2, Immediate(1 << one_half_bit_shift));
+ __ j(greater, &round_up, Label::kNear);
+ __ test(scratch3, scratch3);
+ __ j(not_zero, &round_up, Label::kNear);
+ __ mov(scratch2, scratch);
+ __ and_(scratch2, Immediate(1 << one_bit_shift));
+ __ shr(scratch2, 1);
+ __ bind(&round_up);
+ __ add(scratch, scratch2);
+ __ j(overflow, &largest_value, Label::kNear);
+ __ bind(&no_round);
+ __ shr(scratch, 23);
+ __ mov(result_reg, scratch);
+ __ jmp(&done, Label::kNear);
+
+ __ bind(&maybe_nan_or_infinity);
+ // Check for NaN/Infinity, all other values map to 255
+ __ cmp(scratch2, Immediate(HeapNumber::kInfinityOrNanExponent + 1));
+ __ j(not_equal, &largest_value, Label::kNear);
+
+ // Check for NaN, which differs from Infinity in that at least one mantissa
+ // bit is set.
+ __ and_(scratch, HeapNumber::kMantissaMask);
+ __ or_(scratch, FieldOperand(input_reg, HeapNumber::kMantissaOffset));
+ __ j(not_zero, &zero_result, Label::kNear); // M!=0 --> NaN
+ // Infinity -> Fall through to map to 255.
+
+ __ bind(&largest_value);
+ __ mov(result_reg, Immediate(255));
+ __ jmp(&done, Label::kNear);
+
+ __ bind(&zero_result);
+ __ xor_(result_reg, result_reg);
+ __ jmp(&done, Label::kNear);
+
+ // smi
+ __ bind(&is_smi);
+ if (!input_reg.is(result_reg)) {
+ __ mov(result_reg, input_reg);
+ }
+ __ SmiUntag(result_reg);
+ __ ClampUint8(result_reg);
+ __ bind(&done);
+}
+
+
+void LCodeGen::DoDoubleBits(LDoubleBits* instr) {
+ X87Register value_reg = ToX87Register(instr->value());
+ Register result_reg = ToRegister(instr->result());
+ X87Fxch(value_reg);
+ __ sub(esp, Immediate(kDoubleSize));
+ __ fst_d(Operand(esp, 0));
+ if (instr->hydrogen()->bits() == HDoubleBits::HIGH) {
+ __ mov(result_reg, Operand(esp, kPointerSize));
+ } else {
+ __ mov(result_reg, Operand(esp, 0));
+ }
+ __ add(esp, Immediate(kDoubleSize));
+}
+
+
+void LCodeGen::DoConstructDouble(LConstructDouble* instr) {
+ Register hi_reg = ToRegister(instr->hi());
+ Register lo_reg = ToRegister(instr->lo());
+ X87Register result_reg = ToX87Register(instr->result());
+ // Follow below pattern to write a x87 fp register.
+ X87PrepareToWrite(result_reg);
+ __ sub(esp, Immediate(kDoubleSize));
+ __ mov(Operand(esp, 0), lo_reg);
+ __ mov(Operand(esp, kPointerSize), hi_reg);
+ __ fld_d(Operand(esp, 0));
+ __ add(esp, Immediate(kDoubleSize));
+ X87CommitWrite(result_reg);
+}
+
+
+void LCodeGen::DoAllocate(LAllocate* instr) {
+ class DeferredAllocate final : public LDeferredCode {
+ public:
+ DeferredAllocate(LCodeGen* codegen,
+ LAllocate* instr,
+ const X87Stack& x87_stack)
+ : LDeferredCode(codegen, x87_stack), instr_(instr) { }
+ void Generate() override { codegen()->DoDeferredAllocate(instr_); }
+ LInstruction* instr() override { return instr_; }
+
+ private:
+ LAllocate* instr_;
+ };
+
+ DeferredAllocate* deferred =
+ new(zone()) DeferredAllocate(this, instr, x87_stack_);
+
+ Register result = ToRegister(instr->result());
+ Register temp = ToRegister(instr->temp());
+
+ // Allocate memory for the object.
+ AllocationFlags flags = TAG_OBJECT;
+ if (instr->hydrogen()->MustAllocateDoubleAligned()) {
+ flags = static_cast<AllocationFlags>(flags | DOUBLE_ALIGNMENT);
+ }
+ if (instr->hydrogen()->IsOldSpaceAllocation()) {
+ DCHECK(!instr->hydrogen()->IsNewSpaceAllocation());
+ flags = static_cast<AllocationFlags>(flags | PRETENURE);
+ }
+
+ if (instr->size()->IsConstantOperand()) {
+ int32_t size = ToInteger32(LConstantOperand::cast(instr->size()));
+ CHECK(size <= Page::kMaxRegularHeapObjectSize);
+ __ Allocate(size, result, temp, no_reg, deferred->entry(), flags);
+ } else {
+ Register size = ToRegister(instr->size());
+ __ Allocate(size, result, temp, no_reg, deferred->entry(), flags);
+ }
+
+ __ bind(deferred->exit());
+
+ if (instr->hydrogen()->MustPrefillWithFiller()) {
+ if (instr->size()->IsConstantOperand()) {
+ int32_t size = ToInteger32(LConstantOperand::cast(instr->size()));
+ __ mov(temp, (size / kPointerSize) - 1);
+ } else {
+ temp = ToRegister(instr->size());
+ __ shr(temp, kPointerSizeLog2);
+ __ dec(temp);
+ }
+ Label loop;
+ __ bind(&loop);
+ __ mov(FieldOperand(result, temp, times_pointer_size, 0),
+ isolate()->factory()->one_pointer_filler_map());
+ __ dec(temp);
+ __ j(not_zero, &loop);
+ }
+}
+
+
+void LCodeGen::DoDeferredAllocate(LAllocate* instr) {
+ Register result = ToRegister(instr->result());
+
+ // TODO(3095996): Get rid of this. For now, we need to make the
+ // result register contain a valid pointer because it is already
+ // contained in the register pointer map.
+ __ Move(result, Immediate(Smi::FromInt(0)));
+
+ PushSafepointRegistersScope scope(this);
+ if (instr->size()->IsRegister()) {
+ Register size = ToRegister(instr->size());
+ DCHECK(!size.is(result));
+ __ SmiTag(ToRegister(instr->size()));
+ __ push(size);
+ } else {
+ int32_t size = ToInteger32(LConstantOperand::cast(instr->size()));
+ if (size >= 0 && size <= Smi::kMaxValue) {
+ __ push(Immediate(Smi::FromInt(size)));
+ } else {
+ // We should never get here at runtime => abort
+ __ int3();
+ return;
+ }
+ }
+
+ int flags = AllocateDoubleAlignFlag::encode(
+ instr->hydrogen()->MustAllocateDoubleAligned());
+ if (instr->hydrogen()->IsOldSpaceAllocation()) {
+ DCHECK(!instr->hydrogen()->IsNewSpaceAllocation());
+ flags = AllocateTargetSpace::update(flags, OLD_SPACE);
+ } else {
+ flags = AllocateTargetSpace::update(flags, NEW_SPACE);
+ }
+ __ push(Immediate(Smi::FromInt(flags)));
+
+ CallRuntimeFromDeferred(
+ Runtime::kAllocateInTargetSpace, 2, instr, instr->context());
+ __ StoreToSafepointRegisterSlot(result, eax);
+}
+
+
+void LCodeGen::DoToFastProperties(LToFastProperties* instr) {
+ DCHECK(ToRegister(instr->value()).is(eax));
+ __ push(eax);
+ CallRuntime(Runtime::kToFastProperties, 1, instr);
+}
+
+
+void LCodeGen::DoRegExpLiteral(LRegExpLiteral* instr) {
+ DCHECK(ToRegister(instr->context()).is(esi));
+ Label materialized;
+ // Registers will be used as follows:
+ // ecx = literals array.
+ // ebx = regexp literal.
+ // eax = regexp literal clone.
+ // esi = context.
+ int literal_offset =
+ LiteralsArray::OffsetOfLiteralAt(instr->hydrogen()->literal_index());
+ __ LoadHeapObject(ecx, instr->hydrogen()->literals());
+ __ mov(ebx, FieldOperand(ecx, literal_offset));
+ __ cmp(ebx, factory()->undefined_value());
+ __ j(not_equal, &materialized, Label::kNear);
+
+ // Create regexp literal using runtime function
+ // Result will be in eax.
+ __ push(ecx);
+ __ push(Immediate(Smi::FromInt(instr->hydrogen()->literal_index())));
+ __ push(Immediate(instr->hydrogen()->pattern()));
+ __ push(Immediate(instr->hydrogen()->flags()));
+ CallRuntime(Runtime::kMaterializeRegExpLiteral, 4, instr);
+ __ mov(ebx, eax);
+
+ __ bind(&materialized);
+ int size = JSRegExp::kSize + JSRegExp::kInObjectFieldCount * kPointerSize;
+ Label allocated, runtime_allocate;
+ __ Allocate(size, eax, ecx, edx, &runtime_allocate, TAG_OBJECT);
+ __ jmp(&allocated, Label::kNear);
+
+ __ bind(&runtime_allocate);
+ __ push(ebx);
+ __ push(Immediate(Smi::FromInt(size)));
+ CallRuntime(Runtime::kAllocateInNewSpace, 1, instr);
+ __ pop(ebx);
+
+ __ bind(&allocated);
+ // Copy the content into the newly allocated memory.
+ // (Unroll copy loop once for better throughput).
+ for (int i = 0; i < size - kPointerSize; i += 2 * kPointerSize) {
+ __ mov(edx, FieldOperand(ebx, i));
+ __ mov(ecx, FieldOperand(ebx, i + kPointerSize));
+ __ mov(FieldOperand(eax, i), edx);
+ __ mov(FieldOperand(eax, i + kPointerSize), ecx);
+ }
+ if ((size % (2 * kPointerSize)) != 0) {
+ __ mov(edx, FieldOperand(ebx, size - kPointerSize));
+ __ mov(FieldOperand(eax, size - kPointerSize), edx);
+ }
+}
+
+
+void LCodeGen::DoTypeof(LTypeof* instr) {
+ DCHECK(ToRegister(instr->context()).is(esi));
+ DCHECK(ToRegister(instr->value()).is(ebx));
+ Label end, do_call;
+ Register value_register = ToRegister(instr->value());
+ __ JumpIfNotSmi(value_register, &do_call);
+ __ mov(eax, Immediate(isolate()->factory()->number_string()));
+ __ jmp(&end);
+ __ bind(&do_call);
+ TypeofStub stub(isolate());
+ CallCode(stub.GetCode(), RelocInfo::CODE_TARGET, instr);
+ __ bind(&end);
+}
+
+
+void LCodeGen::DoTypeofIsAndBranch(LTypeofIsAndBranch* instr) {
+ Register input = ToRegister(instr->value());
+ Condition final_branch_condition = EmitTypeofIs(instr, input);
+ if (final_branch_condition != no_condition) {
+ EmitBranch(instr, final_branch_condition);
+ }
+}
+
+
+Condition LCodeGen::EmitTypeofIs(LTypeofIsAndBranch* instr, Register input) {
+ Label* true_label = instr->TrueLabel(chunk_);
+ Label* false_label = instr->FalseLabel(chunk_);
+ Handle<String> type_name = instr->type_literal();
+ int left_block = instr->TrueDestination(chunk_);
+ int right_block = instr->FalseDestination(chunk_);
+ int next_block = GetNextEmittedBlock();
+
+ Label::Distance true_distance = left_block == next_block ? Label::kNear
+ : Label::kFar;
+ Label::Distance false_distance = right_block == next_block ? Label::kNear
+ : Label::kFar;
+ Condition final_branch_condition = no_condition;
+ if (String::Equals(type_name, factory()->number_string())) {
+ __ JumpIfSmi(input, true_label, true_distance);
+ __ cmp(FieldOperand(input, HeapObject::kMapOffset),
+ factory()->heap_number_map());
+ final_branch_condition = equal;
+
+ } else if (String::Equals(type_name, factory()->string_string())) {
+ __ JumpIfSmi(input, false_label, false_distance);
+ __ CmpObjectType(input, FIRST_NONSTRING_TYPE, input);
+ final_branch_condition = below;
+
+ } else if (String::Equals(type_name, factory()->symbol_string())) {
+ __ JumpIfSmi(input, false_label, false_distance);
+ __ CmpObjectType(input, SYMBOL_TYPE, input);
+ final_branch_condition = equal;
+
+ } else if (String::Equals(type_name, factory()->boolean_string())) {
+ __ cmp(input, factory()->true_value());
+ __ j(equal, true_label, true_distance);
+ __ cmp(input, factory()->false_value());
+ final_branch_condition = equal;
+
+ } else if (String::Equals(type_name, factory()->undefined_string())) {
+ __ cmp(input, factory()->undefined_value());
+ __ j(equal, true_label, true_distance);
+ __ JumpIfSmi(input, false_label, false_distance);
+ // Check for undetectable objects => true.
+ __ mov(input, FieldOperand(input, HeapObject::kMapOffset));
+ __ test_b(FieldOperand(input, Map::kBitFieldOffset),
+ 1 << Map::kIsUndetectable);
+ final_branch_condition = not_zero;
+
+ } else if (String::Equals(type_name, factory()->function_string())) {
+ __ JumpIfSmi(input, false_label, false_distance);
+ // Check for callable and not undetectable objects => true.
+ __ mov(input, FieldOperand(input, HeapObject::kMapOffset));
+ __ movzx_b(input, FieldOperand(input, Map::kBitFieldOffset));
+ __ and_(input, (1 << Map::kIsCallable) | (1 << Map::kIsUndetectable));
+ __ cmp(input, 1 << Map::kIsCallable);
+ final_branch_condition = equal;
+
+ } else if (String::Equals(type_name, factory()->object_string())) {
+ __ JumpIfSmi(input, false_label, false_distance);
+ __ cmp(input, factory()->null_value());
+ __ j(equal, true_label, true_distance);
+ STATIC_ASSERT(LAST_SPEC_OBJECT_TYPE == LAST_TYPE);
+ __ CmpObjectType(input, FIRST_SPEC_OBJECT_TYPE, input);
+ __ j(below, false_label, false_distance);
+ // Check for callable or undetectable objects => false.
+ __ test_b(FieldOperand(input, Map::kBitFieldOffset),
+ (1 << Map::kIsCallable) | (1 << Map::kIsUndetectable));
+ final_branch_condition = zero;
+
+// clang-format off
+#define SIMD128_TYPE(TYPE, Type, type, lane_count, lane_type) \
+ } else if (String::Equals(type_name, factory()->type##_string())) { \
+ __ JumpIfSmi(input, false_label, false_distance); \
+ __ cmp(FieldOperand(input, HeapObject::kMapOffset), \
+ factory()->type##_map()); \
+ final_branch_condition = equal;
+ SIMD128_TYPES(SIMD128_TYPE)
+#undef SIMD128_TYPE
+ // clang-format on
+
+ } else {
+ __ jmp(false_label, false_distance);
+ }
+ return final_branch_condition;
+}
+
+
+void LCodeGen::DoIsConstructCallAndBranch(LIsConstructCallAndBranch* instr) {
+ Register temp = ToRegister(instr->temp());
+
+ EmitIsConstructCall(temp);
+ EmitBranch(instr, equal);
+}
+
+
+void LCodeGen::EmitIsConstructCall(Register temp) {
+ // Get the frame pointer for the calling frame.
+ __ mov(temp, Operand(ebp, StandardFrameConstants::kCallerFPOffset));
+
+ // Skip the arguments adaptor frame if it exists.
+ Label check_frame_marker;
+ __ cmp(Operand(temp, StandardFrameConstants::kContextOffset),
+ Immediate(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
+ __ j(not_equal, &check_frame_marker, Label::kNear);
+ __ mov(temp, Operand(temp, StandardFrameConstants::kCallerFPOffset));
+
+ // Check the marker in the calling frame.
+ __ bind(&check_frame_marker);
+ __ cmp(Operand(temp, StandardFrameConstants::kMarkerOffset),
+ Immediate(Smi::FromInt(StackFrame::CONSTRUCT)));
+}
+
+
+void LCodeGen::EnsureSpaceForLazyDeopt(int space_needed) {
+ if (info()->ShouldEnsureSpaceForLazyDeopt()) {
+ // Ensure that we have enough space after the previous lazy-bailout
+ // instruction for patching the code here.
+ int current_pc = masm()->pc_offset();
+ if (current_pc < last_lazy_deopt_pc_ + space_needed) {
+ int padding_size = last_lazy_deopt_pc_ + space_needed - current_pc;
+ __ Nop(padding_size);
+ }
+ }
+ last_lazy_deopt_pc_ = masm()->pc_offset();
+}
+
+
+void LCodeGen::DoLazyBailout(LLazyBailout* instr) {
+ last_lazy_deopt_pc_ = masm()->pc_offset();
+ DCHECK(instr->HasEnvironment());
+ LEnvironment* env = instr->environment();
+ RegisterEnvironmentForDeoptimization(env, Safepoint::kLazyDeopt);
+ safepoints_.RecordLazyDeoptimizationIndex(env->deoptimization_index());
+}
+
+
+void LCodeGen::DoDeoptimize(LDeoptimize* instr) {
+ Deoptimizer::BailoutType type = instr->hydrogen()->type();
+ // TODO(danno): Stubs expect all deopts to be lazy for historical reasons (the
+ // needed return address), even though the implementation of LAZY and EAGER is
+ // now identical. When LAZY is eventually completely folded into EAGER, remove
+ // the special case below.
+ if (info()->IsStub() && type == Deoptimizer::EAGER) {
+ type = Deoptimizer::LAZY;
+ }
+ DeoptimizeIf(no_condition, instr, instr->hydrogen()->reason(), type);
+}
+
+
+void LCodeGen::DoDummy(LDummy* instr) {
+ // Nothing to see here, move on!
+}
+
+
+void LCodeGen::DoDummyUse(LDummyUse* instr) {
+ // Nothing to see here, move on!
+}
+
+
+void LCodeGen::DoDeferredStackCheck(LStackCheck* instr) {
+ PushSafepointRegistersScope scope(this);
+ __ mov(esi, Operand(ebp, StandardFrameConstants::kContextOffset));
+ __ CallRuntimeSaveDoubles(Runtime::kStackGuard);
+ RecordSafepointWithLazyDeopt(
+ instr, RECORD_SAFEPOINT_WITH_REGISTERS_AND_NO_ARGUMENTS);
+ DCHECK(instr->HasEnvironment());
+ LEnvironment* env = instr->environment();
+ safepoints_.RecordLazyDeoptimizationIndex(env->deoptimization_index());
+}
+
+
+void LCodeGen::DoStackCheck(LStackCheck* instr) {
+ class DeferredStackCheck final : public LDeferredCode {
+ public:
+ DeferredStackCheck(LCodeGen* codegen,
+ LStackCheck* instr,
+ const X87Stack& x87_stack)
+ : LDeferredCode(codegen, x87_stack), instr_(instr) { }
+ void Generate() override { codegen()->DoDeferredStackCheck(instr_); }
+ LInstruction* instr() override { return instr_; }
+
+ private:
+ LStackCheck* instr_;
+ };
+
+ DCHECK(instr->HasEnvironment());
+ LEnvironment* env = instr->environment();
+ // There is no LLazyBailout instruction for stack-checks. We have to
+ // prepare for lazy deoptimization explicitly here.
+ if (instr->hydrogen()->is_function_entry()) {
+ // Perform stack overflow check.
+ Label done;
+ ExternalReference stack_limit =
+ ExternalReference::address_of_stack_limit(isolate());
+ __ cmp(esp, Operand::StaticVariable(stack_limit));
+ __ j(above_equal, &done, Label::kNear);
+
+ DCHECK(instr->context()->IsRegister());
+ DCHECK(ToRegister(instr->context()).is(esi));
+ CallCode(isolate()->builtins()->StackCheck(),
+ RelocInfo::CODE_TARGET,
+ instr);
+ __ bind(&done);
+ } else {
+ DCHECK(instr->hydrogen()->is_backwards_branch());
+ // Perform stack overflow check if this goto needs it before jumping.
+ DeferredStackCheck* deferred_stack_check =
+ new(zone()) DeferredStackCheck(this, instr, x87_stack_);
+ ExternalReference stack_limit =
+ ExternalReference::address_of_stack_limit(isolate());
+ __ cmp(esp, Operand::StaticVariable(stack_limit));
+ __ j(below, deferred_stack_check->entry());
+ EnsureSpaceForLazyDeopt(Deoptimizer::patch_size());
+ __ bind(instr->done_label());
+ deferred_stack_check->SetExit(instr->done_label());
+ RegisterEnvironmentForDeoptimization(env, Safepoint::kLazyDeopt);
+ // Don't record a deoptimization index for the safepoint here.
+ // This will be done explicitly when emitting call and the safepoint in
+ // the deferred code.
+ }
+}
+
+
+void LCodeGen::DoOsrEntry(LOsrEntry* instr) {
+ // This is a pseudo-instruction that ensures that the environment here is
+ // properly registered for deoptimization and records the assembler's PC
+ // offset.
+ LEnvironment* environment = instr->environment();
+
+ // If the environment were already registered, we would have no way of
+ // backpatching it with the spill slot operands.
+ DCHECK(!environment->HasBeenRegistered());
+ RegisterEnvironmentForDeoptimization(environment, Safepoint::kNoLazyDeopt);
+
+ GenerateOsrPrologue();
+}
+
+
+void LCodeGen::DoForInPrepareMap(LForInPrepareMap* instr) {
+ DCHECK(ToRegister(instr->context()).is(esi));
+ __ test(eax, Immediate(kSmiTagMask));
+ DeoptimizeIf(zero, instr, Deoptimizer::kSmi);
+
+ STATIC_ASSERT(FIRST_JS_PROXY_TYPE == FIRST_SPEC_OBJECT_TYPE);
+ __ CmpObjectType(eax, LAST_JS_PROXY_TYPE, ecx);
+ DeoptimizeIf(below_equal, instr, Deoptimizer::kWrongInstanceType);
+
+ Label use_cache, call_runtime;
+ __ CheckEnumCache(&call_runtime);
+
+ __ mov(eax, FieldOperand(eax, HeapObject::kMapOffset));
+ __ jmp(&use_cache, Label::kNear);
+
+ // Get the set of properties to enumerate.
+ __ bind(&call_runtime);
+ __ push(eax);
+ CallRuntime(Runtime::kGetPropertyNamesFast, 1, instr);
+
+ __ cmp(FieldOperand(eax, HeapObject::kMapOffset),
+ isolate()->factory()->meta_map());
+ DeoptimizeIf(not_equal, instr, Deoptimizer::kWrongMap);
+ __ bind(&use_cache);
+}
+
+
+void LCodeGen::DoForInCacheArray(LForInCacheArray* instr) {
+ Register map = ToRegister(instr->map());
+ Register result = ToRegister(instr->result());
+ Label load_cache, done;
+ __ EnumLength(result, map);
+ __ cmp(result, Immediate(Smi::FromInt(0)));
+ __ j(not_equal, &load_cache, Label::kNear);
+ __ mov(result, isolate()->factory()->empty_fixed_array());
+ __ jmp(&done, Label::kNear);
+
+ __ bind(&load_cache);
+ __ LoadInstanceDescriptors(map, result);
+ __ mov(result,
+ FieldOperand(result, DescriptorArray::kEnumCacheOffset));
+ __ mov(result,
+ FieldOperand(result, FixedArray::SizeFor(instr->idx())));
+ __ bind(&done);
+ __ test(result, result);
+ DeoptimizeIf(equal, instr, Deoptimizer::kNoCache);
+}
+
+
+void LCodeGen::DoCheckMapValue(LCheckMapValue* instr) {
+ Register object = ToRegister(instr->value());
+ __ cmp(ToRegister(instr->map()),
+ FieldOperand(object, HeapObject::kMapOffset));
+ DeoptimizeIf(not_equal, instr, Deoptimizer::kWrongMap);
+}
+
+
+void LCodeGen::DoDeferredLoadMutableDouble(LLoadFieldByIndex* instr,
+ Register object,
+ Register index) {
+ PushSafepointRegistersScope scope(this);
+ __ push(object);
+ __ push(index);
+ __ xor_(esi, esi);
+ __ CallRuntimeSaveDoubles(Runtime::kLoadMutableDouble);
+ RecordSafepointWithRegisters(
+ instr->pointer_map(), 2, Safepoint::kNoLazyDeopt);
+ __ StoreToSafepointRegisterSlot(object, eax);
+}
+
+
+void LCodeGen::DoLoadFieldByIndex(LLoadFieldByIndex* instr) {
+ class DeferredLoadMutableDouble final : public LDeferredCode {
+ public:
+ DeferredLoadMutableDouble(LCodeGen* codegen,
+ LLoadFieldByIndex* instr,
+ Register object,
+ Register index,
+ const X87Stack& x87_stack)
+ : LDeferredCode(codegen, x87_stack),
+ instr_(instr),
+ object_(object),
+ index_(index) {
+ }
+ void Generate() override {
+ codegen()->DoDeferredLoadMutableDouble(instr_, object_, index_);
+ }
+ LInstruction* instr() override { return instr_; }
+
+ private:
+ LLoadFieldByIndex* instr_;
+ Register object_;
+ Register index_;
+ };
+
+ Register object = ToRegister(instr->object());
+ Register index = ToRegister(instr->index());
+
+ DeferredLoadMutableDouble* deferred;
+ deferred = new(zone()) DeferredLoadMutableDouble(
+ this, instr, object, index, x87_stack_);
+
+ Label out_of_object, done;
+ __ test(index, Immediate(Smi::FromInt(1)));
+ __ j(not_zero, deferred->entry());
+
+ __ sar(index, 1);
+
+ __ cmp(index, Immediate(0));
+ __ j(less, &out_of_object, Label::kNear);
+ __ mov(object, FieldOperand(object,
+ index,
+ times_half_pointer_size,
+ JSObject::kHeaderSize));
+ __ jmp(&done, Label::kNear);
+
+ __ bind(&out_of_object);
+ __ mov(object, FieldOperand(object, JSObject::kPropertiesOffset));
+ __ neg(index);
+ // Index is now equal to out of object property index plus 1.
+ __ mov(object, FieldOperand(object,
+ index,
+ times_half_pointer_size,
+ FixedArray::kHeaderSize - kPointerSize));
+ __ bind(deferred->exit());
+ __ bind(&done);
+}
+
+
+void LCodeGen::DoStoreFrameContext(LStoreFrameContext* instr) {
+ Register context = ToRegister(instr->context());
+ __ mov(Operand(ebp, StandardFrameConstants::kContextOffset), context);
+}
+
+
+void LCodeGen::DoAllocateBlockContext(LAllocateBlockContext* instr) {
+ Handle<ScopeInfo> scope_info = instr->scope_info();
+ __ Push(scope_info);
+ __ push(ToRegister(instr->function()));
+ CallRuntime(Runtime::kPushBlockContext, 2, instr);
+ RecordSafepoint(Safepoint::kNoLazyDeopt);
+}
+
+
+#undef __
+
+} // namespace internal
+} // namespace v8
+
+#endif // V8_TARGET_ARCH_X87