diff options
Diffstat (limited to 'deps/v8/src/full-codegen/mips/full-codegen-mips.cc')
-rw-r--r-- | deps/v8/src/full-codegen/mips/full-codegen-mips.cc | 5385 |
1 files changed, 5385 insertions, 0 deletions
diff --git a/deps/v8/src/full-codegen/mips/full-codegen-mips.cc b/deps/v8/src/full-codegen/mips/full-codegen-mips.cc new file mode 100644 index 0000000000..c8da77fba2 --- /dev/null +++ b/deps/v8/src/full-codegen/mips/full-codegen-mips.cc @@ -0,0 +1,5385 @@ +// Copyright 2012 the V8 project authors. All rights reserved. +// Use of this source code is governed by a BSD-style license that can be +// found in the LICENSE file. + +#if V8_TARGET_ARCH_MIPS + +// Note on Mips implementation: +// +// The result_register() for mips is the 'v0' register, which is defined +// by the ABI to contain function return values. However, the first +// parameter to a function is defined to be 'a0'. So there are many +// places where we have to move a previous result in v0 to a0 for the +// next call: mov(a0, v0). This is not needed on the other architectures. + +#include "src/code-factory.h" +#include "src/code-stubs.h" +#include "src/codegen.h" +#include "src/compiler.h" +#include "src/debug/debug.h" +#include "src/full-codegen/full-codegen.h" +#include "src/ic/ic.h" +#include "src/parser.h" +#include "src/scopes.h" + +#include "src/mips/code-stubs-mips.h" +#include "src/mips/macro-assembler-mips.h" + +namespace v8 { +namespace internal { + +#define __ ACCESS_MASM(masm_) + + +// A patch site is a location in the code which it is possible to patch. This +// class has a number of methods to emit the code which is patchable and the +// method EmitPatchInfo to record a marker back to the patchable code. This +// marker is a andi zero_reg, rx, #yyyy instruction, and rx * 0x0000ffff + yyyy +// (raw 16 bit immediate value is used) is the delta from the pc to the first +// instruction of the patchable code. +// The marker instruction is effectively a NOP (dest is zero_reg) and will +// never be emitted by normal code. +class JumpPatchSite BASE_EMBEDDED { + public: + explicit JumpPatchSite(MacroAssembler* masm) : masm_(masm) { +#ifdef DEBUG + info_emitted_ = false; +#endif + } + + ~JumpPatchSite() { + DCHECK(patch_site_.is_bound() == info_emitted_); + } + + // When initially emitting this ensure that a jump is always generated to skip + // the inlined smi code. + void EmitJumpIfNotSmi(Register reg, Label* target) { + DCHECK(!patch_site_.is_bound() && !info_emitted_); + Assembler::BlockTrampolinePoolScope block_trampoline_pool(masm_); + __ bind(&patch_site_); + __ andi(at, reg, 0); + // Always taken before patched. + __ BranchShort(target, eq, at, Operand(zero_reg)); + } + + // When initially emitting this ensure that a jump is never generated to skip + // the inlined smi code. + void EmitJumpIfSmi(Register reg, Label* target) { + Assembler::BlockTrampolinePoolScope block_trampoline_pool(masm_); + DCHECK(!patch_site_.is_bound() && !info_emitted_); + __ bind(&patch_site_); + __ andi(at, reg, 0); + // Never taken before patched. + __ BranchShort(target, ne, at, Operand(zero_reg)); + } + + void EmitPatchInfo() { + if (patch_site_.is_bound()) { + int delta_to_patch_site = masm_->InstructionsGeneratedSince(&patch_site_); + Register reg = Register::from_code(delta_to_patch_site / kImm16Mask); + __ andi(zero_reg, reg, delta_to_patch_site % kImm16Mask); +#ifdef DEBUG + info_emitted_ = true; +#endif + } else { + __ nop(); // Signals no inlined code. + } + } + + private: + MacroAssembler* masm_; + Label patch_site_; +#ifdef DEBUG + bool info_emitted_; +#endif +}; + + +// Generate code for a JS function. On entry to the function the receiver +// and arguments have been pushed on the stack left to right. The actual +// argument count matches the formal parameter count expected by the +// function. +// +// The live registers are: +// o a1: the JS function object being called (i.e. ourselves) +// o cp: our context +// o fp: our caller's frame pointer +// o sp: stack pointer +// o ra: return address +// +// The function builds a JS frame. Please see JavaScriptFrameConstants in +// frames-mips.h for its layout. +void FullCodeGenerator::Generate() { + CompilationInfo* info = info_; + profiling_counter_ = isolate()->factory()->NewCell( + Handle<Smi>(Smi::FromInt(FLAG_interrupt_budget), isolate())); + SetFunctionPosition(function()); + Comment cmnt(masm_, "[ function compiled by full code generator"); + + ProfileEntryHookStub::MaybeCallEntryHook(masm_); + +#ifdef DEBUG + if (strlen(FLAG_stop_at) > 0 && + info->literal()->name()->IsUtf8EqualTo(CStrVector(FLAG_stop_at))) { + __ stop("stop-at"); + } +#endif + + // Sloppy mode functions and builtins need to replace the receiver with the + // global proxy when called as functions (without an explicit receiver + // object). + if (is_sloppy(info->language_mode()) && !info->is_native() && + info->MayUseThis() && info->scope()->has_this_declaration()) { + Label ok; + int receiver_offset = info->scope()->num_parameters() * kPointerSize; + __ lw(at, MemOperand(sp, receiver_offset)); + __ LoadRoot(a2, Heap::kUndefinedValueRootIndex); + __ Branch(&ok, ne, a2, Operand(at)); + + __ lw(a2, GlobalObjectOperand()); + __ lw(a2, FieldMemOperand(a2, GlobalObject::kGlobalProxyOffset)); + + __ sw(a2, MemOperand(sp, receiver_offset)); + + __ bind(&ok); + } + + // Open a frame scope to indicate that there is a frame on the stack. The + // MANUAL indicates that the scope shouldn't actually generate code to set up + // the frame (that is done below). + FrameScope frame_scope(masm_, StackFrame::MANUAL); + + info->set_prologue_offset(masm_->pc_offset()); + __ Prologue(info->IsCodePreAgingActive()); + info->AddNoFrameRange(0, masm_->pc_offset()); + + { Comment cmnt(masm_, "[ Allocate locals"); + int locals_count = info->scope()->num_stack_slots(); + // Generators allocate locals, if any, in context slots. + DCHECK(!IsGeneratorFunction(info->literal()->kind()) || locals_count == 0); + if (locals_count > 0) { + if (locals_count >= 128) { + Label ok; + __ Subu(t5, sp, Operand(locals_count * kPointerSize)); + __ LoadRoot(a2, Heap::kRealStackLimitRootIndex); + __ Branch(&ok, hs, t5, Operand(a2)); + __ InvokeBuiltin(Builtins::STACK_OVERFLOW, CALL_FUNCTION); + __ bind(&ok); + } + __ LoadRoot(t5, Heap::kUndefinedValueRootIndex); + int kMaxPushes = FLAG_optimize_for_size ? 4 : 32; + if (locals_count >= kMaxPushes) { + int loop_iterations = locals_count / kMaxPushes; + __ li(a2, Operand(loop_iterations)); + Label loop_header; + __ bind(&loop_header); + // Do pushes. + __ Subu(sp, sp, Operand(kMaxPushes * kPointerSize)); + for (int i = 0; i < kMaxPushes; i++) { + __ sw(t5, MemOperand(sp, i * kPointerSize)); + } + // Continue loop if not done. + __ Subu(a2, a2, Operand(1)); + __ Branch(&loop_header, ne, a2, Operand(zero_reg)); + } + int remaining = locals_count % kMaxPushes; + // Emit the remaining pushes. + __ Subu(sp, sp, Operand(remaining * kPointerSize)); + for (int i = 0; i < remaining; i++) { + __ sw(t5, MemOperand(sp, i * kPointerSize)); + } + } + } + + bool function_in_register = true; + + // Possibly allocate a local context. + if (info->scope()->num_heap_slots() > 0) { + Comment cmnt(masm_, "[ Allocate context"); + // Argument to NewContext is the function, which is still in a1. + bool need_write_barrier = true; + int slots = info->scope()->num_heap_slots() - Context::MIN_CONTEXT_SLOTS; + if (info->scope()->is_script_scope()) { + __ push(a1); + __ Push(info->scope()->GetScopeInfo(info->isolate())); + __ CallRuntime(Runtime::kNewScriptContext, 2); + } else if (slots <= FastNewContextStub::kMaximumSlots) { + FastNewContextStub stub(isolate(), slots); + __ CallStub(&stub); + // Result of FastNewContextStub is always in new space. + need_write_barrier = false; + } else { + __ push(a1); + __ CallRuntime(Runtime::kNewFunctionContext, 1); + } + function_in_register = false; + // Context is returned in v0. It replaces the context passed to us. + // It's saved in the stack and kept live in cp. + __ mov(cp, v0); + __ sw(v0, MemOperand(fp, StandardFrameConstants::kContextOffset)); + // Copy any necessary parameters into the context. + int num_parameters = info->scope()->num_parameters(); + int first_parameter = info->scope()->has_this_declaration() ? -1 : 0; + for (int i = first_parameter; i < num_parameters; i++) { + Variable* var = (i == -1) ? scope()->receiver() : scope()->parameter(i); + if (var->IsContextSlot()) { + int parameter_offset = StandardFrameConstants::kCallerSPOffset + + (num_parameters - 1 - i) * kPointerSize; + // Load parameter from stack. + __ lw(a0, MemOperand(fp, parameter_offset)); + // Store it in the context. + MemOperand target = ContextOperand(cp, var->index()); + __ sw(a0, target); + + // Update the write barrier. + if (need_write_barrier) { + __ RecordWriteContextSlot( + cp, target.offset(), a0, a3, kRAHasBeenSaved, kDontSaveFPRegs); + } else if (FLAG_debug_code) { + Label done; + __ JumpIfInNewSpace(cp, a0, &done); + __ Abort(kExpectedNewSpaceObject); + __ bind(&done); + } + } + } + } + + // Possibly set up a local binding to the this function which is used in + // derived constructors with super calls. + Variable* this_function_var = scope()->this_function_var(); + if (this_function_var != nullptr) { + Comment cmnt(masm_, "[ This function"); + if (!function_in_register) { + __ lw(a1, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset)); + // The write barrier clobbers register again, keep is marked as such. + } + SetVar(this_function_var, a1, a2, a3); + } + + Variable* new_target_var = scope()->new_target_var(); + if (new_target_var != nullptr) { + Comment cmnt(masm_, "[ new.target"); + + // Get the frame pointer for the calling frame. + __ lw(a2, MemOperand(fp, StandardFrameConstants::kCallerFPOffset)); + + // Skip the arguments adaptor frame if it exists. + Label check_frame_marker; + __ lw(a1, MemOperand(a2, StandardFrameConstants::kContextOffset)); + __ Branch(&check_frame_marker, ne, a1, + Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR))); + __ lw(a2, MemOperand(a2, StandardFrameConstants::kCallerFPOffset)); + + // Check the marker in the calling frame. + __ bind(&check_frame_marker); + __ lw(a1, MemOperand(a2, StandardFrameConstants::kMarkerOffset)); + + Label non_construct_frame, done; + __ Branch(&non_construct_frame, ne, a1, + Operand(Smi::FromInt(StackFrame::CONSTRUCT))); + + __ lw(v0, + MemOperand(a2, ConstructFrameConstants::kOriginalConstructorOffset)); + __ Branch(&done); + + __ bind(&non_construct_frame); + __ LoadRoot(v0, Heap::kUndefinedValueRootIndex); + __ bind(&done); + + SetVar(new_target_var, v0, a2, a3); + } + + // Possibly allocate RestParameters + int rest_index; + Variable* rest_param = scope()->rest_parameter(&rest_index); + if (rest_param) { + Comment cmnt(masm_, "[ Allocate rest parameter array"); + + int num_parameters = info->scope()->num_parameters(); + int offset = num_parameters * kPointerSize; + + __ Addu(a3, fp, + Operand(StandardFrameConstants::kCallerSPOffset + offset)); + __ li(a2, Operand(Smi::FromInt(num_parameters))); + __ li(a1, Operand(Smi::FromInt(rest_index))); + __ li(a0, Operand(Smi::FromInt(language_mode()))); + __ Push(a3, a2, a1, a0); + + RestParamAccessStub stub(isolate()); + __ CallStub(&stub); + + SetVar(rest_param, v0, a1, a2); + } + + Variable* arguments = scope()->arguments(); + if (arguments != NULL) { + // Function uses arguments object. + Comment cmnt(masm_, "[ Allocate arguments object"); + if (!function_in_register) { + // Load this again, if it's used by the local context below. + __ lw(a3, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset)); + } else { + __ mov(a3, a1); + } + // Receiver is just before the parameters on the caller's stack. + int num_parameters = info->scope()->num_parameters(); + int offset = num_parameters * kPointerSize; + __ Addu(a2, fp, + Operand(StandardFrameConstants::kCallerSPOffset + offset)); + __ li(a1, Operand(Smi::FromInt(num_parameters))); + __ Push(a3, a2, a1); + + // Arguments to ArgumentsAccessStub: + // function, receiver address, parameter count. + // The stub will rewrite receiever and parameter count if the previous + // stack frame was an arguments adapter frame. + ArgumentsAccessStub::Type type; + if (is_strict(language_mode()) || !has_simple_parameters()) { + type = ArgumentsAccessStub::NEW_STRICT; + } else if (function()->has_duplicate_parameters()) { + type = ArgumentsAccessStub::NEW_SLOPPY_SLOW; + } else { + type = ArgumentsAccessStub::NEW_SLOPPY_FAST; + } + ArgumentsAccessStub stub(isolate(), type); + __ CallStub(&stub); + + SetVar(arguments, v0, a1, a2); + } + + if (FLAG_trace) { + __ CallRuntime(Runtime::kTraceEnter, 0); + } + + // Visit the declarations and body unless there is an illegal + // redeclaration. + if (scope()->HasIllegalRedeclaration()) { + Comment cmnt(masm_, "[ Declarations"); + scope()->VisitIllegalRedeclaration(this); + + } else { + PrepareForBailoutForId(BailoutId::FunctionEntry(), NO_REGISTERS); + { Comment cmnt(masm_, "[ Declarations"); + VisitDeclarations(scope()->declarations()); + } + + // Assert that the declarations do not use ICs. Otherwise the debugger + // won't be able to redirect a PC at an IC to the correct IC in newly + // recompiled code. + DCHECK_EQ(0, ic_total_count_); + + { Comment cmnt(masm_, "[ Stack check"); + PrepareForBailoutForId(BailoutId::Declarations(), NO_REGISTERS); + Label ok; + __ LoadRoot(at, Heap::kStackLimitRootIndex); + __ Branch(&ok, hs, sp, Operand(at)); + Handle<Code> stack_check = isolate()->builtins()->StackCheck(); + PredictableCodeSizeScope predictable(masm_, + masm_->CallSize(stack_check, RelocInfo::CODE_TARGET)); + __ Call(stack_check, RelocInfo::CODE_TARGET); + __ bind(&ok); + } + + { Comment cmnt(masm_, "[ Body"); + DCHECK(loop_depth() == 0); + VisitStatements(function()->body()); + DCHECK(loop_depth() == 0); + } + } + + // Always emit a 'return undefined' in case control fell off the end of + // the body. + { Comment cmnt(masm_, "[ return <undefined>;"); + __ LoadRoot(v0, Heap::kUndefinedValueRootIndex); + } + EmitReturnSequence(); +} + + +void FullCodeGenerator::ClearAccumulator() { + DCHECK(Smi::FromInt(0) == 0); + __ mov(v0, zero_reg); +} + + +void FullCodeGenerator::EmitProfilingCounterDecrement(int delta) { + __ li(a2, Operand(profiling_counter_)); + __ lw(a3, FieldMemOperand(a2, Cell::kValueOffset)); + __ Subu(a3, a3, Operand(Smi::FromInt(delta))); + __ sw(a3, FieldMemOperand(a2, Cell::kValueOffset)); +} + + +void FullCodeGenerator::EmitProfilingCounterReset() { + int reset_value = FLAG_interrupt_budget; + if (info_->is_debug()) { + // Detect debug break requests as soon as possible. + reset_value = FLAG_interrupt_budget >> 4; + } + __ li(a2, Operand(profiling_counter_)); + __ li(a3, Operand(Smi::FromInt(reset_value))); + __ sw(a3, FieldMemOperand(a2, Cell::kValueOffset)); +} + + +void FullCodeGenerator::EmitBackEdgeBookkeeping(IterationStatement* stmt, + Label* back_edge_target) { + // The generated code is used in Deoptimizer::PatchStackCheckCodeAt so we need + // to make sure it is constant. Branch may emit a skip-or-jump sequence + // instead of the normal Branch. It seems that the "skip" part of that + // sequence is about as long as this Branch would be so it is safe to ignore + // that. + Assembler::BlockTrampolinePoolScope block_trampoline_pool(masm_); + Comment cmnt(masm_, "[ Back edge bookkeeping"); + Label ok; + DCHECK(back_edge_target->is_bound()); + int distance = masm_->SizeOfCodeGeneratedSince(back_edge_target); + int weight = Min(kMaxBackEdgeWeight, + Max(1, distance / kCodeSizeMultiplier)); + EmitProfilingCounterDecrement(weight); + __ slt(at, a3, zero_reg); + __ beq(at, zero_reg, &ok); + // Call will emit a li t9 first, so it is safe to use the delay slot. + __ Call(isolate()->builtins()->InterruptCheck(), RelocInfo::CODE_TARGET); + // Record a mapping of this PC offset to the OSR id. This is used to find + // the AST id from the unoptimized code in order to use it as a key into + // the deoptimization input data found in the optimized code. + RecordBackEdge(stmt->OsrEntryId()); + EmitProfilingCounterReset(); + + __ bind(&ok); + PrepareForBailoutForId(stmt->EntryId(), NO_REGISTERS); + // Record a mapping of the OSR id to this PC. This is used if the OSR + // entry becomes the target of a bailout. We don't expect it to be, but + // we want it to work if it is. + PrepareForBailoutForId(stmt->OsrEntryId(), NO_REGISTERS); +} + + +void FullCodeGenerator::EmitReturnSequence() { + Comment cmnt(masm_, "[ Return sequence"); + if (return_label_.is_bound()) { + __ Branch(&return_label_); + } else { + __ bind(&return_label_); + if (FLAG_trace) { + // Push the return value on the stack as the parameter. + // Runtime::TraceExit returns its parameter in v0. + __ push(v0); + __ CallRuntime(Runtime::kTraceExit, 1); + } + // Pretend that the exit is a backwards jump to the entry. + int weight = 1; + if (info_->ShouldSelfOptimize()) { + weight = FLAG_interrupt_budget / FLAG_self_opt_count; + } else { + int distance = masm_->pc_offset(); + weight = Min(kMaxBackEdgeWeight, + Max(1, distance / kCodeSizeMultiplier)); + } + EmitProfilingCounterDecrement(weight); + Label ok; + __ Branch(&ok, ge, a3, Operand(zero_reg)); + __ push(v0); + __ Call(isolate()->builtins()->InterruptCheck(), + RelocInfo::CODE_TARGET); + __ pop(v0); + EmitProfilingCounterReset(); + __ bind(&ok); + + // Make sure that the constant pool is not emitted inside of the return + // sequence. + { Assembler::BlockTrampolinePoolScope block_trampoline_pool(masm_); + // Here we use masm_-> instead of the __ macro to avoid the code coverage + // tool from instrumenting as we rely on the code size here. + int32_t arg_count = info_->scope()->num_parameters() + 1; + int32_t sp_delta = arg_count * kPointerSize; + SetReturnPosition(function()); + masm_->mov(sp, fp); + int no_frame_start = masm_->pc_offset(); + masm_->MultiPop(static_cast<RegList>(fp.bit() | ra.bit())); + masm_->Addu(sp, sp, Operand(sp_delta)); + masm_->Jump(ra); + info_->AddNoFrameRange(no_frame_start, masm_->pc_offset()); + } + } +} + + +void FullCodeGenerator::StackValueContext::Plug(Variable* var) const { + DCHECK(var->IsStackAllocated() || var->IsContextSlot()); + codegen()->GetVar(result_register(), var); + __ push(result_register()); +} + + +void FullCodeGenerator::EffectContext::Plug(Heap::RootListIndex index) const { +} + + +void FullCodeGenerator::AccumulatorValueContext::Plug( + Heap::RootListIndex index) const { + __ LoadRoot(result_register(), index); +} + + +void FullCodeGenerator::StackValueContext::Plug( + Heap::RootListIndex index) const { + __ LoadRoot(result_register(), index); + __ push(result_register()); +} + + +void FullCodeGenerator::TestContext::Plug(Heap::RootListIndex index) const { + codegen()->PrepareForBailoutBeforeSplit(condition(), + true, + true_label_, + false_label_); + if (index == Heap::kUndefinedValueRootIndex || + index == Heap::kNullValueRootIndex || + index == Heap::kFalseValueRootIndex) { + if (false_label_ != fall_through_) __ Branch(false_label_); + } else if (index == Heap::kTrueValueRootIndex) { + if (true_label_ != fall_through_) __ Branch(true_label_); + } else { + __ LoadRoot(result_register(), index); + codegen()->DoTest(this); + } +} + + +void FullCodeGenerator::EffectContext::Plug(Handle<Object> lit) const { +} + + +void FullCodeGenerator::AccumulatorValueContext::Plug( + Handle<Object> lit) const { + __ li(result_register(), Operand(lit)); +} + + +void FullCodeGenerator::StackValueContext::Plug(Handle<Object> lit) const { + // Immediates cannot be pushed directly. + __ li(result_register(), Operand(lit)); + __ push(result_register()); +} + + +void FullCodeGenerator::TestContext::Plug(Handle<Object> lit) const { + codegen()->PrepareForBailoutBeforeSplit(condition(), + true, + true_label_, + false_label_); + DCHECK(!lit->IsUndetectableObject()); // There are no undetectable literals. + if (lit->IsUndefined() || lit->IsNull() || lit->IsFalse()) { + if (false_label_ != fall_through_) __ Branch(false_label_); + } else if (lit->IsTrue() || lit->IsJSObject()) { + if (true_label_ != fall_through_) __ Branch(true_label_); + } else if (lit->IsString()) { + if (String::cast(*lit)->length() == 0) { + if (false_label_ != fall_through_) __ Branch(false_label_); + } else { + if (true_label_ != fall_through_) __ Branch(true_label_); + } + } else if (lit->IsSmi()) { + if (Smi::cast(*lit)->value() == 0) { + if (false_label_ != fall_through_) __ Branch(false_label_); + } else { + if (true_label_ != fall_through_) __ Branch(true_label_); + } + } else { + // For simplicity we always test the accumulator register. + __ li(result_register(), Operand(lit)); + codegen()->DoTest(this); + } +} + + +void FullCodeGenerator::EffectContext::DropAndPlug(int count, + Register reg) const { + DCHECK(count > 0); + __ Drop(count); +} + + +void FullCodeGenerator::AccumulatorValueContext::DropAndPlug( + int count, + Register reg) const { + DCHECK(count > 0); + __ Drop(count); + __ Move(result_register(), reg); +} + + +void FullCodeGenerator::StackValueContext::DropAndPlug(int count, + Register reg) const { + DCHECK(count > 0); + if (count > 1) __ Drop(count - 1); + __ sw(reg, MemOperand(sp, 0)); +} + + +void FullCodeGenerator::TestContext::DropAndPlug(int count, + Register reg) const { + DCHECK(count > 0); + // For simplicity we always test the accumulator register. + __ Drop(count); + __ Move(result_register(), reg); + codegen()->PrepareForBailoutBeforeSplit(condition(), false, NULL, NULL); + codegen()->DoTest(this); +} + + +void FullCodeGenerator::EffectContext::Plug(Label* materialize_true, + Label* materialize_false) const { + DCHECK(materialize_true == materialize_false); + __ bind(materialize_true); +} + + +void FullCodeGenerator::AccumulatorValueContext::Plug( + Label* materialize_true, + Label* materialize_false) const { + Label done; + __ bind(materialize_true); + __ LoadRoot(result_register(), Heap::kTrueValueRootIndex); + __ Branch(&done); + __ bind(materialize_false); + __ LoadRoot(result_register(), Heap::kFalseValueRootIndex); + __ bind(&done); +} + + +void FullCodeGenerator::StackValueContext::Plug( + Label* materialize_true, + Label* materialize_false) const { + Label done; + __ bind(materialize_true); + __ LoadRoot(at, Heap::kTrueValueRootIndex); + // Push the value as the following branch can clobber at in long branch mode. + __ push(at); + __ Branch(&done); + __ bind(materialize_false); + __ LoadRoot(at, Heap::kFalseValueRootIndex); + __ push(at); + __ bind(&done); +} + + +void FullCodeGenerator::TestContext::Plug(Label* materialize_true, + Label* materialize_false) const { + DCHECK(materialize_true == true_label_); + DCHECK(materialize_false == false_label_); +} + + +void FullCodeGenerator::AccumulatorValueContext::Plug(bool flag) const { + Heap::RootListIndex value_root_index = + flag ? Heap::kTrueValueRootIndex : Heap::kFalseValueRootIndex; + __ LoadRoot(result_register(), value_root_index); +} + + +void FullCodeGenerator::StackValueContext::Plug(bool flag) const { + Heap::RootListIndex value_root_index = + flag ? Heap::kTrueValueRootIndex : Heap::kFalseValueRootIndex; + __ LoadRoot(at, value_root_index); + __ push(at); +} + + +void FullCodeGenerator::TestContext::Plug(bool flag) const { + codegen()->PrepareForBailoutBeforeSplit(condition(), + true, + true_label_, + false_label_); + if (flag) { + if (true_label_ != fall_through_) __ Branch(true_label_); + } else { + if (false_label_ != fall_through_) __ Branch(false_label_); + } +} + + +void FullCodeGenerator::DoTest(Expression* condition, + Label* if_true, + Label* if_false, + Label* fall_through) { + __ mov(a0, result_register()); + Handle<Code> ic = ToBooleanStub::GetUninitialized(isolate()); + CallIC(ic, condition->test_id()); + __ mov(at, zero_reg); + Split(ne, v0, Operand(at), if_true, if_false, fall_through); +} + + +void FullCodeGenerator::Split(Condition cc, + Register lhs, + const Operand& rhs, + Label* if_true, + Label* if_false, + Label* fall_through) { + if (if_false == fall_through) { + __ Branch(if_true, cc, lhs, rhs); + } else if (if_true == fall_through) { + __ Branch(if_false, NegateCondition(cc), lhs, rhs); + } else { + __ Branch(if_true, cc, lhs, rhs); + __ Branch(if_false); + } +} + + +MemOperand FullCodeGenerator::StackOperand(Variable* var) { + DCHECK(var->IsStackAllocated()); + // Offset is negative because higher indexes are at lower addresses. + int offset = -var->index() * kPointerSize; + // Adjust by a (parameter or local) base offset. + if (var->IsParameter()) { + offset += (info_->scope()->num_parameters() + 1) * kPointerSize; + } else { + offset += JavaScriptFrameConstants::kLocal0Offset; + } + return MemOperand(fp, offset); +} + + +MemOperand FullCodeGenerator::VarOperand(Variable* var, Register scratch) { + DCHECK(var->IsContextSlot() || var->IsStackAllocated()); + if (var->IsContextSlot()) { + int context_chain_length = scope()->ContextChainLength(var->scope()); + __ LoadContext(scratch, context_chain_length); + return ContextOperand(scratch, var->index()); + } else { + return StackOperand(var); + } +} + + +void FullCodeGenerator::GetVar(Register dest, Variable* var) { + // Use destination as scratch. + MemOperand location = VarOperand(var, dest); + __ lw(dest, location); +} + + +void FullCodeGenerator::SetVar(Variable* var, + Register src, + Register scratch0, + Register scratch1) { + DCHECK(var->IsContextSlot() || var->IsStackAllocated()); + DCHECK(!scratch0.is(src)); + DCHECK(!scratch0.is(scratch1)); + DCHECK(!scratch1.is(src)); + MemOperand location = VarOperand(var, scratch0); + __ sw(src, location); + // Emit the write barrier code if the location is in the heap. + if (var->IsContextSlot()) { + __ RecordWriteContextSlot(scratch0, + location.offset(), + src, + scratch1, + kRAHasBeenSaved, + kDontSaveFPRegs); + } +} + + +void FullCodeGenerator::PrepareForBailoutBeforeSplit(Expression* expr, + bool should_normalize, + Label* if_true, + Label* if_false) { + // Only prepare for bailouts before splits if we're in a test + // context. Otherwise, we let the Visit function deal with the + // preparation to avoid preparing with the same AST id twice. + if (!context()->IsTest() || !info_->IsOptimizable()) return; + + Label skip; + if (should_normalize) __ Branch(&skip); + PrepareForBailout(expr, TOS_REG); + if (should_normalize) { + __ LoadRoot(t0, Heap::kTrueValueRootIndex); + Split(eq, a0, Operand(t0), if_true, if_false, NULL); + __ bind(&skip); + } +} + + +void FullCodeGenerator::EmitDebugCheckDeclarationContext(Variable* variable) { + // The variable in the declaration always resides in the current function + // context. + DCHECK_EQ(0, scope()->ContextChainLength(variable->scope())); + if (generate_debug_code_) { + // Check that we're not inside a with or catch context. + __ lw(a1, FieldMemOperand(cp, HeapObject::kMapOffset)); + __ LoadRoot(t0, Heap::kWithContextMapRootIndex); + __ Check(ne, kDeclarationInWithContext, + a1, Operand(t0)); + __ LoadRoot(t0, Heap::kCatchContextMapRootIndex); + __ Check(ne, kDeclarationInCatchContext, + a1, Operand(t0)); + } +} + + +void FullCodeGenerator::VisitVariableDeclaration( + VariableDeclaration* declaration) { + // If it was not possible to allocate the variable at compile time, we + // need to "declare" it at runtime to make sure it actually exists in the + // local context. + VariableProxy* proxy = declaration->proxy(); + VariableMode mode = declaration->mode(); + Variable* variable = proxy->var(); + bool hole_init = mode == LET || mode == CONST || mode == CONST_LEGACY; + switch (variable->location()) { + case VariableLocation::GLOBAL: + case VariableLocation::UNALLOCATED: + globals_->Add(variable->name(), zone()); + globals_->Add(variable->binding_needs_init() + ? isolate()->factory()->the_hole_value() + : isolate()->factory()->undefined_value(), + zone()); + break; + + case VariableLocation::PARAMETER: + case VariableLocation::LOCAL: + if (hole_init) { + Comment cmnt(masm_, "[ VariableDeclaration"); + __ LoadRoot(t0, Heap::kTheHoleValueRootIndex); + __ sw(t0, StackOperand(variable)); + } + break; + + case VariableLocation::CONTEXT: + if (hole_init) { + Comment cmnt(masm_, "[ VariableDeclaration"); + EmitDebugCheckDeclarationContext(variable); + __ LoadRoot(at, Heap::kTheHoleValueRootIndex); + __ sw(at, ContextOperand(cp, variable->index())); + // No write barrier since the_hole_value is in old space. + PrepareForBailoutForId(proxy->id(), NO_REGISTERS); + } + break; + + case VariableLocation::LOOKUP: { + Comment cmnt(masm_, "[ VariableDeclaration"); + __ li(a2, Operand(variable->name())); + // Declaration nodes are always introduced in one of four modes. + DCHECK(IsDeclaredVariableMode(mode)); + // Push initial value, if any. + // Note: For variables we must not push an initial value (such as + // 'undefined') because we may have a (legal) redeclaration and we + // must not destroy the current value. + if (hole_init) { + __ LoadRoot(a0, Heap::kTheHoleValueRootIndex); + } else { + DCHECK(Smi::FromInt(0) == 0); + __ mov(a0, zero_reg); // Smi::FromInt(0) indicates no initial value. + } + __ Push(a2, a0); + __ CallRuntime(IsImmutableVariableMode(mode) + ? Runtime::kDeclareReadOnlyLookupSlot + : Runtime::kDeclareLookupSlot, + 2); + break; + } + } +} + + +void FullCodeGenerator::VisitFunctionDeclaration( + FunctionDeclaration* declaration) { + VariableProxy* proxy = declaration->proxy(); + Variable* variable = proxy->var(); + switch (variable->location()) { + case VariableLocation::GLOBAL: + case VariableLocation::UNALLOCATED: { + globals_->Add(variable->name(), zone()); + Handle<SharedFunctionInfo> function = + Compiler::GetSharedFunctionInfo(declaration->fun(), script(), info_); + // Check for stack-overflow exception. + if (function.is_null()) return SetStackOverflow(); + globals_->Add(function, zone()); + break; + } + + case VariableLocation::PARAMETER: + case VariableLocation::LOCAL: { + Comment cmnt(masm_, "[ FunctionDeclaration"); + VisitForAccumulatorValue(declaration->fun()); + __ sw(result_register(), StackOperand(variable)); + break; + } + + case VariableLocation::CONTEXT: { + Comment cmnt(masm_, "[ FunctionDeclaration"); + EmitDebugCheckDeclarationContext(variable); + VisitForAccumulatorValue(declaration->fun()); + __ sw(result_register(), ContextOperand(cp, variable->index())); + int offset = Context::SlotOffset(variable->index()); + // We know that we have written a function, which is not a smi. + __ RecordWriteContextSlot(cp, + offset, + result_register(), + a2, + kRAHasBeenSaved, + kDontSaveFPRegs, + EMIT_REMEMBERED_SET, + OMIT_SMI_CHECK); + PrepareForBailoutForId(proxy->id(), NO_REGISTERS); + break; + } + + case VariableLocation::LOOKUP: { + Comment cmnt(masm_, "[ FunctionDeclaration"); + __ li(a2, Operand(variable->name())); + __ Push(a2); + // Push initial value for function declaration. + VisitForStackValue(declaration->fun()); + __ CallRuntime(Runtime::kDeclareLookupSlot, 2); + break; + } + } +} + + +void FullCodeGenerator::DeclareGlobals(Handle<FixedArray> pairs) { + // Call the runtime to declare the globals. + __ li(a1, Operand(pairs)); + __ li(a0, Operand(Smi::FromInt(DeclareGlobalsFlags()))); + __ Push(a1, a0); + __ CallRuntime(Runtime::kDeclareGlobals, 2); + // Return value is ignored. +} + + +void FullCodeGenerator::DeclareModules(Handle<FixedArray> descriptions) { + // Call the runtime to declare the modules. + __ Push(descriptions); + __ CallRuntime(Runtime::kDeclareModules, 1); + // Return value is ignored. +} + + +void FullCodeGenerator::VisitSwitchStatement(SwitchStatement* stmt) { + Comment cmnt(masm_, "[ SwitchStatement"); + Breakable nested_statement(this, stmt); + SetStatementPosition(stmt); + + // Keep the switch value on the stack until a case matches. + VisitForStackValue(stmt->tag()); + PrepareForBailoutForId(stmt->EntryId(), NO_REGISTERS); + + ZoneList<CaseClause*>* clauses = stmt->cases(); + CaseClause* default_clause = NULL; // Can occur anywhere in the list. + + Label next_test; // Recycled for each test. + // Compile all the tests with branches to their bodies. + for (int i = 0; i < clauses->length(); i++) { + CaseClause* clause = clauses->at(i); + clause->body_target()->Unuse(); + + // The default is not a test, but remember it as final fall through. + if (clause->is_default()) { + default_clause = clause; + continue; + } + + Comment cmnt(masm_, "[ Case comparison"); + __ bind(&next_test); + next_test.Unuse(); + + // Compile the label expression. + VisitForAccumulatorValue(clause->label()); + __ mov(a0, result_register()); // CompareStub requires args in a0, a1. + + // Perform the comparison as if via '==='. + __ lw(a1, MemOperand(sp, 0)); // Switch value. + bool inline_smi_code = ShouldInlineSmiCase(Token::EQ_STRICT); + JumpPatchSite patch_site(masm_); + if (inline_smi_code) { + Label slow_case; + __ or_(a2, a1, a0); + patch_site.EmitJumpIfNotSmi(a2, &slow_case); + + __ Branch(&next_test, ne, a1, Operand(a0)); + __ Drop(1); // Switch value is no longer needed. + __ Branch(clause->body_target()); + + __ bind(&slow_case); + } + + // Record position before stub call for type feedback. + SetExpressionPosition(clause); + Handle<Code> ic = CodeFactory::CompareIC(isolate(), Token::EQ_STRICT, + strength(language_mode())).code(); + CallIC(ic, clause->CompareId()); + patch_site.EmitPatchInfo(); + + Label skip; + __ Branch(&skip); + PrepareForBailout(clause, TOS_REG); + __ LoadRoot(at, Heap::kTrueValueRootIndex); + __ Branch(&next_test, ne, v0, Operand(at)); + __ Drop(1); + __ Branch(clause->body_target()); + __ bind(&skip); + + __ Branch(&next_test, ne, v0, Operand(zero_reg)); + __ Drop(1); // Switch value is no longer needed. + __ Branch(clause->body_target()); + } + + // Discard the test value and jump to the default if present, otherwise to + // the end of the statement. + __ bind(&next_test); + __ Drop(1); // Switch value is no longer needed. + if (default_clause == NULL) { + __ Branch(nested_statement.break_label()); + } else { + __ Branch(default_clause->body_target()); + } + + // Compile all the case bodies. + for (int i = 0; i < clauses->length(); i++) { + Comment cmnt(masm_, "[ Case body"); + CaseClause* clause = clauses->at(i); + __ bind(clause->body_target()); + PrepareForBailoutForId(clause->EntryId(), NO_REGISTERS); + VisitStatements(clause->statements()); + } + + __ bind(nested_statement.break_label()); + PrepareForBailoutForId(stmt->ExitId(), NO_REGISTERS); +} + + +void FullCodeGenerator::VisitForInStatement(ForInStatement* stmt) { + Comment cmnt(masm_, "[ ForInStatement"); + SetStatementPosition(stmt, SKIP_BREAK); + + FeedbackVectorSlot slot = stmt->ForInFeedbackSlot(); + + Label loop, exit; + ForIn loop_statement(this, stmt); + increment_loop_depth(); + + // Get the object to enumerate over. If the object is null or undefined, skip + // over the loop. See ECMA-262 version 5, section 12.6.4. + SetExpressionAsStatementPosition(stmt->enumerable()); + VisitForAccumulatorValue(stmt->enumerable()); + __ mov(a0, result_register()); // Result as param to InvokeBuiltin below. + __ LoadRoot(at, Heap::kUndefinedValueRootIndex); + __ Branch(&exit, eq, a0, Operand(at)); + Register null_value = t1; + __ LoadRoot(null_value, Heap::kNullValueRootIndex); + __ Branch(&exit, eq, a0, Operand(null_value)); + PrepareForBailoutForId(stmt->PrepareId(), TOS_REG); + __ mov(a0, v0); + // Convert the object to a JS object. + Label convert, done_convert; + __ JumpIfSmi(a0, &convert); + __ GetObjectType(a0, a1, a1); + __ Branch(&done_convert, ge, a1, Operand(FIRST_SPEC_OBJECT_TYPE)); + __ bind(&convert); + ToObjectStub stub(isolate()); + __ CallStub(&stub); + __ mov(a0, v0); + __ bind(&done_convert); + PrepareForBailoutForId(stmt->ToObjectId(), TOS_REG); + __ push(a0); + + // Check for proxies. + Label call_runtime; + STATIC_ASSERT(FIRST_JS_PROXY_TYPE == FIRST_SPEC_OBJECT_TYPE); + __ GetObjectType(a0, a1, a1); + __ Branch(&call_runtime, le, a1, Operand(LAST_JS_PROXY_TYPE)); + + // Check cache validity in generated code. This is a fast case for + // the JSObject::IsSimpleEnum cache validity checks. If we cannot + // guarantee cache validity, call the runtime system to check cache + // validity or get the property names in a fixed array. + __ CheckEnumCache(null_value, &call_runtime); + + // The enum cache is valid. Load the map of the object being + // iterated over and use the cache for the iteration. + Label use_cache; + __ lw(v0, FieldMemOperand(a0, HeapObject::kMapOffset)); + __ Branch(&use_cache); + + // Get the set of properties to enumerate. + __ bind(&call_runtime); + __ push(a0); // Duplicate the enumerable object on the stack. + __ CallRuntime(Runtime::kGetPropertyNamesFast, 1); + PrepareForBailoutForId(stmt->EnumId(), TOS_REG); + + // If we got a map from the runtime call, we can do a fast + // modification check. Otherwise, we got a fixed array, and we have + // to do a slow check. + Label fixed_array; + __ lw(a2, FieldMemOperand(v0, HeapObject::kMapOffset)); + __ LoadRoot(at, Heap::kMetaMapRootIndex); + __ Branch(&fixed_array, ne, a2, Operand(at)); + + // We got a map in register v0. Get the enumeration cache from it. + Label no_descriptors; + __ bind(&use_cache); + + __ EnumLength(a1, v0); + __ Branch(&no_descriptors, eq, a1, Operand(Smi::FromInt(0))); + + __ LoadInstanceDescriptors(v0, a2); + __ lw(a2, FieldMemOperand(a2, DescriptorArray::kEnumCacheOffset)); + __ lw(a2, FieldMemOperand(a2, DescriptorArray::kEnumCacheBridgeCacheOffset)); + + // Set up the four remaining stack slots. + __ li(a0, Operand(Smi::FromInt(0))); + // Push map, enumeration cache, enumeration cache length (as smi) and zero. + __ Push(v0, a2, a1, a0); + __ jmp(&loop); + + __ bind(&no_descriptors); + __ Drop(1); + __ jmp(&exit); + + // We got a fixed array in register v0. Iterate through that. + Label non_proxy; + __ bind(&fixed_array); + + __ li(a1, FeedbackVector()); + __ li(a2, Operand(TypeFeedbackVector::MegamorphicSentinel(isolate()))); + int vector_index = FeedbackVector()->GetIndex(slot); + __ sw(a2, FieldMemOperand(a1, FixedArray::OffsetOfElementAt(vector_index))); + + __ li(a1, Operand(Smi::FromInt(1))); // Smi indicates slow check + __ lw(a2, MemOperand(sp, 0 * kPointerSize)); // Get enumerated object + STATIC_ASSERT(FIRST_JS_PROXY_TYPE == FIRST_SPEC_OBJECT_TYPE); + __ GetObjectType(a2, a3, a3); + __ Branch(&non_proxy, gt, a3, Operand(LAST_JS_PROXY_TYPE)); + __ li(a1, Operand(Smi::FromInt(0))); // Zero indicates proxy + __ bind(&non_proxy); + __ Push(a1, v0); // Smi and array + __ lw(a1, FieldMemOperand(v0, FixedArray::kLengthOffset)); + __ li(a0, Operand(Smi::FromInt(0))); + __ Push(a1, a0); // Fixed array length (as smi) and initial index. + + // Generate code for doing the condition check. + PrepareForBailoutForId(stmt->BodyId(), NO_REGISTERS); + __ bind(&loop); + SetExpressionAsStatementPosition(stmt->each()); + + // Load the current count to a0, load the length to a1. + __ lw(a0, MemOperand(sp, 0 * kPointerSize)); + __ lw(a1, MemOperand(sp, 1 * kPointerSize)); + __ Branch(loop_statement.break_label(), hs, a0, Operand(a1)); + + // Get the current entry of the array into register a3. + __ lw(a2, MemOperand(sp, 2 * kPointerSize)); + __ Addu(a2, a2, Operand(FixedArray::kHeaderSize - kHeapObjectTag)); + __ sll(t0, a0, kPointerSizeLog2 - kSmiTagSize); + __ addu(t0, a2, t0); // Array base + scaled (smi) index. + __ lw(a3, MemOperand(t0)); // Current entry. + + // Get the expected map from the stack or a smi in the + // permanent slow case into register a2. + __ lw(a2, MemOperand(sp, 3 * kPointerSize)); + + // Check if the expected map still matches that of the enumerable. + // If not, we may have to filter the key. + Label update_each; + __ lw(a1, MemOperand(sp, 4 * kPointerSize)); + __ lw(t0, FieldMemOperand(a1, HeapObject::kMapOffset)); + __ Branch(&update_each, eq, t0, Operand(a2)); + + // For proxies, no filtering is done. + // TODO(rossberg): What if only a prototype is a proxy? Not specified yet. + DCHECK_EQ(static_cast<Smi*>(0), Smi::FromInt(0)); + __ Branch(&update_each, eq, a2, Operand(zero_reg)); + + // Convert the entry to a string or (smi) 0 if it isn't a property + // any more. If the property has been removed while iterating, we + // just skip it. + __ Push(a1, a3); // Enumerable and current entry. + __ CallRuntime(Runtime::kForInFilter, 2); + PrepareForBailoutForId(stmt->FilterId(), TOS_REG); + __ mov(a3, result_register()); + __ LoadRoot(at, Heap::kUndefinedValueRootIndex); + __ Branch(loop_statement.continue_label(), eq, a3, Operand(at)); + + // Update the 'each' property or variable from the possibly filtered + // entry in register a3. + __ bind(&update_each); + __ mov(result_register(), a3); + // Perform the assignment as if via '='. + { EffectContext context(this); + EmitAssignment(stmt->each(), stmt->EachFeedbackSlot()); + PrepareForBailoutForId(stmt->AssignmentId(), NO_REGISTERS); + } + + // Generate code for the body of the loop. + Visit(stmt->body()); + + // Generate code for the going to the next element by incrementing + // the index (smi) stored on top of the stack. + __ bind(loop_statement.continue_label()); + __ pop(a0); + __ Addu(a0, a0, Operand(Smi::FromInt(1))); + __ push(a0); + + EmitBackEdgeBookkeeping(stmt, &loop); + __ Branch(&loop); + + // Remove the pointers stored on the stack. + __ bind(loop_statement.break_label()); + __ Drop(5); + + // Exit and decrement the loop depth. + PrepareForBailoutForId(stmt->ExitId(), NO_REGISTERS); + __ bind(&exit); + decrement_loop_depth(); +} + + +void FullCodeGenerator::EmitNewClosure(Handle<SharedFunctionInfo> info, + bool pretenure) { + // Use the fast case closure allocation code that allocates in new + // space for nested functions that don't need literals cloning. If + // we're running with the --always-opt or the --prepare-always-opt + // flag, we need to use the runtime function so that the new function + // we are creating here gets a chance to have its code optimized and + // doesn't just get a copy of the existing unoptimized code. + if (!FLAG_always_opt && + !FLAG_prepare_always_opt && + !pretenure && + scope()->is_function_scope() && + info->num_literals() == 0) { + FastNewClosureStub stub(isolate(), info->language_mode(), info->kind()); + __ li(a2, Operand(info)); + __ CallStub(&stub); + } else { + __ li(a0, Operand(info)); + __ LoadRoot(a1, pretenure ? Heap::kTrueValueRootIndex + : Heap::kFalseValueRootIndex); + __ Push(cp, a0, a1); + __ CallRuntime(Runtime::kNewClosure, 3); + } + context()->Plug(v0); +} + + +void FullCodeGenerator::EmitSetHomeObjectIfNeeded(Expression* initializer, + int offset, + FeedbackVectorICSlot slot) { + if (NeedsHomeObject(initializer)) { + __ lw(StoreDescriptor::ReceiverRegister(), MemOperand(sp)); + __ li(StoreDescriptor::NameRegister(), + Operand(isolate()->factory()->home_object_symbol())); + __ lw(StoreDescriptor::ValueRegister(), + MemOperand(sp, offset * kPointerSize)); + if (FLAG_vector_stores) EmitLoadStoreICSlot(slot); + CallStoreIC(); + } +} + + +void FullCodeGenerator::EmitLoadGlobalCheckExtensions(VariableProxy* proxy, + TypeofMode typeof_mode, + Label* slow) { + Register current = cp; + Register next = a1; + Register temp = a2; + + Scope* s = scope(); + while (s != NULL) { + if (s->num_heap_slots() > 0) { + if (s->calls_sloppy_eval()) { + // Check that extension is NULL. + __ lw(temp, ContextOperand(current, Context::EXTENSION_INDEX)); + __ Branch(slow, ne, temp, Operand(zero_reg)); + } + // Load next context in chain. + __ lw(next, ContextOperand(current, Context::PREVIOUS_INDEX)); + // Walk the rest of the chain without clobbering cp. + current = next; + } + // If no outer scope calls eval, we do not need to check more + // context extensions. + if (!s->outer_scope_calls_sloppy_eval() || s->is_eval_scope()) break; + s = s->outer_scope(); + } + + if (s->is_eval_scope()) { + Label loop, fast; + if (!current.is(next)) { + __ Move(next, current); + } + __ bind(&loop); + // Terminate at native context. + __ lw(temp, FieldMemOperand(next, HeapObject::kMapOffset)); + __ LoadRoot(t0, Heap::kNativeContextMapRootIndex); + __ Branch(&fast, eq, temp, Operand(t0)); + // Check that extension is NULL. + __ lw(temp, ContextOperand(next, Context::EXTENSION_INDEX)); + __ Branch(slow, ne, temp, Operand(zero_reg)); + // Load next context in chain. + __ lw(next, ContextOperand(next, Context::PREVIOUS_INDEX)); + __ Branch(&loop); + __ bind(&fast); + } + + // All extension objects were empty and it is safe to use a normal global + // load machinery. + EmitGlobalVariableLoad(proxy, typeof_mode); +} + + +MemOperand FullCodeGenerator::ContextSlotOperandCheckExtensions(Variable* var, + Label* slow) { + DCHECK(var->IsContextSlot()); + Register context = cp; + Register next = a3; + Register temp = t0; + + for (Scope* s = scope(); s != var->scope(); s = s->outer_scope()) { + if (s->num_heap_slots() > 0) { + if (s->calls_sloppy_eval()) { + // Check that extension is NULL. + __ lw(temp, ContextOperand(context, Context::EXTENSION_INDEX)); + __ Branch(slow, ne, temp, Operand(zero_reg)); + } + __ lw(next, ContextOperand(context, Context::PREVIOUS_INDEX)); + // Walk the rest of the chain without clobbering cp. + context = next; + } + } + // Check that last extension is NULL. + __ lw(temp, ContextOperand(context, Context::EXTENSION_INDEX)); + __ Branch(slow, ne, temp, Operand(zero_reg)); + + // This function is used only for loads, not stores, so it's safe to + // return an cp-based operand (the write barrier cannot be allowed to + // destroy the cp register). + return ContextOperand(context, var->index()); +} + + +void FullCodeGenerator::EmitDynamicLookupFastCase(VariableProxy* proxy, + TypeofMode typeof_mode, + Label* slow, Label* done) { + // Generate fast-case code for variables that might be shadowed by + // eval-introduced variables. Eval is used a lot without + // introducing variables. In those cases, we do not want to + // perform a runtime call for all variables in the scope + // containing the eval. + Variable* var = proxy->var(); + if (var->mode() == DYNAMIC_GLOBAL) { + EmitLoadGlobalCheckExtensions(proxy, typeof_mode, slow); + __ Branch(done); + } else if (var->mode() == DYNAMIC_LOCAL) { + Variable* local = var->local_if_not_shadowed(); + __ lw(v0, ContextSlotOperandCheckExtensions(local, slow)); + if (local->mode() == LET || local->mode() == CONST || + local->mode() == CONST_LEGACY) { + __ LoadRoot(at, Heap::kTheHoleValueRootIndex); + __ subu(at, v0, at); // Sub as compare: at == 0 on eq. + if (local->mode() == CONST_LEGACY) { + __ LoadRoot(a0, Heap::kUndefinedValueRootIndex); + __ Movz(v0, a0, at); // Conditional move: return Undefined if TheHole. + } else { // LET || CONST + __ Branch(done, ne, at, Operand(zero_reg)); + __ li(a0, Operand(var->name())); + __ push(a0); + __ CallRuntime(Runtime::kThrowReferenceError, 1); + } + } + __ Branch(done); + } +} + + +void FullCodeGenerator::EmitGlobalVariableLoad(VariableProxy* proxy, + TypeofMode typeof_mode) { + Variable* var = proxy->var(); + DCHECK(var->IsUnallocatedOrGlobalSlot() || + (var->IsLookupSlot() && var->mode() == DYNAMIC_GLOBAL)); + if (var->IsGlobalSlot()) { + DCHECK(var->index() > 0); + DCHECK(var->IsStaticGlobalObjectProperty()); + int const slot = var->index(); + int const depth = scope()->ContextChainLength(var->scope()); + if (depth <= LoadGlobalViaContextStub::kMaximumDepth) { + __ li(LoadGlobalViaContextDescriptor::SlotRegister(), Operand(slot)); + LoadGlobalViaContextStub stub(isolate(), depth); + __ CallStub(&stub); + } else { + __ Push(Smi::FromInt(slot)); + __ CallRuntime(Runtime::kLoadGlobalViaContext, 1); + } + + } else { + __ lw(LoadDescriptor::ReceiverRegister(), GlobalObjectOperand()); + __ li(LoadDescriptor::NameRegister(), Operand(var->name())); + __ li(LoadDescriptor::SlotRegister(), + Operand(SmiFromSlot(proxy->VariableFeedbackSlot()))); + CallLoadIC(typeof_mode); + } +} + + +void FullCodeGenerator::EmitVariableLoad(VariableProxy* proxy, + TypeofMode typeof_mode) { + // Record position before possible IC call. + SetExpressionPosition(proxy); + PrepareForBailoutForId(proxy->BeforeId(), NO_REGISTERS); + Variable* var = proxy->var(); + + // Three cases: global variables, lookup variables, and all other types of + // variables. + switch (var->location()) { + case VariableLocation::GLOBAL: + case VariableLocation::UNALLOCATED: { + Comment cmnt(masm_, "[ Global variable"); + EmitGlobalVariableLoad(proxy, typeof_mode); + context()->Plug(v0); + break; + } + + case VariableLocation::PARAMETER: + case VariableLocation::LOCAL: + case VariableLocation::CONTEXT: { + DCHECK_EQ(NOT_INSIDE_TYPEOF, typeof_mode); + Comment cmnt(masm_, var->IsContextSlot() ? "[ Context variable" + : "[ Stack variable"); + if (var->binding_needs_init()) { + // var->scope() may be NULL when the proxy is located in eval code and + // refers to a potential outside binding. Currently those bindings are + // always looked up dynamically, i.e. in that case + // var->location() == LOOKUP. + // always holds. + DCHECK(var->scope() != NULL); + + // Check if the binding really needs an initialization check. The check + // can be skipped in the following situation: we have a LET or CONST + // binding in harmony mode, both the Variable and the VariableProxy have + // the same declaration scope (i.e. they are both in global code, in the + // same function or in the same eval code) and the VariableProxy is in + // the source physically located after the initializer of the variable. + // + // We cannot skip any initialization checks for CONST in non-harmony + // mode because const variables may be declared but never initialized: + // if (false) { const x; }; var y = x; + // + // The condition on the declaration scopes is a conservative check for + // nested functions that access a binding and are called before the + // binding is initialized: + // function() { f(); let x = 1; function f() { x = 2; } } + // + bool skip_init_check; + if (var->scope()->DeclarationScope() != scope()->DeclarationScope()) { + skip_init_check = false; + } else if (var->is_this()) { + CHECK(info_->has_literal() && + (info_->literal()->kind() & kSubclassConstructor) != 0); + // TODO(dslomov): implement 'this' hole check elimination. + skip_init_check = false; + } else { + // Check that we always have valid source position. + DCHECK(var->initializer_position() != RelocInfo::kNoPosition); + DCHECK(proxy->position() != RelocInfo::kNoPosition); + skip_init_check = var->mode() != CONST_LEGACY && + var->initializer_position() < proxy->position(); + } + + if (!skip_init_check) { + // Let and const need a read barrier. + GetVar(v0, var); + __ LoadRoot(at, Heap::kTheHoleValueRootIndex); + __ subu(at, v0, at); // Sub as compare: at == 0 on eq. + if (var->mode() == LET || var->mode() == CONST) { + // Throw a reference error when using an uninitialized let/const + // binding in harmony mode. + Label done; + __ Branch(&done, ne, at, Operand(zero_reg)); + __ li(a0, Operand(var->name())); + __ push(a0); + __ CallRuntime(Runtime::kThrowReferenceError, 1); + __ bind(&done); + } else { + // Uninitalized const bindings outside of harmony mode are unholed. + DCHECK(var->mode() == CONST_LEGACY); + __ LoadRoot(a0, Heap::kUndefinedValueRootIndex); + __ Movz(v0, a0, at); // Conditional move: Undefined if TheHole. + } + context()->Plug(v0); + break; + } + } + context()->Plug(var); + break; + } + + case VariableLocation::LOOKUP: { + Comment cmnt(masm_, "[ Lookup variable"); + Label done, slow; + // Generate code for loading from variables potentially shadowed + // by eval-introduced variables. + EmitDynamicLookupFastCase(proxy, typeof_mode, &slow, &done); + __ bind(&slow); + __ li(a1, Operand(var->name())); + __ Push(cp, a1); // Context and name. + Runtime::FunctionId function_id = + typeof_mode == NOT_INSIDE_TYPEOF + ? Runtime::kLoadLookupSlot + : Runtime::kLoadLookupSlotNoReferenceError; + __ CallRuntime(function_id, 2); + __ bind(&done); + context()->Plug(v0); + } + } +} + + +void FullCodeGenerator::VisitRegExpLiteral(RegExpLiteral* expr) { + Comment cmnt(masm_, "[ RegExpLiteral"); + Label materialized; + // Registers will be used as follows: + // t1 = materialized value (RegExp literal) + // t0 = JS function, literals array + // a3 = literal index + // a2 = RegExp pattern + // a1 = RegExp flags + // a0 = RegExp literal clone + __ lw(a0, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset)); + __ lw(t0, FieldMemOperand(a0, JSFunction::kLiteralsOffset)); + int literal_offset = + FixedArray::kHeaderSize + expr->literal_index() * kPointerSize; + __ lw(t1, FieldMemOperand(t0, literal_offset)); + __ LoadRoot(at, Heap::kUndefinedValueRootIndex); + __ Branch(&materialized, ne, t1, Operand(at)); + + // Create regexp literal using runtime function. + // Result will be in v0. + __ li(a3, Operand(Smi::FromInt(expr->literal_index()))); + __ li(a2, Operand(expr->pattern())); + __ li(a1, Operand(expr->flags())); + __ Push(t0, a3, a2, a1); + __ CallRuntime(Runtime::kMaterializeRegExpLiteral, 4); + __ mov(t1, v0); + + __ bind(&materialized); + int size = JSRegExp::kSize + JSRegExp::kInObjectFieldCount * kPointerSize; + Label allocated, runtime_allocate; + __ Allocate(size, v0, a2, a3, &runtime_allocate, TAG_OBJECT); + __ jmp(&allocated); + + __ bind(&runtime_allocate); + __ li(a0, Operand(Smi::FromInt(size))); + __ Push(t1, a0); + __ CallRuntime(Runtime::kAllocateInNewSpace, 1); + __ pop(t1); + + __ bind(&allocated); + + // After this, registers are used as follows: + // v0: Newly allocated regexp. + // t1: Materialized regexp. + // a2: temp. + __ CopyFields(v0, t1, a2.bit(), size / kPointerSize); + context()->Plug(v0); +} + + +void FullCodeGenerator::EmitAccessor(Expression* expression) { + if (expression == NULL) { + __ LoadRoot(a1, Heap::kNullValueRootIndex); + __ push(a1); + } else { + VisitForStackValue(expression); + } +} + + +void FullCodeGenerator::VisitObjectLiteral(ObjectLiteral* expr) { + Comment cmnt(masm_, "[ ObjectLiteral"); + + Handle<FixedArray> constant_properties = expr->constant_properties(); + __ lw(a3, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset)); + __ lw(a3, FieldMemOperand(a3, JSFunction::kLiteralsOffset)); + __ li(a2, Operand(Smi::FromInt(expr->literal_index()))); + __ li(a1, Operand(constant_properties)); + __ li(a0, Operand(Smi::FromInt(expr->ComputeFlags()))); + if (MustCreateObjectLiteralWithRuntime(expr)) { + __ Push(a3, a2, a1, a0); + __ CallRuntime(Runtime::kCreateObjectLiteral, 4); + } else { + FastCloneShallowObjectStub stub(isolate(), expr->properties_count()); + __ CallStub(&stub); + } + PrepareForBailoutForId(expr->CreateLiteralId(), TOS_REG); + + // If result_saved is true the result is on top of the stack. If + // result_saved is false the result is in v0. + bool result_saved = false; + + AccessorTable accessor_table(zone()); + int property_index = 0; + // store_slot_index points to the vector IC slot for the next store IC used. + // ObjectLiteral::ComputeFeedbackRequirements controls the allocation of slots + // and must be updated if the number of store ICs emitted here changes. + int store_slot_index = 0; + for (; property_index < expr->properties()->length(); property_index++) { + ObjectLiteral::Property* property = expr->properties()->at(property_index); + if (property->is_computed_name()) break; + if (property->IsCompileTimeValue()) continue; + + Literal* key = property->key()->AsLiteral(); + Expression* value = property->value(); + if (!result_saved) { + __ push(v0); // Save result on stack. + result_saved = true; + } + switch (property->kind()) { + case ObjectLiteral::Property::CONSTANT: + UNREACHABLE(); + case ObjectLiteral::Property::MATERIALIZED_LITERAL: + DCHECK(!CompileTimeValue::IsCompileTimeValue(property->value())); + // Fall through. + case ObjectLiteral::Property::COMPUTED: + // It is safe to use [[Put]] here because the boilerplate already + // contains computed properties with an uninitialized value. + if (key->value()->IsInternalizedString()) { + if (property->emit_store()) { + VisitForAccumulatorValue(value); + __ mov(StoreDescriptor::ValueRegister(), result_register()); + DCHECK(StoreDescriptor::ValueRegister().is(a0)); + __ li(StoreDescriptor::NameRegister(), Operand(key->value())); + __ lw(StoreDescriptor::ReceiverRegister(), MemOperand(sp)); + if (FLAG_vector_stores) { + EmitLoadStoreICSlot(expr->GetNthSlot(store_slot_index++)); + CallStoreIC(); + } else { + CallStoreIC(key->LiteralFeedbackId()); + } + PrepareForBailoutForId(key->id(), NO_REGISTERS); + + if (NeedsHomeObject(value)) { + __ Move(StoreDescriptor::ReceiverRegister(), v0); + __ li(StoreDescriptor::NameRegister(), + Operand(isolate()->factory()->home_object_symbol())); + __ lw(StoreDescriptor::ValueRegister(), MemOperand(sp)); + if (FLAG_vector_stores) { + EmitLoadStoreICSlot(expr->GetNthSlot(store_slot_index++)); + } + CallStoreIC(); + } + } else { + VisitForEffect(value); + } + break; + } + // Duplicate receiver on stack. + __ lw(a0, MemOperand(sp)); + __ push(a0); + VisitForStackValue(key); + VisitForStackValue(value); + if (property->emit_store()) { + EmitSetHomeObjectIfNeeded( + value, 2, expr->SlotForHomeObject(value, &store_slot_index)); + __ li(a0, Operand(Smi::FromInt(SLOPPY))); // PropertyAttributes. + __ push(a0); + __ CallRuntime(Runtime::kSetProperty, 4); + } else { + __ Drop(3); + } + break; + case ObjectLiteral::Property::PROTOTYPE: + // Duplicate receiver on stack. + __ lw(a0, MemOperand(sp)); + __ push(a0); + VisitForStackValue(value); + DCHECK(property->emit_store()); + __ CallRuntime(Runtime::kInternalSetPrototype, 2); + break; + case ObjectLiteral::Property::GETTER: + if (property->emit_store()) { + accessor_table.lookup(key)->second->getter = value; + } + break; + case ObjectLiteral::Property::SETTER: + if (property->emit_store()) { + accessor_table.lookup(key)->second->setter = value; + } + break; + } + } + + // Emit code to define accessors, using only a single call to the runtime for + // each pair of corresponding getters and setters. + for (AccessorTable::Iterator it = accessor_table.begin(); + it != accessor_table.end(); + ++it) { + __ lw(a0, MemOperand(sp)); // Duplicate receiver. + __ push(a0); + VisitForStackValue(it->first); + EmitAccessor(it->second->getter); + EmitSetHomeObjectIfNeeded( + it->second->getter, 2, + expr->SlotForHomeObject(it->second->getter, &store_slot_index)); + EmitAccessor(it->second->setter); + EmitSetHomeObjectIfNeeded( + it->second->setter, 3, + expr->SlotForHomeObject(it->second->setter, &store_slot_index)); + __ li(a0, Operand(Smi::FromInt(NONE))); + __ push(a0); + __ CallRuntime(Runtime::kDefineAccessorPropertyUnchecked, 5); + } + + // Object literals have two parts. The "static" part on the left contains no + // computed property names, and so we can compute its map ahead of time; see + // runtime.cc::CreateObjectLiteralBoilerplate. The second "dynamic" part + // starts with the first computed property name, and continues with all + // properties to its right. All the code from above initializes the static + // component of the object literal, and arranges for the map of the result to + // reflect the static order in which the keys appear. For the dynamic + // properties, we compile them into a series of "SetOwnProperty" runtime + // calls. This will preserve insertion order. + for (; property_index < expr->properties()->length(); property_index++) { + ObjectLiteral::Property* property = expr->properties()->at(property_index); + + Expression* value = property->value(); + if (!result_saved) { + __ push(v0); // Save result on the stack + result_saved = true; + } + + __ lw(a0, MemOperand(sp)); // Duplicate receiver. + __ push(a0); + + if (property->kind() == ObjectLiteral::Property::PROTOTYPE) { + DCHECK(!property->is_computed_name()); + VisitForStackValue(value); + DCHECK(property->emit_store()); + __ CallRuntime(Runtime::kInternalSetPrototype, 2); + } else { + EmitPropertyKey(property, expr->GetIdForProperty(property_index)); + VisitForStackValue(value); + EmitSetHomeObjectIfNeeded( + value, 2, expr->SlotForHomeObject(value, &store_slot_index)); + + switch (property->kind()) { + case ObjectLiteral::Property::CONSTANT: + case ObjectLiteral::Property::MATERIALIZED_LITERAL: + case ObjectLiteral::Property::COMPUTED: + if (property->emit_store()) { + __ li(a0, Operand(Smi::FromInt(NONE))); + __ push(a0); + __ CallRuntime(Runtime::kDefineDataPropertyUnchecked, 4); + } else { + __ Drop(3); + } + break; + + case ObjectLiteral::Property::PROTOTYPE: + UNREACHABLE(); + break; + + case ObjectLiteral::Property::GETTER: + __ li(a0, Operand(Smi::FromInt(NONE))); + __ push(a0); + __ CallRuntime(Runtime::kDefineGetterPropertyUnchecked, 4); + break; + + case ObjectLiteral::Property::SETTER: + __ li(a0, Operand(Smi::FromInt(NONE))); + __ push(a0); + __ CallRuntime(Runtime::kDefineSetterPropertyUnchecked, 4); + break; + } + } + } + + if (expr->has_function()) { + DCHECK(result_saved); + __ lw(a0, MemOperand(sp)); + __ push(a0); + __ CallRuntime(Runtime::kToFastProperties, 1); + } + + if (result_saved) { + context()->PlugTOS(); + } else { + context()->Plug(v0); + } + + // Verify that compilation exactly consumed the number of store ic slots that + // the ObjectLiteral node had to offer. + DCHECK(!FLAG_vector_stores || store_slot_index == expr->slot_count()); +} + + +void FullCodeGenerator::VisitArrayLiteral(ArrayLiteral* expr) { + Comment cmnt(masm_, "[ ArrayLiteral"); + + expr->BuildConstantElements(isolate()); + + Handle<FixedArray> constant_elements = expr->constant_elements(); + bool has_fast_elements = + IsFastObjectElementsKind(expr->constant_elements_kind()); + + AllocationSiteMode allocation_site_mode = TRACK_ALLOCATION_SITE; + if (has_fast_elements && !FLAG_allocation_site_pretenuring) { + // If the only customer of allocation sites is transitioning, then + // we can turn it off if we don't have anywhere else to transition to. + allocation_site_mode = DONT_TRACK_ALLOCATION_SITE; + } + + __ mov(a0, result_register()); + __ lw(a3, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset)); + __ lw(a3, FieldMemOperand(a3, JSFunction::kLiteralsOffset)); + __ li(a2, Operand(Smi::FromInt(expr->literal_index()))); + __ li(a1, Operand(constant_elements)); + if (MustCreateArrayLiteralWithRuntime(expr)) { + __ li(a0, Operand(Smi::FromInt(expr->ComputeFlags()))); + __ Push(a3, a2, a1, a0); + __ CallRuntime(Runtime::kCreateArrayLiteral, 4); + } else { + FastCloneShallowArrayStub stub(isolate(), allocation_site_mode); + __ CallStub(&stub); + } + PrepareForBailoutForId(expr->CreateLiteralId(), TOS_REG); + + bool result_saved = false; // Is the result saved to the stack? + ZoneList<Expression*>* subexprs = expr->values(); + int length = subexprs->length(); + + // Emit code to evaluate all the non-constant subexpressions and to store + // them into the newly cloned array. + int array_index = 0; + for (; array_index < length; array_index++) { + Expression* subexpr = subexprs->at(array_index); + if (subexpr->IsSpread()) break; + + // If the subexpression is a literal or a simple materialized literal it + // is already set in the cloned array. + if (CompileTimeValue::IsCompileTimeValue(subexpr)) continue; + + if (!result_saved) { + __ push(v0); // array literal + __ Push(Smi::FromInt(expr->literal_index())); + result_saved = true; + } + + VisitForAccumulatorValue(subexpr); + + if (has_fast_elements) { + int offset = FixedArray::kHeaderSize + (array_index * kPointerSize); + __ lw(t2, MemOperand(sp, kPointerSize)); // Copy of array literal. + __ lw(a1, FieldMemOperand(t2, JSObject::kElementsOffset)); + __ sw(result_register(), FieldMemOperand(a1, offset)); + // Update the write barrier for the array store. + __ RecordWriteField(a1, offset, result_register(), a2, + kRAHasBeenSaved, kDontSaveFPRegs, + EMIT_REMEMBERED_SET, INLINE_SMI_CHECK); + } else { + __ li(a3, Operand(Smi::FromInt(array_index))); + __ mov(a0, result_register()); + StoreArrayLiteralElementStub stub(isolate()); + __ CallStub(&stub); + } + + PrepareForBailoutForId(expr->GetIdForElement(array_index), NO_REGISTERS); + } + + // In case the array literal contains spread expressions it has two parts. The + // first part is the "static" array which has a literal index is handled + // above. The second part is the part after the first spread expression + // (inclusive) and these elements gets appended to the array. Note that the + // number elements an iterable produces is unknown ahead of time. + if (array_index < length && result_saved) { + __ Pop(); // literal index + __ Pop(v0); + result_saved = false; + } + for (; array_index < length; array_index++) { + Expression* subexpr = subexprs->at(array_index); + + __ Push(v0); + if (subexpr->IsSpread()) { + VisitForStackValue(subexpr->AsSpread()->expression()); + __ InvokeBuiltin(Builtins::CONCAT_ITERABLE_TO_ARRAY, CALL_FUNCTION); + } else { + VisitForStackValue(subexpr); + __ CallRuntime(Runtime::kAppendElement, 2); + } + + PrepareForBailoutForId(expr->GetIdForElement(array_index), NO_REGISTERS); + } + + if (result_saved) { + __ Pop(); // literal index + context()->PlugTOS(); + } else { + context()->Plug(v0); + } +} + + +void FullCodeGenerator::VisitAssignment(Assignment* expr) { + DCHECK(expr->target()->IsValidReferenceExpressionOrThis()); + + Comment cmnt(masm_, "[ Assignment"); + SetExpressionPosition(expr, INSERT_BREAK); + + Property* property = expr->target()->AsProperty(); + LhsKind assign_type = Property::GetAssignType(property); + + // Evaluate LHS expression. + switch (assign_type) { + case VARIABLE: + // Nothing to do here. + break; + case NAMED_PROPERTY: + if (expr->is_compound()) { + // We need the receiver both on the stack and in the register. + VisitForStackValue(property->obj()); + __ lw(LoadDescriptor::ReceiverRegister(), MemOperand(sp, 0)); + } else { + VisitForStackValue(property->obj()); + } + break; + case NAMED_SUPER_PROPERTY: + VisitForStackValue( + property->obj()->AsSuperPropertyReference()->this_var()); + VisitForAccumulatorValue( + property->obj()->AsSuperPropertyReference()->home_object()); + __ Push(result_register()); + if (expr->is_compound()) { + const Register scratch = a1; + __ lw(scratch, MemOperand(sp, kPointerSize)); + __ Push(scratch, result_register()); + } + break; + case KEYED_SUPER_PROPERTY: { + const Register scratch = a1; + VisitForStackValue( + property->obj()->AsSuperPropertyReference()->this_var()); + VisitForAccumulatorValue( + property->obj()->AsSuperPropertyReference()->home_object()); + __ Move(scratch, result_register()); + VisitForAccumulatorValue(property->key()); + __ Push(scratch, result_register()); + if (expr->is_compound()) { + const Register scratch1 = t0; + __ lw(scratch1, MemOperand(sp, 2 * kPointerSize)); + __ Push(scratch1, scratch, result_register()); + } + break; + } + case KEYED_PROPERTY: + // We need the key and receiver on both the stack and in v0 and a1. + if (expr->is_compound()) { + VisitForStackValue(property->obj()); + VisitForStackValue(property->key()); + __ lw(LoadDescriptor::ReceiverRegister(), + MemOperand(sp, 1 * kPointerSize)); + __ lw(LoadDescriptor::NameRegister(), MemOperand(sp, 0)); + } else { + VisitForStackValue(property->obj()); + VisitForStackValue(property->key()); + } + break; + } + + // For compound assignments we need another deoptimization point after the + // variable/property load. + if (expr->is_compound()) { + { AccumulatorValueContext context(this); + switch (assign_type) { + case VARIABLE: + EmitVariableLoad(expr->target()->AsVariableProxy()); + PrepareForBailout(expr->target(), TOS_REG); + break; + case NAMED_PROPERTY: + EmitNamedPropertyLoad(property); + PrepareForBailoutForId(property->LoadId(), TOS_REG); + break; + case NAMED_SUPER_PROPERTY: + EmitNamedSuperPropertyLoad(property); + PrepareForBailoutForId(property->LoadId(), TOS_REG); + break; + case KEYED_SUPER_PROPERTY: + EmitKeyedSuperPropertyLoad(property); + PrepareForBailoutForId(property->LoadId(), TOS_REG); + break; + case KEYED_PROPERTY: + EmitKeyedPropertyLoad(property); + PrepareForBailoutForId(property->LoadId(), TOS_REG); + break; + } + } + + Token::Value op = expr->binary_op(); + __ push(v0); // Left operand goes on the stack. + VisitForAccumulatorValue(expr->value()); + + AccumulatorValueContext context(this); + if (ShouldInlineSmiCase(op)) { + EmitInlineSmiBinaryOp(expr->binary_operation(), + op, + expr->target(), + expr->value()); + } else { + EmitBinaryOp(expr->binary_operation(), op); + } + + // Deoptimization point in case the binary operation may have side effects. + PrepareForBailout(expr->binary_operation(), TOS_REG); + } else { + VisitForAccumulatorValue(expr->value()); + } + + SetExpressionPosition(expr); + + // Store the value. + switch (assign_type) { + case VARIABLE: + EmitVariableAssignment(expr->target()->AsVariableProxy()->var(), + expr->op(), expr->AssignmentSlot()); + PrepareForBailoutForId(expr->AssignmentId(), TOS_REG); + context()->Plug(v0); + break; + case NAMED_PROPERTY: + EmitNamedPropertyAssignment(expr); + break; + case NAMED_SUPER_PROPERTY: + EmitNamedSuperPropertyStore(property); + context()->Plug(v0); + break; + case KEYED_SUPER_PROPERTY: + EmitKeyedSuperPropertyStore(property); + context()->Plug(v0); + break; + case KEYED_PROPERTY: + EmitKeyedPropertyAssignment(expr); + break; + } +} + + +void FullCodeGenerator::VisitYield(Yield* expr) { + Comment cmnt(masm_, "[ Yield"); + SetExpressionPosition(expr); + + // Evaluate yielded value first; the initial iterator definition depends on + // this. It stays on the stack while we update the iterator. + VisitForStackValue(expr->expression()); + + switch (expr->yield_kind()) { + case Yield::kSuspend: + // Pop value from top-of-stack slot; box result into result register. + EmitCreateIteratorResult(false); + __ push(result_register()); + // Fall through. + case Yield::kInitial: { + Label suspend, continuation, post_runtime, resume; + + __ jmp(&suspend); + __ bind(&continuation); + __ RecordGeneratorContinuation(); + __ jmp(&resume); + + __ bind(&suspend); + VisitForAccumulatorValue(expr->generator_object()); + DCHECK(continuation.pos() > 0 && Smi::IsValid(continuation.pos())); + __ li(a1, Operand(Smi::FromInt(continuation.pos()))); + __ sw(a1, FieldMemOperand(v0, JSGeneratorObject::kContinuationOffset)); + __ sw(cp, FieldMemOperand(v0, JSGeneratorObject::kContextOffset)); + __ mov(a1, cp); + __ RecordWriteField(v0, JSGeneratorObject::kContextOffset, a1, a2, + kRAHasBeenSaved, kDontSaveFPRegs); + __ Addu(a1, fp, Operand(StandardFrameConstants::kExpressionsOffset)); + __ Branch(&post_runtime, eq, sp, Operand(a1)); + __ push(v0); // generator object + __ CallRuntime(Runtime::kSuspendJSGeneratorObject, 1); + __ lw(cp, MemOperand(fp, StandardFrameConstants::kContextOffset)); + __ bind(&post_runtime); + __ pop(result_register()); + EmitReturnSequence(); + + __ bind(&resume); + context()->Plug(result_register()); + break; + } + + case Yield::kFinal: { + VisitForAccumulatorValue(expr->generator_object()); + __ li(a1, Operand(Smi::FromInt(JSGeneratorObject::kGeneratorClosed))); + __ sw(a1, FieldMemOperand(result_register(), + JSGeneratorObject::kContinuationOffset)); + // Pop value from top-of-stack slot, box result into result register. + EmitCreateIteratorResult(true); + EmitUnwindBeforeReturn(); + EmitReturnSequence(); + break; + } + + case Yield::kDelegating: { + VisitForStackValue(expr->generator_object()); + + // Initial stack layout is as follows: + // [sp + 1 * kPointerSize] iter + // [sp + 0 * kPointerSize] g + + Label l_catch, l_try, l_suspend, l_continuation, l_resume; + Label l_next, l_call; + Register load_receiver = LoadDescriptor::ReceiverRegister(); + Register load_name = LoadDescriptor::NameRegister(); + + // Initial send value is undefined. + __ LoadRoot(a0, Heap::kUndefinedValueRootIndex); + __ Branch(&l_next); + + // catch (e) { receiver = iter; f = 'throw'; arg = e; goto l_call; } + __ bind(&l_catch); + __ mov(a0, v0); + __ LoadRoot(load_name, Heap::kthrow_stringRootIndex); // "throw" + __ lw(a3, MemOperand(sp, 1 * kPointerSize)); // iter + __ Push(load_name, a3, a0); // "throw", iter, except + __ jmp(&l_call); + + // try { received = %yield result } + // Shuffle the received result above a try handler and yield it without + // re-boxing. + __ bind(&l_try); + __ pop(a0); // result + int handler_index = NewHandlerTableEntry(); + EnterTryBlock(handler_index, &l_catch); + const int try_block_size = TryCatch::kElementCount * kPointerSize; + __ push(a0); // result + + __ jmp(&l_suspend); + __ bind(&l_continuation); + __ RecordGeneratorContinuation(); + __ mov(a0, v0); + __ jmp(&l_resume); + + __ bind(&l_suspend); + const int generator_object_depth = kPointerSize + try_block_size; + __ lw(a0, MemOperand(sp, generator_object_depth)); + __ push(a0); // g + __ Push(Smi::FromInt(handler_index)); // handler-index + DCHECK(l_continuation.pos() > 0 && Smi::IsValid(l_continuation.pos())); + __ li(a1, Operand(Smi::FromInt(l_continuation.pos()))); + __ sw(a1, FieldMemOperand(a0, JSGeneratorObject::kContinuationOffset)); + __ sw(cp, FieldMemOperand(a0, JSGeneratorObject::kContextOffset)); + __ mov(a1, cp); + __ RecordWriteField(a0, JSGeneratorObject::kContextOffset, a1, a2, + kRAHasBeenSaved, kDontSaveFPRegs); + __ CallRuntime(Runtime::kSuspendJSGeneratorObject, 2); + __ lw(cp, MemOperand(fp, StandardFrameConstants::kContextOffset)); + __ pop(v0); // result + EmitReturnSequence(); + __ mov(a0, v0); + __ bind(&l_resume); // received in a0 + ExitTryBlock(handler_index); + + // receiver = iter; f = 'next'; arg = received; + __ bind(&l_next); + + __ LoadRoot(load_name, Heap::knext_stringRootIndex); // "next" + __ lw(a3, MemOperand(sp, 1 * kPointerSize)); // iter + __ Push(load_name, a3, a0); // "next", iter, received + + // result = receiver[f](arg); + __ bind(&l_call); + __ lw(load_receiver, MemOperand(sp, kPointerSize)); + __ lw(load_name, MemOperand(sp, 2 * kPointerSize)); + __ li(LoadDescriptor::SlotRegister(), + Operand(SmiFromSlot(expr->KeyedLoadFeedbackSlot()))); + Handle<Code> ic = CodeFactory::KeyedLoadIC(isolate(), SLOPPY).code(); + CallIC(ic, TypeFeedbackId::None()); + __ mov(a0, v0); + __ mov(a1, a0); + __ sw(a1, MemOperand(sp, 2 * kPointerSize)); + SetCallPosition(expr, 1); + CallFunctionStub stub(isolate(), 1, CALL_AS_METHOD); + __ CallStub(&stub); + + __ lw(cp, MemOperand(fp, StandardFrameConstants::kContextOffset)); + __ Drop(1); // The function is still on the stack; drop it. + + // if (!result.done) goto l_try; + __ Move(load_receiver, v0); + + __ push(load_receiver); // save result + __ LoadRoot(load_name, Heap::kdone_stringRootIndex); // "done" + __ li(LoadDescriptor::SlotRegister(), + Operand(SmiFromSlot(expr->DoneFeedbackSlot()))); + CallLoadIC(NOT_INSIDE_TYPEOF); // v0=result.done + __ mov(a0, v0); + Handle<Code> bool_ic = ToBooleanStub::GetUninitialized(isolate()); + CallIC(bool_ic); + __ Branch(&l_try, eq, v0, Operand(zero_reg)); + + // result.value + __ pop(load_receiver); // result + __ LoadRoot(load_name, Heap::kvalue_stringRootIndex); // "value" + __ li(LoadDescriptor::SlotRegister(), + Operand(SmiFromSlot(expr->ValueFeedbackSlot()))); + CallLoadIC(NOT_INSIDE_TYPEOF); // v0=result.value + context()->DropAndPlug(2, v0); // drop iter and g + break; + } + } +} + + +void FullCodeGenerator::EmitGeneratorResume(Expression *generator, + Expression *value, + JSGeneratorObject::ResumeMode resume_mode) { + // The value stays in a0, and is ultimately read by the resumed generator, as + // if CallRuntime(Runtime::kSuspendJSGeneratorObject) returned it. Or it + // is read to throw the value when the resumed generator is already closed. + // a1 will hold the generator object until the activation has been resumed. + VisitForStackValue(generator); + VisitForAccumulatorValue(value); + __ pop(a1); + + // Load suspended function and context. + __ lw(cp, FieldMemOperand(a1, JSGeneratorObject::kContextOffset)); + __ lw(t0, FieldMemOperand(a1, JSGeneratorObject::kFunctionOffset)); + + // Load receiver and store as the first argument. + __ lw(a2, FieldMemOperand(a1, JSGeneratorObject::kReceiverOffset)); + __ push(a2); + + // Push holes for the rest of the arguments to the generator function. + __ lw(a3, FieldMemOperand(t0, JSFunction::kSharedFunctionInfoOffset)); + __ lw(a3, + FieldMemOperand(a3, SharedFunctionInfo::kFormalParameterCountOffset)); + __ LoadRoot(a2, Heap::kTheHoleValueRootIndex); + Label push_argument_holes, push_frame; + __ bind(&push_argument_holes); + __ Subu(a3, a3, Operand(Smi::FromInt(1))); + __ Branch(&push_frame, lt, a3, Operand(zero_reg)); + __ push(a2); + __ jmp(&push_argument_holes); + + // Enter a new JavaScript frame, and initialize its slots as they were when + // the generator was suspended. + Label resume_frame, done; + __ bind(&push_frame); + __ Call(&resume_frame); + __ jmp(&done); + __ bind(&resume_frame); + // ra = return address. + // fp = caller's frame pointer. + // cp = callee's context, + // t0 = callee's JS function. + __ Push(ra, fp, cp, t0); + // Adjust FP to point to saved FP. + __ Addu(fp, sp, 2 * kPointerSize); + + // Load the operand stack size. + __ lw(a3, FieldMemOperand(a1, JSGeneratorObject::kOperandStackOffset)); + __ lw(a3, FieldMemOperand(a3, FixedArray::kLengthOffset)); + __ SmiUntag(a3); + + // If we are sending a value and there is no operand stack, we can jump back + // in directly. + if (resume_mode == JSGeneratorObject::NEXT) { + Label slow_resume; + __ Branch(&slow_resume, ne, a3, Operand(zero_reg)); + __ lw(a3, FieldMemOperand(t0, JSFunction::kCodeEntryOffset)); + __ lw(a2, FieldMemOperand(a1, JSGeneratorObject::kContinuationOffset)); + __ SmiUntag(a2); + __ Addu(a3, a3, Operand(a2)); + __ li(a2, Operand(Smi::FromInt(JSGeneratorObject::kGeneratorExecuting))); + __ sw(a2, FieldMemOperand(a1, JSGeneratorObject::kContinuationOffset)); + __ Jump(a3); + __ bind(&slow_resume); + } + + // Otherwise, we push holes for the operand stack and call the runtime to fix + // up the stack and the handlers. + Label push_operand_holes, call_resume; + __ bind(&push_operand_holes); + __ Subu(a3, a3, Operand(1)); + __ Branch(&call_resume, lt, a3, Operand(zero_reg)); + __ push(a2); + __ Branch(&push_operand_holes); + __ bind(&call_resume); + DCHECK(!result_register().is(a1)); + __ Push(a1, result_register()); + __ Push(Smi::FromInt(resume_mode)); + __ CallRuntime(Runtime::kResumeJSGeneratorObject, 3); + // Not reached: the runtime call returns elsewhere. + __ stop("not-reached"); + + __ bind(&done); + context()->Plug(result_register()); +} + + +void FullCodeGenerator::EmitCreateIteratorResult(bool done) { + Label gc_required; + Label allocated; + + const int instance_size = 5 * kPointerSize; + DCHECK_EQ(isolate()->native_context()->iterator_result_map()->instance_size(), + instance_size); + + __ Allocate(instance_size, v0, a2, a3, &gc_required, TAG_OBJECT); + __ jmp(&allocated); + + __ bind(&gc_required); + __ Push(Smi::FromInt(instance_size)); + __ CallRuntime(Runtime::kAllocateInNewSpace, 1); + __ lw(context_register(), + MemOperand(fp, StandardFrameConstants::kContextOffset)); + + __ bind(&allocated); + __ lw(a1, ContextOperand(cp, Context::GLOBAL_OBJECT_INDEX)); + __ lw(a1, FieldMemOperand(a1, GlobalObject::kNativeContextOffset)); + __ lw(a1, ContextOperand(a1, Context::ITERATOR_RESULT_MAP_INDEX)); + __ pop(a2); + __ li(a3, Operand(isolate()->factory()->ToBoolean(done))); + __ li(t0, Operand(isolate()->factory()->empty_fixed_array())); + __ sw(a1, FieldMemOperand(v0, HeapObject::kMapOffset)); + __ sw(t0, FieldMemOperand(v0, JSObject::kPropertiesOffset)); + __ sw(t0, FieldMemOperand(v0, JSObject::kElementsOffset)); + __ sw(a2, + FieldMemOperand(v0, JSGeneratorObject::kResultValuePropertyOffset)); + __ sw(a3, + FieldMemOperand(v0, JSGeneratorObject::kResultDonePropertyOffset)); + + // Only the value field needs a write barrier, as the other values are in the + // root set. + __ RecordWriteField(v0, JSGeneratorObject::kResultValuePropertyOffset, + a2, a3, kRAHasBeenSaved, kDontSaveFPRegs); +} + + +void FullCodeGenerator::EmitNamedPropertyLoad(Property* prop) { + SetExpressionPosition(prop); + Literal* key = prop->key()->AsLiteral(); + DCHECK(!prop->IsSuperAccess()); + + __ li(LoadDescriptor::NameRegister(), Operand(key->value())); + __ li(LoadDescriptor::SlotRegister(), + Operand(SmiFromSlot(prop->PropertyFeedbackSlot()))); + CallLoadIC(NOT_INSIDE_TYPEOF, language_mode()); +} + + +void FullCodeGenerator::EmitNamedSuperPropertyLoad(Property* prop) { + // Stack: receiver, home_object. + SetExpressionPosition(prop); + + Literal* key = prop->key()->AsLiteral(); + DCHECK(!key->value()->IsSmi()); + DCHECK(prop->IsSuperAccess()); + + __ Push(key->value()); + __ Push(Smi::FromInt(language_mode())); + __ CallRuntime(Runtime::kLoadFromSuper, 4); +} + + +void FullCodeGenerator::EmitKeyedPropertyLoad(Property* prop) { + SetExpressionPosition(prop); + Handle<Code> ic = CodeFactory::KeyedLoadIC(isolate(), language_mode()).code(); + __ li(LoadDescriptor::SlotRegister(), + Operand(SmiFromSlot(prop->PropertyFeedbackSlot()))); + CallIC(ic); +} + + +void FullCodeGenerator::EmitKeyedSuperPropertyLoad(Property* prop) { + // Stack: receiver, home_object, key. + SetExpressionPosition(prop); + __ Push(Smi::FromInt(language_mode())); + __ CallRuntime(Runtime::kLoadKeyedFromSuper, 4); +} + + +void FullCodeGenerator::EmitInlineSmiBinaryOp(BinaryOperation* expr, + Token::Value op, + Expression* left_expr, + Expression* right_expr) { + Label done, smi_case, stub_call; + + Register scratch1 = a2; + Register scratch2 = a3; + + // Get the arguments. + Register left = a1; + Register right = a0; + __ pop(left); + __ mov(a0, result_register()); + + // Perform combined smi check on both operands. + __ Or(scratch1, left, Operand(right)); + STATIC_ASSERT(kSmiTag == 0); + JumpPatchSite patch_site(masm_); + patch_site.EmitJumpIfSmi(scratch1, &smi_case); + + __ bind(&stub_call); + Handle<Code> code = + CodeFactory::BinaryOpIC(isolate(), op, strength(language_mode())).code(); + CallIC(code, expr->BinaryOperationFeedbackId()); + patch_site.EmitPatchInfo(); + __ jmp(&done); + + __ bind(&smi_case); + // Smi case. This code works the same way as the smi-smi case in the type + // recording binary operation stub, see + switch (op) { + case Token::SAR: + __ GetLeastBitsFromSmi(scratch1, right, 5); + __ srav(right, left, scratch1); + __ And(v0, right, Operand(~kSmiTagMask)); + break; + case Token::SHL: { + __ SmiUntag(scratch1, left); + __ GetLeastBitsFromSmi(scratch2, right, 5); + __ sllv(scratch1, scratch1, scratch2); + __ Addu(scratch2, scratch1, Operand(0x40000000)); + __ Branch(&stub_call, lt, scratch2, Operand(zero_reg)); + __ SmiTag(v0, scratch1); + break; + } + case Token::SHR: { + __ SmiUntag(scratch1, left); + __ GetLeastBitsFromSmi(scratch2, right, 5); + __ srlv(scratch1, scratch1, scratch2); + __ And(scratch2, scratch1, 0xc0000000); + __ Branch(&stub_call, ne, scratch2, Operand(zero_reg)); + __ SmiTag(v0, scratch1); + break; + } + case Token::ADD: + __ AdduAndCheckForOverflow(v0, left, right, scratch1); + __ BranchOnOverflow(&stub_call, scratch1); + break; + case Token::SUB: + __ SubuAndCheckForOverflow(v0, left, right, scratch1); + __ BranchOnOverflow(&stub_call, scratch1); + break; + case Token::MUL: { + __ SmiUntag(scratch1, right); + __ Mul(scratch2, v0, left, scratch1); + __ sra(scratch1, v0, 31); + __ Branch(&stub_call, ne, scratch1, Operand(scratch2)); + __ Branch(&done, ne, v0, Operand(zero_reg)); + __ Addu(scratch2, right, left); + __ Branch(&stub_call, lt, scratch2, Operand(zero_reg)); + DCHECK(Smi::FromInt(0) == 0); + __ mov(v0, zero_reg); + break; + } + case Token::BIT_OR: + __ Or(v0, left, Operand(right)); + break; + case Token::BIT_AND: + __ And(v0, left, Operand(right)); + break; + case Token::BIT_XOR: + __ Xor(v0, left, Operand(right)); + break; + default: + UNREACHABLE(); + } + + __ bind(&done); + context()->Plug(v0); +} + + +void FullCodeGenerator::EmitClassDefineProperties(ClassLiteral* lit, + int* used_store_slots) { + // Constructor is in v0. + DCHECK(lit != NULL); + __ push(v0); + + // No access check is needed here since the constructor is created by the + // class literal. + Register scratch = a1; + __ lw(scratch, + FieldMemOperand(v0, JSFunction::kPrototypeOrInitialMapOffset)); + __ push(scratch); + + for (int i = 0; i < lit->properties()->length(); i++) { + ObjectLiteral::Property* property = lit->properties()->at(i); + Expression* value = property->value(); + + if (property->is_static()) { + __ lw(scratch, MemOperand(sp, kPointerSize)); // constructor + } else { + __ lw(scratch, MemOperand(sp, 0)); // prototype + } + __ push(scratch); + EmitPropertyKey(property, lit->GetIdForProperty(i)); + + // The static prototype property is read only. We handle the non computed + // property name case in the parser. Since this is the only case where we + // need to check for an own read only property we special case this so we do + // not need to do this for every property. + if (property->is_static() && property->is_computed_name()) { + __ CallRuntime(Runtime::kThrowIfStaticPrototype, 1); + __ push(v0); + } + + VisitForStackValue(value); + EmitSetHomeObjectIfNeeded(value, 2, + lit->SlotForHomeObject(value, used_store_slots)); + + switch (property->kind()) { + case ObjectLiteral::Property::CONSTANT: + case ObjectLiteral::Property::MATERIALIZED_LITERAL: + case ObjectLiteral::Property::PROTOTYPE: + UNREACHABLE(); + case ObjectLiteral::Property::COMPUTED: + __ CallRuntime(Runtime::kDefineClassMethod, 3); + break; + + case ObjectLiteral::Property::GETTER: + __ li(a0, Operand(Smi::FromInt(DONT_ENUM))); + __ push(a0); + __ CallRuntime(Runtime::kDefineGetterPropertyUnchecked, 4); + break; + + case ObjectLiteral::Property::SETTER: + __ li(a0, Operand(Smi::FromInt(DONT_ENUM))); + __ push(a0); + __ CallRuntime(Runtime::kDefineSetterPropertyUnchecked, 4); + break; + + default: + UNREACHABLE(); + } + } + + // Set both the prototype and constructor to have fast properties, and also + // freeze them in strong mode. + __ CallRuntime(Runtime::kFinalizeClassDefinition, 2); +} + + +void FullCodeGenerator::EmitBinaryOp(BinaryOperation* expr, Token::Value op) { + __ mov(a0, result_register()); + __ pop(a1); + Handle<Code> code = + CodeFactory::BinaryOpIC(isolate(), op, strength(language_mode())).code(); + JumpPatchSite patch_site(masm_); // unbound, signals no inlined smi code. + CallIC(code, expr->BinaryOperationFeedbackId()); + patch_site.EmitPatchInfo(); + context()->Plug(v0); +} + + +void FullCodeGenerator::EmitAssignment(Expression* expr, + FeedbackVectorICSlot slot) { + DCHECK(expr->IsValidReferenceExpressionOrThis()); + + Property* prop = expr->AsProperty(); + LhsKind assign_type = Property::GetAssignType(prop); + + switch (assign_type) { + case VARIABLE: { + Variable* var = expr->AsVariableProxy()->var(); + EffectContext context(this); + EmitVariableAssignment(var, Token::ASSIGN, slot); + break; + } + case NAMED_PROPERTY: { + __ push(result_register()); // Preserve value. + VisitForAccumulatorValue(prop->obj()); + __ mov(StoreDescriptor::ReceiverRegister(), result_register()); + __ pop(StoreDescriptor::ValueRegister()); // Restore value. + __ li(StoreDescriptor::NameRegister(), + Operand(prop->key()->AsLiteral()->value())); + if (FLAG_vector_stores) EmitLoadStoreICSlot(slot); + CallStoreIC(); + break; + } + case NAMED_SUPER_PROPERTY: { + __ Push(v0); + VisitForStackValue(prop->obj()->AsSuperPropertyReference()->this_var()); + VisitForAccumulatorValue( + prop->obj()->AsSuperPropertyReference()->home_object()); + // stack: value, this; v0: home_object + Register scratch = a2; + Register scratch2 = a3; + __ mov(scratch, result_register()); // home_object + __ lw(v0, MemOperand(sp, kPointerSize)); // value + __ lw(scratch2, MemOperand(sp, 0)); // this + __ sw(scratch2, MemOperand(sp, kPointerSize)); // this + __ sw(scratch, MemOperand(sp, 0)); // home_object + // stack: this, home_object; v0: value + EmitNamedSuperPropertyStore(prop); + break; + } + case KEYED_SUPER_PROPERTY: { + __ Push(v0); + VisitForStackValue(prop->obj()->AsSuperPropertyReference()->this_var()); + VisitForStackValue( + prop->obj()->AsSuperPropertyReference()->home_object()); + VisitForAccumulatorValue(prop->key()); + Register scratch = a2; + Register scratch2 = a3; + __ lw(scratch2, MemOperand(sp, 2 * kPointerSize)); // value + // stack: value, this, home_object; v0: key, a3: value + __ lw(scratch, MemOperand(sp, kPointerSize)); // this + __ sw(scratch, MemOperand(sp, 2 * kPointerSize)); + __ lw(scratch, MemOperand(sp, 0)); // home_object + __ sw(scratch, MemOperand(sp, kPointerSize)); + __ sw(v0, MemOperand(sp, 0)); + __ Move(v0, scratch2); + // stack: this, home_object, key; v0: value. + EmitKeyedSuperPropertyStore(prop); + break; + } + case KEYED_PROPERTY: { + __ push(result_register()); // Preserve value. + VisitForStackValue(prop->obj()); + VisitForAccumulatorValue(prop->key()); + __ mov(StoreDescriptor::NameRegister(), result_register()); + __ Pop(StoreDescriptor::ValueRegister(), + StoreDescriptor::ReceiverRegister()); + if (FLAG_vector_stores) EmitLoadStoreICSlot(slot); + Handle<Code> ic = + CodeFactory::KeyedStoreIC(isolate(), language_mode()).code(); + CallIC(ic); + break; + } + } + context()->Plug(v0); +} + + +void FullCodeGenerator::EmitStoreToStackLocalOrContextSlot( + Variable* var, MemOperand location) { + __ sw(result_register(), location); + if (var->IsContextSlot()) { + // RecordWrite may destroy all its register arguments. + __ Move(a3, result_register()); + int offset = Context::SlotOffset(var->index()); + __ RecordWriteContextSlot( + a1, offset, a3, a2, kRAHasBeenSaved, kDontSaveFPRegs); + } +} + + +void FullCodeGenerator::EmitVariableAssignment(Variable* var, Token::Value op, + FeedbackVectorICSlot slot) { + if (var->IsUnallocated()) { + // Global var, const, or let. + __ mov(StoreDescriptor::ValueRegister(), result_register()); + __ li(StoreDescriptor::NameRegister(), Operand(var->name())); + __ lw(StoreDescriptor::ReceiverRegister(), GlobalObjectOperand()); + if (FLAG_vector_stores) EmitLoadStoreICSlot(slot); + CallStoreIC(); + + } else if (var->IsGlobalSlot()) { + // Global var, const, or let. + DCHECK(var->index() > 0); + DCHECK(var->IsStaticGlobalObjectProperty()); + DCHECK(StoreGlobalViaContextDescriptor::ValueRegister().is(a0)); + __ mov(StoreGlobalViaContextDescriptor::ValueRegister(), result_register()); + int const slot = var->index(); + int const depth = scope()->ContextChainLength(var->scope()); + if (depth <= StoreGlobalViaContextStub::kMaximumDepth) { + __ li(StoreGlobalViaContextDescriptor::SlotRegister(), Operand(slot)); + StoreGlobalViaContextStub stub(isolate(), depth, language_mode()); + __ CallStub(&stub); + } else { + __ Push(Smi::FromInt(slot)); + __ Push(a0); + __ CallRuntime(is_strict(language_mode()) + ? Runtime::kStoreGlobalViaContext_Strict + : Runtime::kStoreGlobalViaContext_Sloppy, + 2); + } + + } else if (var->mode() == LET && op != Token::INIT_LET) { + // Non-initializing assignment to let variable needs a write barrier. + DCHECK(!var->IsLookupSlot()); + DCHECK(var->IsStackAllocated() || var->IsContextSlot()); + Label assign; + MemOperand location = VarOperand(var, a1); + __ lw(a3, location); + __ LoadRoot(t0, Heap::kTheHoleValueRootIndex); + __ Branch(&assign, ne, a3, Operand(t0)); + __ li(a3, Operand(var->name())); + __ push(a3); + __ CallRuntime(Runtime::kThrowReferenceError, 1); + // Perform the assignment. + __ bind(&assign); + EmitStoreToStackLocalOrContextSlot(var, location); + + } else if (var->mode() == CONST && op != Token::INIT_CONST) { + // Assignment to const variable needs a write barrier. + DCHECK(!var->IsLookupSlot()); + DCHECK(var->IsStackAllocated() || var->IsContextSlot()); + Label const_error; + MemOperand location = VarOperand(var, a1); + __ lw(a3, location); + __ LoadRoot(at, Heap::kTheHoleValueRootIndex); + __ Branch(&const_error, ne, a3, Operand(at)); + __ li(a3, Operand(var->name())); + __ push(a3); + __ CallRuntime(Runtime::kThrowReferenceError, 1); + __ bind(&const_error); + __ CallRuntime(Runtime::kThrowConstAssignError, 0); + + } else if (var->is_this() && op == Token::INIT_CONST) { + // Initializing assignment to const {this} needs a write barrier. + DCHECK(var->IsStackAllocated() || var->IsContextSlot()); + Label uninitialized_this; + MemOperand location = VarOperand(var, a1); + __ lw(a3, location); + __ LoadRoot(at, Heap::kTheHoleValueRootIndex); + __ Branch(&uninitialized_this, eq, a3, Operand(at)); + __ li(a0, Operand(var->name())); + __ Push(a0); + __ CallRuntime(Runtime::kThrowReferenceError, 1); + __ bind(&uninitialized_this); + EmitStoreToStackLocalOrContextSlot(var, location); + + } else if (!var->is_const_mode() || op == Token::INIT_CONST) { + if (var->IsLookupSlot()) { + // Assignment to var. + __ li(a1, Operand(var->name())); + __ li(a0, Operand(Smi::FromInt(language_mode()))); + __ Push(v0, cp, a1, a0); // Value, context, name, language mode. + __ CallRuntime(Runtime::kStoreLookupSlot, 4); + } else { + // Assignment to var or initializing assignment to let/const in harmony + // mode. + DCHECK((var->IsStackAllocated() || var->IsContextSlot())); + MemOperand location = VarOperand(var, a1); + if (generate_debug_code_ && op == Token::INIT_LET) { + // Check for an uninitialized let binding. + __ lw(a2, location); + __ LoadRoot(t0, Heap::kTheHoleValueRootIndex); + __ Check(eq, kLetBindingReInitialization, a2, Operand(t0)); + } + EmitStoreToStackLocalOrContextSlot(var, location); + } + + } else if (op == Token::INIT_CONST_LEGACY) { + // Const initializers need a write barrier. + DCHECK(!var->IsParameter()); // No const parameters. + if (var->IsLookupSlot()) { + __ li(a0, Operand(var->name())); + __ Push(v0, cp, a0); // Context and name. + __ CallRuntime(Runtime::kInitializeLegacyConstLookupSlot, 3); + } else { + DCHECK(var->IsStackAllocated() || var->IsContextSlot()); + Label skip; + MemOperand location = VarOperand(var, a1); + __ lw(a2, location); + __ LoadRoot(at, Heap::kTheHoleValueRootIndex); + __ Branch(&skip, ne, a2, Operand(at)); + EmitStoreToStackLocalOrContextSlot(var, location); + __ bind(&skip); + } + + } else { + DCHECK(var->mode() == CONST_LEGACY && op != Token::INIT_CONST_LEGACY); + if (is_strict(language_mode())) { + __ CallRuntime(Runtime::kThrowConstAssignError, 0); + } + // Silently ignore store in sloppy mode. + } +} + + +void FullCodeGenerator::EmitNamedPropertyAssignment(Assignment* expr) { + // Assignment to a property, using a named store IC. + Property* prop = expr->target()->AsProperty(); + DCHECK(prop != NULL); + DCHECK(prop->key()->IsLiteral()); + + __ mov(StoreDescriptor::ValueRegister(), result_register()); + __ li(StoreDescriptor::NameRegister(), + Operand(prop->key()->AsLiteral()->value())); + __ pop(StoreDescriptor::ReceiverRegister()); + if (FLAG_vector_stores) { + EmitLoadStoreICSlot(expr->AssignmentSlot()); + CallStoreIC(); + } else { + CallStoreIC(expr->AssignmentFeedbackId()); + } + + PrepareForBailoutForId(expr->AssignmentId(), TOS_REG); + context()->Plug(v0); +} + + +void FullCodeGenerator::EmitNamedSuperPropertyStore(Property* prop) { + // Assignment to named property of super. + // v0 : value + // stack : receiver ('this'), home_object + DCHECK(prop != NULL); + Literal* key = prop->key()->AsLiteral(); + DCHECK(key != NULL); + + __ Push(key->value()); + __ Push(v0); + __ CallRuntime((is_strict(language_mode()) ? Runtime::kStoreToSuper_Strict + : Runtime::kStoreToSuper_Sloppy), + 4); +} + + +void FullCodeGenerator::EmitKeyedSuperPropertyStore(Property* prop) { + // Assignment to named property of super. + // v0 : value + // stack : receiver ('this'), home_object, key + DCHECK(prop != NULL); + + __ Push(v0); + __ CallRuntime( + (is_strict(language_mode()) ? Runtime::kStoreKeyedToSuper_Strict + : Runtime::kStoreKeyedToSuper_Sloppy), + 4); +} + + +void FullCodeGenerator::EmitKeyedPropertyAssignment(Assignment* expr) { + // Assignment to a property, using a keyed store IC. + // Call keyed store IC. + // The arguments are: + // - a0 is the value, + // - a1 is the key, + // - a2 is the receiver. + __ mov(StoreDescriptor::ValueRegister(), result_register()); + __ Pop(StoreDescriptor::ReceiverRegister(), StoreDescriptor::NameRegister()); + DCHECK(StoreDescriptor::ValueRegister().is(a0)); + + Handle<Code> ic = + CodeFactory::KeyedStoreIC(isolate(), language_mode()).code(); + if (FLAG_vector_stores) { + EmitLoadStoreICSlot(expr->AssignmentSlot()); + CallIC(ic); + } else { + CallIC(ic, expr->AssignmentFeedbackId()); + } + + PrepareForBailoutForId(expr->AssignmentId(), TOS_REG); + context()->Plug(v0); +} + + +void FullCodeGenerator::VisitProperty(Property* expr) { + Comment cmnt(masm_, "[ Property"); + SetExpressionPosition(expr); + + Expression* key = expr->key(); + + if (key->IsPropertyName()) { + if (!expr->IsSuperAccess()) { + VisitForAccumulatorValue(expr->obj()); + __ Move(LoadDescriptor::ReceiverRegister(), v0); + EmitNamedPropertyLoad(expr); + } else { + VisitForStackValue(expr->obj()->AsSuperPropertyReference()->this_var()); + VisitForStackValue( + expr->obj()->AsSuperPropertyReference()->home_object()); + EmitNamedSuperPropertyLoad(expr); + } + } else { + if (!expr->IsSuperAccess()) { + VisitForStackValue(expr->obj()); + VisitForAccumulatorValue(expr->key()); + __ Move(LoadDescriptor::NameRegister(), v0); + __ pop(LoadDescriptor::ReceiverRegister()); + EmitKeyedPropertyLoad(expr); + } else { + VisitForStackValue(expr->obj()->AsSuperPropertyReference()->this_var()); + VisitForStackValue( + expr->obj()->AsSuperPropertyReference()->home_object()); + VisitForStackValue(expr->key()); + EmitKeyedSuperPropertyLoad(expr); + } + } + PrepareForBailoutForId(expr->LoadId(), TOS_REG); + context()->Plug(v0); +} + + +void FullCodeGenerator::CallIC(Handle<Code> code, + TypeFeedbackId id) { + ic_total_count_++; + __ Call(code, RelocInfo::CODE_TARGET, id); +} + + +// Code common for calls using the IC. +void FullCodeGenerator::EmitCallWithLoadIC(Call* expr) { + Expression* callee = expr->expression(); + + CallICState::CallType call_type = + callee->IsVariableProxy() ? CallICState::FUNCTION : CallICState::METHOD; + + // Get the target function. + if (call_type == CallICState::FUNCTION) { + { StackValueContext context(this); + EmitVariableLoad(callee->AsVariableProxy()); + PrepareForBailout(callee, NO_REGISTERS); + } + // Push undefined as receiver. This is patched in the method prologue if it + // is a sloppy mode method. + __ LoadRoot(at, Heap::kUndefinedValueRootIndex); + __ push(at); + } else { + // Load the function from the receiver. + DCHECK(callee->IsProperty()); + DCHECK(!callee->AsProperty()->IsSuperAccess()); + __ lw(LoadDescriptor::ReceiverRegister(), MemOperand(sp, 0)); + EmitNamedPropertyLoad(callee->AsProperty()); + PrepareForBailoutForId(callee->AsProperty()->LoadId(), TOS_REG); + // Push the target function under the receiver. + __ lw(at, MemOperand(sp, 0)); + __ push(at); + __ sw(v0, MemOperand(sp, kPointerSize)); + } + + EmitCall(expr, call_type); +} + + +void FullCodeGenerator::EmitSuperCallWithLoadIC(Call* expr) { + SetExpressionPosition(expr); + Expression* callee = expr->expression(); + DCHECK(callee->IsProperty()); + Property* prop = callee->AsProperty(); + DCHECK(prop->IsSuperAccess()); + + Literal* key = prop->key()->AsLiteral(); + DCHECK(!key->value()->IsSmi()); + // Load the function from the receiver. + const Register scratch = a1; + SuperPropertyReference* super_ref = prop->obj()->AsSuperPropertyReference(); + VisitForAccumulatorValue(super_ref->home_object()); + __ mov(scratch, v0); + VisitForAccumulatorValue(super_ref->this_var()); + __ Push(scratch, v0, v0, scratch); + __ Push(key->value()); + __ Push(Smi::FromInt(language_mode())); + + // Stack here: + // - home_object + // - this (receiver) + // - this (receiver) <-- LoadFromSuper will pop here and below. + // - home_object + // - key + // - language_mode + __ CallRuntime(Runtime::kLoadFromSuper, 4); + + // Replace home_object with target function. + __ sw(v0, MemOperand(sp, kPointerSize)); + + // Stack here: + // - target function + // - this (receiver) + EmitCall(expr, CallICState::METHOD); +} + + +// Code common for calls using the IC. +void FullCodeGenerator::EmitKeyedCallWithLoadIC(Call* expr, + Expression* key) { + // Load the key. + VisitForAccumulatorValue(key); + + Expression* callee = expr->expression(); + + // Load the function from the receiver. + DCHECK(callee->IsProperty()); + __ lw(LoadDescriptor::ReceiverRegister(), MemOperand(sp, 0)); + __ Move(LoadDescriptor::NameRegister(), v0); + EmitKeyedPropertyLoad(callee->AsProperty()); + PrepareForBailoutForId(callee->AsProperty()->LoadId(), TOS_REG); + + // Push the target function under the receiver. + __ lw(at, MemOperand(sp, 0)); + __ push(at); + __ sw(v0, MemOperand(sp, kPointerSize)); + + EmitCall(expr, CallICState::METHOD); +} + + +void FullCodeGenerator::EmitKeyedSuperCallWithLoadIC(Call* expr) { + Expression* callee = expr->expression(); + DCHECK(callee->IsProperty()); + Property* prop = callee->AsProperty(); + DCHECK(prop->IsSuperAccess()); + + SetExpressionPosition(prop); + // Load the function from the receiver. + const Register scratch = a1; + SuperPropertyReference* super_ref = prop->obj()->AsSuperPropertyReference(); + VisitForAccumulatorValue(super_ref->home_object()); + __ Move(scratch, v0); + VisitForAccumulatorValue(super_ref->this_var()); + __ Push(scratch, v0, v0, scratch); + VisitForStackValue(prop->key()); + __ Push(Smi::FromInt(language_mode())); + + // Stack here: + // - home_object + // - this (receiver) + // - this (receiver) <-- LoadKeyedFromSuper will pop here and below. + // - home_object + // - key + // - language_mode + __ CallRuntime(Runtime::kLoadKeyedFromSuper, 4); + + // Replace home_object with target function. + __ sw(v0, MemOperand(sp, kPointerSize)); + + // Stack here: + // - target function + // - this (receiver) + EmitCall(expr, CallICState::METHOD); +} + + +void FullCodeGenerator::EmitCall(Call* expr, CallICState::CallType call_type) { + // Load the arguments. + ZoneList<Expression*>* args = expr->arguments(); + int arg_count = args->length(); + for (int i = 0; i < arg_count; i++) { + VisitForStackValue(args->at(i)); + } + + // Record source position of the IC call. + SetCallPosition(expr, arg_count); + Handle<Code> ic = CodeFactory::CallIC(isolate(), arg_count, call_type).code(); + __ li(a3, Operand(SmiFromSlot(expr->CallFeedbackICSlot()))); + __ lw(a1, MemOperand(sp, (arg_count + 1) * kPointerSize)); + // Don't assign a type feedback id to the IC, since type feedback is provided + // by the vector above. + CallIC(ic); + + RecordJSReturnSite(expr); + // Restore context register. + __ lw(cp, MemOperand(fp, StandardFrameConstants::kContextOffset)); + context()->DropAndPlug(1, v0); +} + + +void FullCodeGenerator::EmitResolvePossiblyDirectEval(int arg_count) { + // t3: copy of the first argument or undefined if it doesn't exist. + if (arg_count > 0) { + __ lw(t3, MemOperand(sp, arg_count * kPointerSize)); + } else { + __ LoadRoot(t3, Heap::kUndefinedValueRootIndex); + } + + // t2: the receiver of the enclosing function. + __ lw(t2, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset)); + + // t1: the language mode. + __ li(t1, Operand(Smi::FromInt(language_mode()))); + + // t0: the start position of the scope the calls resides in. + __ li(t0, Operand(Smi::FromInt(scope()->start_position()))); + + // Do the runtime call. + __ Push(t3, t2, t1, t0); + __ CallRuntime(Runtime::kResolvePossiblyDirectEval, 5); +} + + +// See http://www.ecma-international.org/ecma-262/6.0/#sec-function-calls. +void FullCodeGenerator::PushCalleeAndWithBaseObject(Call* expr) { + VariableProxy* callee = expr->expression()->AsVariableProxy(); + if (callee->var()->IsLookupSlot()) { + Label slow, done; + + SetExpressionPosition(callee); + // Generate code for loading from variables potentially shadowed by + // eval-introduced variables. + EmitDynamicLookupFastCase(callee, NOT_INSIDE_TYPEOF, &slow, &done); + + __ bind(&slow); + // Call the runtime to find the function to call (returned in v0) + // and the object holding it (returned in v1). + DCHECK(!context_register().is(a2)); + __ li(a2, Operand(callee->name())); + __ Push(context_register(), a2); + __ CallRuntime(Runtime::kLoadLookupSlot, 2); + __ Push(v0, v1); // Function, receiver. + PrepareForBailoutForId(expr->LookupId(), NO_REGISTERS); + + // If fast case code has been generated, emit code to push the + // function and receiver and have the slow path jump around this + // code. + if (done.is_linked()) { + Label call; + __ Branch(&call); + __ bind(&done); + // Push function. + __ push(v0); + // The receiver is implicitly the global receiver. Indicate this + // by passing the hole to the call function stub. + __ LoadRoot(a1, Heap::kUndefinedValueRootIndex); + __ push(a1); + __ bind(&call); + } + } else { + VisitForStackValue(callee); + // refEnv.WithBaseObject() + __ LoadRoot(a2, Heap::kUndefinedValueRootIndex); + __ push(a2); // Reserved receiver slot. + } +} + + +void FullCodeGenerator::VisitCall(Call* expr) { +#ifdef DEBUG + // We want to verify that RecordJSReturnSite gets called on all paths + // through this function. Avoid early returns. + expr->return_is_recorded_ = false; +#endif + + Comment cmnt(masm_, "[ Call"); + Expression* callee = expr->expression(); + Call::CallType call_type = expr->GetCallType(isolate()); + + if (call_type == Call::POSSIBLY_EVAL_CALL) { + // In a call to eval, we first call RuntimeHidden_ResolvePossiblyDirectEval + // to resolve the function we need to call. Then we call the resolved + // function using the given arguments. + ZoneList<Expression*>* args = expr->arguments(); + int arg_count = args->length(); + PushCalleeAndWithBaseObject(expr); + + // Push the arguments. + for (int i = 0; i < arg_count; i++) { + VisitForStackValue(args->at(i)); + } + + // Push a copy of the function (found below the arguments) and + // resolve eval. + __ lw(a1, MemOperand(sp, (arg_count + 1) * kPointerSize)); + __ push(a1); + EmitResolvePossiblyDirectEval(arg_count); + + // Touch up the stack with the resolved function. + __ sw(v0, MemOperand(sp, (arg_count + 1) * kPointerSize)); + + PrepareForBailoutForId(expr->EvalId(), NO_REGISTERS); + // Record source position for debugger. + SetCallPosition(expr, arg_count); + CallFunctionStub stub(isolate(), arg_count, NO_CALL_FUNCTION_FLAGS); + __ lw(a1, MemOperand(sp, (arg_count + 1) * kPointerSize)); + __ CallStub(&stub); + RecordJSReturnSite(expr); + // Restore context register. + __ lw(cp, MemOperand(fp, StandardFrameConstants::kContextOffset)); + context()->DropAndPlug(1, v0); + } else if (call_type == Call::GLOBAL_CALL) { + EmitCallWithLoadIC(expr); + } else if (call_type == Call::LOOKUP_SLOT_CALL) { + // Call to a lookup slot (dynamically introduced variable). + PushCalleeAndWithBaseObject(expr); + EmitCall(expr); + } else if (call_type == Call::PROPERTY_CALL) { + Property* property = callee->AsProperty(); + bool is_named_call = property->key()->IsPropertyName(); + if (property->IsSuperAccess()) { + if (is_named_call) { + EmitSuperCallWithLoadIC(expr); + } else { + EmitKeyedSuperCallWithLoadIC(expr); + } + } else { + VisitForStackValue(property->obj()); + if (is_named_call) { + EmitCallWithLoadIC(expr); + } else { + EmitKeyedCallWithLoadIC(expr, property->key()); + } + } + } else if (call_type == Call::SUPER_CALL) { + EmitSuperConstructorCall(expr); + } else { + DCHECK(call_type == Call::OTHER_CALL); + // Call to an arbitrary expression not handled specially above. + VisitForStackValue(callee); + __ LoadRoot(a1, Heap::kUndefinedValueRootIndex); + __ push(a1); + // Emit function call. + EmitCall(expr); + } + +#ifdef DEBUG + // RecordJSReturnSite should have been called. + DCHECK(expr->return_is_recorded_); +#endif +} + + +void FullCodeGenerator::VisitCallNew(CallNew* expr) { + Comment cmnt(masm_, "[ CallNew"); + // According to ECMA-262, section 11.2.2, page 44, the function + // expression in new calls must be evaluated before the + // arguments. + + // Push constructor on the stack. If it's not a function it's used as + // receiver for CALL_NON_FUNCTION, otherwise the value on the stack is + // ignored. + DCHECK(!expr->expression()->IsSuperPropertyReference()); + VisitForStackValue(expr->expression()); + + // Push the arguments ("left-to-right") on the stack. + ZoneList<Expression*>* args = expr->arguments(); + int arg_count = args->length(); + for (int i = 0; i < arg_count; i++) { + VisitForStackValue(args->at(i)); + } + + // Call the construct call builtin that handles allocation and + // constructor invocation. + SetConstructCallPosition(expr); + + // Load function and argument count into a1 and a0. + __ li(a0, Operand(arg_count)); + __ lw(a1, MemOperand(sp, arg_count * kPointerSize)); + + // Record call targets in unoptimized code. + if (FLAG_pretenuring_call_new) { + EnsureSlotContainsAllocationSite(expr->AllocationSiteFeedbackSlot()); + DCHECK(expr->AllocationSiteFeedbackSlot().ToInt() == + expr->CallNewFeedbackSlot().ToInt() + 1); + } + + __ li(a2, FeedbackVector()); + __ li(a3, Operand(SmiFromSlot(expr->CallNewFeedbackSlot()))); + + CallConstructStub stub(isolate(), RECORD_CONSTRUCTOR_TARGET); + __ Call(stub.GetCode(), RelocInfo::CONSTRUCT_CALL); + PrepareForBailoutForId(expr->ReturnId(), TOS_REG); + context()->Plug(v0); +} + + +void FullCodeGenerator::EmitSuperConstructorCall(Call* expr) { + SuperCallReference* super_call_ref = + expr->expression()->AsSuperCallReference(); + DCHECK_NOT_NULL(super_call_ref); + + EmitLoadSuperConstructor(super_call_ref); + __ push(result_register()); + + // Push the arguments ("left-to-right") on the stack. + ZoneList<Expression*>* args = expr->arguments(); + int arg_count = args->length(); + for (int i = 0; i < arg_count; i++) { + VisitForStackValue(args->at(i)); + } + + // Call the construct call builtin that handles allocation and + // constructor invocation. + SetConstructCallPosition(expr); + + // Load original constructor into t0. + VisitForAccumulatorValue(super_call_ref->new_target_var()); + __ mov(t0, result_register()); + + // Load function and argument count into a1 and a0. + __ li(a0, Operand(arg_count)); + __ lw(a1, MemOperand(sp, arg_count * kPointerSize)); + + // Record call targets in unoptimized code. + if (FLAG_pretenuring_call_new) { + UNREACHABLE(); + /* TODO(dslomov): support pretenuring. + EnsureSlotContainsAllocationSite(expr->AllocationSiteFeedbackSlot()); + DCHECK(expr->AllocationSiteFeedbackSlot().ToInt() == + expr->CallNewFeedbackSlot().ToInt() + 1); + */ + } + + __ li(a2, FeedbackVector()); + __ li(a3, Operand(SmiFromSlot(expr->CallFeedbackSlot()))); + + CallConstructStub stub(isolate(), SUPER_CALL_RECORD_TARGET); + __ Call(stub.GetCode(), RelocInfo::CONSTRUCT_CALL); + + RecordJSReturnSite(expr); + + context()->Plug(v0); +} + + +void FullCodeGenerator::EmitIsSmi(CallRuntime* expr) { + ZoneList<Expression*>* args = expr->arguments(); + DCHECK(args->length() == 1); + + VisitForAccumulatorValue(args->at(0)); + + Label materialize_true, materialize_false; + Label* if_true = NULL; + Label* if_false = NULL; + Label* fall_through = NULL; + context()->PrepareTest(&materialize_true, &materialize_false, + &if_true, &if_false, &fall_through); + + PrepareForBailoutBeforeSplit(expr, true, if_true, if_false); + __ SmiTst(v0, t0); + Split(eq, t0, Operand(zero_reg), if_true, if_false, fall_through); + + context()->Plug(if_true, if_false); +} + + +void FullCodeGenerator::EmitIsNonNegativeSmi(CallRuntime* expr) { + ZoneList<Expression*>* args = expr->arguments(); + DCHECK(args->length() == 1); + + VisitForAccumulatorValue(args->at(0)); + + Label materialize_true, materialize_false; + Label* if_true = NULL; + Label* if_false = NULL; + Label* fall_through = NULL; + context()->PrepareTest(&materialize_true, &materialize_false, + &if_true, &if_false, &fall_through); + + PrepareForBailoutBeforeSplit(expr, true, if_true, if_false); + __ NonNegativeSmiTst(v0, at); + Split(eq, at, Operand(zero_reg), if_true, if_false, fall_through); + + context()->Plug(if_true, if_false); +} + + +void FullCodeGenerator::EmitIsObject(CallRuntime* expr) { + ZoneList<Expression*>* args = expr->arguments(); + DCHECK(args->length() == 1); + + VisitForAccumulatorValue(args->at(0)); + + Label materialize_true, materialize_false; + Label* if_true = NULL; + Label* if_false = NULL; + Label* fall_through = NULL; + context()->PrepareTest(&materialize_true, &materialize_false, + &if_true, &if_false, &fall_through); + + __ JumpIfSmi(v0, if_false); + __ LoadRoot(at, Heap::kNullValueRootIndex); + __ Branch(if_true, eq, v0, Operand(at)); + __ lw(a2, FieldMemOperand(v0, HeapObject::kMapOffset)); + // Undetectable objects behave like undefined when tested with typeof. + __ lbu(a1, FieldMemOperand(a2, Map::kBitFieldOffset)); + __ And(at, a1, Operand(1 << Map::kIsUndetectable)); + __ Branch(if_false, ne, at, Operand(zero_reg)); + __ lbu(a1, FieldMemOperand(a2, Map::kInstanceTypeOffset)); + __ Branch(if_false, lt, a1, Operand(FIRST_NONCALLABLE_SPEC_OBJECT_TYPE)); + PrepareForBailoutBeforeSplit(expr, true, if_true, if_false); + Split(le, a1, Operand(LAST_NONCALLABLE_SPEC_OBJECT_TYPE), + if_true, if_false, fall_through); + + context()->Plug(if_true, if_false); +} + + +void FullCodeGenerator::EmitIsSpecObject(CallRuntime* expr) { + ZoneList<Expression*>* args = expr->arguments(); + DCHECK(args->length() == 1); + + VisitForAccumulatorValue(args->at(0)); + + Label materialize_true, materialize_false; + Label* if_true = NULL; + Label* if_false = NULL; + Label* fall_through = NULL; + context()->PrepareTest(&materialize_true, &materialize_false, + &if_true, &if_false, &fall_through); + + __ JumpIfSmi(v0, if_false); + __ GetObjectType(v0, a1, a1); + PrepareForBailoutBeforeSplit(expr, true, if_true, if_false); + Split(ge, a1, Operand(FIRST_SPEC_OBJECT_TYPE), + if_true, if_false, fall_through); + + context()->Plug(if_true, if_false); +} + + +void FullCodeGenerator::EmitIsSimdValue(CallRuntime* expr) { + ZoneList<Expression*>* args = expr->arguments(); + DCHECK(args->length() == 1); + + VisitForAccumulatorValue(args->at(0)); + + Label materialize_true, materialize_false; + Label* if_true = NULL; + Label* if_false = NULL; + Label* fall_through = NULL; + context()->PrepareTest(&materialize_true, &materialize_false, &if_true, + &if_false, &fall_through); + + __ JumpIfSmi(v0, if_false); + __ GetObjectType(v0, a1, a1); + PrepareForBailoutBeforeSplit(expr, true, if_true, if_false); + Split(eq, a1, Operand(SIMD128_VALUE_TYPE), if_true, if_false, fall_through); + + context()->Plug(if_true, if_false); +} + + +void FullCodeGenerator::EmitIsStringWrapperSafeForDefaultValueOf( + CallRuntime* expr) { + ZoneList<Expression*>* args = expr->arguments(); + DCHECK(args->length() == 1); + + VisitForAccumulatorValue(args->at(0)); + + Label materialize_true, materialize_false, skip_lookup; + Label* if_true = NULL; + Label* if_false = NULL; + Label* fall_through = NULL; + context()->PrepareTest(&materialize_true, &materialize_false, + &if_true, &if_false, &fall_through); + + __ AssertNotSmi(v0); + + __ lw(a1, FieldMemOperand(v0, HeapObject::kMapOffset)); + __ lbu(t0, FieldMemOperand(a1, Map::kBitField2Offset)); + __ And(t0, t0, 1 << Map::kStringWrapperSafeForDefaultValueOf); + __ Branch(&skip_lookup, ne, t0, Operand(zero_reg)); + + // Check for fast case object. Generate false result for slow case object. + __ lw(a2, FieldMemOperand(v0, JSObject::kPropertiesOffset)); + __ lw(a2, FieldMemOperand(a2, HeapObject::kMapOffset)); + __ LoadRoot(t0, Heap::kHashTableMapRootIndex); + __ Branch(if_false, eq, a2, Operand(t0)); + + // Look for valueOf name in the descriptor array, and indicate false if + // found. Since we omit an enumeration index check, if it is added via a + // transition that shares its descriptor array, this is a false positive. + Label entry, loop, done; + + // Skip loop if no descriptors are valid. + __ NumberOfOwnDescriptors(a3, a1); + __ Branch(&done, eq, a3, Operand(zero_reg)); + + __ LoadInstanceDescriptors(a1, t0); + // t0: descriptor array. + // a3: valid entries in the descriptor array. + STATIC_ASSERT(kSmiTag == 0); + STATIC_ASSERT(kSmiTagSize == 1); + STATIC_ASSERT(kPointerSize == 4); + __ li(at, Operand(DescriptorArray::kDescriptorSize)); + __ Mul(a3, a3, at); + // Calculate location of the first key name. + __ Addu(t0, t0, Operand(DescriptorArray::kFirstOffset - kHeapObjectTag)); + // Calculate the end of the descriptor array. + __ mov(a2, t0); + __ sll(t1, a3, kPointerSizeLog2); + __ Addu(a2, a2, t1); + + // Loop through all the keys in the descriptor array. If one of these is the + // string "valueOf" the result is false. + // The use of t2 to store the valueOf string assumes that it is not otherwise + // used in the loop below. + __ li(t2, Operand(isolate()->factory()->value_of_string())); + __ jmp(&entry); + __ bind(&loop); + __ lw(a3, MemOperand(t0, 0)); + __ Branch(if_false, eq, a3, Operand(t2)); + __ Addu(t0, t0, Operand(DescriptorArray::kDescriptorSize * kPointerSize)); + __ bind(&entry); + __ Branch(&loop, ne, t0, Operand(a2)); + + __ bind(&done); + + // Set the bit in the map to indicate that there is no local valueOf field. + __ lbu(a2, FieldMemOperand(a1, Map::kBitField2Offset)); + __ Or(a2, a2, Operand(1 << Map::kStringWrapperSafeForDefaultValueOf)); + __ sb(a2, FieldMemOperand(a1, Map::kBitField2Offset)); + + __ bind(&skip_lookup); + + // If a valueOf property is not found on the object check that its + // prototype is the un-modified String prototype. If not result is false. + __ lw(a2, FieldMemOperand(a1, Map::kPrototypeOffset)); + __ JumpIfSmi(a2, if_false); + __ lw(a2, FieldMemOperand(a2, HeapObject::kMapOffset)); + __ lw(a3, ContextOperand(cp, Context::GLOBAL_OBJECT_INDEX)); + __ lw(a3, FieldMemOperand(a3, GlobalObject::kNativeContextOffset)); + __ lw(a3, ContextOperand(a3, Context::STRING_FUNCTION_PROTOTYPE_MAP_INDEX)); + PrepareForBailoutBeforeSplit(expr, true, if_true, if_false); + Split(eq, a2, Operand(a3), if_true, if_false, fall_through); + + context()->Plug(if_true, if_false); +} + + +void FullCodeGenerator::EmitIsFunction(CallRuntime* expr) { + ZoneList<Expression*>* args = expr->arguments(); + DCHECK(args->length() == 1); + + VisitForAccumulatorValue(args->at(0)); + + Label materialize_true, materialize_false; + Label* if_true = NULL; + Label* if_false = NULL; + Label* fall_through = NULL; + context()->PrepareTest(&materialize_true, &materialize_false, + &if_true, &if_false, &fall_through); + + __ JumpIfSmi(v0, if_false); + __ GetObjectType(v0, a1, a2); + PrepareForBailoutBeforeSplit(expr, true, if_true, if_false); + __ Branch(if_true, eq, a2, Operand(JS_FUNCTION_TYPE)); + __ Branch(if_false); + + context()->Plug(if_true, if_false); +} + + +void FullCodeGenerator::EmitIsMinusZero(CallRuntime* expr) { + ZoneList<Expression*>* args = expr->arguments(); + DCHECK(args->length() == 1); + + VisitForAccumulatorValue(args->at(0)); + + Label materialize_true, materialize_false; + Label* if_true = NULL; + Label* if_false = NULL; + Label* fall_through = NULL; + context()->PrepareTest(&materialize_true, &materialize_false, + &if_true, &if_false, &fall_through); + + __ CheckMap(v0, a1, Heap::kHeapNumberMapRootIndex, if_false, DO_SMI_CHECK); + __ lw(a2, FieldMemOperand(v0, HeapNumber::kExponentOffset)); + __ lw(a1, FieldMemOperand(v0, HeapNumber::kMantissaOffset)); + __ li(t0, 0x80000000); + Label not_nan; + __ Branch(¬_nan, ne, a2, Operand(t0)); + __ mov(t0, zero_reg); + __ mov(a2, a1); + __ bind(¬_nan); + + PrepareForBailoutBeforeSplit(expr, true, if_true, if_false); + Split(eq, a2, Operand(t0), if_true, if_false, fall_through); + + context()->Plug(if_true, if_false); +} + + +void FullCodeGenerator::EmitIsArray(CallRuntime* expr) { + ZoneList<Expression*>* args = expr->arguments(); + DCHECK(args->length() == 1); + + VisitForAccumulatorValue(args->at(0)); + + Label materialize_true, materialize_false; + Label* if_true = NULL; + Label* if_false = NULL; + Label* fall_through = NULL; + context()->PrepareTest(&materialize_true, &materialize_false, + &if_true, &if_false, &fall_through); + + __ JumpIfSmi(v0, if_false); + __ GetObjectType(v0, a1, a1); + PrepareForBailoutBeforeSplit(expr, true, if_true, if_false); + Split(eq, a1, Operand(JS_ARRAY_TYPE), + if_true, if_false, fall_through); + + context()->Plug(if_true, if_false); +} + + +void FullCodeGenerator::EmitIsTypedArray(CallRuntime* expr) { + ZoneList<Expression*>* args = expr->arguments(); + DCHECK(args->length() == 1); + + VisitForAccumulatorValue(args->at(0)); + + Label materialize_true, materialize_false; + Label* if_true = NULL; + Label* if_false = NULL; + Label* fall_through = NULL; + context()->PrepareTest(&materialize_true, &materialize_false, &if_true, + &if_false, &fall_through); + + __ JumpIfSmi(v0, if_false); + __ GetObjectType(v0, a1, a1); + PrepareForBailoutBeforeSplit(expr, true, if_true, if_false); + Split(eq, a1, Operand(JS_TYPED_ARRAY_TYPE), if_true, if_false, fall_through); + + context()->Plug(if_true, if_false); +} + + +void FullCodeGenerator::EmitIsRegExp(CallRuntime* expr) { + ZoneList<Expression*>* args = expr->arguments(); + DCHECK(args->length() == 1); + + VisitForAccumulatorValue(args->at(0)); + + Label materialize_true, materialize_false; + Label* if_true = NULL; + Label* if_false = NULL; + Label* fall_through = NULL; + context()->PrepareTest(&materialize_true, &materialize_false, + &if_true, &if_false, &fall_through); + + __ JumpIfSmi(v0, if_false); + __ GetObjectType(v0, a1, a1); + PrepareForBailoutBeforeSplit(expr, true, if_true, if_false); + Split(eq, a1, Operand(JS_REGEXP_TYPE), if_true, if_false, fall_through); + + context()->Plug(if_true, if_false); +} + + +void FullCodeGenerator::EmitIsJSProxy(CallRuntime* expr) { + ZoneList<Expression*>* args = expr->arguments(); + DCHECK(args->length() == 1); + + VisitForAccumulatorValue(args->at(0)); + + Label materialize_true, materialize_false; + Label* if_true = NULL; + Label* if_false = NULL; + Label* fall_through = NULL; + context()->PrepareTest(&materialize_true, &materialize_false, &if_true, + &if_false, &fall_through); + + __ JumpIfSmi(v0, if_false); + Register map = a1; + Register type_reg = a2; + __ GetObjectType(v0, map, type_reg); + __ Subu(type_reg, type_reg, Operand(FIRST_JS_PROXY_TYPE)); + PrepareForBailoutBeforeSplit(expr, true, if_true, if_false); + Split(ls, type_reg, Operand(LAST_JS_PROXY_TYPE - FIRST_JS_PROXY_TYPE), + if_true, if_false, fall_through); + + context()->Plug(if_true, if_false); +} + + +void FullCodeGenerator::EmitIsConstructCall(CallRuntime* expr) { + DCHECK(expr->arguments()->length() == 0); + + Label materialize_true, materialize_false; + Label* if_true = NULL; + Label* if_false = NULL; + Label* fall_through = NULL; + context()->PrepareTest(&materialize_true, &materialize_false, + &if_true, &if_false, &fall_through); + + // Get the frame pointer for the calling frame. + __ lw(a2, MemOperand(fp, StandardFrameConstants::kCallerFPOffset)); + + // Skip the arguments adaptor frame if it exists. + Label check_frame_marker; + __ lw(a1, MemOperand(a2, StandardFrameConstants::kContextOffset)); + __ Branch(&check_frame_marker, ne, + a1, Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR))); + __ lw(a2, MemOperand(a2, StandardFrameConstants::kCallerFPOffset)); + + // Check the marker in the calling frame. + __ bind(&check_frame_marker); + __ lw(a1, MemOperand(a2, StandardFrameConstants::kMarkerOffset)); + PrepareForBailoutBeforeSplit(expr, true, if_true, if_false); + Split(eq, a1, Operand(Smi::FromInt(StackFrame::CONSTRUCT)), + if_true, if_false, fall_through); + + context()->Plug(if_true, if_false); +} + + +void FullCodeGenerator::EmitObjectEquals(CallRuntime* expr) { + ZoneList<Expression*>* args = expr->arguments(); + DCHECK(args->length() == 2); + + // Load the two objects into registers and perform the comparison. + VisitForStackValue(args->at(0)); + VisitForAccumulatorValue(args->at(1)); + + Label materialize_true, materialize_false; + Label* if_true = NULL; + Label* if_false = NULL; + Label* fall_through = NULL; + context()->PrepareTest(&materialize_true, &materialize_false, + &if_true, &if_false, &fall_through); + + __ pop(a1); + PrepareForBailoutBeforeSplit(expr, true, if_true, if_false); + Split(eq, v0, Operand(a1), if_true, if_false, fall_through); + + context()->Plug(if_true, if_false); +} + + +void FullCodeGenerator::EmitArguments(CallRuntime* expr) { + ZoneList<Expression*>* args = expr->arguments(); + DCHECK(args->length() == 1); + + // ArgumentsAccessStub expects the key in a1 and the formal + // parameter count in a0. + VisitForAccumulatorValue(args->at(0)); + __ mov(a1, v0); + __ li(a0, Operand(Smi::FromInt(info_->scope()->num_parameters()))); + ArgumentsAccessStub stub(isolate(), ArgumentsAccessStub::READ_ELEMENT); + __ CallStub(&stub); + context()->Plug(v0); +} + + +void FullCodeGenerator::EmitArgumentsLength(CallRuntime* expr) { + DCHECK(expr->arguments()->length() == 0); + Label exit; + // Get the number of formal parameters. + __ li(v0, Operand(Smi::FromInt(info_->scope()->num_parameters()))); + + // Check if the calling frame is an arguments adaptor frame. + __ lw(a2, MemOperand(fp, StandardFrameConstants::kCallerFPOffset)); + __ lw(a3, MemOperand(a2, StandardFrameConstants::kContextOffset)); + __ Branch(&exit, ne, a3, + Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR))); + + // Arguments adaptor case: Read the arguments length from the + // adaptor frame. + __ lw(v0, MemOperand(a2, ArgumentsAdaptorFrameConstants::kLengthOffset)); + + __ bind(&exit); + context()->Plug(v0); +} + + +void FullCodeGenerator::EmitClassOf(CallRuntime* expr) { + ZoneList<Expression*>* args = expr->arguments(); + DCHECK(args->length() == 1); + Label done, null, function, non_function_constructor; + + VisitForAccumulatorValue(args->at(0)); + + // If the object is a smi, we return null. + __ JumpIfSmi(v0, &null); + + // Check that the object is a JS object but take special care of JS + // functions to make sure they have 'Function' as their class. + // Assume that there are only two callable types, and one of them is at + // either end of the type range for JS object types. Saves extra comparisons. + STATIC_ASSERT(NUM_OF_CALLABLE_SPEC_OBJECT_TYPES == 2); + __ GetObjectType(v0, v0, a1); // Map is now in v0. + __ Branch(&null, lt, a1, Operand(FIRST_SPEC_OBJECT_TYPE)); + + STATIC_ASSERT(FIRST_NONCALLABLE_SPEC_OBJECT_TYPE == + FIRST_SPEC_OBJECT_TYPE + 1); + __ Branch(&function, eq, a1, Operand(FIRST_SPEC_OBJECT_TYPE)); + + STATIC_ASSERT(LAST_NONCALLABLE_SPEC_OBJECT_TYPE == + LAST_SPEC_OBJECT_TYPE - 1); + __ Branch(&function, eq, a1, Operand(LAST_SPEC_OBJECT_TYPE)); + // Assume that there is no larger type. + STATIC_ASSERT(LAST_NONCALLABLE_SPEC_OBJECT_TYPE == LAST_TYPE - 1); + + // Check if the constructor in the map is a JS function. + Register instance_type = a2; + __ GetMapConstructor(v0, v0, a1, instance_type); + __ Branch(&non_function_constructor, ne, instance_type, + Operand(JS_FUNCTION_TYPE)); + + // v0 now contains the constructor function. Grab the + // instance class name from there. + __ lw(v0, FieldMemOperand(v0, JSFunction::kSharedFunctionInfoOffset)); + __ lw(v0, FieldMemOperand(v0, SharedFunctionInfo::kInstanceClassNameOffset)); + __ Branch(&done); + + // Functions have class 'Function'. + __ bind(&function); + __ LoadRoot(v0, Heap::kFunction_stringRootIndex); + __ jmp(&done); + + // Objects with a non-function constructor have class 'Object'. + __ bind(&non_function_constructor); + __ LoadRoot(v0, Heap::kObject_stringRootIndex); + __ jmp(&done); + + // Non-JS objects have class null. + __ bind(&null); + __ LoadRoot(v0, Heap::kNullValueRootIndex); + + // All done. + __ bind(&done); + + context()->Plug(v0); +} + + +void FullCodeGenerator::EmitValueOf(CallRuntime* expr) { + ZoneList<Expression*>* args = expr->arguments(); + DCHECK(args->length() == 1); + + VisitForAccumulatorValue(args->at(0)); // Load the object. + + Label done; + // If the object is a smi return the object. + __ JumpIfSmi(v0, &done); + // If the object is not a value type, return the object. + __ GetObjectType(v0, a1, a1); + __ Branch(&done, ne, a1, Operand(JS_VALUE_TYPE)); + + __ lw(v0, FieldMemOperand(v0, JSValue::kValueOffset)); + + __ bind(&done); + context()->Plug(v0); +} + + +void FullCodeGenerator::EmitIsDate(CallRuntime* expr) { + ZoneList<Expression*>* args = expr->arguments(); + DCHECK_EQ(1, args->length()); + + VisitForAccumulatorValue(args->at(0)); + + Label materialize_true, materialize_false; + Label* if_true = nullptr; + Label* if_false = nullptr; + Label* fall_through = nullptr; + context()->PrepareTest(&materialize_true, &materialize_false, &if_true, + &if_false, &fall_through); + + __ JumpIfSmi(v0, if_false); + __ GetObjectType(v0, a1, a1); + PrepareForBailoutBeforeSplit(expr, true, if_true, if_false); + Split(eq, a1, Operand(JS_DATE_TYPE), if_true, if_false, fall_through); + + context()->Plug(if_true, if_false); +} + + +void FullCodeGenerator::EmitDateField(CallRuntime* expr) { + ZoneList<Expression*>* args = expr->arguments(); + DCHECK(args->length() == 2); + DCHECK_NOT_NULL(args->at(1)->AsLiteral()); + Smi* index = Smi::cast(*(args->at(1)->AsLiteral()->value())); + + VisitForAccumulatorValue(args->at(0)); // Load the object. + + Register object = v0; + Register result = v0; + Register scratch0 = t5; + Register scratch1 = a1; + + if (index->value() == 0) { + __ lw(result, FieldMemOperand(object, JSDate::kValueOffset)); + } else { + Label runtime, done; + if (index->value() < JSDate::kFirstUncachedField) { + ExternalReference stamp = ExternalReference::date_cache_stamp(isolate()); + __ li(scratch1, Operand(stamp)); + __ lw(scratch1, MemOperand(scratch1)); + __ lw(scratch0, FieldMemOperand(object, JSDate::kCacheStampOffset)); + __ Branch(&runtime, ne, scratch1, Operand(scratch0)); + __ lw(result, FieldMemOperand(object, JSDate::kValueOffset + + kPointerSize * index->value())); + __ jmp(&done); + } + __ bind(&runtime); + __ PrepareCallCFunction(2, scratch1); + __ li(a1, Operand(index)); + __ Move(a0, object); + __ CallCFunction(ExternalReference::get_date_field_function(isolate()), 2); + __ bind(&done); + } + + context()->Plug(result); +} + + +void FullCodeGenerator::EmitOneByteSeqStringSetChar(CallRuntime* expr) { + ZoneList<Expression*>* args = expr->arguments(); + DCHECK_EQ(3, args->length()); + + Register string = v0; + Register index = a1; + Register value = a2; + + VisitForStackValue(args->at(0)); // index + VisitForStackValue(args->at(1)); // value + VisitForAccumulatorValue(args->at(2)); // string + __ Pop(index, value); + + if (FLAG_debug_code) { + __ SmiTst(value, at); + __ Check(eq, kNonSmiValue, at, Operand(zero_reg)); + __ SmiTst(index, at); + __ Check(eq, kNonSmiIndex, at, Operand(zero_reg)); + __ SmiUntag(index, index); + static const uint32_t one_byte_seq_type = kSeqStringTag | kOneByteStringTag; + Register scratch = t5; + __ EmitSeqStringSetCharCheck( + string, index, value, scratch, one_byte_seq_type); + __ SmiTag(index, index); + } + + __ SmiUntag(value, value); + __ Addu(at, + string, + Operand(SeqOneByteString::kHeaderSize - kHeapObjectTag)); + __ SmiUntag(index); + __ Addu(at, at, index); + __ sb(value, MemOperand(at)); + context()->Plug(string); +} + + +void FullCodeGenerator::EmitTwoByteSeqStringSetChar(CallRuntime* expr) { + ZoneList<Expression*>* args = expr->arguments(); + DCHECK_EQ(3, args->length()); + + Register string = v0; + Register index = a1; + Register value = a2; + + VisitForStackValue(args->at(0)); // index + VisitForStackValue(args->at(1)); // value + VisitForAccumulatorValue(args->at(2)); // string + __ Pop(index, value); + + if (FLAG_debug_code) { + __ SmiTst(value, at); + __ Check(eq, kNonSmiValue, at, Operand(zero_reg)); + __ SmiTst(index, at); + __ Check(eq, kNonSmiIndex, at, Operand(zero_reg)); + __ SmiUntag(index, index); + static const uint32_t two_byte_seq_type = kSeqStringTag | kTwoByteStringTag; + Register scratch = t5; + __ EmitSeqStringSetCharCheck( + string, index, value, scratch, two_byte_seq_type); + __ SmiTag(index, index); + } + + __ SmiUntag(value, value); + __ Addu(at, + string, + Operand(SeqTwoByteString::kHeaderSize - kHeapObjectTag)); + __ Addu(at, at, index); + STATIC_ASSERT(kSmiTagSize == 1 && kSmiTag == 0); + __ sh(value, MemOperand(at)); + context()->Plug(string); +} + + +void FullCodeGenerator::EmitSetValueOf(CallRuntime* expr) { + ZoneList<Expression*>* args = expr->arguments(); + DCHECK(args->length() == 2); + + VisitForStackValue(args->at(0)); // Load the object. + VisitForAccumulatorValue(args->at(1)); // Load the value. + __ pop(a1); // v0 = value. a1 = object. + + Label done; + // If the object is a smi, return the value. + __ JumpIfSmi(a1, &done); + + // If the object is not a value type, return the value. + __ GetObjectType(a1, a2, a2); + __ Branch(&done, ne, a2, Operand(JS_VALUE_TYPE)); + + // Store the value. + __ sw(v0, FieldMemOperand(a1, JSValue::kValueOffset)); + // Update the write barrier. Save the value as it will be + // overwritten by the write barrier code and is needed afterward. + __ mov(a2, v0); + __ RecordWriteField( + a1, JSValue::kValueOffset, a2, a3, kRAHasBeenSaved, kDontSaveFPRegs); + + __ bind(&done); + context()->Plug(v0); +} + + +void FullCodeGenerator::EmitNumberToString(CallRuntime* expr) { + ZoneList<Expression*>* args = expr->arguments(); + DCHECK_EQ(args->length(), 1); + + // Load the argument into a0 and call the stub. + VisitForAccumulatorValue(args->at(0)); + __ mov(a0, result_register()); + + NumberToStringStub stub(isolate()); + __ CallStub(&stub); + context()->Plug(v0); +} + + +void FullCodeGenerator::EmitToObject(CallRuntime* expr) { + ZoneList<Expression*>* args = expr->arguments(); + DCHECK_EQ(1, args->length()); + + // Load the argument into a0 and convert it. + VisitForAccumulatorValue(args->at(0)); + __ mov(a0, result_register()); + + ToObjectStub stub(isolate()); + __ CallStub(&stub); + context()->Plug(v0); +} + + +void FullCodeGenerator::EmitStringCharFromCode(CallRuntime* expr) { + ZoneList<Expression*>* args = expr->arguments(); + DCHECK(args->length() == 1); + + VisitForAccumulatorValue(args->at(0)); + + Label done; + StringCharFromCodeGenerator generator(v0, a1); + generator.GenerateFast(masm_); + __ jmp(&done); + + NopRuntimeCallHelper call_helper; + generator.GenerateSlow(masm_, call_helper); + + __ bind(&done); + context()->Plug(a1); +} + + +void FullCodeGenerator::EmitStringCharCodeAt(CallRuntime* expr) { + ZoneList<Expression*>* args = expr->arguments(); + DCHECK(args->length() == 2); + + VisitForStackValue(args->at(0)); + VisitForAccumulatorValue(args->at(1)); + __ mov(a0, result_register()); + + Register object = a1; + Register index = a0; + Register result = v0; + + __ pop(object); + + Label need_conversion; + Label index_out_of_range; + Label done; + StringCharCodeAtGenerator generator(object, + index, + result, + &need_conversion, + &need_conversion, + &index_out_of_range, + STRING_INDEX_IS_NUMBER); + generator.GenerateFast(masm_); + __ jmp(&done); + + __ bind(&index_out_of_range); + // When the index is out of range, the spec requires us to return + // NaN. + __ LoadRoot(result, Heap::kNanValueRootIndex); + __ jmp(&done); + + __ bind(&need_conversion); + // Load the undefined value into the result register, which will + // trigger conversion. + __ LoadRoot(result, Heap::kUndefinedValueRootIndex); + __ jmp(&done); + + NopRuntimeCallHelper call_helper; + generator.GenerateSlow(masm_, NOT_PART_OF_IC_HANDLER, call_helper); + + __ bind(&done); + context()->Plug(result); +} + + +void FullCodeGenerator::EmitStringCharAt(CallRuntime* expr) { + ZoneList<Expression*>* args = expr->arguments(); + DCHECK(args->length() == 2); + + VisitForStackValue(args->at(0)); + VisitForAccumulatorValue(args->at(1)); + __ mov(a0, result_register()); + + Register object = a1; + Register index = a0; + Register scratch = a3; + Register result = v0; + + __ pop(object); + + Label need_conversion; + Label index_out_of_range; + Label done; + StringCharAtGenerator generator(object, + index, + scratch, + result, + &need_conversion, + &need_conversion, + &index_out_of_range, + STRING_INDEX_IS_NUMBER); + generator.GenerateFast(masm_); + __ jmp(&done); + + __ bind(&index_out_of_range); + // When the index is out of range, the spec requires us to return + // the empty string. + __ LoadRoot(result, Heap::kempty_stringRootIndex); + __ jmp(&done); + + __ bind(&need_conversion); + // Move smi zero into the result register, which will trigger + // conversion. + __ li(result, Operand(Smi::FromInt(0))); + __ jmp(&done); + + NopRuntimeCallHelper call_helper; + generator.GenerateSlow(masm_, NOT_PART_OF_IC_HANDLER, call_helper); + + __ bind(&done); + context()->Plug(result); +} + + +void FullCodeGenerator::EmitStringAdd(CallRuntime* expr) { + ZoneList<Expression*>* args = expr->arguments(); + DCHECK_EQ(2, args->length()); + VisitForStackValue(args->at(0)); + VisitForAccumulatorValue(args->at(1)); + + __ pop(a1); + __ mov(a0, result_register()); // StringAddStub requires args in a0, a1. + StringAddStub stub(isolate(), STRING_ADD_CHECK_BOTH, NOT_TENURED); + __ CallStub(&stub); + context()->Plug(v0); +} + + +void FullCodeGenerator::EmitCallFunction(CallRuntime* expr) { + ZoneList<Expression*>* args = expr->arguments(); + DCHECK(args->length() >= 2); + + int arg_count = args->length() - 2; // 2 ~ receiver and function. + for (int i = 0; i < arg_count + 1; i++) { + VisitForStackValue(args->at(i)); + } + VisitForAccumulatorValue(args->last()); // Function. + + Label runtime, done; + // Check for non-function argument (including proxy). + __ JumpIfSmi(v0, &runtime); + __ GetObjectType(v0, a1, a1); + __ Branch(&runtime, ne, a1, Operand(JS_FUNCTION_TYPE)); + + // InvokeFunction requires the function in a1. Move it in there. + __ mov(a1, result_register()); + ParameterCount count(arg_count); + __ InvokeFunction(a1, count, CALL_FUNCTION, NullCallWrapper()); + __ lw(cp, MemOperand(fp, StandardFrameConstants::kContextOffset)); + __ jmp(&done); + + __ bind(&runtime); + __ push(v0); + __ CallRuntime(Runtime::kCall, args->length()); + __ bind(&done); + + context()->Plug(v0); +} + + +void FullCodeGenerator::EmitDefaultConstructorCallSuper(CallRuntime* expr) { + ZoneList<Expression*>* args = expr->arguments(); + DCHECK(args->length() == 2); + + // new.target + VisitForStackValue(args->at(0)); + + // .this_function + VisitForStackValue(args->at(1)); + __ CallRuntime(Runtime::kGetPrototype, 1); + __ Push(result_register()); + + // Load original constructor into t0. + __ lw(t0, MemOperand(sp, 1 * kPointerSize)); + + // Check if the calling frame is an arguments adaptor frame. + Label adaptor_frame, args_set_up, runtime; + __ lw(a2, MemOperand(fp, StandardFrameConstants::kCallerFPOffset)); + __ lw(a3, MemOperand(a2, StandardFrameConstants::kContextOffset)); + __ Branch(&adaptor_frame, eq, a3, + Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR))); + // default constructor has no arguments, so no adaptor frame means no args. + __ mov(a0, zero_reg); + __ Branch(&args_set_up); + + // Copy arguments from adaptor frame. + { + __ bind(&adaptor_frame); + __ lw(a1, MemOperand(a2, ArgumentsAdaptorFrameConstants::kLengthOffset)); + __ SmiUntag(a1, a1); + + __ mov(a0, a1); + + // Get arguments pointer in a2. + __ sll(at, a1, kPointerSizeLog2); + __ addu(a2, a2, at); + __ Addu(a2, a2, Operand(StandardFrameConstants::kCallerSPOffset)); + Label loop; + __ bind(&loop); + // Pre-decrement a2 with kPointerSize on each iteration. + // Pre-decrement in order to skip receiver. + __ Addu(a2, a2, Operand(-kPointerSize)); + __ lw(a3, MemOperand(a2)); + __ Push(a3); + __ Addu(a1, a1, Operand(-1)); + __ Branch(&loop, ne, a1, Operand(zero_reg)); + } + + __ bind(&args_set_up); + __ sll(at, a0, kPointerSizeLog2); + __ Addu(at, at, Operand(sp)); + __ lw(a1, MemOperand(at, 0)); + __ LoadRoot(a2, Heap::kUndefinedValueRootIndex); + + CallConstructStub stub(isolate(), SUPER_CONSTRUCTOR_CALL); + __ Call(stub.GetCode(), RelocInfo::CONSTRUCT_CALL); + + __ Drop(1); + + context()->Plug(result_register()); +} + + +void FullCodeGenerator::EmitRegExpConstructResult(CallRuntime* expr) { + RegExpConstructResultStub stub(isolate()); + ZoneList<Expression*>* args = expr->arguments(); + DCHECK(args->length() == 3); + VisitForStackValue(args->at(0)); + VisitForStackValue(args->at(1)); + VisitForAccumulatorValue(args->at(2)); + __ mov(a0, result_register()); + __ pop(a1); + __ pop(a2); + __ CallStub(&stub); + context()->Plug(v0); +} + + +void FullCodeGenerator::EmitHasCachedArrayIndex(CallRuntime* expr) { + ZoneList<Expression*>* args = expr->arguments(); + VisitForAccumulatorValue(args->at(0)); + + Label materialize_true, materialize_false; + Label* if_true = NULL; + Label* if_false = NULL; + Label* fall_through = NULL; + context()->PrepareTest(&materialize_true, &materialize_false, + &if_true, &if_false, &fall_through); + + __ lw(a0, FieldMemOperand(v0, String::kHashFieldOffset)); + __ And(a0, a0, Operand(String::kContainsCachedArrayIndexMask)); + + PrepareForBailoutBeforeSplit(expr, true, if_true, if_false); + Split(eq, a0, Operand(zero_reg), if_true, if_false, fall_through); + + context()->Plug(if_true, if_false); +} + + +void FullCodeGenerator::EmitGetCachedArrayIndex(CallRuntime* expr) { + ZoneList<Expression*>* args = expr->arguments(); + DCHECK(args->length() == 1); + VisitForAccumulatorValue(args->at(0)); + + __ AssertString(v0); + + __ lw(v0, FieldMemOperand(v0, String::kHashFieldOffset)); + __ IndexFromHash(v0, v0); + + context()->Plug(v0); +} + + +void FullCodeGenerator::EmitFastOneByteArrayJoin(CallRuntime* expr) { + Label bailout, done, one_char_separator, long_separator, + non_trivial_array, not_size_one_array, loop, + empty_separator_loop, one_char_separator_loop, + one_char_separator_loop_entry, long_separator_loop; + ZoneList<Expression*>* args = expr->arguments(); + DCHECK(args->length() == 2); + VisitForStackValue(args->at(1)); + VisitForAccumulatorValue(args->at(0)); + + // All aliases of the same register have disjoint lifetimes. + Register array = v0; + Register elements = no_reg; // Will be v0. + Register result = no_reg; // Will be v0. + Register separator = a1; + Register array_length = a2; + Register result_pos = no_reg; // Will be a2. + Register string_length = a3; + Register string = t0; + Register element = t1; + Register elements_end = t2; + Register scratch1 = t3; + Register scratch2 = t5; + Register scratch3 = t4; + + // Separator operand is on the stack. + __ pop(separator); + + // Check that the array is a JSArray. + __ JumpIfSmi(array, &bailout); + __ GetObjectType(array, scratch1, scratch2); + __ Branch(&bailout, ne, scratch2, Operand(JS_ARRAY_TYPE)); + + // Check that the array has fast elements. + __ CheckFastElements(scratch1, scratch2, &bailout); + + // If the array has length zero, return the empty string. + __ lw(array_length, FieldMemOperand(array, JSArray::kLengthOffset)); + __ SmiUntag(array_length); + __ Branch(&non_trivial_array, ne, array_length, Operand(zero_reg)); + __ LoadRoot(v0, Heap::kempty_stringRootIndex); + __ Branch(&done); + + __ bind(&non_trivial_array); + + // Get the FixedArray containing array's elements. + elements = array; + __ lw(elements, FieldMemOperand(array, JSArray::kElementsOffset)); + array = no_reg; // End of array's live range. + + // Check that all array elements are sequential one-byte strings, and + // accumulate the sum of their lengths, as a smi-encoded value. + __ mov(string_length, zero_reg); + __ Addu(element, + elements, Operand(FixedArray::kHeaderSize - kHeapObjectTag)); + __ sll(elements_end, array_length, kPointerSizeLog2); + __ Addu(elements_end, element, elements_end); + // Loop condition: while (element < elements_end). + // Live values in registers: + // elements: Fixed array of strings. + // array_length: Length of the fixed array of strings (not smi) + // separator: Separator string + // string_length: Accumulated sum of string lengths (smi). + // element: Current array element. + // elements_end: Array end. + if (generate_debug_code_) { + __ Assert(gt, kNoEmptyArraysHereInEmitFastOneByteArrayJoin, array_length, + Operand(zero_reg)); + } + __ bind(&loop); + __ lw(string, MemOperand(element)); + __ Addu(element, element, kPointerSize); + __ JumpIfSmi(string, &bailout); + __ lw(scratch1, FieldMemOperand(string, HeapObject::kMapOffset)); + __ lbu(scratch1, FieldMemOperand(scratch1, Map::kInstanceTypeOffset)); + __ JumpIfInstanceTypeIsNotSequentialOneByte(scratch1, scratch2, &bailout); + __ lw(scratch1, FieldMemOperand(string, SeqOneByteString::kLengthOffset)); + __ AdduAndCheckForOverflow(string_length, string_length, scratch1, scratch3); + __ BranchOnOverflow(&bailout, scratch3); + __ Branch(&loop, lt, element, Operand(elements_end)); + + // If array_length is 1, return elements[0], a string. + __ Branch(¬_size_one_array, ne, array_length, Operand(1)); + __ lw(v0, FieldMemOperand(elements, FixedArray::kHeaderSize)); + __ Branch(&done); + + __ bind(¬_size_one_array); + + // Live values in registers: + // separator: Separator string + // array_length: Length of the array. + // string_length: Sum of string lengths (smi). + // elements: FixedArray of strings. + + // Check that the separator is a flat one-byte string. + __ JumpIfSmi(separator, &bailout); + __ lw(scratch1, FieldMemOperand(separator, HeapObject::kMapOffset)); + __ lbu(scratch1, FieldMemOperand(scratch1, Map::kInstanceTypeOffset)); + __ JumpIfInstanceTypeIsNotSequentialOneByte(scratch1, scratch2, &bailout); + + // Add (separator length times array_length) - separator length to the + // string_length to get the length of the result string. array_length is not + // smi but the other values are, so the result is a smi. + __ lw(scratch1, FieldMemOperand(separator, SeqOneByteString::kLengthOffset)); + __ Subu(string_length, string_length, Operand(scratch1)); + __ Mul(scratch3, scratch2, array_length, scratch1); + // Check for smi overflow. No overflow if higher 33 bits of 64-bit result are + // zero. + __ Branch(&bailout, ne, scratch3, Operand(zero_reg)); + __ And(scratch3, scratch2, Operand(0x80000000)); + __ Branch(&bailout, ne, scratch3, Operand(zero_reg)); + __ AdduAndCheckForOverflow(string_length, string_length, scratch2, scratch3); + __ BranchOnOverflow(&bailout, scratch3); + __ SmiUntag(string_length); + + // Get first element in the array to free up the elements register to be used + // for the result. + __ Addu(element, + elements, Operand(FixedArray::kHeaderSize - kHeapObjectTag)); + result = elements; // End of live range for elements. + elements = no_reg; + // Live values in registers: + // element: First array element + // separator: Separator string + // string_length: Length of result string (not smi) + // array_length: Length of the array. + __ AllocateOneByteString(result, string_length, scratch1, scratch2, + elements_end, &bailout); + // Prepare for looping. Set up elements_end to end of the array. Set + // result_pos to the position of the result where to write the first + // character. + __ sll(elements_end, array_length, kPointerSizeLog2); + __ Addu(elements_end, element, elements_end); + result_pos = array_length; // End of live range for array_length. + array_length = no_reg; + __ Addu(result_pos, + result, + Operand(SeqOneByteString::kHeaderSize - kHeapObjectTag)); + + // Check the length of the separator. + __ lw(scratch1, FieldMemOperand(separator, SeqOneByteString::kLengthOffset)); + __ li(at, Operand(Smi::FromInt(1))); + __ Branch(&one_char_separator, eq, scratch1, Operand(at)); + __ Branch(&long_separator, gt, scratch1, Operand(at)); + + // Empty separator case. + __ bind(&empty_separator_loop); + // Live values in registers: + // result_pos: the position to which we are currently copying characters. + // element: Current array element. + // elements_end: Array end. + + // Copy next array element to the result. + __ lw(string, MemOperand(element)); + __ Addu(element, element, kPointerSize); + __ lw(string_length, FieldMemOperand(string, String::kLengthOffset)); + __ SmiUntag(string_length); + __ Addu(string, string, SeqOneByteString::kHeaderSize - kHeapObjectTag); + __ CopyBytes(string, result_pos, string_length, scratch1); + // End while (element < elements_end). + __ Branch(&empty_separator_loop, lt, element, Operand(elements_end)); + DCHECK(result.is(v0)); + __ Branch(&done); + + // One-character separator case. + __ bind(&one_char_separator); + // Replace separator with its one-byte character value. + __ lbu(separator, FieldMemOperand(separator, SeqOneByteString::kHeaderSize)); + // Jump into the loop after the code that copies the separator, so the first + // element is not preceded by a separator. + __ jmp(&one_char_separator_loop_entry); + + __ bind(&one_char_separator_loop); + // Live values in registers: + // result_pos: the position to which we are currently copying characters. + // element: Current array element. + // elements_end: Array end. + // separator: Single separator one-byte char (in lower byte). + + // Copy the separator character to the result. + __ sb(separator, MemOperand(result_pos)); + __ Addu(result_pos, result_pos, 1); + + // Copy next array element to the result. + __ bind(&one_char_separator_loop_entry); + __ lw(string, MemOperand(element)); + __ Addu(element, element, kPointerSize); + __ lw(string_length, FieldMemOperand(string, String::kLengthOffset)); + __ SmiUntag(string_length); + __ Addu(string, string, SeqOneByteString::kHeaderSize - kHeapObjectTag); + __ CopyBytes(string, result_pos, string_length, scratch1); + // End while (element < elements_end). + __ Branch(&one_char_separator_loop, lt, element, Operand(elements_end)); + DCHECK(result.is(v0)); + __ Branch(&done); + + // Long separator case (separator is more than one character). Entry is at the + // label long_separator below. + __ bind(&long_separator_loop); + // Live values in registers: + // result_pos: the position to which we are currently copying characters. + // element: Current array element. + // elements_end: Array end. + // separator: Separator string. + + // Copy the separator to the result. + __ lw(string_length, FieldMemOperand(separator, String::kLengthOffset)); + __ SmiUntag(string_length); + __ Addu(string, + separator, + Operand(SeqOneByteString::kHeaderSize - kHeapObjectTag)); + __ CopyBytes(string, result_pos, string_length, scratch1); + + __ bind(&long_separator); + __ lw(string, MemOperand(element)); + __ Addu(element, element, kPointerSize); + __ lw(string_length, FieldMemOperand(string, String::kLengthOffset)); + __ SmiUntag(string_length); + __ Addu(string, string, SeqOneByteString::kHeaderSize - kHeapObjectTag); + __ CopyBytes(string, result_pos, string_length, scratch1); + // End while (element < elements_end). + __ Branch(&long_separator_loop, lt, element, Operand(elements_end)); + DCHECK(result.is(v0)); + __ Branch(&done); + + __ bind(&bailout); + __ LoadRoot(v0, Heap::kUndefinedValueRootIndex); + __ bind(&done); + context()->Plug(v0); +} + + +void FullCodeGenerator::EmitDebugIsActive(CallRuntime* expr) { + DCHECK(expr->arguments()->length() == 0); + ExternalReference debug_is_active = + ExternalReference::debug_is_active_address(isolate()); + __ li(at, Operand(debug_is_active)); + __ lb(v0, MemOperand(at)); + __ SmiTag(v0); + context()->Plug(v0); +} + + +void FullCodeGenerator::EmitLoadJSRuntimeFunction(CallRuntime* expr) { + // Push the builtins object as the receiver. + Register receiver = LoadDescriptor::ReceiverRegister(); + __ lw(receiver, GlobalObjectOperand()); + __ lw(receiver, FieldMemOperand(receiver, GlobalObject::kBuiltinsOffset)); + __ push(receiver); + + // Load the function from the receiver. + __ li(LoadDescriptor::NameRegister(), Operand(expr->name())); + __ li(LoadDescriptor::SlotRegister(), + Operand(SmiFromSlot(expr->CallRuntimeFeedbackSlot()))); + CallLoadIC(NOT_INSIDE_TYPEOF); +} + + +void FullCodeGenerator::EmitCallJSRuntimeFunction(CallRuntime* expr) { + ZoneList<Expression*>* args = expr->arguments(); + int arg_count = args->length(); + + SetCallPosition(expr, arg_count); + CallFunctionStub stub(isolate(), arg_count, NO_CALL_FUNCTION_FLAGS); + __ lw(a1, MemOperand(sp, (arg_count + 1) * kPointerSize)); + __ CallStub(&stub); +} + + +void FullCodeGenerator::VisitCallRuntime(CallRuntime* expr) { + ZoneList<Expression*>* args = expr->arguments(); + int arg_count = args->length(); + + if (expr->is_jsruntime()) { + Comment cmnt(masm_, "[ CallRuntime"); + EmitLoadJSRuntimeFunction(expr); + + // Push the target function under the receiver. + __ lw(at, MemOperand(sp, 0)); + __ push(at); + __ sw(v0, MemOperand(sp, kPointerSize)); + + // Push the arguments ("left-to-right"). + for (int i = 0; i < arg_count; i++) { + VisitForStackValue(args->at(i)); + } + + PrepareForBailoutForId(expr->CallId(), NO_REGISTERS); + EmitCallJSRuntimeFunction(expr); + + // Restore context register. + __ lw(cp, MemOperand(fp, StandardFrameConstants::kContextOffset)); + + context()->DropAndPlug(1, v0); + + } else { + const Runtime::Function* function = expr->function(); + switch (function->function_id) { +#define CALL_INTRINSIC_GENERATOR(Name) \ + case Runtime::kInline##Name: { \ + Comment cmnt(masm_, "[ Inline" #Name); \ + return Emit##Name(expr); \ + } + FOR_EACH_FULL_CODE_INTRINSIC(CALL_INTRINSIC_GENERATOR) +#undef CALL_INTRINSIC_GENERATOR + default: { + Comment cmnt(masm_, "[ CallRuntime for unhandled intrinsic"); + // Push the arguments ("left-to-right"). + for (int i = 0; i < arg_count; i++) { + VisitForStackValue(args->at(i)); + } + + // Call the C runtime function. + PrepareForBailoutForId(expr->CallId(), NO_REGISTERS); + __ CallRuntime(expr->function(), arg_count); + context()->Plug(v0); + } + } + } +} + + +void FullCodeGenerator::VisitUnaryOperation(UnaryOperation* expr) { + switch (expr->op()) { + case Token::DELETE: { + Comment cmnt(masm_, "[ UnaryOperation (DELETE)"); + Property* property = expr->expression()->AsProperty(); + VariableProxy* proxy = expr->expression()->AsVariableProxy(); + + if (property != NULL) { + VisitForStackValue(property->obj()); + VisitForStackValue(property->key()); + __ CallRuntime(is_strict(language_mode()) + ? Runtime::kDeleteProperty_Strict + : Runtime::kDeleteProperty_Sloppy, + 2); + context()->Plug(v0); + } else if (proxy != NULL) { + Variable* var = proxy->var(); + // Delete of an unqualified identifier is disallowed in strict mode but + // "delete this" is allowed. + bool is_this = var->HasThisName(isolate()); + DCHECK(is_sloppy(language_mode()) || is_this); + if (var->IsUnallocatedOrGlobalSlot()) { + __ lw(a2, GlobalObjectOperand()); + __ li(a1, Operand(var->name())); + __ Push(a2, a1); + __ CallRuntime(Runtime::kDeleteProperty_Sloppy, 2); + context()->Plug(v0); + } else if (var->IsStackAllocated() || var->IsContextSlot()) { + // Result of deleting non-global, non-dynamic variables is false. + // The subexpression does not have side effects. + context()->Plug(is_this); + } else { + // Non-global variable. Call the runtime to try to delete from the + // context where the variable was introduced. + DCHECK(!context_register().is(a2)); + __ li(a2, Operand(var->name())); + __ Push(context_register(), a2); + __ CallRuntime(Runtime::kDeleteLookupSlot, 2); + context()->Plug(v0); + } + } else { + // Result of deleting non-property, non-variable reference is true. + // The subexpression may have side effects. + VisitForEffect(expr->expression()); + context()->Plug(true); + } + break; + } + + case Token::VOID: { + Comment cmnt(masm_, "[ UnaryOperation (VOID)"); + VisitForEffect(expr->expression()); + context()->Plug(Heap::kUndefinedValueRootIndex); + break; + } + + case Token::NOT: { + Comment cmnt(masm_, "[ UnaryOperation (NOT)"); + if (context()->IsEffect()) { + // Unary NOT has no side effects so it's only necessary to visit the + // subexpression. Match the optimizing compiler by not branching. + VisitForEffect(expr->expression()); + } else if (context()->IsTest()) { + const TestContext* test = TestContext::cast(context()); + // The labels are swapped for the recursive call. + VisitForControl(expr->expression(), + test->false_label(), + test->true_label(), + test->fall_through()); + context()->Plug(test->true_label(), test->false_label()); + } else { + // We handle value contexts explicitly rather than simply visiting + // for control and plugging the control flow into the context, + // because we need to prepare a pair of extra administrative AST ids + // for the optimizing compiler. + DCHECK(context()->IsAccumulatorValue() || context()->IsStackValue()); + Label materialize_true, materialize_false, done; + VisitForControl(expr->expression(), + &materialize_false, + &materialize_true, + &materialize_true); + __ bind(&materialize_true); + PrepareForBailoutForId(expr->MaterializeTrueId(), NO_REGISTERS); + __ LoadRoot(v0, Heap::kTrueValueRootIndex); + if (context()->IsStackValue()) __ push(v0); + __ jmp(&done); + __ bind(&materialize_false); + PrepareForBailoutForId(expr->MaterializeFalseId(), NO_REGISTERS); + __ LoadRoot(v0, Heap::kFalseValueRootIndex); + if (context()->IsStackValue()) __ push(v0); + __ bind(&done); + } + break; + } + + case Token::TYPEOF: { + Comment cmnt(masm_, "[ UnaryOperation (TYPEOF)"); + { + AccumulatorValueContext context(this); + VisitForTypeofValue(expr->expression()); + } + __ mov(a3, v0); + TypeofStub typeof_stub(isolate()); + __ CallStub(&typeof_stub); + context()->Plug(v0); + break; + } + + default: + UNREACHABLE(); + } +} + + +void FullCodeGenerator::VisitCountOperation(CountOperation* expr) { + DCHECK(expr->expression()->IsValidReferenceExpressionOrThis()); + + Comment cmnt(masm_, "[ CountOperation"); + + Property* prop = expr->expression()->AsProperty(); + LhsKind assign_type = Property::GetAssignType(prop); + + // Evaluate expression and get value. + if (assign_type == VARIABLE) { + DCHECK(expr->expression()->AsVariableProxy()->var() != NULL); + AccumulatorValueContext context(this); + EmitVariableLoad(expr->expression()->AsVariableProxy()); + } else { + // Reserve space for result of postfix operation. + if (expr->is_postfix() && !context()->IsEffect()) { + __ li(at, Operand(Smi::FromInt(0))); + __ push(at); + } + switch (assign_type) { + case NAMED_PROPERTY: { + // Put the object both on the stack and in the register. + VisitForStackValue(prop->obj()); + __ lw(LoadDescriptor::ReceiverRegister(), MemOperand(sp, 0)); + EmitNamedPropertyLoad(prop); + break; + } + + case NAMED_SUPER_PROPERTY: { + VisitForStackValue(prop->obj()->AsSuperPropertyReference()->this_var()); + VisitForAccumulatorValue( + prop->obj()->AsSuperPropertyReference()->home_object()); + __ Push(result_register()); + const Register scratch = a1; + __ lw(scratch, MemOperand(sp, kPointerSize)); + __ Push(scratch, result_register()); + EmitNamedSuperPropertyLoad(prop); + break; + } + + case KEYED_SUPER_PROPERTY: { + VisitForStackValue(prop->obj()->AsSuperPropertyReference()->this_var()); + VisitForAccumulatorValue( + prop->obj()->AsSuperPropertyReference()->home_object()); + const Register scratch = a1; + const Register scratch1 = t0; + __ Move(scratch, result_register()); + VisitForAccumulatorValue(prop->key()); + __ Push(scratch, result_register()); + __ lw(scratch1, MemOperand(sp, 2 * kPointerSize)); + __ Push(scratch1, scratch, result_register()); + EmitKeyedSuperPropertyLoad(prop); + break; + } + + case KEYED_PROPERTY: { + VisitForStackValue(prop->obj()); + VisitForStackValue(prop->key()); + __ lw(LoadDescriptor::ReceiverRegister(), + MemOperand(sp, 1 * kPointerSize)); + __ lw(LoadDescriptor::NameRegister(), MemOperand(sp, 0)); + EmitKeyedPropertyLoad(prop); + break; + } + + case VARIABLE: + UNREACHABLE(); + } + } + + // We need a second deoptimization point after loading the value + // in case evaluating the property load my have a side effect. + if (assign_type == VARIABLE) { + PrepareForBailout(expr->expression(), TOS_REG); + } else { + PrepareForBailoutForId(prop->LoadId(), TOS_REG); + } + + // Inline smi case if we are in a loop. + Label stub_call, done; + JumpPatchSite patch_site(masm_); + + int count_value = expr->op() == Token::INC ? 1 : -1; + __ mov(a0, v0); + if (ShouldInlineSmiCase(expr->op())) { + Label slow; + patch_site.EmitJumpIfNotSmi(v0, &slow); + + // Save result for postfix expressions. + if (expr->is_postfix()) { + if (!context()->IsEffect()) { + // Save the result on the stack. If we have a named or keyed property + // we store the result under the receiver that is currently on top + // of the stack. + switch (assign_type) { + case VARIABLE: + __ push(v0); + break; + case NAMED_PROPERTY: + __ sw(v0, MemOperand(sp, kPointerSize)); + break; + case NAMED_SUPER_PROPERTY: + __ sw(v0, MemOperand(sp, 2 * kPointerSize)); + break; + case KEYED_PROPERTY: + __ sw(v0, MemOperand(sp, 2 * kPointerSize)); + break; + case KEYED_SUPER_PROPERTY: + __ sw(v0, MemOperand(sp, 3 * kPointerSize)); + break; + } + } + } + + Register scratch1 = a1; + Register scratch2 = t0; + __ li(scratch1, Operand(Smi::FromInt(count_value))); + __ AdduAndCheckForOverflow(v0, v0, scratch1, scratch2); + __ BranchOnNoOverflow(&done, scratch2); + // Call stub. Undo operation first. + __ Move(v0, a0); + __ jmp(&stub_call); + __ bind(&slow); + } + if (!is_strong(language_mode())) { + ToNumberStub convert_stub(isolate()); + __ CallStub(&convert_stub); + PrepareForBailoutForId(expr->ToNumberId(), TOS_REG); + } + + // Save result for postfix expressions. + if (expr->is_postfix()) { + if (!context()->IsEffect()) { + // Save the result on the stack. If we have a named or keyed property + // we store the result under the receiver that is currently on top + // of the stack. + switch (assign_type) { + case VARIABLE: + __ push(v0); + break; + case NAMED_PROPERTY: + __ sw(v0, MemOperand(sp, kPointerSize)); + break; + case NAMED_SUPER_PROPERTY: + __ sw(v0, MemOperand(sp, 2 * kPointerSize)); + break; + case KEYED_PROPERTY: + __ sw(v0, MemOperand(sp, 2 * kPointerSize)); + break; + case KEYED_SUPER_PROPERTY: + __ sw(v0, MemOperand(sp, 3 * kPointerSize)); + break; + } + } + } + + __ bind(&stub_call); + __ mov(a1, v0); + __ li(a0, Operand(Smi::FromInt(count_value))); + + SetExpressionPosition(expr); + + + Handle<Code> code = CodeFactory::BinaryOpIC(isolate(), Token::ADD, + strength(language_mode())).code(); + CallIC(code, expr->CountBinOpFeedbackId()); + patch_site.EmitPatchInfo(); + __ bind(&done); + + if (is_strong(language_mode())) { + PrepareForBailoutForId(expr->ToNumberId(), TOS_REG); + } + // Store the value returned in v0. + switch (assign_type) { + case VARIABLE: + if (expr->is_postfix()) { + { EffectContext context(this); + EmitVariableAssignment(expr->expression()->AsVariableProxy()->var(), + Token::ASSIGN, expr->CountSlot()); + PrepareForBailoutForId(expr->AssignmentId(), TOS_REG); + context.Plug(v0); + } + // For all contexts except EffectConstant we have the result on + // top of the stack. + if (!context()->IsEffect()) { + context()->PlugTOS(); + } + } else { + EmitVariableAssignment(expr->expression()->AsVariableProxy()->var(), + Token::ASSIGN, expr->CountSlot()); + PrepareForBailoutForId(expr->AssignmentId(), TOS_REG); + context()->Plug(v0); + } + break; + case NAMED_PROPERTY: { + __ mov(StoreDescriptor::ValueRegister(), result_register()); + __ li(StoreDescriptor::NameRegister(), + Operand(prop->key()->AsLiteral()->value())); + __ pop(StoreDescriptor::ReceiverRegister()); + if (FLAG_vector_stores) { + EmitLoadStoreICSlot(expr->CountSlot()); + CallStoreIC(); + } else { + CallStoreIC(expr->CountStoreFeedbackId()); + } + PrepareForBailoutForId(expr->AssignmentId(), TOS_REG); + if (expr->is_postfix()) { + if (!context()->IsEffect()) { + context()->PlugTOS(); + } + } else { + context()->Plug(v0); + } + break; + } + case NAMED_SUPER_PROPERTY: { + EmitNamedSuperPropertyStore(prop); + if (expr->is_postfix()) { + if (!context()->IsEffect()) { + context()->PlugTOS(); + } + } else { + context()->Plug(v0); + } + break; + } + case KEYED_SUPER_PROPERTY: { + EmitKeyedSuperPropertyStore(prop); + if (expr->is_postfix()) { + if (!context()->IsEffect()) { + context()->PlugTOS(); + } + } else { + context()->Plug(v0); + } + break; + } + case KEYED_PROPERTY: { + __ mov(StoreDescriptor::ValueRegister(), result_register()); + __ Pop(StoreDescriptor::ReceiverRegister(), + StoreDescriptor::NameRegister()); + Handle<Code> ic = + CodeFactory::KeyedStoreIC(isolate(), language_mode()).code(); + if (FLAG_vector_stores) { + EmitLoadStoreICSlot(expr->CountSlot()); + CallIC(ic); + } else { + CallIC(ic, expr->CountStoreFeedbackId()); + } + PrepareForBailoutForId(expr->AssignmentId(), TOS_REG); + if (expr->is_postfix()) { + if (!context()->IsEffect()) { + context()->PlugTOS(); + } + } else { + context()->Plug(v0); + } + break; + } + } +} + + +void FullCodeGenerator::EmitLiteralCompareTypeof(Expression* expr, + Expression* sub_expr, + Handle<String> check) { + Label materialize_true, materialize_false; + Label* if_true = NULL; + Label* if_false = NULL; + Label* fall_through = NULL; + context()->PrepareTest(&materialize_true, &materialize_false, + &if_true, &if_false, &fall_through); + + { AccumulatorValueContext context(this); + VisitForTypeofValue(sub_expr); + } + PrepareForBailoutBeforeSplit(expr, true, if_true, if_false); + + Factory* factory = isolate()->factory(); + if (String::Equals(check, factory->number_string())) { + __ JumpIfSmi(v0, if_true); + __ lw(v0, FieldMemOperand(v0, HeapObject::kMapOffset)); + __ LoadRoot(at, Heap::kHeapNumberMapRootIndex); + Split(eq, v0, Operand(at), if_true, if_false, fall_through); + } else if (String::Equals(check, factory->string_string())) { + __ JumpIfSmi(v0, if_false); + __ GetObjectType(v0, v0, a1); + Split(lt, a1, Operand(FIRST_NONSTRING_TYPE), if_true, if_false, + fall_through); + } else if (String::Equals(check, factory->symbol_string())) { + __ JumpIfSmi(v0, if_false); + __ GetObjectType(v0, v0, a1); + Split(eq, a1, Operand(SYMBOL_TYPE), if_true, if_false, fall_through); + } else if (String::Equals(check, factory->boolean_string())) { + __ LoadRoot(at, Heap::kTrueValueRootIndex); + __ Branch(if_true, eq, v0, Operand(at)); + __ LoadRoot(at, Heap::kFalseValueRootIndex); + Split(eq, v0, Operand(at), if_true, if_false, fall_through); + } else if (String::Equals(check, factory->undefined_string())) { + __ LoadRoot(at, Heap::kUndefinedValueRootIndex); + __ Branch(if_true, eq, v0, Operand(at)); + __ JumpIfSmi(v0, if_false); + // Check for undetectable objects => true. + __ lw(v0, FieldMemOperand(v0, HeapObject::kMapOffset)); + __ lbu(a1, FieldMemOperand(v0, Map::kBitFieldOffset)); + __ And(a1, a1, Operand(1 << Map::kIsUndetectable)); + Split(ne, a1, Operand(zero_reg), if_true, if_false, fall_through); + } else if (String::Equals(check, factory->function_string())) { + __ JumpIfSmi(v0, if_false); + STATIC_ASSERT(NUM_OF_CALLABLE_SPEC_OBJECT_TYPES == 2); + __ GetObjectType(v0, v0, a1); + __ Branch(if_true, eq, a1, Operand(JS_FUNCTION_TYPE)); + Split(eq, a1, Operand(JS_FUNCTION_PROXY_TYPE), + if_true, if_false, fall_through); + } else if (String::Equals(check, factory->object_string())) { + __ JumpIfSmi(v0, if_false); + __ LoadRoot(at, Heap::kNullValueRootIndex); + __ Branch(if_true, eq, v0, Operand(at)); + // Check for JS objects => true. + __ GetObjectType(v0, v0, a1); + __ Branch(if_false, lt, a1, Operand(FIRST_NONCALLABLE_SPEC_OBJECT_TYPE)); + __ lbu(a1, FieldMemOperand(v0, Map::kInstanceTypeOffset)); + __ Branch(if_false, gt, a1, Operand(LAST_NONCALLABLE_SPEC_OBJECT_TYPE)); + // Check for undetectable objects => false. + __ lbu(a1, FieldMemOperand(v0, Map::kBitFieldOffset)); + __ And(a1, a1, Operand(1 << Map::kIsUndetectable)); + Split(eq, a1, Operand(zero_reg), if_true, if_false, fall_through); +// clang-format off +#define SIMD128_TYPE(TYPE, Type, type, lane_count, lane_type) \ + } else if (String::Equals(check, factory->type##_string())) { \ + __ JumpIfSmi(v0, if_false); \ + __ lw(v0, FieldMemOperand(v0, HeapObject::kMapOffset)); \ + __ LoadRoot(at, Heap::k##Type##MapRootIndex); \ + Split(eq, v0, Operand(at), if_true, if_false, fall_through); + SIMD128_TYPES(SIMD128_TYPE) +#undef SIMD128_TYPE + // clang-format on + } else { + if (if_false != fall_through) __ jmp(if_false); + } + context()->Plug(if_true, if_false); +} + + +void FullCodeGenerator::VisitCompareOperation(CompareOperation* expr) { + Comment cmnt(masm_, "[ CompareOperation"); + SetExpressionPosition(expr); + + // First we try a fast inlined version of the compare when one of + // the operands is a literal. + if (TryLiteralCompare(expr)) return; + + // Always perform the comparison for its control flow. Pack the result + // into the expression's context after the comparison is performed. + Label materialize_true, materialize_false; + Label* if_true = NULL; + Label* if_false = NULL; + Label* fall_through = NULL; + context()->PrepareTest(&materialize_true, &materialize_false, + &if_true, &if_false, &fall_through); + + Token::Value op = expr->op(); + VisitForStackValue(expr->left()); + switch (op) { + case Token::IN: + VisitForStackValue(expr->right()); + __ InvokeBuiltin(Builtins::IN, CALL_FUNCTION); + PrepareForBailoutBeforeSplit(expr, false, NULL, NULL); + __ LoadRoot(t0, Heap::kTrueValueRootIndex); + Split(eq, v0, Operand(t0), if_true, if_false, fall_through); + break; + + case Token::INSTANCEOF: { + VisitForStackValue(expr->right()); + InstanceofStub stub(isolate(), InstanceofStub::kNoFlags); + __ CallStub(&stub); + PrepareForBailoutBeforeSplit(expr, true, if_true, if_false); + // The stub returns 0 for true. + Split(eq, v0, Operand(zero_reg), if_true, if_false, fall_through); + break; + } + + default: { + VisitForAccumulatorValue(expr->right()); + Condition cc = CompareIC::ComputeCondition(op); + __ mov(a0, result_register()); + __ pop(a1); + + bool inline_smi_code = ShouldInlineSmiCase(op); + JumpPatchSite patch_site(masm_); + if (inline_smi_code) { + Label slow_case; + __ Or(a2, a0, Operand(a1)); + patch_site.EmitJumpIfNotSmi(a2, &slow_case); + Split(cc, a1, Operand(a0), if_true, if_false, NULL); + __ bind(&slow_case); + } + + Handle<Code> ic = CodeFactory::CompareIC( + isolate(), op, strength(language_mode())).code(); + CallIC(ic, expr->CompareOperationFeedbackId()); + patch_site.EmitPatchInfo(); + PrepareForBailoutBeforeSplit(expr, true, if_true, if_false); + Split(cc, v0, Operand(zero_reg), if_true, if_false, fall_through); + } + } + + // Convert the result of the comparison into one expected for this + // expression's context. + context()->Plug(if_true, if_false); +} + + +void FullCodeGenerator::EmitLiteralCompareNil(CompareOperation* expr, + Expression* sub_expr, + NilValue nil) { + Label materialize_true, materialize_false; + Label* if_true = NULL; + Label* if_false = NULL; + Label* fall_through = NULL; + context()->PrepareTest(&materialize_true, &materialize_false, + &if_true, &if_false, &fall_through); + + VisitForAccumulatorValue(sub_expr); + PrepareForBailoutBeforeSplit(expr, true, if_true, if_false); + __ mov(a0, result_register()); + if (expr->op() == Token::EQ_STRICT) { + Heap::RootListIndex nil_value = nil == kNullValue ? + Heap::kNullValueRootIndex : + Heap::kUndefinedValueRootIndex; + __ LoadRoot(a1, nil_value); + Split(eq, a0, Operand(a1), if_true, if_false, fall_through); + } else { + Handle<Code> ic = CompareNilICStub::GetUninitialized(isolate(), nil); + CallIC(ic, expr->CompareOperationFeedbackId()); + Split(ne, v0, Operand(zero_reg), if_true, if_false, fall_through); + } + context()->Plug(if_true, if_false); +} + + +void FullCodeGenerator::VisitThisFunction(ThisFunction* expr) { + __ lw(v0, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset)); + context()->Plug(v0); +} + + +Register FullCodeGenerator::result_register() { + return v0; +} + + +Register FullCodeGenerator::context_register() { + return cp; +} + + +void FullCodeGenerator::StoreToFrameField(int frame_offset, Register value) { + DCHECK_EQ(POINTER_SIZE_ALIGN(frame_offset), frame_offset); + __ sw(value, MemOperand(fp, frame_offset)); +} + + +void FullCodeGenerator::LoadContextField(Register dst, int context_index) { + __ lw(dst, ContextOperand(cp, context_index)); +} + + +void FullCodeGenerator::PushFunctionArgumentForContextAllocation() { + Scope* closure_scope = scope()->ClosureScope(); + if (closure_scope->is_script_scope() || + closure_scope->is_module_scope()) { + // Contexts nested in the native context have a canonical empty function + // as their closure, not the anonymous closure containing the global + // code. Pass a smi sentinel and let the runtime look up the empty + // function. + __ li(at, Operand(Smi::FromInt(0))); + } else if (closure_scope->is_eval_scope()) { + // Contexts created by a call to eval have the same closure as the + // context calling eval, not the anonymous closure containing the eval + // code. Fetch it from the context. + __ lw(at, ContextOperand(cp, Context::CLOSURE_INDEX)); + } else { + DCHECK(closure_scope->is_function_scope()); + __ lw(at, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset)); + } + __ push(at); +} + + +// ---------------------------------------------------------------------------- +// Non-local control flow support. + +void FullCodeGenerator::EnterFinallyBlock() { + DCHECK(!result_register().is(a1)); + // Store result register while executing finally block. + __ push(result_register()); + // Cook return address in link register to stack (smi encoded Code* delta). + __ Subu(a1, ra, Operand(masm_->CodeObject())); + DCHECK_EQ(1, kSmiTagSize + kSmiShiftSize); + STATIC_ASSERT(0 == kSmiTag); + __ Addu(a1, a1, Operand(a1)); // Convert to smi. + + // Store result register while executing finally block. + __ push(a1); + + // Store pending message while executing finally block. + ExternalReference pending_message_obj = + ExternalReference::address_of_pending_message_obj(isolate()); + __ li(at, Operand(pending_message_obj)); + __ lw(a1, MemOperand(at)); + __ push(a1); + + ClearPendingMessage(); +} + + +void FullCodeGenerator::ExitFinallyBlock() { + DCHECK(!result_register().is(a1)); + // Restore pending message from stack. + __ pop(a1); + ExternalReference pending_message_obj = + ExternalReference::address_of_pending_message_obj(isolate()); + __ li(at, Operand(pending_message_obj)); + __ sw(a1, MemOperand(at)); + + // Restore result register from stack. + __ pop(a1); + + // Uncook return address and return. + __ pop(result_register()); + DCHECK_EQ(1, kSmiTagSize + kSmiShiftSize); + __ sra(a1, a1, 1); // Un-smi-tag value. + __ Addu(at, a1, Operand(masm_->CodeObject())); + __ Jump(at); +} + + +void FullCodeGenerator::ClearPendingMessage() { + DCHECK(!result_register().is(a1)); + ExternalReference pending_message_obj = + ExternalReference::address_of_pending_message_obj(isolate()); + __ LoadRoot(a1, Heap::kTheHoleValueRootIndex); + __ li(at, Operand(pending_message_obj)); + __ sw(a1, MemOperand(at)); +} + + +void FullCodeGenerator::EmitLoadStoreICSlot(FeedbackVectorICSlot slot) { + DCHECK(FLAG_vector_stores && !slot.IsInvalid()); + __ li(VectorStoreICTrampolineDescriptor::SlotRegister(), + Operand(SmiFromSlot(slot))); +} + + +#undef __ + + +void BackEdgeTable::PatchAt(Code* unoptimized_code, + Address pc, + BackEdgeState target_state, + Code* replacement_code) { + static const int kInstrSize = Assembler::kInstrSize; + Address branch_address = pc - 6 * kInstrSize; + CodePatcher patcher(branch_address, 1); + + switch (target_state) { + case INTERRUPT: + // slt at, a3, zero_reg (in case of count based interrupts) + // beq at, zero_reg, ok + // lui t9, <interrupt stub address> upper + // ori t9, <interrupt stub address> lower + // jalr t9 + // nop + // ok-label ----- pc_after points here + patcher.masm()->slt(at, a3, zero_reg); + break; + case ON_STACK_REPLACEMENT: + case OSR_AFTER_STACK_CHECK: + // addiu at, zero_reg, 1 + // beq at, zero_reg, ok ;; Not changed + // lui t9, <on-stack replacement address> upper + // ori t9, <on-stack replacement address> lower + // jalr t9 ;; Not changed + // nop ;; Not changed + // ok-label ----- pc_after points here + patcher.masm()->addiu(at, zero_reg, 1); + break; + } + Address pc_immediate_load_address = pc - 4 * kInstrSize; + // Replace the stack check address in the load-immediate (lui/ori pair) + // with the entry address of the replacement code. + Assembler::set_target_address_at(pc_immediate_load_address, + replacement_code->entry()); + + unoptimized_code->GetHeap()->incremental_marking()->RecordCodeTargetPatch( + unoptimized_code, pc_immediate_load_address, replacement_code); +} + + +BackEdgeTable::BackEdgeState BackEdgeTable::GetBackEdgeState( + Isolate* isolate, + Code* unoptimized_code, + Address pc) { + static const int kInstrSize = Assembler::kInstrSize; + Address branch_address = pc - 6 * kInstrSize; + Address pc_immediate_load_address = pc - 4 * kInstrSize; + + DCHECK(Assembler::IsBeq(Assembler::instr_at(pc - 5 * kInstrSize))); + if (!Assembler::IsAddImmediate(Assembler::instr_at(branch_address))) { + DCHECK(reinterpret_cast<uint32_t>( + Assembler::target_address_at(pc_immediate_load_address)) == + reinterpret_cast<uint32_t>( + isolate->builtins()->InterruptCheck()->entry())); + return INTERRUPT; + } + + DCHECK(Assembler::IsAddImmediate(Assembler::instr_at(branch_address))); + + if (reinterpret_cast<uint32_t>( + Assembler::target_address_at(pc_immediate_load_address)) == + reinterpret_cast<uint32_t>( + isolate->builtins()->OnStackReplacement()->entry())) { + return ON_STACK_REPLACEMENT; + } + + DCHECK(reinterpret_cast<uint32_t>( + Assembler::target_address_at(pc_immediate_load_address)) == + reinterpret_cast<uint32_t>( + isolate->builtins()->OsrAfterStackCheck()->entry())); + return OSR_AFTER_STACK_CHECK; +} + + +} // namespace internal +} // namespace v8 + +#endif // V8_TARGET_ARCH_MIPS |