// Copyright 2012 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #if V8_TARGET_ARCH_ARM #include "src/codegen.h" #include "src/debug/debug.h" #include "src/deoptimizer.h" #include "src/full-codegen/full-codegen.h" #include "src/runtime/runtime.h" namespace v8 { namespace internal { #define __ ACCESS_MASM(masm) void Builtins::Generate_Adaptor(MacroAssembler* masm, CFunctionId id, BuiltinExtraArguments extra_args) { // ----------- S t a t e ------------- // -- r0 : number of arguments excluding receiver // (only guaranteed when the called function // is not marked as DontAdaptArguments) // -- r1 : called function // -- sp[0] : last argument // -- ... // -- sp[4 * (argc - 1)] : first argument // -- sp[4 * argc] : receiver // ----------------------------------- __ AssertFunction(r1); // Make sure we operate in the context of the called function (for example // ConstructStubs implemented in C++ will be run in the context of the caller // instead of the callee, due to the way that [[Construct]] is defined for // ordinary functions). // TODO(bmeurer): Can we make this more robust? __ ldr(cp, FieldMemOperand(r1, JSFunction::kContextOffset)); // Insert extra arguments. int num_extra_args = 0; if (extra_args == NEEDS_CALLED_FUNCTION) { num_extra_args = 1; __ push(r1); } else { DCHECK(extra_args == NO_EXTRA_ARGUMENTS); } // JumpToExternalReference expects r0 to contain the number of arguments // including the receiver and the extra arguments. But r0 is only valid // if the called function is marked as DontAdaptArguments, otherwise we // need to load the argument count from the SharedFunctionInfo. __ ldr(r2, FieldMemOperand(r1, JSFunction::kSharedFunctionInfoOffset)); __ ldr(r2, FieldMemOperand(r2, SharedFunctionInfo::kFormalParameterCountOffset)); __ SmiUntag(r2); __ cmp(r2, Operand(SharedFunctionInfo::kDontAdaptArgumentsSentinel)); __ mov(r0, r2, LeaveCC, ne); __ add(r0, r0, Operand(num_extra_args + 1)); __ JumpToExternalReference(ExternalReference(id, masm->isolate())); } // Load the built-in InternalArray function from the current context. static void GenerateLoadInternalArrayFunction(MacroAssembler* masm, Register result) { // Load the native context. __ ldr(result, MemOperand(cp, Context::SlotOffset(Context::GLOBAL_OBJECT_INDEX))); __ ldr(result, FieldMemOperand(result, JSGlobalObject::kNativeContextOffset)); // Load the InternalArray function from the native context. __ ldr(result, MemOperand(result, Context::SlotOffset( Context::INTERNAL_ARRAY_FUNCTION_INDEX))); } // Load the built-in Array function from the current context. static void GenerateLoadArrayFunction(MacroAssembler* masm, Register result) { // Load the native context. __ ldr(result, MemOperand(cp, Context::SlotOffset(Context::GLOBAL_OBJECT_INDEX))); __ ldr(result, FieldMemOperand(result, JSGlobalObject::kNativeContextOffset)); // Load the Array function from the native context. __ ldr(result, MemOperand(result, Context::SlotOffset(Context::ARRAY_FUNCTION_INDEX))); } void Builtins::Generate_InternalArrayCode(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- r0 : number of arguments // -- lr : return address // -- sp[...]: constructor arguments // ----------------------------------- Label generic_array_code, one_or_more_arguments, two_or_more_arguments; // Get the InternalArray function. GenerateLoadInternalArrayFunction(masm, r1); if (FLAG_debug_code) { // Initial map for the builtin InternalArray functions should be maps. __ ldr(r2, FieldMemOperand(r1, JSFunction::kPrototypeOrInitialMapOffset)); __ SmiTst(r2); __ Assert(ne, kUnexpectedInitialMapForInternalArrayFunction); __ CompareObjectType(r2, r3, r4, MAP_TYPE); __ Assert(eq, kUnexpectedInitialMapForInternalArrayFunction); } // Run the native code for the InternalArray function called as a normal // function. // tail call a stub InternalArrayConstructorStub stub(masm->isolate()); __ TailCallStub(&stub); } void Builtins::Generate_ArrayCode(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- r0 : number of arguments // -- lr : return address // -- sp[...]: constructor arguments // ----------------------------------- Label generic_array_code, one_or_more_arguments, two_or_more_arguments; // Get the Array function. GenerateLoadArrayFunction(masm, r1); if (FLAG_debug_code) { // Initial map for the builtin Array functions should be maps. __ ldr(r2, FieldMemOperand(r1, JSFunction::kPrototypeOrInitialMapOffset)); __ SmiTst(r2); __ Assert(ne, kUnexpectedInitialMapForArrayFunction); __ CompareObjectType(r2, r3, r4, MAP_TYPE); __ Assert(eq, kUnexpectedInitialMapForArrayFunction); } __ mov(r3, r1); // Run the native code for the Array function called as a normal function. // tail call a stub __ LoadRoot(r2, Heap::kUndefinedValueRootIndex); ArrayConstructorStub stub(masm->isolate()); __ TailCallStub(&stub); } // static void Builtins::Generate_StringConstructor(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- r0 : number of arguments // -- r1 : constructor function // -- lr : return address // -- sp[(argc - n - 1) * 4] : arg[n] (zero based) // -- sp[argc * 4] : receiver // ----------------------------------- // 1. Load the first argument into r0 and get rid of the rest (including the // receiver). Label no_arguments; { __ sub(r0, r0, Operand(1), SetCC); __ b(lo, &no_arguments); __ ldr(r0, MemOperand(sp, r0, LSL, kPointerSizeLog2, PreIndex)); __ Drop(2); } // 2a. At least one argument, return r0 if it's a string, otherwise // dispatch to appropriate conversion. Label to_string, symbol_descriptive_string; { __ JumpIfSmi(r0, &to_string); STATIC_ASSERT(FIRST_NONSTRING_TYPE == SYMBOL_TYPE); __ CompareObjectType(r0, r1, r1, FIRST_NONSTRING_TYPE); __ b(hi, &to_string); __ b(eq, &symbol_descriptive_string); __ Ret(); } // 2b. No arguments, return the empty string (and pop the receiver). __ bind(&no_arguments); { __ LoadRoot(r0, Heap::kempty_stringRootIndex); __ Ret(1); } // 3a. Convert r0 to a string. __ bind(&to_string); { ToStringStub stub(masm->isolate()); __ TailCallStub(&stub); } // 3b. Convert symbol in r0 to a string. __ bind(&symbol_descriptive_string); { __ Push(r0); __ TailCallRuntime(Runtime::kSymbolDescriptiveString, 1, 1); } } // static void Builtins::Generate_StringConstructor_ConstructStub(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- r0 : number of arguments // -- r1 : constructor function // -- r3 : original constructor // -- lr : return address // -- sp[(argc - n - 1) * 4] : arg[n] (zero based) // -- sp[argc * 4] : receiver // ----------------------------------- // 1. Load the first argument into r2 and get rid of the rest (including the // receiver). { Label no_arguments, done; __ sub(r0, r0, Operand(1), SetCC); __ b(lo, &no_arguments); __ ldr(r2, MemOperand(sp, r0, LSL, kPointerSizeLog2, PreIndex)); __ Drop(2); __ b(&done); __ bind(&no_arguments); __ LoadRoot(r2, Heap::kempty_stringRootIndex); __ Drop(1); __ bind(&done); } // 2. Make sure r2 is a string. { Label convert, done_convert; __ JumpIfSmi(r2, &convert); __ CompareObjectType(r2, r4, r4, FIRST_NONSTRING_TYPE); __ b(lo, &done_convert); __ bind(&convert); { FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL); ToStringStub stub(masm->isolate()); __ Push(r1, r3); __ Move(r0, r2); __ CallStub(&stub); __ Move(r2, r0); __ Pop(r1, r3); } __ bind(&done_convert); } // 3. Allocate a JSValue wrapper for the string. { // ----------- S t a t e ------------- // -- r2 : the first argument // -- r1 : constructor function // -- r3 : original constructor // -- lr : return address // ----------------------------------- Label allocate, done_allocate, rt_call; // Fall back to runtime if the original constructor and function differ. __ cmp(r1, r3); __ b(ne, &rt_call); __ Allocate(JSValue::kSize, r0, r3, r4, &allocate, TAG_OBJECT); __ bind(&done_allocate); // Initialize the JSValue in r0. __ LoadGlobalFunctionInitialMap(r1, r3, r4); __ str(r3, FieldMemOperand(r0, HeapObject::kMapOffset)); __ LoadRoot(r3, Heap::kEmptyFixedArrayRootIndex); __ str(r3, FieldMemOperand(r0, JSObject::kPropertiesOffset)); __ str(r3, FieldMemOperand(r0, JSObject::kElementsOffset)); __ str(r2, FieldMemOperand(r0, JSValue::kValueOffset)); STATIC_ASSERT(JSValue::kSize == 4 * kPointerSize); __ Ret(); // Fallback to the runtime to allocate in new space. __ bind(&allocate); { FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL); __ Move(r3, Smi::FromInt(JSValue::kSize)); __ Push(r1, r2, r3); __ CallRuntime(Runtime::kAllocateInNewSpace, 1); __ Pop(r1, r2); } __ b(&done_allocate); // Fallback to the runtime to create new object. __ bind(&rt_call); { FrameScope scope(masm, StackFrame::INTERNAL); __ Push(r1, r2); __ Push(r1, r3); // constructor function, original constructor __ CallRuntime(Runtime::kNewObject, 2); __ Pop(r1, r2); } __ str(r2, FieldMemOperand(r0, JSValue::kValueOffset)); __ Ret(); } } static void CallRuntimePassFunction( MacroAssembler* masm, Runtime::FunctionId function_id) { FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL); // Push a copy of the function onto the stack. __ push(r1); // Push function as parameter to the runtime call. __ Push(r1); __ CallRuntime(function_id, 1); // Restore receiver. __ pop(r1); } static void GenerateTailCallToSharedCode(MacroAssembler* masm) { __ ldr(r2, FieldMemOperand(r1, JSFunction::kSharedFunctionInfoOffset)); __ ldr(r2, FieldMemOperand(r2, SharedFunctionInfo::kCodeOffset)); __ add(r2, r2, Operand(Code::kHeaderSize - kHeapObjectTag)); __ Jump(r2); } static void GenerateTailCallToReturnedCode(MacroAssembler* masm) { __ add(r0, r0, Operand(Code::kHeaderSize - kHeapObjectTag)); __ Jump(r0); } void Builtins::Generate_InOptimizationQueue(MacroAssembler* masm) { // Checking whether the queued function is ready for install is optional, // since we come across interrupts and stack checks elsewhere. However, // not checking may delay installing ready functions, and always checking // would be quite expensive. A good compromise is to first check against // stack limit as a cue for an interrupt signal. Label ok; __ LoadRoot(ip, Heap::kStackLimitRootIndex); __ cmp(sp, Operand(ip)); __ b(hs, &ok); CallRuntimePassFunction(masm, Runtime::kTryInstallOptimizedCode); GenerateTailCallToReturnedCode(masm); __ bind(&ok); GenerateTailCallToSharedCode(masm); } static void Generate_JSConstructStubHelper(MacroAssembler* masm, bool is_api_function) { // ----------- S t a t e ------------- // -- r0 : number of arguments // -- r1 : constructor function // -- r2 : allocation site or undefined // -- r3 : original constructor // -- lr : return address // -- sp[...]: constructor arguments // ----------------------------------- Isolate* isolate = masm->isolate(); // Enter a construct frame. { FrameAndConstantPoolScope scope(masm, StackFrame::CONSTRUCT); // Preserve the incoming parameters on the stack. __ AssertUndefinedOrAllocationSite(r2, r4); __ push(r2); __ SmiTag(r0); __ push(r0); __ push(r1); __ push(r3); // Try to allocate the object without transitioning into C code. If any of // the preconditions is not met, the code bails out to the runtime call. Label rt_call, allocated; if (FLAG_inline_new) { ExternalReference debug_step_in_fp = ExternalReference::debug_step_in_fp_address(isolate); __ mov(r2, Operand(debug_step_in_fp)); __ ldr(r2, MemOperand(r2)); __ tst(r2, r2); __ b(ne, &rt_call); // Verify that the original constructor is a JSFunction. __ CompareObjectType(r3, r5, r4, JS_FUNCTION_TYPE); __ b(ne, &rt_call); // Load the initial map and verify that it is in fact a map. // r3: original constructor __ ldr(r2, FieldMemOperand(r3, JSFunction::kPrototypeOrInitialMapOffset)); __ JumpIfSmi(r2, &rt_call); __ CompareObjectType(r2, r5, r4, MAP_TYPE); __ b(ne, &rt_call); // Fall back to runtime if the expected base constructor and base // constructor differ. __ ldr(r5, FieldMemOperand(r2, Map::kConstructorOrBackPointerOffset)); __ cmp(r1, r5); __ b(ne, &rt_call); // Check that the constructor is not constructing a JSFunction (see // comments in Runtime_NewObject in runtime.cc). In which case the // initial map's instance type would be JS_FUNCTION_TYPE. // r1: constructor function // r2: initial map __ CompareInstanceType(r2, r5, JS_FUNCTION_TYPE); __ b(eq, &rt_call); if (!is_api_function) { Label allocate; MemOperand bit_field3 = FieldMemOperand(r2, Map::kBitField3Offset); // Check if slack tracking is enabled. __ ldr(r4, bit_field3); __ DecodeField(r3, r4); __ cmp(r3, Operand(Map::kSlackTrackingCounterEnd)); __ b(lt, &allocate); // Decrease generous allocation count. __ sub(r4, r4, Operand(1 << Map::Counter::kShift)); __ str(r4, bit_field3); __ cmp(r3, Operand(Map::kSlackTrackingCounterEnd)); __ b(ne, &allocate); __ Push(r1, r2); __ push(r2); // r2 = intial map __ CallRuntime(Runtime::kFinalizeInstanceSize, 1); __ pop(r2); __ pop(r1); __ bind(&allocate); } // Now allocate the JSObject on the heap. // r1: constructor function // r2: initial map Label rt_call_reload_new_target; __ ldrb(r3, FieldMemOperand(r2, Map::kInstanceSizeOffset)); __ Allocate(r3, r4, r5, r6, &rt_call_reload_new_target, SIZE_IN_WORDS); // Allocated the JSObject, now initialize the fields. Map is set to // initial map and properties and elements are set to empty fixed array. // r1: constructor function // r2: initial map // r3: object size // r4: JSObject (not tagged) __ LoadRoot(r6, Heap::kEmptyFixedArrayRootIndex); __ mov(r5, r4); DCHECK_EQ(0 * kPointerSize, JSObject::kMapOffset); __ str(r2, MemOperand(r5, kPointerSize, PostIndex)); DCHECK_EQ(1 * kPointerSize, JSObject::kPropertiesOffset); __ str(r6, MemOperand(r5, kPointerSize, PostIndex)); DCHECK_EQ(2 * kPointerSize, JSObject::kElementsOffset); __ str(r6, MemOperand(r5, kPointerSize, PostIndex)); // Fill all the in-object properties with the appropriate filler. // r1: constructor function // r2: initial map // r3: object size // r4: JSObject (not tagged) // r5: First in-object property of JSObject (not tagged) DCHECK_EQ(3 * kPointerSize, JSObject::kHeaderSize); __ LoadRoot(r6, Heap::kUndefinedValueRootIndex); if (!is_api_function) { Label no_inobject_slack_tracking; // Check if slack tracking is enabled. __ ldr(ip, FieldMemOperand(r2, Map::kBitField3Offset)); __ DecodeField(ip); __ cmp(ip, Operand(Map::kSlackTrackingCounterEnd)); __ b(lt, &no_inobject_slack_tracking); // Allocate object with a slack. __ ldr(r0, FieldMemOperand(r2, Map::kInstanceSizesOffset)); __ Ubfx(r0, r0, Map::kInObjectPropertiesOrConstructorFunctionIndexByte * kBitsPerByte, kBitsPerByte); __ ldr(r2, FieldMemOperand(r2, Map::kInstanceAttributesOffset)); __ Ubfx(r2, r2, Map::kUnusedPropertyFieldsByte * kBitsPerByte, kBitsPerByte); __ sub(r0, r0, Operand(r2)); __ add(r0, r5, Operand(r0, LSL, kPointerSizeLog2)); // r0: offset of first field after pre-allocated fields if (FLAG_debug_code) { __ add(ip, r4, Operand(r3, LSL, kPointerSizeLog2)); // End of object. __ cmp(r0, ip); __ Assert(le, kUnexpectedNumberOfPreAllocatedPropertyFields); } __ InitializeFieldsWithFiller(r5, r0, r6); // To allow for truncation. __ LoadRoot(r6, Heap::kOnePointerFillerMapRootIndex); // Fill the remaining fields with one pointer filler map. __ bind(&no_inobject_slack_tracking); } __ add(r0, r4, Operand(r3, LSL, kPointerSizeLog2)); // End of object. __ InitializeFieldsWithFiller(r5, r0, r6); // Add the object tag to make the JSObject real, so that we can continue // and jump into the continuation code at any time from now on. __ add(r4, r4, Operand(kHeapObjectTag)); // Continue with JSObject being successfully allocated // r4: JSObject __ jmp(&allocated); // Reload the original constructor and fall-through. __ bind(&rt_call_reload_new_target); __ ldr(r3, MemOperand(sp, 0 * kPointerSize)); } // Allocate the new receiver object using the runtime call. // r1: constructor function // r3: original constructor __ bind(&rt_call); __ push(r1); // constructor function __ push(r3); // original constructor __ CallRuntime(Runtime::kNewObject, 2); __ mov(r4, r0); // Receiver for constructor call allocated. // r4: JSObject __ bind(&allocated); // Restore the parameters. __ pop(r3); __ pop(r1); // Retrieve smi-tagged arguments count from the stack. __ ldr(r0, MemOperand(sp)); __ SmiUntag(r0); // Push new.target onto the construct frame. This is stored just below the // receiver on the stack. __ push(r3); __ push(r4); __ push(r4); // Set up pointer to last argument. __ add(r2, fp, Operand(StandardFrameConstants::kCallerSPOffset)); // Copy arguments and receiver to the expression stack. // r0: number of arguments // r1: constructor function // r2: address of last argument (caller sp) // r3: number of arguments (smi-tagged) // sp[0]: receiver // sp[1]: receiver // sp[2]: new.target // sp[3]: number of arguments (smi-tagged) Label loop, entry; __ SmiTag(r3, r0); __ b(&entry); __ bind(&loop); __ ldr(ip, MemOperand(r2, r3, LSL, kPointerSizeLog2 - 1)); __ push(ip); __ bind(&entry); __ sub(r3, r3, Operand(2), SetCC); __ b(ge, &loop); // Call the function. // r0: number of arguments // r1: constructor function if (is_api_function) { __ ldr(cp, FieldMemOperand(r1, JSFunction::kContextOffset)); Handle code = masm->isolate()->builtins()->HandleApiCallConstruct(); __ Call(code, RelocInfo::CODE_TARGET); } else { ParameterCount actual(r0); __ InvokeFunction(r1, actual, CALL_FUNCTION, NullCallWrapper()); } // Store offset of return address for deoptimizer. if (!is_api_function) { masm->isolate()->heap()->SetConstructStubDeoptPCOffset(masm->pc_offset()); } // Restore context from the frame. // r0: result // sp[0]: receiver // sp[1]: new.target // sp[2]: number of arguments (smi-tagged) __ ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset)); // If the result is an object (in the ECMA sense), we should get rid // of the receiver and use the result; see ECMA-262 section 13.2.2-7 // on page 74. Label use_receiver, exit; // If the result is a smi, it is *not* an object in the ECMA sense. // r0: result // sp[0]: receiver // sp[1]: new.target // sp[2]: number of arguments (smi-tagged) __ JumpIfSmi(r0, &use_receiver); // If the type of the result (stored in its map) is less than // FIRST_SPEC_OBJECT_TYPE, it is not an object in the ECMA sense. __ CompareObjectType(r0, r1, r3, FIRST_SPEC_OBJECT_TYPE); __ b(ge, &exit); // Throw away the result of the constructor invocation and use the // on-stack receiver as the result. __ bind(&use_receiver); __ ldr(r0, MemOperand(sp)); // Remove receiver from the stack, remove caller arguments, and // return. __ bind(&exit); // r0: result // sp[0]: receiver (newly allocated object) // sp[1]: new.target (original constructor) // sp[2]: number of arguments (smi-tagged) __ ldr(r1, MemOperand(sp, 2 * kPointerSize)); // Leave construct frame. } __ add(sp, sp, Operand(r1, LSL, kPointerSizeLog2 - 1)); __ add(sp, sp, Operand(kPointerSize)); __ IncrementCounter(isolate->counters()->constructed_objects(), 1, r1, r2); __ Jump(lr); } void Builtins::Generate_JSConstructStubGeneric(MacroAssembler* masm) { Generate_JSConstructStubHelper(masm, false); } void Builtins::Generate_JSConstructStubApi(MacroAssembler* masm) { Generate_JSConstructStubHelper(masm, true); } void Builtins::Generate_JSConstructStubForDerived(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- r0 : number of arguments // -- r1 : constructor function // -- r2 : allocation site or undefined // -- r3 : original constructor // -- lr : return address // -- sp[...]: constructor arguments // ----------------------------------- { FrameScope frame_scope(masm, StackFrame::CONSTRUCT); __ AssertUndefinedOrAllocationSite(r2, r4); __ push(r2); __ mov(r4, r0); __ SmiTag(r4); __ push(r4); // Smi-tagged arguments count. // Push new.target. __ push(r3); // receiver is the hole. __ LoadRoot(ip, Heap::kTheHoleValueRootIndex); __ push(ip); // Set up pointer to last argument. __ add(r2, fp, Operand(StandardFrameConstants::kCallerSPOffset)); // Copy arguments and receiver to the expression stack. // r0: number of arguments // r1: constructor function // r2: address of last argument (caller sp) // r4: number of arguments (smi-tagged) // sp[0]: receiver // sp[1]: new.target // sp[2]: number of arguments (smi-tagged) Label loop, entry; __ b(&entry); __ bind(&loop); __ ldr(ip, MemOperand(r2, r4, LSL, kPointerSizeLog2 - 1)); __ push(ip); __ bind(&entry); __ sub(r4, r4, Operand(2), SetCC); __ b(ge, &loop); // Handle step in. Label skip_step_in; ExternalReference debug_step_in_fp = ExternalReference::debug_step_in_fp_address(masm->isolate()); __ mov(r2, Operand(debug_step_in_fp)); __ ldr(r2, MemOperand(r2)); __ tst(r2, r2); __ b(eq, &skip_step_in); __ Push(r0); __ Push(r1); __ Push(r1); __ CallRuntime(Runtime::kHandleStepInForDerivedConstructors, 1); __ Pop(r1); __ Pop(r0); __ bind(&skip_step_in); // Call the function. // r0: number of arguments // r1: constructor function ParameterCount actual(r0); __ InvokeFunction(r1, actual, CALL_FUNCTION, NullCallWrapper()); // Restore context from the frame. // r0: result // sp[0]: number of arguments (smi-tagged) __ ldr(cp, MemOperand(fp, StandardFrameConstants::kContextOffset)); // Get arguments count, skipping over new.target. __ ldr(r1, MemOperand(sp, kPointerSize)); // Leave construct frame. } __ add(sp, sp, Operand(r1, LSL, kPointerSizeLog2 - 1)); __ add(sp, sp, Operand(kPointerSize)); __ Jump(lr); } enum IsTagged { kArgcIsSmiTagged, kArgcIsUntaggedInt }; // Clobbers r2; preserves all other registers. static void Generate_CheckStackOverflow(MacroAssembler* masm, Register argc, IsTagged argc_is_tagged) { // Check the stack for overflow. We are not trying to catch // interruptions (e.g. debug break and preemption) here, so the "real stack // limit" is checked. Label okay; __ LoadRoot(r2, Heap::kRealStackLimitRootIndex); // Make r2 the space we have left. The stack might already be overflowed // here which will cause r2 to become negative. __ sub(r2, sp, r2); // Check if the arguments will overflow the stack. if (argc_is_tagged == kArgcIsSmiTagged) { __ cmp(r2, Operand::PointerOffsetFromSmiKey(argc)); } else { DCHECK(argc_is_tagged == kArgcIsUntaggedInt); __ cmp(r2, Operand(argc, LSL, kPointerSizeLog2)); } __ b(gt, &okay); // Signed comparison. // Out of stack space. __ CallRuntime(Runtime::kThrowStackOverflow, 0); __ bind(&okay); } static void Generate_JSEntryTrampolineHelper(MacroAssembler* masm, bool is_construct) { // Called from Generate_JS_Entry // r0: new.target // r1: function // r2: receiver // r3: argc // r4: argv // r5-r6, r8 (if !FLAG_enable_embedded_constant_pool) and cp may be clobbered ProfileEntryHookStub::MaybeCallEntryHook(masm); // Clear the context before we push it when entering the internal frame. __ mov(cp, Operand::Zero()); // Enter an internal frame. { FrameScope scope(masm, StackFrame::INTERNAL); // Setup the context (we need to use the caller context from the isolate). ExternalReference context_address(Isolate::kContextAddress, masm->isolate()); __ mov(cp, Operand(context_address)); __ ldr(cp, MemOperand(cp)); __ InitializeRootRegister(); // Push the function and the receiver onto the stack. __ Push(r1, r2); // Check if we have enough stack space to push all arguments. // Clobbers r2. Generate_CheckStackOverflow(masm, r3, kArgcIsUntaggedInt); // Remember new.target. __ mov(r5, r0); // Copy arguments to the stack in a loop. // r1: function // r3: argc // r4: argv, i.e. points to first arg Label loop, entry; __ add(r2, r4, Operand(r3, LSL, kPointerSizeLog2)); // r2 points past last arg. __ b(&entry); __ bind(&loop); __ ldr(r0, MemOperand(r4, kPointerSize, PostIndex)); // read next parameter __ ldr(r0, MemOperand(r0)); // dereference handle __ push(r0); // push parameter __ bind(&entry); __ cmp(r4, r2); __ b(ne, &loop); // Setup new.target and argc. __ mov(r0, Operand(r3)); __ mov(r3, Operand(r5)); // Initialize all JavaScript callee-saved registers, since they will be seen // by the garbage collector as part of handlers. __ LoadRoot(r4, Heap::kUndefinedValueRootIndex); __ mov(r5, Operand(r4)); __ mov(r6, Operand(r4)); if (!FLAG_enable_embedded_constant_pool) { __ mov(r8, Operand(r4)); } if (kR9Available == 1) { __ mov(r9, Operand(r4)); } // Invoke the code. Handle builtin = is_construct ? masm->isolate()->builtins()->Construct() : masm->isolate()->builtins()->Call(); __ Call(builtin, RelocInfo::CODE_TARGET); // Exit the JS frame and remove the parameters (except function), and // return. // Respect ABI stack constraint. } __ Jump(lr); // r0: result } void Builtins::Generate_JSEntryTrampoline(MacroAssembler* masm) { Generate_JSEntryTrampolineHelper(masm, false); } void Builtins::Generate_JSConstructEntryTrampoline(MacroAssembler* masm) { Generate_JSEntryTrampolineHelper(masm, true); } // Generate code for entering a JS function with the interpreter. // On entry to the function the receiver and arguments have been pushed on the // stack left to right. The actual argument count matches the formal parameter // count expected by the function. // // The live registers are: // o r1: the JS function object being called. // o cp: our context // o pp: the caller's constant pool pointer (if enabled) // o fp: the caller's frame pointer // o sp: stack pointer // o lr: return address // // The function builds a JS frame. Please see JavaScriptFrameConstants in // frames-arm.h for its layout. // TODO(rmcilroy): We will need to include the current bytecode pointer in the // frame. void Builtins::Generate_InterpreterEntryTrampoline(MacroAssembler* masm) { // Open a frame scope to indicate that there is a frame on the stack. The // MANUAL indicates that the scope shouldn't actually generate code to set up // the frame (that is done below). FrameScope frame_scope(masm, StackFrame::MANUAL); __ PushFixedFrame(r1); __ add(fp, sp, Operand(StandardFrameConstants::kFixedFrameSizeFromFp)); // Get the bytecode array from the function object and load the pointer to the // first entry into kInterpreterBytecodeRegister. __ ldr(r0, FieldMemOperand(r1, JSFunction::kSharedFunctionInfoOffset)); __ ldr(kInterpreterBytecodeArrayRegister, FieldMemOperand(r0, SharedFunctionInfo::kFunctionDataOffset)); if (FLAG_debug_code) { // Check function data field is actually a BytecodeArray object. __ SmiTst(kInterpreterBytecodeArrayRegister); __ Assert(ne, kFunctionDataShouldBeBytecodeArrayOnInterpreterEntry); __ CompareObjectType(kInterpreterBytecodeArrayRegister, r0, no_reg, BYTECODE_ARRAY_TYPE); __ Assert(eq, kFunctionDataShouldBeBytecodeArrayOnInterpreterEntry); } // Allocate the local and temporary register file on the stack. { // Load frame size from the BytecodeArray object. __ ldr(r4, FieldMemOperand(kInterpreterBytecodeArrayRegister, BytecodeArray::kFrameSizeOffset)); // Do a stack check to ensure we don't go over the limit. Label ok; __ sub(r9, sp, Operand(r4)); __ LoadRoot(r2, Heap::kRealStackLimitRootIndex); __ cmp(r9, Operand(r2)); __ b(hs, &ok); __ CallRuntime(Runtime::kThrowStackOverflow, 0); __ bind(&ok); // If ok, push undefined as the initial value for all register file entries. Label loop_header; Label loop_check; __ LoadRoot(r9, Heap::kUndefinedValueRootIndex); __ b(&loop_check, al); __ bind(&loop_header); // TODO(rmcilroy): Consider doing more than one push per loop iteration. __ push(r9); // Continue loop if not done. __ bind(&loop_check); __ sub(r4, r4, Operand(kPointerSize), SetCC); __ b(&loop_header, ge); } // TODO(rmcilroy): List of things not currently dealt with here but done in // fullcodegen's prologue: // - Support profiler (specifically profiling_counter). // - Call ProfileEntryHookStub when isolate has a function_entry_hook. // - Allow simulator stop operations if FLAG_stop_at is set. // - Code aging of the BytecodeArray object. // Perform stack guard check. { Label ok; __ LoadRoot(ip, Heap::kStackLimitRootIndex); __ cmp(sp, Operand(ip)); __ b(hs, &ok); __ push(kInterpreterBytecodeArrayRegister); __ CallRuntime(Runtime::kStackGuard, 0); __ pop(kInterpreterBytecodeArrayRegister); __ bind(&ok); } // Load accumulator, register file, bytecode offset, dispatch table into // registers. __ LoadRoot(kInterpreterAccumulatorRegister, Heap::kUndefinedValueRootIndex); __ sub(kInterpreterRegisterFileRegister, fp, Operand(kPointerSize + StandardFrameConstants::kFixedFrameSizeFromFp)); __ mov(kInterpreterBytecodeOffsetRegister, Operand(BytecodeArray::kHeaderSize - kHeapObjectTag)); __ LoadRoot(kInterpreterDispatchTableRegister, Heap::kInterpreterTableRootIndex); __ add(kInterpreterDispatchTableRegister, kInterpreterDispatchTableRegister, Operand(FixedArray::kHeaderSize - kHeapObjectTag)); // Dispatch to the first bytecode handler for the function. __ ldrb(r1, MemOperand(kInterpreterBytecodeArrayRegister, kInterpreterBytecodeOffsetRegister)); __ ldr(ip, MemOperand(kInterpreterDispatchTableRegister, r1, LSL, kPointerSizeLog2)); // TODO(rmcilroy): Make dispatch table point to code entrys to avoid untagging // and header removal. __ add(ip, ip, Operand(Code::kHeaderSize - kHeapObjectTag)); __ Call(ip); } void Builtins::Generate_InterpreterExitTrampoline(MacroAssembler* masm) { // TODO(rmcilroy): List of things not currently dealt with here but done in // fullcodegen's EmitReturnSequence. // - Supporting FLAG_trace for Runtime::TraceExit. // - Support profiler (specifically decrementing profiling_counter // appropriately and calling out to HandleInterrupts if necessary). // The return value is in accumulator, which is already in r0. // Leave the frame (also dropping the register file). __ LeaveFrame(StackFrame::JAVA_SCRIPT); // Drop receiver + arguments and return. __ ldr(ip, FieldMemOperand(kInterpreterBytecodeArrayRegister, BytecodeArray::kParameterSizeOffset)); __ add(sp, sp, ip, LeaveCC); __ Jump(lr); } static void Generate_InterpreterPushArgs(MacroAssembler* masm, Register index, Register limit, Register scratch) { Label loop_header, loop_check; __ b(al, &loop_check); __ bind(&loop_header); __ ldr(scratch, MemOperand(index, -kPointerSize, PostIndex)); __ push(scratch); __ bind(&loop_check); __ cmp(index, limit); __ b(gt, &loop_header); } // static void Builtins::Generate_InterpreterPushArgsAndCall(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- r0 : the number of arguments (not including the receiver) // -- r2 : the address of the first argument to be pushed. Subsequent // arguments should be consecutive above this, in the same order as // they are to be pushed onto the stack. // -- r1 : the target to call (can be any Object). // ----------------------------------- // Find the address of the last argument. __ add(r3, r0, Operand(1)); // Add one for receiver. __ mov(r3, Operand(r3, LSL, kPointerSizeLog2)); __ sub(r3, r2, r3); // Push the arguments. Generate_InterpreterPushArgs(masm, r2, r3, r4); // Call the target. __ Jump(masm->isolate()->builtins()->Call(), RelocInfo::CODE_TARGET); } // static void Builtins::Generate_InterpreterPushArgsAndConstruct(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- r0 : argument count (not including receiver) // -- r3 : original constructor // -- r1 : constructor to call // -- r2 : address of the first argument // ----------------------------------- // Find the address of the last argument. __ mov(r4, Operand(r0, LSL, kPointerSizeLog2)); __ sub(r4, r2, r4); // Push a slot for the receiver to be constructed. __ push(r0); // Push the arguments. Generate_InterpreterPushArgs(masm, r2, r4, r5); // Call the constructor with r0, r1, and r3 unmodified. __ Jump(masm->isolate()->builtins()->Construct(), RelocInfo::CONSTRUCT_CALL); } void Builtins::Generate_CompileLazy(MacroAssembler* masm) { CallRuntimePassFunction(masm, Runtime::kCompileLazy); GenerateTailCallToReturnedCode(masm); } static void CallCompileOptimized(MacroAssembler* masm, bool concurrent) { FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL); // Push a copy of the function onto the stack. __ push(r1); // Push function as parameter to the runtime call. __ Push(r1); // Whether to compile in a background thread. __ LoadRoot( ip, concurrent ? Heap::kTrueValueRootIndex : Heap::kFalseValueRootIndex); __ push(ip); __ CallRuntime(Runtime::kCompileOptimized, 2); // Restore receiver. __ pop(r1); } void Builtins::Generate_CompileOptimized(MacroAssembler* masm) { CallCompileOptimized(masm, false); GenerateTailCallToReturnedCode(masm); } void Builtins::Generate_CompileOptimizedConcurrent(MacroAssembler* masm) { CallCompileOptimized(masm, true); GenerateTailCallToReturnedCode(masm); } static void GenerateMakeCodeYoungAgainCommon(MacroAssembler* masm) { // For now, we are relying on the fact that make_code_young doesn't do any // garbage collection which allows us to save/restore the registers without // worrying about which of them contain pointers. We also don't build an // internal frame to make the code faster, since we shouldn't have to do stack // crawls in MakeCodeYoung. This seems a bit fragile. // The following registers must be saved and restored when calling through to // the runtime: // r0 - contains return address (beginning of patch sequence) // r1 - isolate FrameScope scope(masm, StackFrame::MANUAL); __ stm(db_w, sp, r0.bit() | r1.bit() | fp.bit() | lr.bit()); __ PrepareCallCFunction(2, 0, r2); __ mov(r1, Operand(ExternalReference::isolate_address(masm->isolate()))); __ CallCFunction( ExternalReference::get_make_code_young_function(masm->isolate()), 2); __ ldm(ia_w, sp, r0.bit() | r1.bit() | fp.bit() | lr.bit()); __ mov(pc, r0); } #define DEFINE_CODE_AGE_BUILTIN_GENERATOR(C) \ void Builtins::Generate_Make##C##CodeYoungAgainEvenMarking( \ MacroAssembler* masm) { \ GenerateMakeCodeYoungAgainCommon(masm); \ } \ void Builtins::Generate_Make##C##CodeYoungAgainOddMarking( \ MacroAssembler* masm) { \ GenerateMakeCodeYoungAgainCommon(masm); \ } CODE_AGE_LIST(DEFINE_CODE_AGE_BUILTIN_GENERATOR) #undef DEFINE_CODE_AGE_BUILTIN_GENERATOR void Builtins::Generate_MarkCodeAsExecutedOnce(MacroAssembler* masm) { // For now, as in GenerateMakeCodeYoungAgainCommon, we are relying on the fact // that make_code_young doesn't do any garbage collection which allows us to // save/restore the registers without worrying about which of them contain // pointers. // The following registers must be saved and restored when calling through to // the runtime: // r0 - contains return address (beginning of patch sequence) // r1 - isolate FrameScope scope(masm, StackFrame::MANUAL); __ stm(db_w, sp, r0.bit() | r1.bit() | fp.bit() | lr.bit()); __ PrepareCallCFunction(2, 0, r2); __ mov(r1, Operand(ExternalReference::isolate_address(masm->isolate()))); __ CallCFunction(ExternalReference::get_mark_code_as_executed_function( masm->isolate()), 2); __ ldm(ia_w, sp, r0.bit() | r1.bit() | fp.bit() | lr.bit()); // Perform prologue operations usually performed by the young code stub. __ PushFixedFrame(r1); __ add(fp, sp, Operand(StandardFrameConstants::kFixedFrameSizeFromFp)); // Jump to point after the code-age stub. __ add(r0, r0, Operand(kNoCodeAgeSequenceLength)); __ mov(pc, r0); } void Builtins::Generate_MarkCodeAsExecutedTwice(MacroAssembler* masm) { GenerateMakeCodeYoungAgainCommon(masm); } void Builtins::Generate_MarkCodeAsToBeExecutedOnce(MacroAssembler* masm) { Generate_MarkCodeAsExecutedOnce(masm); } static void Generate_NotifyStubFailureHelper(MacroAssembler* masm, SaveFPRegsMode save_doubles) { { FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL); // Preserve registers across notification, this is important for compiled // stubs that tail call the runtime on deopts passing their parameters in // registers. __ stm(db_w, sp, kJSCallerSaved | kCalleeSaved); // Pass the function and deoptimization type to the runtime system. __ CallRuntime(Runtime::kNotifyStubFailure, 0, save_doubles); __ ldm(ia_w, sp, kJSCallerSaved | kCalleeSaved); } __ add(sp, sp, Operand(kPointerSize)); // Ignore state __ mov(pc, lr); // Jump to miss handler } void Builtins::Generate_NotifyStubFailure(MacroAssembler* masm) { Generate_NotifyStubFailureHelper(masm, kDontSaveFPRegs); } void Builtins::Generate_NotifyStubFailureSaveDoubles(MacroAssembler* masm) { Generate_NotifyStubFailureHelper(masm, kSaveFPRegs); } static void Generate_NotifyDeoptimizedHelper(MacroAssembler* masm, Deoptimizer::BailoutType type) { { FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL); // Pass the function and deoptimization type to the runtime system. __ mov(r0, Operand(Smi::FromInt(static_cast(type)))); __ push(r0); __ CallRuntime(Runtime::kNotifyDeoptimized, 1); } // Get the full codegen state from the stack and untag it -> r6. __ ldr(r6, MemOperand(sp, 0 * kPointerSize)); __ SmiUntag(r6); // Switch on the state. Label with_tos_register, unknown_state; __ cmp(r6, Operand(FullCodeGenerator::NO_REGISTERS)); __ b(ne, &with_tos_register); __ add(sp, sp, Operand(1 * kPointerSize)); // Remove state. __ Ret(); __ bind(&with_tos_register); __ ldr(r0, MemOperand(sp, 1 * kPointerSize)); __ cmp(r6, Operand(FullCodeGenerator::TOS_REG)); __ b(ne, &unknown_state); __ add(sp, sp, Operand(2 * kPointerSize)); // Remove state. __ Ret(); __ bind(&unknown_state); __ stop("no cases left"); } void Builtins::Generate_NotifyDeoptimized(MacroAssembler* masm) { Generate_NotifyDeoptimizedHelper(masm, Deoptimizer::EAGER); } void Builtins::Generate_NotifySoftDeoptimized(MacroAssembler* masm) { Generate_NotifyDeoptimizedHelper(masm, Deoptimizer::SOFT); } void Builtins::Generate_NotifyLazyDeoptimized(MacroAssembler* masm) { Generate_NotifyDeoptimizedHelper(masm, Deoptimizer::LAZY); } void Builtins::Generate_OnStackReplacement(MacroAssembler* masm) { // Lookup the function in the JavaScript frame. __ ldr(r0, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset)); { FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL); // Pass function as argument. __ push(r0); __ CallRuntime(Runtime::kCompileForOnStackReplacement, 1); } // If the code object is null, just return to the unoptimized code. Label skip; __ cmp(r0, Operand(Smi::FromInt(0))); __ b(ne, &skip); __ Ret(); __ bind(&skip); // Load deoptimization data from the code object. // = [#deoptimization_data_offset] __ ldr(r1, FieldMemOperand(r0, Code::kDeoptimizationDataOffset)); { ConstantPoolUnavailableScope constant_pool_unavailable(masm); __ add(r0, r0, Operand(Code::kHeaderSize - kHeapObjectTag)); // Code start if (FLAG_enable_embedded_constant_pool) { __ LoadConstantPoolPointerRegisterFromCodeTargetAddress(r0); } // Load the OSR entrypoint offset from the deoptimization data. // = [#header_size + #osr_pc_offset] __ ldr(r1, FieldMemOperand(r1, FixedArray::OffsetOfElementAt( DeoptimizationInputData::kOsrPcOffsetIndex))); // Compute the target address = code start + osr_offset __ add(lr, r0, Operand::SmiUntag(r1)); // And "return" to the OSR entry point of the function. __ Ret(); } } void Builtins::Generate_OsrAfterStackCheck(MacroAssembler* masm) { // We check the stack limit as indicator that recompilation might be done. Label ok; __ LoadRoot(ip, Heap::kStackLimitRootIndex); __ cmp(sp, Operand(ip)); __ b(hs, &ok); { FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL); __ CallRuntime(Runtime::kStackGuard, 0); } __ Jump(masm->isolate()->builtins()->OnStackReplacement(), RelocInfo::CODE_TARGET); __ bind(&ok); __ Ret(); } // static void Builtins::Generate_FunctionCall(MacroAssembler* masm) { // 1. Make sure we have at least one argument. // r0: actual number of arguments { Label done; __ cmp(r0, Operand::Zero()); __ b(ne, &done); __ PushRoot(Heap::kUndefinedValueRootIndex); __ add(r0, r0, Operand(1)); __ bind(&done); } // 2. Get the callable to call (passed as receiver) from the stack. // r0: actual number of arguments __ ldr(r1, MemOperand(sp, r0, LSL, kPointerSizeLog2)); // 3. Shift arguments and return address one slot down on the stack // (overwriting the original receiver). Adjust argument count to make // the original first argument the new receiver. // r0: actual number of arguments // r1: callable { Label loop; // Calculate the copy start address (destination). Copy end address is sp. __ add(r2, sp, Operand(r0, LSL, kPointerSizeLog2)); __ bind(&loop); __ ldr(ip, MemOperand(r2, -kPointerSize)); __ str(ip, MemOperand(r2)); __ sub(r2, r2, Operand(kPointerSize)); __ cmp(r2, sp); __ b(ne, &loop); // Adjust the actual number of arguments and remove the top element // (which is a copy of the last argument). __ sub(r0, r0, Operand(1)); __ pop(); } // 4. Call the callable. __ Jump(masm->isolate()->builtins()->Call(), RelocInfo::CODE_TARGET); } static void Generate_PushAppliedArguments(MacroAssembler* masm, const int vectorOffset, const int argumentsOffset, const int indexOffset, const int limitOffset) { Label entry, loop; Register receiver = LoadDescriptor::ReceiverRegister(); Register key = LoadDescriptor::NameRegister(); Register slot = LoadDescriptor::SlotRegister(); Register vector = LoadWithVectorDescriptor::VectorRegister(); __ ldr(key, MemOperand(fp, indexOffset)); __ b(&entry); // Load the current argument from the arguments array. __ bind(&loop); __ ldr(receiver, MemOperand(fp, argumentsOffset)); // Use inline caching to speed up access to arguments. int slot_index = TypeFeedbackVector::PushAppliedArgumentsIndex(); __ mov(slot, Operand(Smi::FromInt(slot_index))); __ ldr(vector, MemOperand(fp, vectorOffset)); Handle ic = KeyedLoadICStub(masm->isolate(), LoadICState(kNoExtraICState)).GetCode(); __ Call(ic, RelocInfo::CODE_TARGET); // Push the nth argument. __ push(r0); __ ldr(key, MemOperand(fp, indexOffset)); __ add(key, key, Operand(1 << kSmiTagSize)); __ str(key, MemOperand(fp, indexOffset)); // Test if the copy loop has finished copying all the elements from the // arguments object. __ bind(&entry); __ ldr(r1, MemOperand(fp, limitOffset)); __ cmp(key, r1); __ b(ne, &loop); // On exit, the pushed arguments count is in r0, untagged __ mov(r0, key); __ SmiUntag(r0); } // Used by FunctionApply and ReflectApply static void Generate_ApplyHelper(MacroAssembler* masm, bool targetIsArgument) { const int kFormalParameters = targetIsArgument ? 3 : 2; const int kStackSize = kFormalParameters + 1; { FrameAndConstantPoolScope frame_scope(masm, StackFrame::INTERNAL); const int kArgumentsOffset = kFPOnStackSize + kPCOnStackSize; const int kReceiverOffset = kArgumentsOffset + kPointerSize; const int kFunctionOffset = kReceiverOffset + kPointerSize; const int kVectorOffset = InternalFrameConstants::kCodeOffset - 1 * kPointerSize; // Push the vector. __ ldr(r1, FieldMemOperand(r1, JSFunction::kSharedFunctionInfoOffset)); __ ldr(r1, FieldMemOperand(r1, SharedFunctionInfo::kFeedbackVectorOffset)); __ Push(r1); __ ldr(r0, MemOperand(fp, kFunctionOffset)); // get the function __ ldr(r1, MemOperand(fp, kArgumentsOffset)); // get the args array __ Push(r0, r1); if (targetIsArgument) { __ InvokeBuiltin(Context::REFLECT_APPLY_PREPARE_BUILTIN_INDEX, CALL_FUNCTION); } else { __ InvokeBuiltin(Context::APPLY_PREPARE_BUILTIN_INDEX, CALL_FUNCTION); } Generate_CheckStackOverflow(masm, r0, kArgcIsSmiTagged); // Push current limit and index. const int kIndexOffset = kVectorOffset - (2 * kPointerSize); const int kLimitOffset = kVectorOffset - (1 * kPointerSize); __ mov(r1, Operand::Zero()); __ ldr(r2, MemOperand(fp, kReceiverOffset)); __ Push(r0, r1, r2); // limit, initial index and receiver. // Copy all arguments from the array to the stack. Generate_PushAppliedArguments(masm, kVectorOffset, kArgumentsOffset, kIndexOffset, kLimitOffset); // Call the callable. // TODO(bmeurer): This should be a tail call according to ES6. __ ldr(r1, MemOperand(fp, kFunctionOffset)); __ Call(masm->isolate()->builtins()->Call(), RelocInfo::CODE_TARGET); // Tear down the internal frame and remove function, receiver and args. } __ add(sp, sp, Operand(kStackSize * kPointerSize)); __ Jump(lr); } static void Generate_ConstructHelper(MacroAssembler* masm) { const int kFormalParameters = 3; const int kStackSize = kFormalParameters + 1; { FrameAndConstantPoolScope frame_scope(masm, StackFrame::INTERNAL); const int kNewTargetOffset = kFPOnStackSize + kPCOnStackSize; const int kArgumentsOffset = kNewTargetOffset + kPointerSize; const int kFunctionOffset = kArgumentsOffset + kPointerSize; static const int kVectorOffset = InternalFrameConstants::kCodeOffset - 1 * kPointerSize; // Push the vector. __ ldr(r1, FieldMemOperand(r1, JSFunction::kSharedFunctionInfoOffset)); __ ldr(r1, FieldMemOperand(r1, SharedFunctionInfo::kFeedbackVectorOffset)); __ Push(r1); // If newTarget is not supplied, set it to constructor Label validate_arguments; __ ldr(r0, MemOperand(fp, kNewTargetOffset)); __ CompareRoot(r0, Heap::kUndefinedValueRootIndex); __ b(ne, &validate_arguments); __ ldr(r0, MemOperand(fp, kFunctionOffset)); __ str(r0, MemOperand(fp, kNewTargetOffset)); // Validate arguments __ bind(&validate_arguments); __ ldr(r0, MemOperand(fp, kFunctionOffset)); // get the function __ push(r0); __ ldr(r0, MemOperand(fp, kArgumentsOffset)); // get the args array __ push(r0); __ ldr(r0, MemOperand(fp, kNewTargetOffset)); // get the new.target __ push(r0); __ InvokeBuiltin(Context::REFLECT_CONSTRUCT_PREPARE_BUILTIN_INDEX, CALL_FUNCTION); Generate_CheckStackOverflow(masm, r0, kArgcIsSmiTagged); // Push current limit and index. const int kIndexOffset = kVectorOffset - (2 * kPointerSize); const int kLimitOffset = kVectorOffset - (1 * kPointerSize); __ push(r0); // limit __ mov(r1, Operand::Zero()); // initial index __ push(r1); // Push the constructor function as callee. __ ldr(r0, MemOperand(fp, kFunctionOffset)); __ push(r0); // Copy all arguments from the array to the stack. Generate_PushAppliedArguments(masm, kVectorOffset, kArgumentsOffset, kIndexOffset, kLimitOffset); // Use undefined feedback vector __ LoadRoot(r2, Heap::kUndefinedValueRootIndex); __ ldr(r1, MemOperand(fp, kFunctionOffset)); __ ldr(r4, MemOperand(fp, kNewTargetOffset)); // Call the function. CallConstructStub stub(masm->isolate(), SUPER_CONSTRUCTOR_CALL); __ Call(stub.GetCode(), RelocInfo::CONSTRUCT_CALL); // Leave internal frame. } __ add(sp, sp, Operand(kStackSize * kPointerSize)); __ Jump(lr); } void Builtins::Generate_FunctionApply(MacroAssembler* masm) { Generate_ApplyHelper(masm, false); } void Builtins::Generate_ReflectApply(MacroAssembler* masm) { Generate_ApplyHelper(masm, true); } void Builtins::Generate_ReflectConstruct(MacroAssembler* masm) { Generate_ConstructHelper(masm); } static void ArgumentAdaptorStackCheck(MacroAssembler* masm, Label* stack_overflow) { // ----------- S t a t e ------------- // -- r0 : actual number of arguments // -- r1 : function (passed through to callee) // -- r2 : expected number of arguments // ----------------------------------- // Check the stack for overflow. We are not trying to catch // interruptions (e.g. debug break and preemption) here, so the "real stack // limit" is checked. __ LoadRoot(r5, Heap::kRealStackLimitRootIndex); // Make r5 the space we have left. The stack might already be overflowed // here which will cause r5 to become negative. __ sub(r5, sp, r5); // Check if the arguments will overflow the stack. __ cmp(r5, Operand(r2, LSL, kPointerSizeLog2)); __ b(le, stack_overflow); // Signed comparison. } static void EnterArgumentsAdaptorFrame(MacroAssembler* masm) { __ SmiTag(r0); __ mov(r4, Operand(Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR))); __ stm(db_w, sp, r0.bit() | r1.bit() | r4.bit() | (FLAG_enable_embedded_constant_pool ? pp.bit() : 0) | fp.bit() | lr.bit()); __ add(fp, sp, Operand(StandardFrameConstants::kFixedFrameSizeFromFp + kPointerSize)); } static void LeaveArgumentsAdaptorFrame(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- r0 : result being passed through // ----------------------------------- // Get the number of arguments passed (as a smi), tear down the frame and // then tear down the parameters. __ ldr(r1, MemOperand(fp, -(StandardFrameConstants::kFixedFrameSizeFromFp + kPointerSize))); __ LeaveFrame(StackFrame::ARGUMENTS_ADAPTOR); __ add(sp, sp, Operand::PointerOffsetFromSmiKey(r1)); __ add(sp, sp, Operand(kPointerSize)); // adjust for receiver } // static void Builtins::Generate_CallFunction(MacroAssembler* masm, ConvertReceiverMode mode) { // ----------- S t a t e ------------- // -- r0 : the number of arguments (not including the receiver) // -- r1 : the function to call (checked to be a JSFunction) // ----------------------------------- __ AssertFunction(r1); // See ES6 section 9.2.1 [[Call]] ( thisArgument, argumentsList) // Check that the function is not a "classConstructor". Label class_constructor; __ ldr(r2, FieldMemOperand(r1, JSFunction::kSharedFunctionInfoOffset)); __ ldrb(r3, FieldMemOperand(r2, SharedFunctionInfo::kFunctionKindByteOffset)); __ tst(r3, Operand(SharedFunctionInfo::kClassConstructorBitsWithinByte)); __ b(ne, &class_constructor); // Enter the context of the function; ToObject has to run in the function // context, and we also need to take the global proxy from the function // context in case of conversion. STATIC_ASSERT(SharedFunctionInfo::kNativeByteOffset == SharedFunctionInfo::kStrictModeByteOffset); __ ldr(cp, FieldMemOperand(r1, JSFunction::kContextOffset)); // We need to convert the receiver for non-native sloppy mode functions. Label done_convert; __ ldrb(r3, FieldMemOperand(r2, SharedFunctionInfo::kNativeByteOffset)); __ tst(r3, Operand((1 << SharedFunctionInfo::kNativeBitWithinByte) | (1 << SharedFunctionInfo::kStrictModeBitWithinByte))); __ b(ne, &done_convert); { // ----------- S t a t e ------------- // -- r0 : the number of arguments (not including the receiver) // -- r1 : the function to call (checked to be a JSFunction) // -- r2 : the shared function info. // -- cp : the function context. // ----------------------------------- if (mode == ConvertReceiverMode::kNullOrUndefined) { // Patch receiver to global proxy. __ LoadGlobalProxy(r3); } else { Label convert_to_object, convert_receiver; __ ldr(r3, MemOperand(sp, r0, LSL, kPointerSizeLog2)); __ JumpIfSmi(r3, &convert_to_object); STATIC_ASSERT(LAST_JS_RECEIVER_TYPE == LAST_TYPE); __ CompareObjectType(r3, r4, r4, FIRST_JS_RECEIVER_TYPE); __ b(hs, &done_convert); if (mode != ConvertReceiverMode::kNotNullOrUndefined) { Label convert_global_proxy; __ JumpIfRoot(r3, Heap::kUndefinedValueRootIndex, &convert_global_proxy); __ JumpIfNotRoot(r3, Heap::kNullValueRootIndex, &convert_to_object); __ bind(&convert_global_proxy); { // Patch receiver to global proxy. __ LoadGlobalProxy(r3); } __ b(&convert_receiver); } __ bind(&convert_to_object); { // Convert receiver using ToObject. // TODO(bmeurer): Inline the allocation here to avoid building the frame // in the fast case? (fall back to AllocateInNewSpace?) FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL); __ SmiTag(r0); __ Push(r0, r1); __ mov(r0, r3); ToObjectStub stub(masm->isolate()); __ CallStub(&stub); __ mov(r3, r0); __ Pop(r0, r1); __ SmiUntag(r0); } __ ldr(r2, FieldMemOperand(r1, JSFunction::kSharedFunctionInfoOffset)); __ bind(&convert_receiver); } __ str(r3, MemOperand(sp, r0, LSL, kPointerSizeLog2)); } __ bind(&done_convert); // ----------- S t a t e ------------- // -- r0 : the number of arguments (not including the receiver) // -- r1 : the function to call (checked to be a JSFunction) // -- r2 : the shared function info. // -- cp : the function context. // ----------------------------------- __ ldr(r2, FieldMemOperand(r2, SharedFunctionInfo::kFormalParameterCountOffset)); __ SmiUntag(r2); __ ldr(r3, FieldMemOperand(r1, JSFunction::kCodeEntryOffset)); ParameterCount actual(r0); ParameterCount expected(r2); __ InvokeCode(r3, expected, actual, JUMP_FUNCTION, NullCallWrapper()); // The function is a "classConstructor", need to raise an exception. __ bind(&class_constructor); { FrameScope frame(masm, StackFrame::INTERNAL); __ CallRuntime(Runtime::kThrowConstructorNonCallableError, 0); } } // static void Builtins::Generate_Call(MacroAssembler* masm, ConvertReceiverMode mode) { // ----------- S t a t e ------------- // -- r0 : the number of arguments (not including the receiver) // -- r1 : the target to call (can be any Object). // ----------------------------------- Label non_callable, non_function, non_smi; __ JumpIfSmi(r1, &non_callable); __ bind(&non_smi); __ CompareObjectType(r1, r4, r5, JS_FUNCTION_TYPE); __ Jump(masm->isolate()->builtins()->CallFunction(mode), RelocInfo::CODE_TARGET, eq); __ cmp(r5, Operand(JS_FUNCTION_PROXY_TYPE)); __ b(ne, &non_function); // 1. Call to function proxy. // TODO(neis): This doesn't match the ES6 spec for [[Call]] on proxies. __ ldr(r1, FieldMemOperand(r1, JSFunctionProxy::kCallTrapOffset)); __ AssertNotSmi(r1); __ b(&non_smi); // 2. Call to something else, which might have a [[Call]] internal method (if // not we raise an exception). __ bind(&non_function); // Check if target has a [[Call]] internal method. __ ldrb(r4, FieldMemOperand(r4, Map::kBitFieldOffset)); __ tst(r4, Operand(1 << Map::kIsCallable)); __ b(eq, &non_callable); // Overwrite the original receiver the (original) target. __ str(r1, MemOperand(sp, r0, LSL, kPointerSizeLog2)); // Let the "call_as_function_delegate" take care of the rest. __ LoadGlobalFunction(Context::CALL_AS_FUNCTION_DELEGATE_INDEX, r1); __ Jump(masm->isolate()->builtins()->CallFunction( ConvertReceiverMode::kNotNullOrUndefined), RelocInfo::CODE_TARGET); // 3. Call to something that is not callable. __ bind(&non_callable); { FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL); __ Push(r1); __ CallRuntime(Runtime::kThrowCalledNonCallable, 1); } } // static void Builtins::Generate_ConstructFunction(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- r0 : the number of arguments (not including the receiver) // -- r1 : the constructor to call (checked to be a JSFunction) // -- r3 : the original constructor (checked to be a JSFunction) // ----------------------------------- __ AssertFunction(r1); __ AssertFunction(r3); // Calling convention for function specific ConstructStubs require // r2 to contain either an AllocationSite or undefined. __ LoadRoot(r2, Heap::kUndefinedValueRootIndex); // Tail call to the function-specific construct stub (still in the caller // context at this point). __ ldr(r4, FieldMemOperand(r1, JSFunction::kSharedFunctionInfoOffset)); __ ldr(r4, FieldMemOperand(r4, SharedFunctionInfo::kConstructStubOffset)); __ add(pc, r4, Operand(Code::kHeaderSize - kHeapObjectTag)); } // static void Builtins::Generate_ConstructProxy(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- r0 : the number of arguments (not including the receiver) // -- r1 : the constructor to call (checked to be a JSFunctionProxy) // -- r3 : the original constructor (either the same as the constructor or // the JSFunction on which new was invoked initially) // ----------------------------------- // TODO(neis): This doesn't match the ES6 spec for [[Construct]] on proxies. __ ldr(r1, FieldMemOperand(r1, JSFunctionProxy::kConstructTrapOffset)); __ Jump(masm->isolate()->builtins()->Call(), RelocInfo::CODE_TARGET); } // static void Builtins::Generate_Construct(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- r0 : the number of arguments (not including the receiver) // -- r1 : the constructor to call (can be any Object) // -- r3 : the original constructor (either the same as the constructor or // the JSFunction on which new was invoked initially) // ----------------------------------- // Check if target has a [[Construct]] internal method. Label non_constructor; __ JumpIfSmi(r1, &non_constructor); __ ldr(r4, FieldMemOperand(r1, HeapObject::kMapOffset)); __ ldrb(r2, FieldMemOperand(r4, Map::kBitFieldOffset)); __ tst(r2, Operand(1 << Map::kIsConstructor)); __ b(eq, &non_constructor); // Dispatch based on instance type. __ CompareInstanceType(r4, r5, JS_FUNCTION_TYPE); __ Jump(masm->isolate()->builtins()->ConstructFunction(), RelocInfo::CODE_TARGET, eq); __ cmp(r5, Operand(JS_FUNCTION_PROXY_TYPE)); __ Jump(masm->isolate()->builtins()->ConstructProxy(), RelocInfo::CODE_TARGET, eq); // Called Construct on an exotic Object with a [[Construct]] internal method. { // Overwrite the original receiver with the (original) target. __ str(r1, MemOperand(sp, r0, LSL, kPointerSizeLog2)); // Let the "call_as_constructor_delegate" take care of the rest. __ LoadGlobalFunction(Context::CALL_AS_CONSTRUCTOR_DELEGATE_INDEX, r1); __ Jump(masm->isolate()->builtins()->CallFunction(), RelocInfo::CODE_TARGET); } // Called Construct on an Object that doesn't have a [[Construct]] internal // method. __ bind(&non_constructor); { FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL); __ Push(r1); __ CallRuntime(Runtime::kThrowCalledNonCallable, 1); } } void Builtins::Generate_ArgumentsAdaptorTrampoline(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- r0 : actual number of arguments // -- r1 : function (passed through to callee) // -- r2 : expected number of arguments // ----------------------------------- Label stack_overflow; ArgumentAdaptorStackCheck(masm, &stack_overflow); Label invoke, dont_adapt_arguments; Label enough, too_few; __ ldr(r3, FieldMemOperand(r1, JSFunction::kCodeEntryOffset)); __ cmp(r0, r2); __ b(lt, &too_few); __ cmp(r2, Operand(SharedFunctionInfo::kDontAdaptArgumentsSentinel)); __ b(eq, &dont_adapt_arguments); { // Enough parameters: actual >= expected __ bind(&enough); EnterArgumentsAdaptorFrame(masm); // Calculate copy start address into r0 and copy end address into r4. // r0: actual number of arguments as a smi // r1: function // r2: expected number of arguments // r3: code entry to call __ add(r0, fp, Operand::PointerOffsetFromSmiKey(r0)); // adjust for return address and receiver __ add(r0, r0, Operand(2 * kPointerSize)); __ sub(r4, r0, Operand(r2, LSL, kPointerSizeLog2)); // Copy the arguments (including the receiver) to the new stack frame. // r0: copy start address // r1: function // r2: expected number of arguments // r3: code entry to call // r4: copy end address Label copy; __ bind(©); __ ldr(ip, MemOperand(r0, 0)); __ push(ip); __ cmp(r0, r4); // Compare before moving to next argument. __ sub(r0, r0, Operand(kPointerSize)); __ b(ne, ©); __ b(&invoke); } { // Too few parameters: Actual < expected __ bind(&too_few); // If the function is strong we need to throw an error. Label no_strong_error; __ ldr(r4, FieldMemOperand(r1, JSFunction::kSharedFunctionInfoOffset)); __ ldr(r5, FieldMemOperand(r4, SharedFunctionInfo::kCompilerHintsOffset)); __ tst(r5, Operand(1 << (SharedFunctionInfo::kStrongModeFunction + kSmiTagSize))); __ b(eq, &no_strong_error); // What we really care about is the required number of arguments. __ ldr(r4, FieldMemOperand(r4, SharedFunctionInfo::kLengthOffset)); __ cmp(r0, Operand::SmiUntag(r4)); __ b(ge, &no_strong_error); { FrameScope frame(masm, StackFrame::MANUAL); EnterArgumentsAdaptorFrame(masm); __ CallRuntime(Runtime::kThrowStrongModeTooFewArguments, 0); } __ bind(&no_strong_error); EnterArgumentsAdaptorFrame(masm); // Calculate copy start address into r0 and copy end address is fp. // r0: actual number of arguments as a smi // r1: function // r2: expected number of arguments // r3: code entry to call __ add(r0, fp, Operand::PointerOffsetFromSmiKey(r0)); // Copy the arguments (including the receiver) to the new stack frame. // r0: copy start address // r1: function // r2: expected number of arguments // r3: code entry to call Label copy; __ bind(©); // Adjust load for return address and receiver. __ ldr(ip, MemOperand(r0, 2 * kPointerSize)); __ push(ip); __ cmp(r0, fp); // Compare before moving to next argument. __ sub(r0, r0, Operand(kPointerSize)); __ b(ne, ©); // Fill the remaining expected arguments with undefined. // r1: function // r2: expected number of arguments // r3: code entry to call __ LoadRoot(ip, Heap::kUndefinedValueRootIndex); __ sub(r4, fp, Operand(r2, LSL, kPointerSizeLog2)); // Adjust for frame. __ sub(r4, r4, Operand(StandardFrameConstants::kFixedFrameSizeFromFp + 2 * kPointerSize)); Label fill; __ bind(&fill); __ push(ip); __ cmp(sp, r4); __ b(ne, &fill); } // Call the entry point. __ bind(&invoke); __ mov(r0, r2); // r0 : expected number of arguments // r1 : function (passed through to callee) __ Call(r3); // Store offset of return address for deoptimizer. masm->isolate()->heap()->SetArgumentsAdaptorDeoptPCOffset(masm->pc_offset()); // Exit frame and return. LeaveArgumentsAdaptorFrame(masm); __ Jump(lr); // ------------------------------------------- // Dont adapt arguments. // ------------------------------------------- __ bind(&dont_adapt_arguments); __ Jump(r3); __ bind(&stack_overflow); { FrameScope frame(masm, StackFrame::MANUAL); EnterArgumentsAdaptorFrame(masm); __ CallRuntime(Runtime::kThrowStackOverflow, 0); __ bkpt(0); } } #undef __ } // namespace internal } // namespace v8 #endif // V8_TARGET_ARCH_ARM