summaryrefslogtreecommitdiff
path: root/deps/v8/src/mips/builtins-mips.cc
diff options
context:
space:
mode:
Diffstat (limited to 'deps/v8/src/mips/builtins-mips.cc')
-rw-r--r--deps/v8/src/mips/builtins-mips.cc1543
1 files changed, 1483 insertions, 60 deletions
diff --git a/deps/v8/src/mips/builtins-mips.cc b/deps/v8/src/mips/builtins-mips.cc
index 95329389e1..4bb1d8cba7 100644
--- a/deps/v8/src/mips/builtins-mips.cc
+++ b/deps/v8/src/mips/builtins-mips.cc
@@ -1,4 +1,4 @@
-// Copyright 2010 the V8 project authors. All rights reserved.
+// Copyright 2011 the V8 project authors. All rights reserved.
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
@@ -31,8 +31,10 @@
#if defined(V8_TARGET_ARCH_MIPS)
-#include "codegen-inl.h"
+#include "codegen.h"
#include "debug.h"
+#include "deoptimizer.h"
+#include "full-codegen.h"
#include "runtime.h"
namespace v8 {
@@ -45,32 +47,971 @@ namespace internal {
void Builtins::Generate_Adaptor(MacroAssembler* masm,
CFunctionId id,
BuiltinExtraArguments extra_args) {
- UNIMPLEMENTED_MIPS();
+ // ----------- S t a t e -------------
+ // -- a0 : number of arguments excluding receiver
+ // -- a1 : called function (only guaranteed when
+ // -- extra_args requires it)
+ // -- cp : context
+ // -- sp[0] : last argument
+ // -- ...
+ // -- sp[4 * (argc - 1)] : first argument
+ // -- sp[4 * agrc] : receiver
+ // -----------------------------------
+
+ // Insert extra arguments.
+ int num_extra_args = 0;
+ if (extra_args == NEEDS_CALLED_FUNCTION) {
+ num_extra_args = 1;
+ __ push(a1);
+ } else {
+ ASSERT(extra_args == NO_EXTRA_ARGUMENTS);
+ }
+
+ // JumpToExternalReference expects a0 to contain the number of arguments
+ // including the receiver and the extra arguments.
+ __ Addu(a0, a0, Operand(num_extra_args + 1));
+ __ JumpToExternalReference(ExternalReference(id, masm->isolate()));
+}
+
+
+// Load the built-in Array function from the current context.
+static void GenerateLoadArrayFunction(MacroAssembler* masm, Register result) {
+ // Load the global context.
+
+ __ lw(result, MemOperand(cp, Context::SlotOffset(Context::GLOBAL_INDEX)));
+ __ lw(result,
+ FieldMemOperand(result, GlobalObject::kGlobalContextOffset));
+ // Load the Array function from the global context.
+ __ lw(result,
+ MemOperand(result,
+ Context::SlotOffset(Context::ARRAY_FUNCTION_INDEX)));
+}
+
+
+// This constant has the same value as JSArray::kPreallocatedArrayElements and
+// if JSArray::kPreallocatedArrayElements is changed handling of loop unfolding
+// below should be reconsidered.
+static const int kLoopUnfoldLimit = 4;
+
+
+// Allocate an empty JSArray. The allocated array is put into the result
+// register. An elements backing store is allocated with size initial_capacity
+// and filled with the hole values.
+static void AllocateEmptyJSArray(MacroAssembler* masm,
+ Register array_function,
+ Register result,
+ Register scratch1,
+ Register scratch2,
+ Register scratch3,
+ int initial_capacity,
+ Label* gc_required) {
+ ASSERT(initial_capacity > 0);
+ // Load the initial map from the array function.
+ __ lw(scratch1, FieldMemOperand(array_function,
+ JSFunction::kPrototypeOrInitialMapOffset));
+
+ // Allocate the JSArray object together with space for a fixed array with the
+ // requested elements.
+ int size = JSArray::kSize + FixedArray::SizeFor(initial_capacity);
+ __ AllocateInNewSpace(size,
+ result,
+ scratch2,
+ scratch3,
+ gc_required,
+ TAG_OBJECT);
+ // Allocated the JSArray. Now initialize the fields except for the elements
+ // array.
+ // result: JSObject
+ // scratch1: initial map
+ // scratch2: start of next object
+ __ sw(scratch1, FieldMemOperand(result, JSObject::kMapOffset));
+ __ LoadRoot(scratch1, Heap::kEmptyFixedArrayRootIndex);
+ __ sw(scratch1, FieldMemOperand(result, JSArray::kPropertiesOffset));
+ // Field JSArray::kElementsOffset is initialized later.
+ __ mov(scratch3, zero_reg);
+ __ sw(scratch3, FieldMemOperand(result, JSArray::kLengthOffset));
+
+ // Calculate the location of the elements array and set elements array member
+ // of the JSArray.
+ // result: JSObject
+ // scratch2: start of next object
+ __ Addu(scratch1, result, Operand(JSArray::kSize));
+ __ sw(scratch1, FieldMemOperand(result, JSArray::kElementsOffset));
+
+ // Clear the heap tag on the elements array.
+ __ And(scratch1, scratch1, Operand(~kHeapObjectTagMask));
+
+ // Initialize the FixedArray and fill it with holes. FixedArray length is
+ // stored as a smi.
+ // result: JSObject
+ // scratch1: elements array (untagged)
+ // scratch2: start of next object
+ __ LoadRoot(scratch3, Heap::kFixedArrayMapRootIndex);
+ ASSERT_EQ(0 * kPointerSize, FixedArray::kMapOffset);
+ __ sw(scratch3, MemOperand(scratch1));
+ __ Addu(scratch1, scratch1, kPointerSize);
+ __ li(scratch3, Operand(Smi::FromInt(initial_capacity)));
+ ASSERT_EQ(1 * kPointerSize, FixedArray::kLengthOffset);
+ __ sw(scratch3, MemOperand(scratch1));
+ __ Addu(scratch1, scratch1, kPointerSize);
+
+ // Fill the FixedArray with the hole value.
+ ASSERT_EQ(2 * kPointerSize, FixedArray::kHeaderSize);
+ ASSERT(initial_capacity <= kLoopUnfoldLimit);
+ __ LoadRoot(scratch3, Heap::kTheHoleValueRootIndex);
+ for (int i = 0; i < initial_capacity; i++) {
+ __ sw(scratch3, MemOperand(scratch1));
+ __ Addu(scratch1, scratch1, kPointerSize);
+ }
+}
+
+
+// Allocate a JSArray with the number of elements stored in a register. The
+// register array_function holds the built-in Array function and the register
+// array_size holds the size of the array as a smi. The allocated array is put
+// into the result register and beginning and end of the FixedArray elements
+// storage is put into registers elements_array_storage and elements_array_end
+// (see below for when that is not the case). If the parameter fill_with_holes
+// is true the allocated elements backing store is filled with the hole values
+// otherwise it is left uninitialized. When the backing store is filled the
+// register elements_array_storage is scratched.
+static void AllocateJSArray(MacroAssembler* masm,
+ Register array_function, // Array function.
+ Register array_size, // As a smi.
+ Register result,
+ Register elements_array_storage,
+ Register elements_array_end,
+ Register scratch1,
+ Register scratch2,
+ bool fill_with_hole,
+ Label* gc_required) {
+ Label not_empty, allocated;
+
+ // Load the initial map from the array function.
+ __ lw(elements_array_storage,
+ FieldMemOperand(array_function,
+ JSFunction::kPrototypeOrInitialMapOffset));
+
+ // Check whether an empty sized array is requested.
+ __ Branch(&not_empty, ne, array_size, Operand(zero_reg));
+
+ // If an empty array is requested allocate a small elements array anyway. This
+ // keeps the code below free of special casing for the empty array.
+ int size = JSArray::kSize +
+ FixedArray::SizeFor(JSArray::kPreallocatedArrayElements);
+ __ AllocateInNewSpace(size,
+ result,
+ elements_array_end,
+ scratch1,
+ gc_required,
+ TAG_OBJECT);
+ __ Branch(&allocated);
+
+ // Allocate the JSArray object together with space for a FixedArray with the
+ // requested number of elements.
+ __ bind(&not_empty);
+ ASSERT(kSmiTagSize == 1 && kSmiTag == 0);
+ __ li(elements_array_end,
+ (JSArray::kSize + FixedArray::kHeaderSize) / kPointerSize);
+ __ sra(scratch1, array_size, kSmiTagSize);
+ __ Addu(elements_array_end, elements_array_end, scratch1);
+ __ AllocateInNewSpace(
+ elements_array_end,
+ result,
+ scratch1,
+ scratch2,
+ gc_required,
+ static_cast<AllocationFlags>(TAG_OBJECT | SIZE_IN_WORDS));
+
+ // Allocated the JSArray. Now initialize the fields except for the elements
+ // array.
+ // result: JSObject
+ // elements_array_storage: initial map
+ // array_size: size of array (smi)
+ __ bind(&allocated);
+ __ sw(elements_array_storage, FieldMemOperand(result, JSObject::kMapOffset));
+ __ LoadRoot(elements_array_storage, Heap::kEmptyFixedArrayRootIndex);
+ __ sw(elements_array_storage,
+ FieldMemOperand(result, JSArray::kPropertiesOffset));
+ // Field JSArray::kElementsOffset is initialized later.
+ __ sw(array_size, FieldMemOperand(result, JSArray::kLengthOffset));
+
+ // Calculate the location of the elements array and set elements array member
+ // of the JSArray.
+ // result: JSObject
+ // array_size: size of array (smi)
+ __ Addu(elements_array_storage, result, Operand(JSArray::kSize));
+ __ sw(elements_array_storage,
+ FieldMemOperand(result, JSArray::kElementsOffset));
+
+ // Clear the heap tag on the elements array.
+ __ And(elements_array_storage,
+ elements_array_storage,
+ Operand(~kHeapObjectTagMask));
+ // Initialize the fixed array and fill it with holes. FixedArray length is
+ // stored as a smi.
+ // result: JSObject
+ // elements_array_storage: elements array (untagged)
+ // array_size: size of array (smi)
+ __ LoadRoot(scratch1, Heap::kFixedArrayMapRootIndex);
+ ASSERT_EQ(0 * kPointerSize, FixedArray::kMapOffset);
+ __ sw(scratch1, MemOperand(elements_array_storage));
+ __ Addu(elements_array_storage, elements_array_storage, kPointerSize);
+
+ // Length of the FixedArray is the number of pre-allocated elements if
+ // the actual JSArray has length 0 and the size of the JSArray for non-empty
+ // JSArrays. The length of a FixedArray is stored as a smi.
+ ASSERT(kSmiTag == 0);
+ __ li(at, Operand(Smi::FromInt(JSArray::kPreallocatedArrayElements)));
+ __ movz(array_size, at, array_size);
+
+ ASSERT_EQ(1 * kPointerSize, FixedArray::kLengthOffset);
+ __ sw(array_size, MemOperand(elements_array_storage));
+ __ Addu(elements_array_storage, elements_array_storage, kPointerSize);
+
+ // Calculate elements array and elements array end.
+ // result: JSObject
+ // elements_array_storage: elements array element storage
+ // array_size: smi-tagged size of elements array
+ ASSERT(kSmiTag == 0 && kSmiTagSize < kPointerSizeLog2);
+ __ sll(elements_array_end, array_size, kPointerSizeLog2 - kSmiTagSize);
+ __ Addu(elements_array_end, elements_array_storage, elements_array_end);
+
+ // Fill the allocated FixedArray with the hole value if requested.
+ // result: JSObject
+ // elements_array_storage: elements array element storage
+ // elements_array_end: start of next object
+ if (fill_with_hole) {
+ Label loop, entry;
+ __ LoadRoot(scratch1, Heap::kTheHoleValueRootIndex);
+ __ Branch(&entry);
+ __ bind(&loop);
+ __ sw(scratch1, MemOperand(elements_array_storage));
+ __ Addu(elements_array_storage, elements_array_storage, kPointerSize);
+
+ __ bind(&entry);
+ __ Branch(&loop, lt, elements_array_storage, Operand(elements_array_end));
+ }
+}
+
+
+// Create a new array for the built-in Array function. This function allocates
+// the JSArray object and the FixedArray elements array and initializes these.
+// If the Array cannot be constructed in native code the runtime is called. This
+// function assumes the following state:
+// a0: argc
+// a1: constructor (built-in Array function)
+// ra: return address
+// sp[0]: last argument
+// This function is used for both construct and normal calls of Array. The only
+// difference between handling a construct call and a normal call is that for a
+// construct call the constructor function in a1 needs to be preserved for
+// entering the generic code. In both cases argc in a0 needs to be preserved.
+// Both registers are preserved by this code so no need to differentiate between
+// construct call and normal call.
+static void ArrayNativeCode(MacroAssembler* masm,
+ Label* call_generic_code) {
+ Counters* counters = masm->isolate()->counters();
+ Label argc_one_or_more, argc_two_or_more;
+
+ // Check for array construction with zero arguments or one.
+ __ Branch(&argc_one_or_more, ne, a0, Operand(zero_reg));
+ // Handle construction of an empty array.
+ AllocateEmptyJSArray(masm,
+ a1,
+ a2,
+ a3,
+ t0,
+ t1,
+ JSArray::kPreallocatedArrayElements,
+ call_generic_code);
+ __ IncrementCounter(counters->array_function_native(), 1, a3, t0);
+ // Setup return value, remove receiver from stack and return.
+ __ mov(v0, a2);
+ __ Addu(sp, sp, Operand(kPointerSize));
+ __ Ret();
+
+ // Check for one argument. Bail out if argument is not smi or if it is
+ // negative.
+ __ bind(&argc_one_or_more);
+ __ Branch(&argc_two_or_more, ne, a0, Operand(1));
+
+ ASSERT(kSmiTag == 0);
+ __ lw(a2, MemOperand(sp)); // Get the argument from the stack.
+ __ And(a3, a2, Operand(kIntptrSignBit | kSmiTagMask));
+ __ Branch(call_generic_code, eq, a3, Operand(zero_reg));
+
+ // Handle construction of an empty array of a certain size. Bail out if size
+ // is too large to actually allocate an elements array.
+ ASSERT(kSmiTag == 0);
+ __ Branch(call_generic_code, Ugreater_equal, a2,
+ Operand(JSObject::kInitialMaxFastElementArray << kSmiTagSize));
+
+ // a0: argc
+ // a1: constructor
+ // a2: array_size (smi)
+ // sp[0]: argument
+ AllocateJSArray(masm,
+ a1,
+ a2,
+ a3,
+ t0,
+ t1,
+ t2,
+ t3,
+ true,
+ call_generic_code);
+ __ IncrementCounter(counters->array_function_native(), 1, a2, t0);
+
+ // Setup return value, remove receiver and argument from stack and return.
+ __ mov(v0, a3);
+ __ Addu(sp, sp, Operand(2 * kPointerSize));
+ __ Ret();
+
+ // Handle construction of an array from a list of arguments.
+ __ bind(&argc_two_or_more);
+ __ sll(a2, a0, kSmiTagSize); // Convert argc to a smi.
+
+ // a0: argc
+ // a1: constructor
+ // a2: array_size (smi)
+ // sp[0]: last argument
+ AllocateJSArray(masm,
+ a1,
+ a2,
+ a3,
+ t0,
+ t1,
+ t2,
+ t3,
+ false,
+ call_generic_code);
+ __ IncrementCounter(counters->array_function_native(), 1, a2, t2);
+
+ // Fill arguments as array elements. Copy from the top of the stack (last
+ // element) to the array backing store filling it backwards. Note:
+ // elements_array_end points after the backing store.
+ // a0: argc
+ // a3: JSArray
+ // t0: elements_array storage start (untagged)
+ // t1: elements_array_end (untagged)
+ // sp[0]: last argument
+
+ Label loop, entry;
+ __ Branch(&entry);
+ __ bind(&loop);
+ __ pop(a2);
+ __ Addu(t1, t1, -kPointerSize);
+ __ sw(a2, MemOperand(t1));
+ __ bind(&entry);
+ __ Branch(&loop, lt, t0, Operand(t1));
+
+ // Remove caller arguments and receiver from the stack, setup return value and
+ // return.
+ // a0: argc
+ // a3: JSArray
+ // sp[0]: receiver
+ __ Addu(sp, sp, Operand(kPointerSize));
+ __ mov(v0, a3);
+ __ Ret();
}
void Builtins::Generate_ArrayCode(MacroAssembler* masm) {
- UNIMPLEMENTED_MIPS();
+ // ----------- S t a t e -------------
+ // -- a0 : number of arguments
+ // -- ra : return address
+ // -- sp[...]: constructor arguments
+ // -----------------------------------
+ Label generic_array_code;
+
+ // Get the Array function.
+ GenerateLoadArrayFunction(masm, a1);
+
+ if (FLAG_debug_code) {
+ // Initial map for the builtin Array functions should be maps.
+ __ lw(a2, FieldMemOperand(a1, JSFunction::kPrototypeOrInitialMapOffset));
+ __ And(t0, a2, Operand(kSmiTagMask));
+ __ Assert(ne, "Unexpected initial map for Array function (1)",
+ t0, Operand(zero_reg));
+ __ GetObjectType(a2, a3, t0);
+ __ Assert(eq, "Unexpected initial map for Array function (2)",
+ t0, Operand(MAP_TYPE));
+ }
+
+ // Run the native code for the Array function called as a normal function.
+ ArrayNativeCode(masm, &generic_array_code);
+
+ // Jump to the generic array code if the specialized code cannot handle
+ // the construction.
+ __ bind(&generic_array_code);
+
+ Handle<Code> array_code =
+ masm->isolate()->builtins()->ArrayCodeGeneric();
+ __ Jump(array_code, RelocInfo::CODE_TARGET);
}
void Builtins::Generate_ArrayConstructCode(MacroAssembler* masm) {
- UNIMPLEMENTED_MIPS();
+ // ----------- S t a t e -------------
+ // -- a0 : number of arguments
+ // -- a1 : constructor function
+ // -- ra : return address
+ // -- sp[...]: constructor arguments
+ // -----------------------------------
+ Label generic_constructor;
+
+ if (FLAG_debug_code) {
+ // The array construct code is only set for the builtin and internal
+ // Array functions which always have a map.
+ // Initial map for the builtin Array function should be a map.
+ __ lw(a2, FieldMemOperand(a1, JSFunction::kPrototypeOrInitialMapOffset));
+ __ And(t0, a2, Operand(kSmiTagMask));
+ __ Assert(ne, "Unexpected initial map for Array function (3)",
+ t0, Operand(zero_reg));
+ __ GetObjectType(a2, a3, t0);
+ __ Assert(eq, "Unexpected initial map for Array function (4)",
+ t0, Operand(MAP_TYPE));
+ }
+
+ // Run the native code for the Array function called as a constructor.
+ ArrayNativeCode(masm, &generic_constructor);
+
+ // Jump to the generic construct code in case the specialized code cannot
+ // handle the construction.
+ __ bind(&generic_constructor);
+
+ Handle<Code> generic_construct_stub =
+ masm->isolate()->builtins()->JSConstructStubGeneric();
+ __ Jump(generic_construct_stub, RelocInfo::CODE_TARGET);
+}
+
+
+void Builtins::Generate_StringConstructCode(MacroAssembler* masm) {
+ // ----------- S t a t e -------------
+ // -- a0 : number of arguments
+ // -- a1 : constructor function
+ // -- ra : return address
+ // -- sp[(argc - n - 1) * 4] : arg[n] (zero based)
+ // -- sp[argc * 4] : receiver
+ // -----------------------------------
+ Counters* counters = masm->isolate()->counters();
+ __ IncrementCounter(counters->string_ctor_calls(), 1, a2, a3);
+
+ Register function = a1;
+ if (FLAG_debug_code) {
+ __ LoadGlobalFunction(Context::STRING_FUNCTION_INDEX, a2);
+ __ Assert(eq, "Unexpected String function", function, Operand(a2));
+ }
+
+ // Load the first arguments in a0 and get rid of the rest.
+ Label no_arguments;
+ __ Branch(&no_arguments, eq, a0, Operand(zero_reg));
+ // First args = sp[(argc - 1) * 4].
+ __ Subu(a0, a0, Operand(1));
+ __ sll(a0, a0, kPointerSizeLog2);
+ __ Addu(sp, a0, sp);
+ __ lw(a0, MemOperand(sp));
+ // sp now point to args[0], drop args[0] + receiver.
+ __ Drop(2);
+
+ Register argument = a2;
+ Label not_cached, argument_is_string;
+ NumberToStringStub::GenerateLookupNumberStringCache(
+ masm,
+ a0, // Input.
+ argument, // Result.
+ a3, // Scratch.
+ t0, // Scratch.
+ t1, // Scratch.
+ false, // Is it a Smi?
+ &not_cached);
+ __ IncrementCounter(counters->string_ctor_cached_number(), 1, a3, t0);
+ __ bind(&argument_is_string);
+
+ // ----------- S t a t e -------------
+ // -- a2 : argument converted to string
+ // -- a1 : constructor function
+ // -- ra : return address
+ // -----------------------------------
+
+ Label gc_required;
+ __ AllocateInNewSpace(JSValue::kSize,
+ v0, // Result.
+ a3, // Scratch.
+ t0, // Scratch.
+ &gc_required,
+ TAG_OBJECT);
+
+ // Initialising the String Object.
+ Register map = a3;
+ __ LoadGlobalFunctionInitialMap(function, map, t0);
+ if (FLAG_debug_code) {
+ __ lbu(t0, FieldMemOperand(map, Map::kInstanceSizeOffset));
+ __ Assert(eq, "Unexpected string wrapper instance size",
+ t0, Operand(JSValue::kSize >> kPointerSizeLog2));
+ __ lbu(t0, FieldMemOperand(map, Map::kUnusedPropertyFieldsOffset));
+ __ Assert(eq, "Unexpected unused properties of string wrapper",
+ t0, Operand(zero_reg));
+ }
+ __ sw(map, FieldMemOperand(v0, HeapObject::kMapOffset));
+
+ __ LoadRoot(a3, Heap::kEmptyFixedArrayRootIndex);
+ __ sw(a3, FieldMemOperand(v0, JSObject::kPropertiesOffset));
+ __ sw(a3, FieldMemOperand(v0, JSObject::kElementsOffset));
+
+ __ sw(argument, FieldMemOperand(v0, JSValue::kValueOffset));
+
+ // Ensure the object is fully initialized.
+ STATIC_ASSERT(JSValue::kSize == 4 * kPointerSize);
+
+ __ Ret();
+
+ // The argument was not found in the number to string cache. Check
+ // if it's a string already before calling the conversion builtin.
+ Label convert_argument;
+ __ bind(&not_cached);
+ __ JumpIfSmi(a0, &convert_argument);
+
+ // Is it a String?
+ __ lw(a2, FieldMemOperand(a0, HeapObject::kMapOffset));
+ __ lbu(a3, FieldMemOperand(a2, Map::kInstanceTypeOffset));
+ ASSERT(kNotStringTag != 0);
+ __ And(t0, a3, Operand(kIsNotStringMask));
+ __ Branch(&convert_argument, ne, t0, Operand(zero_reg));
+ __ mov(argument, a0);
+ __ IncrementCounter(counters->string_ctor_conversions(), 1, a3, t0);
+ __ Branch(&argument_is_string);
+
+ // Invoke the conversion builtin and put the result into a2.
+ __ bind(&convert_argument);
+ __ push(function); // Preserve the function.
+ __ IncrementCounter(counters->string_ctor_conversions(), 1, a3, t0);
+ __ EnterInternalFrame();
+ __ push(v0);
+ __ InvokeBuiltin(Builtins::TO_STRING, CALL_FUNCTION);
+ __ LeaveInternalFrame();
+ __ pop(function);
+ __ mov(argument, v0);
+ __ Branch(&argument_is_string);
+
+ // Load the empty string into a2, remove the receiver from the
+ // stack, and jump back to the case where the argument is a string.
+ __ bind(&no_arguments);
+ __ LoadRoot(argument, Heap::kEmptyStringRootIndex);
+ __ Drop(1);
+ __ Branch(&argument_is_string);
+
+ // At this point the argument is already a string. Call runtime to
+ // create a string wrapper.
+ __ bind(&gc_required);
+ __ IncrementCounter(counters->string_ctor_gc_required(), 1, a3, t0);
+ __ EnterInternalFrame();
+ __ push(argument);
+ __ CallRuntime(Runtime::kNewStringWrapper, 1);
+ __ LeaveInternalFrame();
+ __ Ret();
}
void Builtins::Generate_JSConstructCall(MacroAssembler* masm) {
- UNIMPLEMENTED_MIPS();
+ // ----------- S t a t e -------------
+ // -- a0 : number of arguments
+ // -- a1 : constructor function
+ // -- ra : return address
+ // -- sp[...]: constructor arguments
+ // -----------------------------------
+
+ Label non_function_call;
+ // Check that the function is not a smi.
+ __ And(t0, a1, Operand(kSmiTagMask));
+ __ Branch(&non_function_call, eq, t0, Operand(zero_reg));
+ // Check that the function is a JSFunction.
+ __ GetObjectType(a1, a2, a2);
+ __ Branch(&non_function_call, ne, a2, Operand(JS_FUNCTION_TYPE));
+
+ // Jump to the function-specific construct stub.
+ __ lw(a2, FieldMemOperand(a1, JSFunction::kSharedFunctionInfoOffset));
+ __ lw(a2, FieldMemOperand(a2, SharedFunctionInfo::kConstructStubOffset));
+ __ Addu(t9, a2, Operand(Code::kHeaderSize - kHeapObjectTag));
+ __ Jump(Operand(t9));
+
+ // a0: number of arguments
+ // a1: called object
+ __ bind(&non_function_call);
+ // CALL_NON_FUNCTION expects the non-function constructor as receiver
+ // (instead of the original receiver from the call site). The receiver is
+ // stack element argc.
+ // Set expected number of arguments to zero (not changing a0).
+ __ mov(a2, zero_reg);
+ __ GetBuiltinEntry(a3, Builtins::CALL_NON_FUNCTION_AS_CONSTRUCTOR);
+ __ SetCallKind(t1, CALL_AS_METHOD);
+ __ Jump(masm->isolate()->builtins()->ArgumentsAdaptorTrampoline(),
+ RelocInfo::CODE_TARGET);
+}
+
+
+static void Generate_JSConstructStubHelper(MacroAssembler* masm,
+ bool is_api_function,
+ bool count_constructions) {
+ // Should never count constructions for api objects.
+ ASSERT(!is_api_function || !count_constructions);
+
+ Isolate* isolate = masm->isolate();
+
+ // ----------- S t a t e -------------
+ // -- a0 : number of arguments
+ // -- a1 : constructor function
+ // -- ra : return address
+ // -- sp[...]: constructor arguments
+ // -----------------------------------
+
+ // Enter a construct frame.
+ __ EnterConstructFrame();
+
+ // Preserve the two incoming parameters on the stack.
+ __ sll(a0, a0, kSmiTagSize); // Tag arguments count.
+ __ MultiPushReversed(a0.bit() | a1.bit());
+
+ // Use t7 to hold undefined, which is used in several places below.
+ __ LoadRoot(t7, Heap::kUndefinedValueRootIndex);
+
+ Label rt_call, allocated;
+ // Try to allocate the object without transitioning into C code. If any of the
+ // preconditions is not met, the code bails out to the runtime call.
+ if (FLAG_inline_new) {
+ Label undo_allocation;
+#ifdef ENABLE_DEBUGGER_SUPPORT
+ ExternalReference debug_step_in_fp =
+ ExternalReference::debug_step_in_fp_address(isolate);
+ __ li(a2, Operand(debug_step_in_fp));
+ __ lw(a2, MemOperand(a2));
+ __ Branch(&rt_call, ne, a2, Operand(zero_reg));
+#endif
+
+ // Load the initial map and verify that it is in fact a map.
+ // a1: constructor function
+ __ lw(a2, FieldMemOperand(a1, JSFunction::kPrototypeOrInitialMapOffset));
+ __ And(t0, a2, Operand(kSmiTagMask));
+ __ Branch(&rt_call, eq, t0, Operand(zero_reg));
+ __ GetObjectType(a2, a3, t4);
+ __ Branch(&rt_call, ne, t4, Operand(MAP_TYPE));
+
+ // Check that the constructor is not constructing a JSFunction (see comments
+ // in Runtime_NewObject in runtime.cc). In which case the initial map's
+ // instance type would be JS_FUNCTION_TYPE.
+ // a1: constructor function
+ // a2: initial map
+ __ lbu(a3, FieldMemOperand(a2, Map::kInstanceTypeOffset));
+ __ Branch(&rt_call, eq, a3, Operand(JS_FUNCTION_TYPE));
+
+ if (count_constructions) {
+ Label allocate;
+ // Decrease generous allocation count.
+ __ lw(a3, FieldMemOperand(a1, JSFunction::kSharedFunctionInfoOffset));
+ MemOperand constructor_count =
+ FieldMemOperand(a3, SharedFunctionInfo::kConstructionCountOffset);
+ __ lbu(t0, constructor_count);
+ __ Subu(t0, t0, Operand(1));
+ __ sb(t0, constructor_count);
+ __ Branch(&allocate, ne, t0, Operand(zero_reg));
+
+ __ Push(a1, a2);
+
+ __ push(a1); // Constructor.
+ // The call will replace the stub, so the countdown is only done once.
+ __ CallRuntime(Runtime::kFinalizeInstanceSize, 1);
+
+ __ pop(a2);
+ __ pop(a1);
+
+ __ bind(&allocate);
+ }
+
+ // Now allocate the JSObject on the heap.
+ // a1: constructor function
+ // a2: initial map
+ __ lbu(a3, FieldMemOperand(a2, Map::kInstanceSizeOffset));
+ __ AllocateInNewSpace(a3, t4, t5, t6, &rt_call, SIZE_IN_WORDS);
+
+ // Allocated the JSObject, now initialize the fields. Map is set to initial
+ // map and properties and elements are set to empty fixed array.
+ // a1: constructor function
+ // a2: initial map
+ // a3: object size
+ // t4: JSObject (not tagged)
+ __ LoadRoot(t6, Heap::kEmptyFixedArrayRootIndex);
+ __ mov(t5, t4);
+ __ sw(a2, MemOperand(t5, JSObject::kMapOffset));
+ __ sw(t6, MemOperand(t5, JSObject::kPropertiesOffset));
+ __ sw(t6, MemOperand(t5, JSObject::kElementsOffset));
+ __ Addu(t5, t5, Operand(3*kPointerSize));
+ ASSERT_EQ(0 * kPointerSize, JSObject::kMapOffset);
+ ASSERT_EQ(1 * kPointerSize, JSObject::kPropertiesOffset);
+ ASSERT_EQ(2 * kPointerSize, JSObject::kElementsOffset);
+
+ // Fill all the in-object properties with appropriate filler.
+ // a1: constructor function
+ // a2: initial map
+ // a3: object size (in words)
+ // t4: JSObject (not tagged)
+ // t5: First in-object property of JSObject (not tagged)
+ __ sll(t0, a3, kPointerSizeLog2);
+ __ addu(t6, t4, t0); // End of object.
+ ASSERT_EQ(3 * kPointerSize, JSObject::kHeaderSize);
+ { Label loop, entry;
+ if (count_constructions) {
+ // To allow for truncation.
+ __ LoadRoot(t7, Heap::kOnePointerFillerMapRootIndex);
+ } else {
+ __ LoadRoot(t7, Heap::kUndefinedValueRootIndex);
+ }
+ __ jmp(&entry);
+ __ bind(&loop);
+ __ sw(t7, MemOperand(t5, 0));
+ __ addiu(t5, t5, kPointerSize);
+ __ bind(&entry);
+ __ Branch(&loop, Uless, t5, Operand(t6));
+ }
+
+ // Add the object tag to make the JSObject real, so that we can continue and
+ // jump into the continuation code at any time from now on. Any failures
+ // need to undo the allocation, so that the heap is in a consistent state
+ // and verifiable.
+ __ Addu(t4, t4, Operand(kHeapObjectTag));
+
+ // Check if a non-empty properties array is needed. Continue with allocated
+ // object if not fall through to runtime call if it is.
+ // a1: constructor function
+ // t4: JSObject
+ // t5: start of next object (not tagged)
+ __ lbu(a3, FieldMemOperand(a2, Map::kUnusedPropertyFieldsOffset));
+ // The field instance sizes contains both pre-allocated property fields and
+ // in-object properties.
+ __ lw(a0, FieldMemOperand(a2, Map::kInstanceSizesOffset));
+ __ And(t6,
+ a0,
+ Operand(0x000000FF << Map::kPreAllocatedPropertyFieldsByte * 8));
+ __ srl(t0, t6, Map::kPreAllocatedPropertyFieldsByte * 8);
+ __ Addu(a3, a3, Operand(t0));
+ __ And(t6, a0, Operand(0x000000FF << Map::kInObjectPropertiesByte * 8));
+ __ srl(t0, t6, Map::kInObjectPropertiesByte * 8);
+ __ subu(a3, a3, t0);
+
+ // Done if no extra properties are to be allocated.
+ __ Branch(&allocated, eq, a3, Operand(zero_reg));
+ __ Assert(greater_equal, "Property allocation count failed.",
+ a3, Operand(zero_reg));
+
+ // Scale the number of elements by pointer size and add the header for
+ // FixedArrays to the start of the next object calculation from above.
+ // a1: constructor
+ // a3: number of elements in properties array
+ // t4: JSObject
+ // t5: start of next object
+ __ Addu(a0, a3, Operand(FixedArray::kHeaderSize / kPointerSize));
+ __ AllocateInNewSpace(
+ a0,
+ t5,
+ t6,
+ a2,
+ &undo_allocation,
+ static_cast<AllocationFlags>(RESULT_CONTAINS_TOP | SIZE_IN_WORDS));
+
+ // Initialize the FixedArray.
+ // a1: constructor
+ // a3: number of elements in properties array (un-tagged)
+ // t4: JSObject
+ // t5: start of next object
+ __ LoadRoot(t6, Heap::kFixedArrayMapRootIndex);
+ __ mov(a2, t5);
+ __ sw(t6, MemOperand(a2, JSObject::kMapOffset));
+ __ sll(a0, a3, kSmiTagSize);
+ __ sw(a0, MemOperand(a2, FixedArray::kLengthOffset));
+ __ Addu(a2, a2, Operand(2 * kPointerSize));
+
+ ASSERT_EQ(0 * kPointerSize, JSObject::kMapOffset);
+ ASSERT_EQ(1 * kPointerSize, FixedArray::kLengthOffset);
+
+ // Initialize the fields to undefined.
+ // a1: constructor
+ // a2: First element of FixedArray (not tagged)
+ // a3: number of elements in properties array
+ // t4: JSObject
+ // t5: FixedArray (not tagged)
+ __ sll(t3, a3, kPointerSizeLog2);
+ __ addu(t6, a2, t3); // End of object.
+ ASSERT_EQ(2 * kPointerSize, FixedArray::kHeaderSize);
+ { Label loop, entry;
+ if (count_constructions) {
+ __ LoadRoot(t7, Heap::kUndefinedValueRootIndex);
+ } else if (FLAG_debug_code) {
+ __ LoadRoot(t8, Heap::kUndefinedValueRootIndex);
+ __ Assert(eq, "Undefined value not loaded.", t7, Operand(t8));
+ }
+ __ jmp(&entry);
+ __ bind(&loop);
+ __ sw(t7, MemOperand(a2));
+ __ addiu(a2, a2, kPointerSize);
+ __ bind(&entry);
+ __ Branch(&loop, less, a2, Operand(t6));
+ }
+
+ // Store the initialized FixedArray into the properties field of
+ // the JSObject.
+ // a1: constructor function
+ // t4: JSObject
+ // t5: FixedArray (not tagged)
+ __ Addu(t5, t5, Operand(kHeapObjectTag)); // Add the heap tag.
+ __ sw(t5, FieldMemOperand(t4, JSObject::kPropertiesOffset));
+
+ // Continue with JSObject being successfully allocated.
+ // a1: constructor function
+ // a4: JSObject
+ __ jmp(&allocated);
+
+ // Undo the setting of the new top so that the heap is verifiable. For
+ // example, the map's unused properties potentially do not match the
+ // allocated objects unused properties.
+ // t4: JSObject (previous new top)
+ __ bind(&undo_allocation);
+ __ UndoAllocationInNewSpace(t4, t5);
+ }
+
+ __ bind(&rt_call);
+ // Allocate the new receiver object using the runtime call.
+ // a1: constructor function
+ __ push(a1); // Argument for Runtime_NewObject.
+ __ CallRuntime(Runtime::kNewObject, 1);
+ __ mov(t4, v0);
+
+ // Receiver for constructor call allocated.
+ // t4: JSObject
+ __ bind(&allocated);
+ __ push(t4);
+
+ // Push the function and the allocated receiver from the stack.
+ // sp[0]: receiver (newly allocated object)
+ // sp[1]: constructor function
+ // sp[2]: number of arguments (smi-tagged)
+ __ lw(a1, MemOperand(sp, kPointerSize));
+ __ MultiPushReversed(a1.bit() | t4.bit());
+
+ // Reload the number of arguments from the stack.
+ // a1: constructor function
+ // sp[0]: receiver
+ // sp[1]: constructor function
+ // sp[2]: receiver
+ // sp[3]: constructor function
+ // sp[4]: number of arguments (smi-tagged)
+ __ lw(a3, MemOperand(sp, 4 * kPointerSize));
+
+ // Setup pointer to last argument.
+ __ Addu(a2, fp, Operand(StandardFrameConstants::kCallerSPOffset));
+
+ // Setup number of arguments for function call below.
+ __ srl(a0, a3, kSmiTagSize);
+
+ // Copy arguments and receiver to the expression stack.
+ // a0: number of arguments
+ // a1: constructor function
+ // a2: address of last argument (caller sp)
+ // a3: number of arguments (smi-tagged)
+ // sp[0]: receiver
+ // sp[1]: constructor function
+ // sp[2]: receiver
+ // sp[3]: constructor function
+ // sp[4]: number of arguments (smi-tagged)
+ Label loop, entry;
+ __ jmp(&entry);
+ __ bind(&loop);
+ __ sll(t0, a3, kPointerSizeLog2 - kSmiTagSize);
+ __ Addu(t0, a2, Operand(t0));
+ __ lw(t1, MemOperand(t0));
+ __ push(t1);
+ __ bind(&entry);
+ __ Addu(a3, a3, Operand(-2));
+ __ Branch(&loop, greater_equal, a3, Operand(zero_reg));
+
+ // Call the function.
+ // a0: number of arguments
+ // a1: constructor function
+ if (is_api_function) {
+ __ lw(cp, FieldMemOperand(a1, JSFunction::kContextOffset));
+ Handle<Code> code =
+ masm->isolate()->builtins()->HandleApiCallConstruct();
+ ParameterCount expected(0);
+ __ InvokeCode(code, expected, expected,
+ RelocInfo::CODE_TARGET, CALL_FUNCTION, CALL_AS_METHOD);
+ } else {
+ ParameterCount actual(a0);
+ __ InvokeFunction(a1, actual, CALL_FUNCTION,
+ NullCallWrapper(), CALL_AS_METHOD);
+ }
+
+ // Pop the function from the stack.
+ // v0: result
+ // sp[0]: constructor function
+ // sp[2]: receiver
+ // sp[3]: constructor function
+ // sp[4]: number of arguments (smi-tagged)
+ __ Pop();
+
+ // Restore context from the frame.
+ __ lw(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
+
+ // If the result is an object (in the ECMA sense), we should get rid
+ // of the receiver and use the result; see ECMA-262 section 13.2.2-7
+ // on page 74.
+ Label use_receiver, exit;
+
+ // If the result is a smi, it is *not* an object in the ECMA sense.
+ // v0: result
+ // sp[0]: receiver (newly allocated object)
+ // sp[1]: constructor function
+ // sp[2]: number of arguments (smi-tagged)
+ __ And(t0, v0, Operand(kSmiTagMask));
+ __ Branch(&use_receiver, eq, t0, Operand(zero_reg));
+
+ // If the type of the result (stored in its map) is less than
+ // FIRST_SPEC_OBJECT_TYPE, it is not an object in the ECMA sense.
+ __ GetObjectType(v0, a3, a3);
+ __ Branch(&exit, greater_equal, a3, Operand(FIRST_SPEC_OBJECT_TYPE));
+
+ // Throw away the result of the constructor invocation and use the
+ // on-stack receiver as the result.
+ __ bind(&use_receiver);
+ __ lw(v0, MemOperand(sp));
+
+ // Remove receiver from the stack, remove caller arguments, and
+ // return.
+ __ bind(&exit);
+ // v0: result
+ // sp[0]: receiver (newly allocated object)
+ // sp[1]: constructor function
+ // sp[2]: number of arguments (smi-tagged)
+ __ lw(a1, MemOperand(sp, 2 * kPointerSize));
+ __ LeaveConstructFrame();
+ __ sll(t0, a1, kPointerSizeLog2 - 1);
+ __ Addu(sp, sp, t0);
+ __ Addu(sp, sp, kPointerSize);
+ __ IncrementCounter(isolate->counters()->constructed_objects(), 1, a1, a2);
+ __ Ret();
+}
+
+
+void Builtins::Generate_JSConstructStubCountdown(MacroAssembler* masm) {
+ Generate_JSConstructStubHelper(masm, false, true);
}
void Builtins::Generate_JSConstructStubGeneric(MacroAssembler* masm) {
- UNIMPLEMENTED_MIPS();
+ Generate_JSConstructStubHelper(masm, false, false);
}
void Builtins::Generate_JSConstructStubApi(MacroAssembler* masm) {
- UNIMPLEMENTED_MIPS();
+ Generate_JSConstructStubHelper(masm, true, false);
}
@@ -78,23 +1019,16 @@ static void Generate_JSEntryTrampolineHelper(MacroAssembler* masm,
bool is_construct) {
// Called from JSEntryStub::GenerateBody
- // Registers:
- // a0: entry_address
- // a1: function
- // a2: reveiver_pointer
- // a3: argc
- // s0: argv
- //
- // Stack:
- // arguments slots
- // handler frame
- // entry frame
- // callee saved registers + ra
- // 4 args slots
- // args
+ // ----------- S t a t e -------------
+ // -- a0: code entry
+ // -- a1: function
+ // -- a2: reveiver_pointer
+ // -- a3: argc
+ // -- s0: argv
+ // -----------------------------------
// Clear the context before we push it when entering the JS frame.
- __ li(cp, Operand(0, RelocInfo::NONE));
+ __ mov(cp, zero_reg);
// Enter an internal frame.
__ EnterInternalFrame();
@@ -103,18 +1037,19 @@ static void Generate_JSEntryTrampolineHelper(MacroAssembler* masm,
__ lw(cp, FieldMemOperand(a1, JSFunction::kContextOffset));
// Set up the roots register.
- ExternalReference roots_address = ExternalReference::roots_address();
+ ExternalReference roots_address =
+ ExternalReference::roots_address(masm->isolate());
__ li(s6, Operand(roots_address));
// Push the function and the receiver onto the stack.
- __ MultiPushReversed(a1.bit() | a2.bit());
+ __ Push(a1, a2);
// Copy arguments to the stack in a loop.
// a3: argc
// s0: argv, ie points to first arg
Label loop, entry;
__ sll(t0, a3, kPointerSizeLog2);
- __ add(t2, s0, t0);
+ __ addu(t2, s0, t0);
__ b(&entry);
__ nop(); // Branch delay slot nop.
// t2 points past last arg.
@@ -122,48 +1057,30 @@ static void Generate_JSEntryTrampolineHelper(MacroAssembler* masm,
__ lw(t0, MemOperand(s0)); // Read next parameter.
__ addiu(s0, s0, kPointerSize);
__ lw(t0, MemOperand(t0)); // Dereference handle.
- __ Push(t0); // Push parameter.
+ __ push(t0); // Push parameter.
__ bind(&entry);
- __ Branch(ne, &loop, s0, Operand(t2));
-
- // Registers:
- // a0: entry_address
- // a1: function
- // a2: reveiver_pointer
- // a3: argc
- // s0: argv
- // s6: roots_address
- //
- // Stack:
- // arguments
- // receiver
- // function
- // arguments slots
- // handler frame
- // entry frame
- // callee saved registers + ra
- // 4 args slots
- // args
+ __ Branch(&loop, ne, s0, Operand(t2));
// Initialize all JavaScript callee-saved registers, since they will be seen
// by the garbage collector as part of handlers.
- __ LoadRoot(t4, Heap::kUndefinedValueRootIndex);
- __ mov(s1, t4);
- __ mov(s2, t4);
- __ mov(s3, t4);
- __ mov(s4, s4);
- __ mov(s5, t4);
+ __ LoadRoot(t0, Heap::kUndefinedValueRootIndex);
+ __ mov(s1, t0);
+ __ mov(s2, t0);
+ __ mov(s3, t0);
+ __ mov(s4, t0);
+ __ mov(s5, t0);
// s6 holds the root address. Do not clobber.
// s7 is cp. Do not init.
// Invoke the code and pass argc as a0.
__ mov(a0, a3);
if (is_construct) {
- UNIMPLEMENTED_MIPS();
- __ break_(0x164);
+ __ Call(masm->isolate()->builtins()->JSConstructCall(),
+ RelocInfo::CODE_TARGET);
} else {
ParameterCount actual(a0);
- __ InvokeFunction(a1, actual, CALL_FUNCTION);
+ __ InvokeFunction(a1, actual, CALL_FUNCTION,
+ NullCallWrapper(), CALL_AS_METHOD);
}
__ LeaveInternalFrame();
@@ -182,19 +1099,525 @@ void Builtins::Generate_JSConstructEntryTrampoline(MacroAssembler* masm) {
}
+void Builtins::Generate_LazyCompile(MacroAssembler* masm) {
+ // Enter an internal frame.
+ __ EnterInternalFrame();
+
+ // Preserve the function.
+ __ push(a1);
+ // Push call kind information.
+ __ push(t1);
+
+ // Push the function on the stack as the argument to the runtime function.
+ __ push(a1);
+ // Call the runtime function.
+ __ CallRuntime(Runtime::kLazyCompile, 1);
+ // Calculate the entry point.
+ __ addiu(t9, v0, Code::kHeaderSize - kHeapObjectTag);
+
+ // Restore call kind information.
+ __ pop(t1);
+ // Restore saved function.
+ __ pop(a1);
+
+ // Tear down temporary frame.
+ __ LeaveInternalFrame();
+
+ // Do a tail-call of the compiled function.
+ __ Jump(t9);
+}
+
+
+void Builtins::Generate_LazyRecompile(MacroAssembler* masm) {
+ // Enter an internal frame.
+ __ EnterInternalFrame();
+
+ // Preserve the function.
+ __ push(a1);
+ // Push call kind information.
+ __ push(t1);
+
+ // Push the function on the stack as the argument to the runtime function.
+ __ push(a1);
+ __ CallRuntime(Runtime::kLazyRecompile, 1);
+ // Calculate the entry point.
+ __ Addu(t9, v0, Operand(Code::kHeaderSize - kHeapObjectTag));
+
+ // Restore call kind information.
+ __ pop(t1);
+ // Restore saved function.
+ __ pop(a1);
+
+ // Tear down temporary frame.
+ __ LeaveInternalFrame();
+
+ // Do a tail-call of the compiled function.
+ __ Jump(t9);
+}
+
+
+// These functions are called from C++ but cannot be used in live code.
+void Builtins::Generate_NotifyDeoptimized(MacroAssembler* masm) {
+ __ Abort("Call to unimplemented function in builtins-mips.cc");
+}
+
+
+void Builtins::Generate_NotifyLazyDeoptimized(MacroAssembler* masm) {
+ __ Abort("Call to unimplemented function in builtins-mips.cc");
+}
+
+
+void Builtins::Generate_NotifyOSR(MacroAssembler* masm) {
+ __ Abort("Call to unimplemented function in builtins-mips.cc");
+}
+
+
+void Builtins::Generate_OnStackReplacement(MacroAssembler* masm) {
+ __ Abort("Call to unimplemented function in builtins-mips.cc");
+}
+
+
void Builtins::Generate_FunctionCall(MacroAssembler* masm) {
- UNIMPLEMENTED_MIPS();
+ // 1. Make sure we have at least one argument.
+ // a0: actual number of arguments
+ { Label done;
+ __ Branch(&done, ne, a0, Operand(zero_reg));
+ __ LoadRoot(t2, Heap::kUndefinedValueRootIndex);
+ __ push(t2);
+ __ Addu(a0, a0, Operand(1));
+ __ bind(&done);
+ }
+
+ // 2. Get the function to call (passed as receiver) from the stack, check
+ // if it is a function.
+ // a0: actual number of arguments
+ Label non_function;
+ __ sll(at, a0, kPointerSizeLog2);
+ __ addu(at, sp, at);
+ __ lw(a1, MemOperand(at));
+ __ And(at, a1, Operand(kSmiTagMask));
+ __ Branch(&non_function, eq, at, Operand(zero_reg));
+ __ GetObjectType(a1, a2, a2);
+ __ Branch(&non_function, ne, a2, Operand(JS_FUNCTION_TYPE));
+
+ // 3a. Patch the first argument if necessary when calling a function.
+ // a0: actual number of arguments
+ // a1: function
+ Label shift_arguments;
+ { Label convert_to_object, use_global_receiver, patch_receiver;
+ // Change context eagerly in case we need the global receiver.
+ __ lw(cp, FieldMemOperand(a1, JSFunction::kContextOffset));
+
+ // Do not transform the receiver for strict mode functions.
+ __ lw(a2, FieldMemOperand(a1, JSFunction::kSharedFunctionInfoOffset));
+ __ lw(a3, FieldMemOperand(a2, SharedFunctionInfo::kCompilerHintsOffset));
+ __ And(t0, a3, Operand(1 << (SharedFunctionInfo::kStrictModeFunction +
+ kSmiTagSize)));
+ __ Branch(&shift_arguments, ne, t0, Operand(zero_reg));
+
+ // Do not transform the receiver for native (Compilerhints already in a3).
+ __ And(t0, a3, Operand(1 << (SharedFunctionInfo::kNative + kSmiTagSize)));
+ __ Branch(&shift_arguments, ne, t0, Operand(zero_reg));
+
+ // Compute the receiver in non-strict mode.
+ // Load first argument in a2. a2 = -kPointerSize(sp + n_args << 2).
+ __ sll(at, a0, kPointerSizeLog2);
+ __ addu(a2, sp, at);
+ __ lw(a2, MemOperand(a2, -kPointerSize));
+ // a0: actual number of arguments
+ // a1: function
+ // a2: first argument
+ __ JumpIfSmi(a2, &convert_to_object, t2);
+
+ __ LoadRoot(a3, Heap::kUndefinedValueRootIndex);
+ __ Branch(&use_global_receiver, eq, a2, Operand(a3));
+ __ LoadRoot(a3, Heap::kNullValueRootIndex);
+ __ Branch(&use_global_receiver, eq, a2, Operand(a3));
+
+ STATIC_ASSERT(LAST_SPEC_OBJECT_TYPE == LAST_TYPE);
+ __ GetObjectType(a2, a3, a3);
+ __ Branch(&shift_arguments, ge, a3, Operand(FIRST_SPEC_OBJECT_TYPE));
+
+ __ bind(&convert_to_object);
+ __ EnterInternalFrame(); // In order to preserve argument count.
+ __ sll(a0, a0, kSmiTagSize); // Smi tagged.
+ __ push(a0);
+
+ __ push(a2);
+ __ InvokeBuiltin(Builtins::TO_OBJECT, CALL_FUNCTION);
+ __ mov(a2, v0);
+
+ __ pop(a0);
+ __ sra(a0, a0, kSmiTagSize); // Un-tag.
+ __ LeaveInternalFrame();
+ // Restore the function to a1.
+ __ sll(at, a0, kPointerSizeLog2);
+ __ addu(at, sp, at);
+ __ lw(a1, MemOperand(at));
+ __ Branch(&patch_receiver);
+
+ // Use the global receiver object from the called function as the
+ // receiver.
+ __ bind(&use_global_receiver);
+ const int kGlobalIndex =
+ Context::kHeaderSize + Context::GLOBAL_INDEX * kPointerSize;
+ __ lw(a2, FieldMemOperand(cp, kGlobalIndex));
+ __ lw(a2, FieldMemOperand(a2, GlobalObject::kGlobalContextOffset));
+ __ lw(a2, FieldMemOperand(a2, kGlobalIndex));
+ __ lw(a2, FieldMemOperand(a2, GlobalObject::kGlobalReceiverOffset));
+
+ __ bind(&patch_receiver);
+ __ sll(at, a0, kPointerSizeLog2);
+ __ addu(a3, sp, at);
+ __ sw(a2, MemOperand(a3, -kPointerSize));
+
+ __ Branch(&shift_arguments);
+ }
+
+ // 3b. Patch the first argument when calling a non-function. The
+ // CALL_NON_FUNCTION builtin expects the non-function callee as
+ // receiver, so overwrite the first argument which will ultimately
+ // become the receiver.
+ // a0: actual number of arguments
+ // a1: function
+ __ bind(&non_function);
+ // Restore the function in case it has been modified.
+ __ sll(at, a0, kPointerSizeLog2);
+ __ addu(a2, sp, at);
+ __ sw(a1, MemOperand(a2, -kPointerSize));
+ // Clear a1 to indicate a non-function being called.
+ __ mov(a1, zero_reg);
+
+ // 4. Shift arguments and return address one slot down on the stack
+ // (overwriting the original receiver). Adjust argument count to make
+ // the original first argument the new receiver.
+ // a0: actual number of arguments
+ // a1: function
+ __ bind(&shift_arguments);
+ { Label loop;
+ // Calculate the copy start address (destination). Copy end address is sp.
+ __ sll(at, a0, kPointerSizeLog2);
+ __ addu(a2, sp, at);
+
+ __ bind(&loop);
+ __ lw(at, MemOperand(a2, -kPointerSize));
+ __ sw(at, MemOperand(a2));
+ __ Subu(a2, a2, Operand(kPointerSize));
+ __ Branch(&loop, ne, a2, Operand(sp));
+ // Adjust the actual number of arguments and remove the top element
+ // (which is a copy of the last argument).
+ __ Subu(a0, a0, Operand(1));
+ __ Pop();
+ }
+
+ // 5a. Call non-function via tail call to CALL_NON_FUNCTION builtin.
+ // a0: actual number of arguments
+ // a1: function
+ { Label function;
+ __ Branch(&function, ne, a1, Operand(zero_reg));
+ __ mov(a2, zero_reg); // expected arguments is 0 for CALL_NON_FUNCTION
+ __ GetBuiltinEntry(a3, Builtins::CALL_NON_FUNCTION);
+ __ SetCallKind(t1, CALL_AS_METHOD);
+ __ Jump(masm->isolate()->builtins()->ArgumentsAdaptorTrampoline(),
+ RelocInfo::CODE_TARGET);
+ __ bind(&function);
+ }
+
+ // 5b. Get the code to call from the function and check that the number of
+ // expected arguments matches what we're providing. If so, jump
+ // (tail-call) to the code in register edx without checking arguments.
+ // a0: actual number of arguments
+ // a1: function
+ __ lw(a3, FieldMemOperand(a1, JSFunction::kSharedFunctionInfoOffset));
+ __ lw(a2,
+ FieldMemOperand(a3, SharedFunctionInfo::kFormalParameterCountOffset));
+ __ sra(a2, a2, kSmiTagSize);
+ __ lw(a3, FieldMemOperand(a1, JSFunction::kCodeEntryOffset));
+ __ SetCallKind(t1, CALL_AS_METHOD);
+ // Check formal and actual parameter counts.
+ __ Jump(masm->isolate()->builtins()->ArgumentsAdaptorTrampoline(),
+ RelocInfo::CODE_TARGET, ne, a2, Operand(a0));
+
+ ParameterCount expected(0);
+ __ InvokeCode(a3, expected, expected, JUMP_FUNCTION,
+ NullCallWrapper(), CALL_AS_METHOD);
}
void Builtins::Generate_FunctionApply(MacroAssembler* masm) {
- UNIMPLEMENTED_MIPS();
+ const int kIndexOffset = -5 * kPointerSize;
+ const int kLimitOffset = -4 * kPointerSize;
+ const int kArgsOffset = 2 * kPointerSize;
+ const int kRecvOffset = 3 * kPointerSize;
+ const int kFunctionOffset = 4 * kPointerSize;
+
+ __ EnterInternalFrame();
+
+ __ lw(a0, MemOperand(fp, kFunctionOffset)); // Get the function.
+ __ push(a0);
+ __ lw(a0, MemOperand(fp, kArgsOffset)); // Get the args array.
+ __ push(a0);
+ // Returns (in v0) number of arguments to copy to stack as Smi.
+ __ InvokeBuiltin(Builtins::APPLY_PREPARE, CALL_FUNCTION);
+
+ // Check the stack for overflow. We are not trying need to catch
+ // interruptions (e.g. debug break and preemption) here, so the "real stack
+ // limit" is checked.
+ Label okay;
+ __ LoadRoot(a2, Heap::kRealStackLimitRootIndex);
+ // Make a2 the space we have left. The stack might already be overflowed
+ // here which will cause a2 to become negative.
+ __ subu(a2, sp, a2);
+ // Check if the arguments will overflow the stack.
+ __ sll(t0, v0, kPointerSizeLog2 - kSmiTagSize);
+ __ Branch(&okay, gt, a2, Operand(t0)); // Signed comparison.
+
+ // Out of stack space.
+ __ lw(a1, MemOperand(fp, kFunctionOffset));
+ __ push(a1);
+ __ push(v0);
+ __ InvokeBuiltin(Builtins::APPLY_OVERFLOW, CALL_FUNCTION);
+ // End of stack check.
+
+ // Push current limit and index.
+ __ bind(&okay);
+ __ push(v0); // Limit.
+ __ mov(a1, zero_reg); // Initial index.
+ __ push(a1);
+
+ // Change context eagerly to get the right global object if necessary.
+ __ lw(a0, MemOperand(fp, kFunctionOffset));
+ __ lw(cp, FieldMemOperand(a0, JSFunction::kContextOffset));
+ // Load the shared function info while the function is still in a0.
+ __ lw(a1, FieldMemOperand(a0, JSFunction::kSharedFunctionInfoOffset));
+
+ // Compute the receiver.
+ Label call_to_object, use_global_receiver, push_receiver;
+ __ lw(a0, MemOperand(fp, kRecvOffset));
+
+ // Do not transform the receiver for strict mode functions.
+ __ lw(a2, FieldMemOperand(a1, SharedFunctionInfo::kCompilerHintsOffset));
+ __ And(t0, a2, Operand(1 << (SharedFunctionInfo::kStrictModeFunction +
+ kSmiTagSize)));
+ __ Branch(&push_receiver, ne, t0, Operand(zero_reg));
+
+ // Do not transform the receiver for native (Compilerhints already in a2).
+ __ And(t0, a2, Operand(1 << (SharedFunctionInfo::kNative + kSmiTagSize)));
+ __ Branch(&push_receiver, ne, t0, Operand(zero_reg));
+
+ // Compute the receiver in non-strict mode.
+ __ And(t0, a0, Operand(kSmiTagMask));
+ __ Branch(&call_to_object, eq, t0, Operand(zero_reg));
+ __ LoadRoot(a1, Heap::kNullValueRootIndex);
+ __ Branch(&use_global_receiver, eq, a0, Operand(a1));
+ __ LoadRoot(a2, Heap::kUndefinedValueRootIndex);
+ __ Branch(&use_global_receiver, eq, a0, Operand(a2));
+
+ // Check if the receiver is already a JavaScript object.
+ // a0: receiver
+ STATIC_ASSERT(LAST_SPEC_OBJECT_TYPE == LAST_TYPE);
+ __ GetObjectType(a0, a1, a1);
+ __ Branch(&push_receiver, ge, a1, Operand(FIRST_SPEC_OBJECT_TYPE));
+
+ // Convert the receiver to a regular object.
+ // a0: receiver
+ __ bind(&call_to_object);
+ __ push(a0);
+ __ InvokeBuiltin(Builtins::TO_OBJECT, CALL_FUNCTION);
+ __ mov(a0, v0); // Put object in a0 to match other paths to push_receiver.
+ __ Branch(&push_receiver);
+
+ // Use the current global receiver object as the receiver.
+ __ bind(&use_global_receiver);
+ const int kGlobalOffset =
+ Context::kHeaderSize + Context::GLOBAL_INDEX * kPointerSize;
+ __ lw(a0, FieldMemOperand(cp, kGlobalOffset));
+ __ lw(a0, FieldMemOperand(a0, GlobalObject::kGlobalContextOffset));
+ __ lw(a0, FieldMemOperand(a0, kGlobalOffset));
+ __ lw(a0, FieldMemOperand(a0, GlobalObject::kGlobalReceiverOffset));
+
+ // Push the receiver.
+ // a0: receiver
+ __ bind(&push_receiver);
+ __ push(a0);
+
+ // Copy all arguments from the array to the stack.
+ Label entry, loop;
+ __ lw(a0, MemOperand(fp, kIndexOffset));
+ __ Branch(&entry);
+
+ // Load the current argument from the arguments array and push it to the
+ // stack.
+ // a0: current argument index
+ __ bind(&loop);
+ __ lw(a1, MemOperand(fp, kArgsOffset));
+ __ push(a1);
+ __ push(a0);
+
+ // Call the runtime to access the property in the arguments array.
+ __ CallRuntime(Runtime::kGetProperty, 2);
+ __ push(v0);
+
+ // Use inline caching to access the arguments.
+ __ lw(a0, MemOperand(fp, kIndexOffset));
+ __ Addu(a0, a0, Operand(1 << kSmiTagSize));
+ __ sw(a0, MemOperand(fp, kIndexOffset));
+
+ // Test if the copy loop has finished copying all the elements from the
+ // arguments object.
+ __ bind(&entry);
+ __ lw(a1, MemOperand(fp, kLimitOffset));
+ __ Branch(&loop, ne, a0, Operand(a1));
+ // Invoke the function.
+ ParameterCount actual(a0);
+ __ sra(a0, a0, kSmiTagSize);
+ __ lw(a1, MemOperand(fp, kFunctionOffset));
+ __ InvokeFunction(a1, actual, CALL_FUNCTION,
+ NullCallWrapper(), CALL_AS_METHOD);
+
+ // Tear down the internal frame and remove function, receiver and args.
+ __ LeaveInternalFrame();
+ __ Addu(sp, sp, Operand(3 * kPointerSize));
+ __ Ret();
+}
+
+
+static void EnterArgumentsAdaptorFrame(MacroAssembler* masm) {
+ __ sll(a0, a0, kSmiTagSize);
+ __ li(t0, Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)));
+ __ MultiPush(a0.bit() | a1.bit() | t0.bit() | fp.bit() | ra.bit());
+ __ Addu(fp, sp, Operand(3 * kPointerSize));
+}
+
+
+static void LeaveArgumentsAdaptorFrame(MacroAssembler* masm) {
+ // ----------- S t a t e -------------
+ // -- v0 : result being passed through
+ // -----------------------------------
+ // Get the number of arguments passed (as a smi), tear down the frame and
+ // then tear down the parameters.
+ __ lw(a1, MemOperand(fp, -3 * kPointerSize));
+ __ mov(sp, fp);
+ __ MultiPop(fp.bit() | ra.bit());
+ __ sll(t0, a1, kPointerSizeLog2 - kSmiTagSize);
+ __ Addu(sp, sp, t0);
+ // Adjust for the receiver.
+ __ Addu(sp, sp, Operand(kPointerSize));
}
void Builtins::Generate_ArgumentsAdaptorTrampoline(MacroAssembler* masm) {
- UNIMPLEMENTED_MIPS();
- __ break_(0x201);
+ // State setup as expected by MacroAssembler::InvokePrologue.
+ // ----------- S t a t e -------------
+ // -- a0: actual arguments count
+ // -- a1: function (passed through to callee)
+ // -- a2: expected arguments count
+ // -- a3: callee code entry
+ // -- t1: call kind information
+ // -----------------------------------
+
+ Label invoke, dont_adapt_arguments;
+
+ Label enough, too_few;
+ __ Branch(&dont_adapt_arguments, eq,
+ a2, Operand(SharedFunctionInfo::kDontAdaptArgumentsSentinel));
+ // We use Uless as the number of argument should always be greater than 0.
+ __ Branch(&too_few, Uless, a0, Operand(a2));
+
+ { // Enough parameters: actual >= expected.
+ // a0: actual number of arguments as a smi
+ // a1: function
+ // a2: expected number of arguments
+ // a3: code entry to call
+ __ bind(&enough);
+ EnterArgumentsAdaptorFrame(masm);
+
+ // Calculate copy start address into a0 and copy end address into a2.
+ __ sll(a0, a0, kPointerSizeLog2 - kSmiTagSize);
+ __ Addu(a0, fp, a0);
+ // Adjust for return address and receiver.
+ __ Addu(a0, a0, Operand(2 * kPointerSize));
+ // Compute copy end address.
+ __ sll(a2, a2, kPointerSizeLog2);
+ __ subu(a2, a0, a2);
+
+ // Copy the arguments (including the receiver) to the new stack frame.
+ // a0: copy start address
+ // a1: function
+ // a2: copy end address
+ // a3: code entry to call
+
+ Label copy;
+ __ bind(&copy);
+ __ lw(t0, MemOperand(a0));
+ __ push(t0);
+ __ Branch(USE_DELAY_SLOT, &copy, ne, a0, Operand(a2));
+ __ addiu(a0, a0, -kPointerSize); // In delay slot.
+
+ __ jmp(&invoke);
+ }
+
+ { // Too few parameters: Actual < expected.
+ __ bind(&too_few);
+ EnterArgumentsAdaptorFrame(masm);
+
+ // TODO(MIPS): Optimize these loops.
+
+ // Calculate copy start address into a0 and copy end address is fp.
+ // a0: actual number of arguments as a smi
+ // a1: function
+ // a2: expected number of arguments
+ // a3: code entry to call
+ __ sll(a0, a0, kPointerSizeLog2 - kSmiTagSize);
+ __ Addu(a0, fp, a0);
+ // Adjust for return address and receiver.
+ __ Addu(a0, a0, Operand(2 * kPointerSize));
+ // Compute copy end address. Also adjust for return address.
+ __ Addu(t3, fp, kPointerSize);
+
+ // Copy the arguments (including the receiver) to the new stack frame.
+ // a0: copy start address
+ // a1: function
+ // a2: expected number of arguments
+ // a3: code entry to call
+ // t3: copy end address
+ Label copy;
+ __ bind(&copy);
+ __ lw(t0, MemOperand(a0)); // Adjusted above for return addr and receiver.
+ __ push(t0);
+ __ Subu(a0, a0, kPointerSize);
+ __ Branch(&copy, ne, a0, Operand(t3));
+
+ // Fill the remaining expected arguments with undefined.
+ // a1: function
+ // a2: expected number of arguments
+ // a3: code entry to call
+ __ LoadRoot(t0, Heap::kUndefinedValueRootIndex);
+ __ sll(t2, a2, kPointerSizeLog2);
+ __ Subu(a2, fp, Operand(t2));
+ __ Addu(a2, a2, Operand(-4 * kPointerSize)); // Adjust for frame.
+
+ Label fill;
+ __ bind(&fill);
+ __ push(t0);
+ __ Branch(&fill, ne, sp, Operand(a2));
+ }
+
+ // Call the entry point.
+ __ bind(&invoke);
+
+ __ Call(a3);
+
+ // Exit frame and return.
+ LeaveArgumentsAdaptorFrame(masm);
+ __ Ret();
+
+
+ // -------------------------------------------
+ // Don't adapt arguments.
+ // -------------------------------------------
+ __ bind(&dont_adapt_arguments);
+ __ Jump(a3);
}