summaryrefslogtreecommitdiff
path: root/deps/v8/src/hydrogen-instructions.cc
diff options
context:
space:
mode:
Diffstat (limited to 'deps/v8/src/hydrogen-instructions.cc')
-rw-r--r--deps/v8/src/hydrogen-instructions.cc1482
1 files changed, 1482 insertions, 0 deletions
diff --git a/deps/v8/src/hydrogen-instructions.cc b/deps/v8/src/hydrogen-instructions.cc
new file mode 100644
index 0000000000..670dad85c5
--- /dev/null
+++ b/deps/v8/src/hydrogen-instructions.cc
@@ -0,0 +1,1482 @@
+// Copyright 2010 the V8 project authors. All rights reserved.
+// Redistribution and use in source and binary forms, with or without
+// modification, are permitted provided that the following conditions are
+// met:
+//
+// * Redistributions of source code must retain the above copyright
+// notice, this list of conditions and the following disclaimer.
+// * Redistributions in binary form must reproduce the above
+// copyright notice, this list of conditions and the following
+// disclaimer in the documentation and/or other materials provided
+// with the distribution.
+// * Neither the name of Google Inc. nor the names of its
+// contributors may be used to endorse or promote products derived
+// from this software without specific prior written permission.
+//
+// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
+// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
+// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
+// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
+// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
+// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
+// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
+// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
+// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
+// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+#include "v8.h"
+
+#include "factory.h"
+#include "hydrogen.h"
+
+#if V8_TARGET_ARCH_IA32
+#include "ia32/lithium-ia32.h"
+#elif V8_TARGET_ARCH_X64
+#include "x64/lithium-x64.h"
+#elif V8_TARGET_ARCH_ARM
+#include "arm/lithium-arm.h"
+#else
+#error Unsupported target architecture.
+#endif
+
+namespace v8 {
+namespace internal {
+
+#define DEFINE_COMPILE(type) \
+ LInstruction* H##type::CompileToLithium(LChunkBuilder* builder) { \
+ return builder->Do##type(this); \
+ }
+HYDROGEN_CONCRETE_INSTRUCTION_LIST(DEFINE_COMPILE)
+#undef DEFINE_COMPILE
+
+
+const char* Representation::Mnemonic() const {
+ switch (kind_) {
+ case kNone: return "v";
+ case kTagged: return "t";
+ case kDouble: return "d";
+ case kInteger32: return "i";
+ default:
+ UNREACHABLE();
+ return NULL;
+ }
+}
+
+
+static int32_t AddAssertNoOverflow(int32_t a, int32_t b) {
+ ASSERT(static_cast<int64_t>(a + b) == (static_cast<int64_t>(a) +
+ static_cast<int64_t>(b)));
+ return a + b;
+}
+
+
+static int32_t SubAssertNoOverflow(int32_t a, int32_t b) {
+ ASSERT(static_cast<int64_t>(a - b) == (static_cast<int64_t>(a) -
+ static_cast<int64_t>(b)));
+ return a - b;
+}
+
+
+static int32_t MulAssertNoOverflow(int32_t a, int32_t b) {
+ ASSERT(static_cast<int64_t>(a * b) == (static_cast<int64_t>(a) *
+ static_cast<int64_t>(b)));
+ return a * b;
+}
+
+
+static int32_t AddWithoutOverflow(int32_t a, int32_t b) {
+ if (b > 0) {
+ if (a <= kMaxInt - b) return AddAssertNoOverflow(a, b);
+ return kMaxInt;
+ } else {
+ if (a >= kMinInt - b) return AddAssertNoOverflow(a, b);
+ return kMinInt;
+ }
+}
+
+
+static int32_t SubWithoutOverflow(int32_t a, int32_t b) {
+ if (b < 0) {
+ if (a <= kMaxInt + b) return SubAssertNoOverflow(a, b);
+ return kMaxInt;
+ } else {
+ if (a >= kMinInt + b) return SubAssertNoOverflow(a, b);
+ return kMinInt;
+ }
+}
+
+
+static int32_t MulWithoutOverflow(int32_t a, int32_t b, bool* overflow) {
+ if (b == 0 || a == 0) return 0;
+ if (a == 1) return b;
+ if (b == 1) return a;
+
+ int sign = 1;
+ if ((a < 0 && b > 0) || (a > 0 && b < 0)) sign = -1;
+ if (a < 0) a = -a;
+ if (b < 0) b = -b;
+
+ if (kMaxInt / b > a && a != kMinInt && b != kMinInt) {
+ return MulAssertNoOverflow(a, b) * sign;
+ }
+
+ *overflow = true;
+ if (sign == 1) {
+ return kMaxInt;
+ } else {
+ return kMinInt;
+ }
+}
+
+
+int32_t Range::Mask() const {
+ if (lower_ == upper_) return lower_;
+ if (lower_ >= 0) {
+ int32_t res = 1;
+ while (res < upper_) {
+ res = (res << 1) | 1;
+ }
+ return res;
+ }
+ return 0xffffffff;
+}
+
+
+void Range::Add(int32_t value) {
+ if (value == 0) return;
+ lower_ = AddWithoutOverflow(lower_, value);
+ upper_ = AddWithoutOverflow(upper_, value);
+ Verify();
+}
+
+
+// Returns whether the add may overflow.
+bool Range::AddAndCheckOverflow(Range* other) {
+ int old_lower = lower_;
+ int old_upper = upper_;
+ lower_ = AddWithoutOverflow(lower_, other->lower());
+ upper_ = AddWithoutOverflow(upper_, other->upper());
+ bool r = (old_lower + other->lower() != lower_ ||
+ old_upper + other->upper() != upper_);
+ KeepOrder();
+ Verify();
+ return r;
+}
+
+
+// Returns whether the sub may overflow.
+bool Range::SubAndCheckOverflow(Range* other) {
+ int old_lower = lower_;
+ int old_upper = upper_;
+ lower_ = SubWithoutOverflow(lower_, other->lower());
+ upper_ = SubWithoutOverflow(upper_, other->upper());
+ bool r = (old_lower - other->lower() != lower_ ||
+ old_upper - other->upper() != upper_);
+ KeepOrder();
+ Verify();
+ return r;
+}
+
+
+void Range::KeepOrder() {
+ if (lower_ > upper_) {
+ int32_t tmp = lower_;
+ lower_ = upper_;
+ upper_ = tmp;
+ }
+}
+
+
+void Range::Verify() const {
+ ASSERT(lower_ <= upper_);
+}
+
+
+// Returns whether the mul may overflow.
+bool Range::MulAndCheckOverflow(Range* other) {
+ bool may_overflow = false;
+ int v1 = MulWithoutOverflow(lower_, other->lower(), &may_overflow);
+ int v2 = MulWithoutOverflow(lower_, other->upper(), &may_overflow);
+ int v3 = MulWithoutOverflow(upper_, other->lower(), &may_overflow);
+ int v4 = MulWithoutOverflow(upper_, other->upper(), &may_overflow);
+ lower_ = Min(Min(v1, v2), Min(v3, v4));
+ upper_ = Max(Max(v1, v2), Max(v3, v4));
+ Verify();
+ return may_overflow;
+}
+
+
+const char* HType::ToString() {
+ switch (type_) {
+ case kTagged: return "tagged";
+ case kTaggedPrimitive: return "primitive";
+ case kTaggedNumber: return "number";
+ case kSmi: return "smi";
+ case kHeapNumber: return "heap-number";
+ case kString: return "string";
+ case kBoolean: return "boolean";
+ case kNonPrimitive: return "non-primitive";
+ case kJSArray: return "array";
+ case kJSObject: return "object";
+ case kUninitialized: return "uninitialized";
+ }
+ UNREACHABLE();
+ return "Unreachable code";
+}
+
+
+const char* HType::ToShortString() {
+ switch (type_) {
+ case kTagged: return "t";
+ case kTaggedPrimitive: return "p";
+ case kTaggedNumber: return "n";
+ case kSmi: return "m";
+ case kHeapNumber: return "h";
+ case kString: return "s";
+ case kBoolean: return "b";
+ case kNonPrimitive: return "r";
+ case kJSArray: return "a";
+ case kJSObject: return "o";
+ case kUninitialized: return "z";
+ }
+ UNREACHABLE();
+ return "Unreachable code";
+}
+
+
+HType HType::TypeFromValue(Handle<Object> value) {
+ HType result = HType::Tagged();
+ if (value->IsSmi()) {
+ result = HType::Smi();
+ } else if (value->IsHeapNumber()) {
+ result = HType::HeapNumber();
+ } else if (value->IsString()) {
+ result = HType::String();
+ } else if (value->IsBoolean()) {
+ result = HType::Boolean();
+ } else if (value->IsJSObject()) {
+ result = HType::JSObject();
+ } else if (value->IsJSArray()) {
+ result = HType::JSArray();
+ }
+ return result;
+}
+
+
+int HValue::LookupOperandIndex(int occurrence_index, HValue* op) const {
+ for (int i = 0; i < OperandCount(); ++i) {
+ if (OperandAt(i) == op) {
+ if (occurrence_index == 0) return i;
+ --occurrence_index;
+ }
+ }
+ return -1;
+}
+
+
+bool HValue::IsDefinedAfter(HBasicBlock* other) const {
+ return block()->block_id() > other->block_id();
+}
+
+
+bool HValue::UsesMultipleTimes(HValue* op) const {
+ bool seen = false;
+ for (int i = 0; i < OperandCount(); ++i) {
+ if (OperandAt(i) == op) {
+ if (seen) return true;
+ seen = true;
+ }
+ }
+ return false;
+}
+
+
+bool HValue::Equals(HValue* other) const {
+ if (other->opcode() != opcode()) return false;
+ if (!other->representation().Equals(representation())) return false;
+ if (!other->type_.Equals(type_)) return false;
+ if (OperandCount() != other->OperandCount()) return false;
+ for (int i = 0; i < OperandCount(); ++i) {
+ if (OperandAt(i)->id() != other->OperandAt(i)->id()) return false;
+ }
+ bool result = DataEquals(other);
+ ASSERT(!result || Hashcode() == other->Hashcode());
+ return result;
+}
+
+
+intptr_t HValue::Hashcode() const {
+ intptr_t result = opcode();
+ int count = OperandCount();
+ for (int i = 0; i < count; ++i) {
+ result = result * 19 + OperandAt(i)->id() + (result >> 7);
+ }
+ return result;
+}
+
+
+void HValue::SetOperandAt(int index, HValue* value) {
+ ASSERT(value == NULL || !value->representation().IsNone());
+ RegisterUse(index, value);
+ InternalSetOperandAt(index, value);
+}
+
+
+void HValue::ReplaceAndDelete(HValue* other) {
+ ReplaceValue(other);
+ Delete();
+}
+
+
+void HValue::ReplaceValue(HValue* other) {
+ ZoneList<HValue*> start_uses(2);
+ for (int i = 0; i < uses_.length(); ++i) {
+ HValue* use = uses_.at(i);
+ if (!use->block()->IsStartBlock()) {
+ InternalReplaceAtUse(use, other);
+ other->uses_.Add(use);
+ } else {
+ start_uses.Add(use);
+ }
+ }
+ uses_.Clear();
+ uses_.AddAll(start_uses);
+}
+
+
+void HValue::ClearOperands() {
+ for (int i = 0; i < OperandCount(); ++i) {
+ SetOperandAt(i, NULL);
+ }
+}
+
+
+void HValue::Delete() {
+ ASSERT(HasNoUses());
+ ClearOperands();
+ DeleteFromGraph();
+}
+
+
+void HValue::ReplaceAtUse(HValue* use, HValue* other) {
+ for (int i = 0; i < use->OperandCount(); ++i) {
+ if (use->OperandAt(i) == this) {
+ use->SetOperandAt(i, other);
+ }
+ }
+}
+
+
+void HValue::ReplaceFirstAtUse(HValue* use, HValue* other, Representation r) {
+ for (int i = 0; i < use->OperandCount(); ++i) {
+ if (use->RequiredInputRepresentation(i).Equals(r) &&
+ use->OperandAt(i) == this) {
+ use->SetOperandAt(i, other);
+ return;
+ }
+ }
+}
+
+
+void HValue::InternalReplaceAtUse(HValue* use, HValue* other) {
+ for (int i = 0; i < use->OperandCount(); ++i) {
+ if (use->OperandAt(i) == this) {
+ // Call internal method that does not update use lists. The caller is
+ // responsible for doing so.
+ use->InternalSetOperandAt(i, other);
+ }
+ }
+}
+
+
+void HValue::SetBlock(HBasicBlock* block) {
+ ASSERT(block_ == NULL || block == NULL);
+ block_ = block;
+ if (id_ == kNoNumber && block != NULL) {
+ id_ = block->graph()->GetNextValueID(this);
+ }
+}
+
+
+void HValue::PrintTypeTo(HType type, StringStream* stream) {
+ stream->Add(type.ToShortString());
+}
+
+
+void HValue::PrintNameTo(StringStream* stream) {
+ stream->Add("%s%d", representation_.Mnemonic(), id());
+}
+
+
+bool HValue::UpdateInferredType() {
+ HType type = CalculateInferredType();
+ bool result = (!type.Equals(type_));
+ type_ = type;
+ return result;
+}
+
+
+void HValue::RegisterUse(int index, HValue* new_value) {
+ HValue* old_value = OperandAt(index);
+ if (old_value == new_value) return;
+ if (old_value != NULL) {
+ ASSERT(old_value->uses_.Contains(this));
+ old_value->uses_.RemoveElement(this);
+ }
+ if (new_value != NULL) {
+ new_value->uses_.Add(this);
+ }
+}
+
+
+void HValue::AddNewRange(Range* r) {
+ if (!HasRange()) ComputeInitialRange();
+ if (!HasRange()) range_ = new Range();
+ ASSERT(HasRange());
+ r->StackUpon(range_);
+ range_ = r;
+}
+
+
+void HValue::RemoveLastAddedRange() {
+ ASSERT(HasRange());
+ ASSERT(range_->next() != NULL);
+ range_ = range_->next();
+}
+
+
+void HValue::ComputeInitialRange() {
+ ASSERT(!HasRange());
+ range_ = InferRange();
+ ASSERT(HasRange());
+}
+
+
+void HInstruction::PrintTo(StringStream* stream) const {
+ stream->Add("%s", Mnemonic());
+ if (HasSideEffects()) stream->Add("*");
+ stream->Add(" ");
+ PrintDataTo(stream);
+
+ if (range() != NULL) {
+ stream->Add(" range[%d,%d,m0=%d]",
+ range()->lower(),
+ range()->upper(),
+ static_cast<int>(range()->CanBeMinusZero()));
+ }
+
+ int changes_flags = (flags() & HValue::ChangesFlagsMask());
+ if (changes_flags != 0) {
+ stream->Add(" changes[0x%x]", changes_flags);
+ }
+
+ if (representation().IsTagged() && !type().Equals(HType::Tagged())) {
+ stream->Add(" type[%s]", type().ToString());
+ }
+}
+
+
+void HInstruction::Unlink() {
+ ASSERT(IsLinked());
+ ASSERT(!IsControlInstruction()); // Must never move control instructions.
+ clear_block();
+ if (previous_ != NULL) previous_->next_ = next_;
+ if (next_ != NULL) next_->previous_ = previous_;
+}
+
+
+void HInstruction::InsertBefore(HInstruction* next) {
+ ASSERT(!IsLinked());
+ ASSERT(!next->IsBlockEntry());
+ ASSERT(!IsControlInstruction());
+ ASSERT(!next->block()->IsStartBlock());
+ ASSERT(next->previous_ != NULL);
+ HInstruction* prev = next->previous();
+ prev->next_ = this;
+ next->previous_ = this;
+ next_ = next;
+ previous_ = prev;
+ SetBlock(next->block());
+}
+
+
+void HInstruction::InsertAfter(HInstruction* previous) {
+ ASSERT(!IsLinked());
+ ASSERT(!previous->IsControlInstruction());
+ ASSERT(!IsControlInstruction() || previous->next_ == NULL);
+ HBasicBlock* block = previous->block();
+ // Never insert anything except constants into the start block after finishing
+ // it.
+ if (block->IsStartBlock() && block->IsFinished() && !IsConstant()) {
+ ASSERT(block->end()->SecondSuccessor() == NULL);
+ InsertAfter(block->end()->FirstSuccessor()->first());
+ return;
+ }
+
+ // If we're inserting after an instruction with side-effects that is
+ // followed by a simulate instruction, we need to insert after the
+ // simulate instruction instead.
+ HInstruction* next = previous->next_;
+ if (previous->HasSideEffects() && next != NULL) {
+ ASSERT(next->IsSimulate());
+ previous = next;
+ next = previous->next_;
+ }
+
+ previous_ = previous;
+ next_ = next;
+ SetBlock(block);
+ previous->next_ = this;
+ if (next != NULL) next->previous_ = this;
+}
+
+
+#ifdef DEBUG
+void HInstruction::Verify() const {
+ // Verify that input operands are defined before use.
+ HBasicBlock* cur_block = block();
+ for (int i = 0; i < OperandCount(); ++i) {
+ HValue* other_operand = OperandAt(i);
+ HBasicBlock* other_block = other_operand->block();
+ if (cur_block == other_block) {
+ if (!other_operand->IsPhi()) {
+ HInstruction* cur = cur_block->first();
+ while (cur != NULL) {
+ ASSERT(cur != this); // We should reach other_operand before!
+ if (cur == other_operand) break;
+ cur = cur->next();
+ }
+ // Must reach other operand in the same block!
+ ASSERT(cur == other_operand);
+ }
+ } else {
+ ASSERT(other_block->Dominates(cur_block));
+ }
+ }
+
+ // Verify that instructions that may have side-effects are followed
+ // by a simulate instruction.
+ if (HasSideEffects() && !IsOsrEntry()) {
+ ASSERT(next()->IsSimulate());
+ }
+}
+#endif
+
+
+HCall::HCall(int count) : arguments_(Zone::NewArray<HValue*>(count), count) {
+ for (int i = 0; i < count; ++i) arguments_[i] = NULL;
+ set_representation(Representation::Tagged());
+ SetFlagMask(AllSideEffects());
+}
+
+
+void HCall::PrintDataTo(StringStream* stream) const {
+ stream->Add("(");
+ for (int i = 0; i < arguments_.length(); ++i) {
+ if (i != 0) stream->Add(", ");
+ arguments_.at(i)->PrintNameTo(stream);
+ }
+ stream->Add(")");
+}
+
+
+void HClassOfTest::PrintDataTo(StringStream* stream) const {
+ stream->Add("class_of_test(");
+ value()->PrintTo(stream);
+ stream->Add(", \"%o\")", *class_name());
+}
+
+
+void HAccessArgumentsAt::PrintDataTo(StringStream* stream) const {
+ arguments()->PrintNameTo(stream);
+ stream->Add("[");
+ index()->PrintNameTo(stream);
+ stream->Add("], length ");
+ length()->PrintNameTo(stream);
+}
+
+
+void HCall::SetArgumentAt(int index, HPushArgument* push_argument) {
+ push_argument->set_argument_index(index);
+ SetOperandAt(index, push_argument);
+}
+
+
+void HCallConstantFunction::PrintDataTo(StringStream* stream) const {
+ if (IsApplyFunction()) {
+ stream->Add("SPECIAL function: apply");
+ } else {
+ stream->Add("%s", *(function()->shared()->DebugName()->ToCString()));
+ }
+ HCall::PrintDataTo(stream);
+}
+
+
+void HBranch::PrintDataTo(StringStream* stream) const {
+ int first_id = FirstSuccessor()->block_id();
+ int second_id = SecondSuccessor()->block_id();
+ stream->Add("on ");
+ value()->PrintNameTo(stream);
+ stream->Add(" (B%d, B%d)", first_id, second_id);
+}
+
+
+void HGoto::PrintDataTo(StringStream* stream) const {
+ stream->Add("B%d", FirstSuccessor()->block_id());
+}
+
+
+void HReturn::PrintDataTo(StringStream* stream) const {
+ value()->PrintNameTo(stream);
+}
+
+
+void HThrow::PrintDataTo(StringStream* stream) const {
+ value()->PrintNameTo(stream);
+}
+
+
+const char* HUnaryMathOperation::OpName() const {
+ switch (op()) {
+ case kMathFloor: return "floor";
+ case kMathRound: return "round";
+ case kMathCeil: return "ceil";
+ case kMathAbs: return "abs";
+ case kMathLog: return "log";
+ case kMathSin: return "sin";
+ case kMathCos: return "cos";
+ case kMathTan: return "tan";
+ case kMathASin: return "asin";
+ case kMathACos: return "acos";
+ case kMathATan: return "atan";
+ case kMathExp: return "exp";
+ case kMathSqrt: return "sqrt";
+ default: break;
+ }
+ return "(unknown operation)";
+}
+
+
+void HUnaryMathOperation::PrintDataTo(StringStream* stream) const {
+ const char* name = OpName();
+ stream->Add("%s ", name);
+ value()->PrintNameTo(stream);
+}
+
+
+void HUnaryOperation::PrintDataTo(StringStream* stream) const {
+ value()->PrintNameTo(stream);
+}
+
+
+void HHasInstanceType::PrintDataTo(StringStream* stream) const {
+ value()->PrintNameTo(stream);
+ switch (from_) {
+ case FIRST_JS_OBJECT_TYPE:
+ if (to_ == LAST_TYPE) stream->Add(" spec_object");
+ break;
+ case JS_REGEXP_TYPE:
+ if (to_ == JS_REGEXP_TYPE) stream->Add(" reg_exp");
+ break;
+ case JS_ARRAY_TYPE:
+ if (to_ == JS_ARRAY_TYPE) stream->Add(" array");
+ break;
+ case JS_FUNCTION_TYPE:
+ if (to_ == JS_FUNCTION_TYPE) stream->Add(" function");
+ break;
+ default:
+ break;
+ }
+}
+
+
+void HTypeofIs::PrintDataTo(StringStream* stream) const {
+ value()->PrintNameTo(stream);
+ stream->Add(" == ");
+ stream->Add(type_literal_->ToAsciiVector());
+}
+
+
+void HPushArgument::PrintDataTo(StringStream* stream) const {
+ HUnaryOperation::PrintDataTo(stream);
+ if (argument_index() != -1) {
+ stream->Add(" [%d]", argument_index_);
+ }
+}
+
+
+void HChange::PrintDataTo(StringStream* stream) const {
+ HUnaryOperation::PrintDataTo(stream);
+ stream->Add(" %s to %s", from_.Mnemonic(), to_.Mnemonic());
+
+ if (CanTruncateToInt32()) stream->Add(" truncating-int32");
+ if (CheckFlag(kBailoutOnMinusZero)) stream->Add(" -0?");
+}
+
+
+HCheckInstanceType* HCheckInstanceType::NewIsJSObjectOrJSFunction(
+ HValue* value) {
+ STATIC_ASSERT((LAST_JS_OBJECT_TYPE + 1) == JS_FUNCTION_TYPE);
+ return new HCheckInstanceType(value, FIRST_JS_OBJECT_TYPE, JS_FUNCTION_TYPE);
+}
+
+
+void HCheckMap::PrintDataTo(StringStream* stream) const {
+ value()->PrintNameTo(stream);
+ stream->Add(" %p", *map());
+}
+
+
+void HCheckFunction::PrintDataTo(StringStream* stream) const {
+ value()->PrintNameTo(stream);
+ stream->Add(" %p", *target());
+}
+
+
+void HCallKeyed::PrintDataTo(StringStream* stream) const {
+ stream->Add("[");
+ key()->PrintNameTo(stream);
+ stream->Add("](");
+ for (int i = 1; i < arguments_.length(); ++i) {
+ if (i != 1) stream->Add(", ");
+ arguments_.at(i)->PrintNameTo(stream);
+ }
+ stream->Add(")");
+}
+
+
+void HCallNamed::PrintDataTo(StringStream* stream) const {
+ SmartPointer<char> name_string = name()->ToCString();
+ stream->Add("%s ", *name_string);
+ HCall::PrintDataTo(stream);
+}
+
+
+void HCallGlobal::PrintDataTo(StringStream* stream) const {
+ SmartPointer<char> name_string = name()->ToCString();
+ stream->Add("%s ", *name_string);
+ HCall::PrintDataTo(stream);
+}
+
+
+void HCallRuntime::PrintDataTo(StringStream* stream) const {
+ SmartPointer<char> name_string = name()->ToCString();
+ stream->Add("%s ", *name_string);
+ HCall::PrintDataTo(stream);
+}
+
+void HCallStub::PrintDataTo(StringStream* stream) const {
+ stream->Add("%s(%d)",
+ CodeStub::MajorName(major_key_, false),
+ argument_count_);
+}
+
+
+Range* HValue::InferRange() {
+ if (representation().IsTagged()) {
+ // Tagged values are always in int32 range when converted to integer,
+ // but they can contain -0.
+ Range* result = new Range();
+ result->set_can_be_minus_zero(true);
+ return result;
+ } else if (representation().IsNone()) {
+ return NULL;
+ } else {
+ return new Range();
+ }
+}
+
+
+Range* HConstant::InferRange() {
+ if (has_int32_value_) {
+ Range* result = new Range(int32_value_, int32_value_);
+ result->set_can_be_minus_zero(false);
+ return result;
+ }
+ return HInstruction::InferRange();
+}
+
+
+Range* HPhi::InferRange() {
+ if (representation().IsInteger32()) {
+ if (block()->IsLoopHeader()) {
+ Range* range = new Range(kMinInt, kMaxInt);
+ return range;
+ } else {
+ Range* range = OperandAt(0)->range()->Copy();
+ for (int i = 1; i < OperandCount(); ++i) {
+ range->Union(OperandAt(i)->range());
+ }
+ return range;
+ }
+ } else {
+ return HValue::InferRange();
+ }
+}
+
+
+Range* HAdd::InferRange() {
+ if (representation().IsInteger32()) {
+ Range* a = left()->range();
+ Range* b = right()->range();
+ Range* res = a->Copy();
+ if (!res->AddAndCheckOverflow(b)) {
+ ClearFlag(kCanOverflow);
+ }
+ bool m0 = a->CanBeMinusZero() && b->CanBeMinusZero();
+ res->set_can_be_minus_zero(m0);
+ return res;
+ } else {
+ return HArithmeticBinaryOperation::InferRange();
+ }
+}
+
+
+Range* HSub::InferRange() {
+ if (representation().IsInteger32()) {
+ Range* a = left()->range();
+ Range* b = right()->range();
+ Range* res = a->Copy();
+ if (!res->SubAndCheckOverflow(b)) {
+ ClearFlag(kCanOverflow);
+ }
+ res->set_can_be_minus_zero(a->CanBeMinusZero() && b->CanBeZero());
+ return res;
+ } else {
+ return HArithmeticBinaryOperation::InferRange();
+ }
+}
+
+
+Range* HMul::InferRange() {
+ if (representation().IsInteger32()) {
+ Range* a = left()->range();
+ Range* b = right()->range();
+ Range* res = a->Copy();
+ if (!res->MulAndCheckOverflow(b)) {
+ ClearFlag(kCanOverflow);
+ }
+ bool m0 = (a->CanBeZero() && b->CanBeNegative()) ||
+ (a->CanBeNegative() && b->CanBeZero());
+ res->set_can_be_minus_zero(m0);
+ return res;
+ } else {
+ return HArithmeticBinaryOperation::InferRange();
+ }
+}
+
+
+Range* HDiv::InferRange() {
+ if (representation().IsInteger32()) {
+ Range* result = new Range();
+ if (left()->range()->CanBeMinusZero()) {
+ result->set_can_be_minus_zero(true);
+ }
+
+ if (left()->range()->CanBeZero() && right()->range()->CanBeNegative()) {
+ result->set_can_be_minus_zero(true);
+ }
+
+ if (right()->range()->Includes(-1) && left()->range()->Includes(kMinInt)) {
+ SetFlag(HValue::kCanOverflow);
+ }
+
+ if (!right()->range()->CanBeZero()) {
+ ClearFlag(HValue::kCanBeDivByZero);
+ }
+ return result;
+ } else {
+ return HArithmeticBinaryOperation::InferRange();
+ }
+}
+
+
+Range* HMod::InferRange() {
+ if (representation().IsInteger32()) {
+ Range* a = left()->range();
+ Range* result = new Range();
+ if (a->CanBeMinusZero() || a->CanBeNegative()) {
+ result->set_can_be_minus_zero(true);
+ }
+ if (!right()->range()->CanBeZero()) {
+ ClearFlag(HValue::kCanBeDivByZero);
+ }
+ return result;
+ } else {
+ return HArithmeticBinaryOperation::InferRange();
+ }
+}
+
+
+void HPhi::PrintTo(StringStream* stream) const {
+ stream->Add("[");
+ for (int i = 0; i < OperandCount(); ++i) {
+ HValue* value = OperandAt(i);
+ stream->Add(" ");
+ value->PrintNameTo(stream);
+ stream->Add(" ");
+ }
+ stream->Add(" uses%d_%di_%dd_%dt]",
+ uses()->length(),
+ int32_non_phi_uses() + int32_indirect_uses(),
+ double_non_phi_uses() + double_indirect_uses(),
+ tagged_non_phi_uses() + tagged_indirect_uses());
+}
+
+
+void HPhi::AddInput(HValue* value) {
+ inputs_.Add(NULL);
+ SetOperandAt(OperandCount() - 1, value);
+ // Mark phis that may have 'arguments' directly or indirectly as an operand.
+ if (!CheckFlag(kIsArguments) && value->CheckFlag(kIsArguments)) {
+ SetFlag(kIsArguments);
+ }
+}
+
+
+bool HPhi::HasReceiverOperand() {
+ for (int i = 0; i < OperandCount(); i++) {
+ if (OperandAt(i)->IsParameter() &&
+ HParameter::cast(OperandAt(i))->index() == 0) {
+ return true;
+ }
+ }
+ return false;
+}
+
+
+HValue* HPhi::GetRedundantReplacement() const {
+ HValue* candidate = NULL;
+ int count = OperandCount();
+ int position = 0;
+ while (position < count && candidate == NULL) {
+ HValue* current = OperandAt(position++);
+ if (current != this) candidate = current;
+ }
+ while (position < count) {
+ HValue* current = OperandAt(position++);
+ if (current != this && current != candidate) return NULL;
+ }
+ ASSERT(candidate != this);
+ return candidate;
+}
+
+
+void HPhi::DeleteFromGraph() {
+ ASSERT(block() != NULL);
+ block()->RemovePhi(this);
+ ASSERT(block() == NULL);
+}
+
+
+void HPhi::InitRealUses(int phi_id) {
+ // Initialize real uses.
+ phi_id_ = phi_id;
+ for (int j = 0; j < uses()->length(); j++) {
+ HValue* use = uses()->at(j);
+ if (!use->IsPhi()) {
+ int index = use->LookupOperandIndex(0, this);
+ Representation req_rep = use->RequiredInputRepresentation(index);
+ non_phi_uses_[req_rep.kind()]++;
+ }
+ }
+}
+
+
+void HPhi::AddNonPhiUsesFrom(HPhi* other) {
+ for (int i = 0; i < Representation::kNumRepresentations; i++) {
+ indirect_uses_[i] += other->non_phi_uses_[i];
+ }
+}
+
+
+void HPhi::AddIndirectUsesTo(int* dest) {
+ for (int i = 0; i < Representation::kNumRepresentations; i++) {
+ dest[i] += indirect_uses_[i];
+ }
+}
+
+
+void HSimulate::PrintDataTo(StringStream* stream) const {
+ stream->Add("id=%d ", ast_id());
+ if (pop_count_ > 0) stream->Add("pop %d", pop_count_);
+ if (values_.length() > 0) {
+ if (pop_count_ > 0) stream->Add(" /");
+ for (int i = 0; i < values_.length(); ++i) {
+ if (!HasAssignedIndexAt(i)) {
+ stream->Add(" push ");
+ } else {
+ stream->Add(" var[%d] = ", GetAssignedIndexAt(i));
+ }
+ values_[i]->PrintNameTo(stream);
+ }
+ }
+}
+
+
+void HEnterInlined::PrintDataTo(StringStream* stream) const {
+ SmartPointer<char> name = function()->debug_name()->ToCString();
+ stream->Add("%s, id=%d", *name, function()->id());
+}
+
+
+HConstant::HConstant(Handle<Object> handle, Representation r)
+ : handle_(handle),
+ constant_type_(HType::TypeFromValue(handle)),
+ has_int32_value_(false),
+ int32_value_(0),
+ has_double_value_(false),
+ double_value_(0) {
+ set_representation(r);
+ SetFlag(kUseGVN);
+ if (handle_->IsNumber()) {
+ double n = handle_->Number();
+ has_int32_value_ = static_cast<double>(static_cast<int32_t>(n)) == n;
+ if (has_int32_value_) int32_value_ = static_cast<int32_t>(n);
+ double_value_ = n;
+ has_double_value_ = true;
+ }
+}
+
+
+HConstant* HConstant::CopyToRepresentation(Representation r) const {
+ if (r.IsInteger32() && !has_int32_value_) return NULL;
+ if (r.IsDouble() && !has_double_value_) return NULL;
+ return new HConstant(handle_, r);
+}
+
+
+HConstant* HConstant::CopyToTruncatedInt32() const {
+ if (!has_double_value_) return NULL;
+ int32_t truncated = NumberToInt32(*handle_);
+ return new HConstant(Factory::NewNumberFromInt(truncated),
+ Representation::Integer32());
+}
+
+
+void HConstant::PrintDataTo(StringStream* stream) const {
+ handle()->ShortPrint(stream);
+}
+
+
+bool HArrayLiteral::IsCopyOnWrite() const {
+ return constant_elements()->map() == Heap::fixed_cow_array_map();
+}
+
+
+void HBinaryOperation::PrintDataTo(StringStream* stream) const {
+ left()->PrintNameTo(stream);
+ stream->Add(" ");
+ right()->PrintNameTo(stream);
+ if (CheckFlag(kCanOverflow)) stream->Add(" !");
+ if (CheckFlag(kBailoutOnMinusZero)) stream->Add(" -0?");
+}
+
+
+Range* HBitAnd::InferRange() {
+ Range* a = left()->range();
+ Range* b = right()->range();
+ int32_t a_mask = 0xffffffff;
+ int32_t b_mask = 0xffffffff;
+ if (a != NULL) a_mask = a->Mask();
+ if (b != NULL) b_mask = b->Mask();
+ int32_t result_mask = a_mask & b_mask;
+ if (result_mask >= 0) {
+ return new Range(0, result_mask);
+ } else {
+ return HBinaryOperation::InferRange();
+ }
+}
+
+
+Range* HBitOr::InferRange() {
+ Range* a = left()->range();
+ Range* b = right()->range();
+ int32_t a_mask = 0xffffffff;
+ int32_t b_mask = 0xffffffff;
+ if (a != NULL) a_mask = a->Mask();
+ if (b != NULL) b_mask = b->Mask();
+ int32_t result_mask = a_mask | b_mask;
+ if (result_mask >= 0) {
+ return new Range(0, result_mask);
+ } else {
+ return HBinaryOperation::InferRange();
+ }
+}
+
+
+Range* HSar::InferRange() {
+ if (right()->IsConstant()) {
+ HConstant* c = HConstant::cast(right());
+ if (c->HasInteger32Value()) {
+ int32_t val = c->Integer32Value();
+ Range* result = NULL;
+ Range* left_range = left()->range();
+ if (left_range == NULL) {
+ result = new Range();
+ } else {
+ result = left_range->Copy();
+ }
+ result->Sar(val);
+ return result;
+ }
+ }
+
+ return HBinaryOperation::InferRange();
+}
+
+
+Range* HShl::InferRange() {
+ if (right()->IsConstant()) {
+ HConstant* c = HConstant::cast(right());
+ if (c->HasInteger32Value()) {
+ int32_t val = c->Integer32Value();
+ Range* result = NULL;
+ Range* left_range = left()->range();
+ if (left_range == NULL) {
+ result = new Range();
+ } else {
+ result = left_range->Copy();
+ }
+ result->Shl(val);
+ return result;
+ }
+ }
+
+ return HBinaryOperation::InferRange();
+}
+
+
+
+void HCompare::PrintDataTo(StringStream* stream) const {
+ stream->Add(Token::Name(token()));
+ stream->Add(" ");
+ HBinaryOperation::PrintDataTo(stream);
+}
+
+
+void HCompare::SetInputRepresentation(Representation r) {
+ input_representation_ = r;
+ if (r.IsTagged()) {
+ SetFlagMask(AllSideEffects());
+ ClearFlag(kUseGVN);
+ } else {
+ ClearFlagMask(AllSideEffects());
+ SetFlag(kUseGVN);
+ }
+}
+
+
+void HParameter::PrintDataTo(StringStream* stream) const {
+ stream->Add("%u", index());
+}
+
+
+void HLoadNamedField::PrintDataTo(StringStream* stream) const {
+ object()->PrintNameTo(stream);
+ stream->Add(" @%d%s", offset(), is_in_object() ? "[in-object]" : "");
+}
+
+
+void HLoadKeyed::PrintDataTo(StringStream* stream) const {
+ object()->PrintNameTo(stream);
+ stream->Add("[");
+ key()->PrintNameTo(stream);
+ stream->Add("]");
+}
+
+
+void HStoreNamed::PrintDataTo(StringStream* stream) const {
+ object()->PrintNameTo(stream);
+ stream->Add(".");
+ ASSERT(name()->IsString());
+ stream->Add(*String::cast(*name())->ToCString());
+ stream->Add(" = ");
+ value()->PrintNameTo(stream);
+}
+
+
+void HStoreNamedField::PrintDataTo(StringStream* stream) const {
+ HStoreNamed::PrintDataTo(stream);
+ if (!transition().is_null()) {
+ stream->Add(" (transition map %p)", *transition());
+ }
+}
+
+
+void HStoreKeyed::PrintDataTo(StringStream* stream) const {
+ object()->PrintNameTo(stream);
+ stream->Add("[");
+ key()->PrintNameTo(stream);
+ stream->Add("] = ");
+ value()->PrintNameTo(stream);
+}
+
+
+void HLoadGlobal::PrintDataTo(StringStream* stream) const {
+ stream->Add("[%p]", *cell());
+ if (check_hole_value()) stream->Add(" (deleteable/read-only)");
+}
+
+
+void HStoreGlobal::PrintDataTo(StringStream* stream) const {
+ stream->Add("[%p] = ", *cell());
+ value()->PrintNameTo(stream);
+}
+
+
+// Implementation of type inference and type conversions. Calculates
+// the inferred type of this instruction based on the input operands.
+
+HType HValue::CalculateInferredType() const {
+ return type_;
+}
+
+
+HType HCheckMap::CalculateInferredType() const {
+ return value()->type();
+}
+
+
+HType HCheckFunction::CalculateInferredType() const {
+ return value()->type();
+}
+
+
+HType HCheckNonSmi::CalculateInferredType() const {
+ // TODO(kasperl): Is there any way to signal that this isn't a smi?
+ return HType::Tagged();
+}
+
+
+HType HCheckSmi::CalculateInferredType() const {
+ return HType::Smi();
+}
+
+
+HType HPhi::CalculateInferredType() const {
+ HType result = HType::Uninitialized();
+ for (int i = 0; i < OperandCount(); ++i) {
+ HType current = OperandAt(i)->type();
+ result = result.Combine(current);
+ }
+ return result;
+}
+
+
+HType HConstant::CalculateInferredType() const {
+ return constant_type_;
+}
+
+
+HType HCompare::CalculateInferredType() const {
+ return HType::Boolean();
+}
+
+
+HType HCompareJSObjectEq::CalculateInferredType() const {
+ return HType::Boolean();
+}
+
+
+HType HUnaryPredicate::CalculateInferredType() const {
+ return HType::Boolean();
+}
+
+
+HType HArithmeticBinaryOperation::CalculateInferredType() const {
+ return HType::TaggedNumber();
+}
+
+
+HType HAdd::CalculateInferredType() const {
+ return HType::Tagged();
+}
+
+
+HType HBitAnd::CalculateInferredType() const {
+ return HType::TaggedNumber();
+}
+
+
+HType HBitXor::CalculateInferredType() const {
+ return HType::TaggedNumber();
+}
+
+
+HType HBitOr::CalculateInferredType() const {
+ return HType::TaggedNumber();
+}
+
+
+HType HBitNot::CalculateInferredType() const {
+ return HType::TaggedNumber();
+}
+
+
+HType HUnaryMathOperation::CalculateInferredType() const {
+ return HType::TaggedNumber();
+}
+
+
+HType HShl::CalculateInferredType() const {
+ return HType::TaggedNumber();
+}
+
+
+HType HShr::CalculateInferredType() const {
+ return HType::TaggedNumber();
+}
+
+
+HType HSar::CalculateInferredType() const {
+ return HType::TaggedNumber();
+}
+
+
+HValue* HUnaryMathOperation::EnsureAndPropagateNotMinusZero(
+ BitVector* visited) {
+ visited->Add(id());
+ if (representation().IsInteger32() &&
+ !value()->representation().IsInteger32()) {
+ if (value()->range() == NULL || value()->range()->CanBeMinusZero()) {
+ SetFlag(kBailoutOnMinusZero);
+ }
+ }
+ if (RequiredInputRepresentation(0).IsInteger32() &&
+ representation().IsInteger32()) {
+ return value();
+ }
+ return NULL;
+}
+
+
+
+HValue* HChange::EnsureAndPropagateNotMinusZero(BitVector* visited) {
+ visited->Add(id());
+ if (from().IsInteger32()) return NULL;
+ if (CanTruncateToInt32()) return NULL;
+ if (value()->range() == NULL || value()->range()->CanBeMinusZero()) {
+ SetFlag(kBailoutOnMinusZero);
+ }
+ ASSERT(!from().IsInteger32() || !to().IsInteger32());
+ return NULL;
+}
+
+
+HValue* HMod::EnsureAndPropagateNotMinusZero(BitVector* visited) {
+ visited->Add(id());
+ if (range() == NULL || range()->CanBeMinusZero()) {
+ SetFlag(kBailoutOnMinusZero);
+ return left();
+ }
+ return NULL;
+}
+
+
+HValue* HDiv::EnsureAndPropagateNotMinusZero(BitVector* visited) {
+ visited->Add(id());
+ if (range() == NULL || range()->CanBeMinusZero()) {
+ SetFlag(kBailoutOnMinusZero);
+ }
+ return NULL;
+}
+
+
+HValue* HMul::EnsureAndPropagateNotMinusZero(BitVector* visited) {
+ visited->Add(id());
+ if (range() == NULL || range()->CanBeMinusZero()) {
+ SetFlag(kBailoutOnMinusZero);
+ }
+ return NULL;
+}
+
+
+HValue* HSub::EnsureAndPropagateNotMinusZero(BitVector* visited) {
+ visited->Add(id());
+ // Propagate to the left argument. If the left argument cannot be -0, then
+ // the result of the add operation cannot be either.
+ if (range() == NULL || range()->CanBeMinusZero()) {
+ return left();
+ }
+ return NULL;
+}
+
+
+HValue* HAdd::EnsureAndPropagateNotMinusZero(BitVector* visited) {
+ visited->Add(id());
+ // Propagate to the left argument. If the left argument cannot be -0, then
+ // the result of the sub operation cannot be either.
+ if (range() == NULL || range()->CanBeMinusZero()) {
+ return left();
+ }
+ return NULL;
+}
+
+
+// Node-specific verification code is only included in debug mode.
+#ifdef DEBUG
+
+void HPhi::Verify() const {
+ ASSERT(OperandCount() == block()->predecessors()->length());
+ for (int i = 0; i < OperandCount(); ++i) {
+ HValue* value = OperandAt(i);
+ HBasicBlock* defining_block = value->block();
+ HBasicBlock* predecessor_block = block()->predecessors()->at(i);
+ ASSERT(defining_block == predecessor_block ||
+ defining_block->Dominates(predecessor_block));
+ }
+}
+
+
+void HSimulate::Verify() const {
+ HInstruction::Verify();
+ ASSERT(HasAstId());
+}
+
+
+void HBoundsCheck::Verify() const {
+ HInstruction::Verify();
+ ASSERT(HasNoUses());
+}
+
+
+void HCheckSmi::Verify() const {
+ HInstruction::Verify();
+ ASSERT(HasNoUses());
+}
+
+
+void HCheckNonSmi::Verify() const {
+ HInstruction::Verify();
+ ASSERT(HasNoUses());
+}
+
+
+void HCheckInstanceType::Verify() const {
+ HInstruction::Verify();
+ ASSERT(HasNoUses());
+}
+
+
+void HCheckMap::Verify() const {
+ HInstruction::Verify();
+ ASSERT(HasNoUses());
+}
+
+
+void HCheckFunction::Verify() const {
+ HInstruction::Verify();
+ ASSERT(HasNoUses());
+}
+
+
+void HCheckPrototypeMaps::Verify() const {
+ HInstruction::Verify();
+ ASSERT(HasNoUses());
+}
+
+#endif
+
+} } // namespace v8::internal