// Copyright 2012 the V8 project authors. All rights reserved. // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #include // For LONG_MIN, LONG_MAX. #include "v8.h" #if defined(V8_TARGET_ARCH_ARM) #include "bootstrapper.h" #include "codegen.h" #include "debug.h" #include "runtime.h" namespace v8 { namespace internal { MacroAssembler::MacroAssembler(Isolate* arg_isolate, void* buffer, int size) : Assembler(arg_isolate, buffer, size), generating_stub_(false), allow_stub_calls_(true), has_frame_(false) { if (isolate() != NULL) { code_object_ = Handle(isolate()->heap()->undefined_value(), isolate()); } } // We always generate arm code, never thumb code, even if V8 is compiled to // thumb, so we require inter-working support #if defined(__thumb__) && !defined(USE_THUMB_INTERWORK) #error "flag -mthumb-interwork missing" #endif // We do not support thumb inter-working with an arm architecture not supporting // the blx instruction (below v5t). If you know what CPU you are compiling for // you can use -march=armv7 or similar. #if defined(USE_THUMB_INTERWORK) && !defined(CAN_USE_THUMB_INSTRUCTIONS) # error "For thumb inter-working we require an architecture which supports blx" #endif // Using bx does not yield better code, so use it only when required #if defined(USE_THUMB_INTERWORK) #define USE_BX 1 #endif void MacroAssembler::Jump(Register target, Condition cond) { #if USE_BX bx(target, cond); #else mov(pc, Operand(target), LeaveCC, cond); #endif } void MacroAssembler::Jump(intptr_t target, RelocInfo::Mode rmode, Condition cond) { #if USE_BX mov(ip, Operand(target, rmode)); bx(ip, cond); #else mov(pc, Operand(target, rmode), LeaveCC, cond); #endif } void MacroAssembler::Jump(Address target, RelocInfo::Mode rmode, Condition cond) { ASSERT(!RelocInfo::IsCodeTarget(rmode)); Jump(reinterpret_cast(target), rmode, cond); } void MacroAssembler::Jump(Handle code, RelocInfo::Mode rmode, Condition cond) { ASSERT(RelocInfo::IsCodeTarget(rmode)); // 'code' is always generated ARM code, never THUMB code Jump(reinterpret_cast(code.location()), rmode, cond); } int MacroAssembler::CallSize(Register target, Condition cond) { #if USE_BLX return kInstrSize; #else return 2 * kInstrSize; #endif } void MacroAssembler::Call(Register target, Condition cond) { // Block constant pool for the call instruction sequence. BlockConstPoolScope block_const_pool(this); Label start; bind(&start); #if USE_BLX blx(target, cond); #else // set lr for return at current pc + 8 mov(lr, Operand(pc), LeaveCC, cond); mov(pc, Operand(target), LeaveCC, cond); #endif ASSERT_EQ(CallSize(target, cond), SizeOfCodeGeneratedSince(&start)); } int MacroAssembler::CallSize( Address target, RelocInfo::Mode rmode, Condition cond) { int size = 2 * kInstrSize; Instr mov_instr = cond | MOV | LeaveCC; intptr_t immediate = reinterpret_cast(target); if (!Operand(immediate, rmode).is_single_instruction(mov_instr)) { size += kInstrSize; } return size; } void MacroAssembler::Call(Address target, RelocInfo::Mode rmode, Condition cond) { // Block constant pool for the call instruction sequence. BlockConstPoolScope block_const_pool(this); Label start; bind(&start); #if USE_BLX // On ARMv5 and after the recommended call sequence is: // ldr ip, [pc, #...] // blx ip // Statement positions are expected to be recorded when the target // address is loaded. The mov method will automatically record // positions when pc is the target, since this is not the case here // we have to do it explicitly. positions_recorder()->WriteRecordedPositions(); mov(ip, Operand(reinterpret_cast(target), rmode)); blx(ip, cond); ASSERT(kCallTargetAddressOffset == 2 * kInstrSize); #else // Set lr for return at current pc + 8. mov(lr, Operand(pc), LeaveCC, cond); // Emit a ldr pc, [pc + offset of target in constant pool]. mov(pc, Operand(reinterpret_cast(target), rmode), LeaveCC, cond); ASSERT(kCallTargetAddressOffset == kInstrSize); #endif ASSERT_EQ(CallSize(target, rmode, cond), SizeOfCodeGeneratedSince(&start)); } int MacroAssembler::CallSize(Handle code, RelocInfo::Mode rmode, unsigned ast_id, Condition cond) { return CallSize(reinterpret_cast
(code.location()), rmode, cond); } void MacroAssembler::Call(Handle code, RelocInfo::Mode rmode, unsigned ast_id, Condition cond) { Label start; bind(&start); ASSERT(RelocInfo::IsCodeTarget(rmode)); if (rmode == RelocInfo::CODE_TARGET && ast_id != kNoASTId) { SetRecordedAstId(ast_id); rmode = RelocInfo::CODE_TARGET_WITH_ID; } // 'code' is always generated ARM code, never THUMB code Call(reinterpret_cast
(code.location()), rmode, cond); ASSERT_EQ(CallSize(code, rmode, ast_id, cond), SizeOfCodeGeneratedSince(&start)); } void MacroAssembler::Ret(Condition cond) { #if USE_BX bx(lr, cond); #else mov(pc, Operand(lr), LeaveCC, cond); #endif } void MacroAssembler::Drop(int count, Condition cond) { if (count > 0) { add(sp, sp, Operand(count * kPointerSize), LeaveCC, cond); } } void MacroAssembler::Ret(int drop, Condition cond) { Drop(drop, cond); Ret(cond); } void MacroAssembler::Swap(Register reg1, Register reg2, Register scratch, Condition cond) { if (scratch.is(no_reg)) { eor(reg1, reg1, Operand(reg2), LeaveCC, cond); eor(reg2, reg2, Operand(reg1), LeaveCC, cond); eor(reg1, reg1, Operand(reg2), LeaveCC, cond); } else { mov(scratch, reg1, LeaveCC, cond); mov(reg1, reg2, LeaveCC, cond); mov(reg2, scratch, LeaveCC, cond); } } void MacroAssembler::Call(Label* target) { bl(target); } void MacroAssembler::Push(Handle handle) { mov(ip, Operand(handle)); push(ip); } void MacroAssembler::Move(Register dst, Handle value) { mov(dst, Operand(value)); } void MacroAssembler::Move(Register dst, Register src, Condition cond) { if (!dst.is(src)) { mov(dst, src, LeaveCC, cond); } } void MacroAssembler::Move(DoubleRegister dst, DoubleRegister src) { ASSERT(CpuFeatures::IsSupported(VFP3)); CpuFeatures::Scope scope(VFP3); if (!dst.is(src)) { vmov(dst, src); } } void MacroAssembler::And(Register dst, Register src1, const Operand& src2, Condition cond) { if (!src2.is_reg() && !src2.must_use_constant_pool() && src2.immediate() == 0) { mov(dst, Operand(0, RelocInfo::NONE), LeaveCC, cond); } else if (!src2.is_single_instruction() && !src2.must_use_constant_pool() && CpuFeatures::IsSupported(ARMv7) && IsPowerOf2(src2.immediate() + 1)) { ubfx(dst, src1, 0, WhichPowerOf2(static_cast(src2.immediate()) + 1), cond); } else { and_(dst, src1, src2, LeaveCC, cond); } } void MacroAssembler::Ubfx(Register dst, Register src1, int lsb, int width, Condition cond) { ASSERT(lsb < 32); if (!CpuFeatures::IsSupported(ARMv7)) { int mask = (1 << (width + lsb)) - 1 - ((1 << lsb) - 1); and_(dst, src1, Operand(mask), LeaveCC, cond); if (lsb != 0) { mov(dst, Operand(dst, LSR, lsb), LeaveCC, cond); } } else { ubfx(dst, src1, lsb, width, cond); } } void MacroAssembler::Sbfx(Register dst, Register src1, int lsb, int width, Condition cond) { ASSERT(lsb < 32); if (!CpuFeatures::IsSupported(ARMv7)) { int mask = (1 << (width + lsb)) - 1 - ((1 << lsb) - 1); and_(dst, src1, Operand(mask), LeaveCC, cond); int shift_up = 32 - lsb - width; int shift_down = lsb + shift_up; if (shift_up != 0) { mov(dst, Operand(dst, LSL, shift_up), LeaveCC, cond); } if (shift_down != 0) { mov(dst, Operand(dst, ASR, shift_down), LeaveCC, cond); } } else { sbfx(dst, src1, lsb, width, cond); } } void MacroAssembler::Bfi(Register dst, Register src, Register scratch, int lsb, int width, Condition cond) { ASSERT(0 <= lsb && lsb < 32); ASSERT(0 <= width && width < 32); ASSERT(lsb + width < 32); ASSERT(!scratch.is(dst)); if (width == 0) return; if (!CpuFeatures::IsSupported(ARMv7)) { int mask = (1 << (width + lsb)) - 1 - ((1 << lsb) - 1); bic(dst, dst, Operand(mask)); and_(scratch, src, Operand((1 << width) - 1)); mov(scratch, Operand(scratch, LSL, lsb)); orr(dst, dst, scratch); } else { bfi(dst, src, lsb, width, cond); } } void MacroAssembler::Bfc(Register dst, int lsb, int width, Condition cond) { ASSERT(lsb < 32); if (!CpuFeatures::IsSupported(ARMv7)) { int mask = (1 << (width + lsb)) - 1 - ((1 << lsb) - 1); bic(dst, dst, Operand(mask)); } else { bfc(dst, lsb, width, cond); } } void MacroAssembler::Usat(Register dst, int satpos, const Operand& src, Condition cond) { if (!CpuFeatures::IsSupported(ARMv7)) { ASSERT(!dst.is(pc) && !src.rm().is(pc)); ASSERT((satpos >= 0) && (satpos <= 31)); // These asserts are required to ensure compatibility with the ARMv7 // implementation. ASSERT((src.shift_op() == ASR) || (src.shift_op() == LSL)); ASSERT(src.rs().is(no_reg)); Label done; int satval = (1 << satpos) - 1; if (cond != al) { b(NegateCondition(cond), &done); // Skip saturate if !condition. } if (!(src.is_reg() && dst.is(src.rm()))) { mov(dst, src); } tst(dst, Operand(~satval)); b(eq, &done); mov(dst, Operand(0, RelocInfo::NONE), LeaveCC, mi); // 0 if negative. mov(dst, Operand(satval), LeaveCC, pl); // satval if positive. bind(&done); } else { usat(dst, satpos, src, cond); } } void MacroAssembler::LoadRoot(Register destination, Heap::RootListIndex index, Condition cond) { ldr(destination, MemOperand(kRootRegister, index << kPointerSizeLog2), cond); } void MacroAssembler::StoreRoot(Register source, Heap::RootListIndex index, Condition cond) { str(source, MemOperand(kRootRegister, index << kPointerSizeLog2), cond); } void MacroAssembler::LoadHeapObject(Register result, Handle object) { if (isolate()->heap()->InNewSpace(*object)) { Handle cell = isolate()->factory()->NewJSGlobalPropertyCell(object); mov(result, Operand(cell)); ldr(result, FieldMemOperand(result, JSGlobalPropertyCell::kValueOffset)); } else { mov(result, Operand(object)); } } void MacroAssembler::InNewSpace(Register object, Register scratch, Condition cond, Label* branch) { ASSERT(cond == eq || cond == ne); and_(scratch, object, Operand(ExternalReference::new_space_mask(isolate()))); cmp(scratch, Operand(ExternalReference::new_space_start(isolate()))); b(cond, branch); } void MacroAssembler::RecordWriteField( Register object, int offset, Register value, Register dst, LinkRegisterStatus lr_status, SaveFPRegsMode save_fp, RememberedSetAction remembered_set_action, SmiCheck smi_check) { // First, check if a write barrier is even needed. The tests below // catch stores of Smis. Label done; // Skip barrier if writing a smi. if (smi_check == INLINE_SMI_CHECK) { JumpIfSmi(value, &done); } // Although the object register is tagged, the offset is relative to the start // of the object, so so offset must be a multiple of kPointerSize. ASSERT(IsAligned(offset, kPointerSize)); add(dst, object, Operand(offset - kHeapObjectTag)); if (emit_debug_code()) { Label ok; tst(dst, Operand((1 << kPointerSizeLog2) - 1)); b(eq, &ok); stop("Unaligned cell in write barrier"); bind(&ok); } RecordWrite(object, dst, value, lr_status, save_fp, remembered_set_action, OMIT_SMI_CHECK); bind(&done); // Clobber clobbered input registers when running with the debug-code flag // turned on to provoke errors. if (emit_debug_code()) { mov(value, Operand(BitCast(kZapValue + 4))); mov(dst, Operand(BitCast(kZapValue + 8))); } } // Will clobber 4 registers: object, address, scratch, ip. The // register 'object' contains a heap object pointer. The heap object // tag is shifted away. void MacroAssembler::RecordWrite(Register object, Register address, Register value, LinkRegisterStatus lr_status, SaveFPRegsMode fp_mode, RememberedSetAction remembered_set_action, SmiCheck smi_check) { // The compiled code assumes that record write doesn't change the // context register, so we check that none of the clobbered // registers are cp. ASSERT(!address.is(cp) && !value.is(cp)); if (emit_debug_code()) { ldr(ip, MemOperand(address)); cmp(ip, value); Check(eq, "Wrong address or value passed to RecordWrite"); } Label done; if (smi_check == INLINE_SMI_CHECK) { ASSERT_EQ(0, kSmiTag); tst(value, Operand(kSmiTagMask)); b(eq, &done); } CheckPageFlag(value, value, // Used as scratch. MemoryChunk::kPointersToHereAreInterestingMask, eq, &done); CheckPageFlag(object, value, // Used as scratch. MemoryChunk::kPointersFromHereAreInterestingMask, eq, &done); // Record the actual write. if (lr_status == kLRHasNotBeenSaved) { push(lr); } RecordWriteStub stub(object, value, address, remembered_set_action, fp_mode); CallStub(&stub); if (lr_status == kLRHasNotBeenSaved) { pop(lr); } bind(&done); // Clobber clobbered registers when running with the debug-code flag // turned on to provoke errors. if (emit_debug_code()) { mov(address, Operand(BitCast(kZapValue + 12))); mov(value, Operand(BitCast(kZapValue + 16))); } } void MacroAssembler::RememberedSetHelper(Register object, // For debug tests. Register address, Register scratch, SaveFPRegsMode fp_mode, RememberedSetFinalAction and_then) { Label done; if (emit_debug_code()) { Label ok; JumpIfNotInNewSpace(object, scratch, &ok); stop("Remembered set pointer is in new space"); bind(&ok); } // Load store buffer top. ExternalReference store_buffer = ExternalReference::store_buffer_top(isolate()); mov(ip, Operand(store_buffer)); ldr(scratch, MemOperand(ip)); // Store pointer to buffer and increment buffer top. str(address, MemOperand(scratch, kPointerSize, PostIndex)); // Write back new top of buffer. str(scratch, MemOperand(ip)); // Call stub on end of buffer. // Check for end of buffer. tst(scratch, Operand(StoreBuffer::kStoreBufferOverflowBit)); if (and_then == kFallThroughAtEnd) { b(eq, &done); } else { ASSERT(and_then == kReturnAtEnd); Ret(eq); } push(lr); StoreBufferOverflowStub store_buffer_overflow = StoreBufferOverflowStub(fp_mode); CallStub(&store_buffer_overflow); pop(lr); bind(&done); if (and_then == kReturnAtEnd) { Ret(); } } // Push and pop all registers that can hold pointers. void MacroAssembler::PushSafepointRegisters() { // Safepoints expect a block of contiguous register values starting with r0: ASSERT(((1 << kNumSafepointSavedRegisters) - 1) == kSafepointSavedRegisters); // Safepoints expect a block of kNumSafepointRegisters values on the // stack, so adjust the stack for unsaved registers. const int num_unsaved = kNumSafepointRegisters - kNumSafepointSavedRegisters; ASSERT(num_unsaved >= 0); sub(sp, sp, Operand(num_unsaved * kPointerSize)); stm(db_w, sp, kSafepointSavedRegisters); } void MacroAssembler::PopSafepointRegisters() { const int num_unsaved = kNumSafepointRegisters - kNumSafepointSavedRegisters; ldm(ia_w, sp, kSafepointSavedRegisters); add(sp, sp, Operand(num_unsaved * kPointerSize)); } void MacroAssembler::PushSafepointRegistersAndDoubles() { PushSafepointRegisters(); sub(sp, sp, Operand(DwVfpRegister::kNumAllocatableRegisters * kDoubleSize)); for (int i = 0; i < DwVfpRegister::kNumAllocatableRegisters; i++) { vstr(DwVfpRegister::FromAllocationIndex(i), sp, i * kDoubleSize); } } void MacroAssembler::PopSafepointRegistersAndDoubles() { for (int i = 0; i < DwVfpRegister::kNumAllocatableRegisters; i++) { vldr(DwVfpRegister::FromAllocationIndex(i), sp, i * kDoubleSize); } add(sp, sp, Operand(DwVfpRegister::kNumAllocatableRegisters * kDoubleSize)); PopSafepointRegisters(); } void MacroAssembler::StoreToSafepointRegistersAndDoublesSlot(Register src, Register dst) { str(src, SafepointRegistersAndDoublesSlot(dst)); } void MacroAssembler::StoreToSafepointRegisterSlot(Register src, Register dst) { str(src, SafepointRegisterSlot(dst)); } void MacroAssembler::LoadFromSafepointRegisterSlot(Register dst, Register src) { ldr(dst, SafepointRegisterSlot(src)); } int MacroAssembler::SafepointRegisterStackIndex(int reg_code) { // The registers are pushed starting with the highest encoding, // which means that lowest encodings are closest to the stack pointer. ASSERT(reg_code >= 0 && reg_code < kNumSafepointRegisters); return reg_code; } MemOperand MacroAssembler::SafepointRegisterSlot(Register reg) { return MemOperand(sp, SafepointRegisterStackIndex(reg.code()) * kPointerSize); } MemOperand MacroAssembler::SafepointRegistersAndDoublesSlot(Register reg) { // General purpose registers are pushed last on the stack. int doubles_size = DwVfpRegister::kNumAllocatableRegisters * kDoubleSize; int register_offset = SafepointRegisterStackIndex(reg.code()) * kPointerSize; return MemOperand(sp, doubles_size + register_offset); } void MacroAssembler::Ldrd(Register dst1, Register dst2, const MemOperand& src, Condition cond) { ASSERT(src.rm().is(no_reg)); ASSERT(!dst1.is(lr)); // r14. ASSERT_EQ(0, dst1.code() % 2); ASSERT_EQ(dst1.code() + 1, dst2.code()); // V8 does not use this addressing mode, so the fallback code // below doesn't support it yet. ASSERT((src.am() != PreIndex) && (src.am() != NegPreIndex)); // Generate two ldr instructions if ldrd is not available. if (CpuFeatures::IsSupported(ARMv7)) { CpuFeatures::Scope scope(ARMv7); ldrd(dst1, dst2, src, cond); } else { if ((src.am() == Offset) || (src.am() == NegOffset)) { MemOperand src2(src); src2.set_offset(src2.offset() + 4); if (dst1.is(src.rn())) { ldr(dst2, src2, cond); ldr(dst1, src, cond); } else { ldr(dst1, src, cond); ldr(dst2, src2, cond); } } else { // PostIndex or NegPostIndex. ASSERT((src.am() == PostIndex) || (src.am() == NegPostIndex)); if (dst1.is(src.rn())) { ldr(dst2, MemOperand(src.rn(), 4, Offset), cond); ldr(dst1, src, cond); } else { MemOperand src2(src); src2.set_offset(src2.offset() - 4); ldr(dst1, MemOperand(src.rn(), 4, PostIndex), cond); ldr(dst2, src2, cond); } } } } void MacroAssembler::Strd(Register src1, Register src2, const MemOperand& dst, Condition cond) { ASSERT(dst.rm().is(no_reg)); ASSERT(!src1.is(lr)); // r14. ASSERT_EQ(0, src1.code() % 2); ASSERT_EQ(src1.code() + 1, src2.code()); // V8 does not use this addressing mode, so the fallback code // below doesn't support it yet. ASSERT((dst.am() != PreIndex) && (dst.am() != NegPreIndex)); // Generate two str instructions if strd is not available. if (CpuFeatures::IsSupported(ARMv7)) { CpuFeatures::Scope scope(ARMv7); strd(src1, src2, dst, cond); } else { MemOperand dst2(dst); if ((dst.am() == Offset) || (dst.am() == NegOffset)) { dst2.set_offset(dst2.offset() + 4); str(src1, dst, cond); str(src2, dst2, cond); } else { // PostIndex or NegPostIndex. ASSERT((dst.am() == PostIndex) || (dst.am() == NegPostIndex)); dst2.set_offset(dst2.offset() - 4); str(src1, MemOperand(dst.rn(), 4, PostIndex), cond); str(src2, dst2, cond); } } } void MacroAssembler::ClearFPSCRBits(const uint32_t bits_to_clear, const Register scratch, const Condition cond) { vmrs(scratch, cond); bic(scratch, scratch, Operand(bits_to_clear), LeaveCC, cond); vmsr(scratch, cond); } void MacroAssembler::VFPCompareAndSetFlags(const DwVfpRegister src1, const DwVfpRegister src2, const Condition cond) { // Compare and move FPSCR flags to the normal condition flags. VFPCompareAndLoadFlags(src1, src2, pc, cond); } void MacroAssembler::VFPCompareAndSetFlags(const DwVfpRegister src1, const double src2, const Condition cond) { // Compare and move FPSCR flags to the normal condition flags. VFPCompareAndLoadFlags(src1, src2, pc, cond); } void MacroAssembler::VFPCompareAndLoadFlags(const DwVfpRegister src1, const DwVfpRegister src2, const Register fpscr_flags, const Condition cond) { // Compare and load FPSCR. vcmp(src1, src2, cond); vmrs(fpscr_flags, cond); } void MacroAssembler::VFPCompareAndLoadFlags(const DwVfpRegister src1, const double src2, const Register fpscr_flags, const Condition cond) { // Compare and load FPSCR. vcmp(src1, src2, cond); vmrs(fpscr_flags, cond); } void MacroAssembler::Vmov(const DwVfpRegister dst, const double imm, const Condition cond) { ASSERT(CpuFeatures::IsEnabled(VFP3)); static const DoubleRepresentation minus_zero(-0.0); static const DoubleRepresentation zero(0.0); DoubleRepresentation value(imm); // Handle special values first. if (value.bits == zero.bits) { vmov(dst, kDoubleRegZero, cond); } else if (value.bits == minus_zero.bits) { vneg(dst, kDoubleRegZero, cond); } else { vmov(dst, imm, cond); } } void MacroAssembler::EnterFrame(StackFrame::Type type) { // r0-r3: preserved stm(db_w, sp, cp.bit() | fp.bit() | lr.bit()); mov(ip, Operand(Smi::FromInt(type))); push(ip); mov(ip, Operand(CodeObject())); push(ip); add(fp, sp, Operand(3 * kPointerSize)); // Adjust FP to point to saved FP. } void MacroAssembler::LeaveFrame(StackFrame::Type type) { // r0: preserved // r1: preserved // r2: preserved // Drop the execution stack down to the frame pointer and restore // the caller frame pointer and return address. mov(sp, fp); ldm(ia_w, sp, fp.bit() | lr.bit()); } void MacroAssembler::EnterExitFrame(bool save_doubles, int stack_space) { // Set up the frame structure on the stack. ASSERT_EQ(2 * kPointerSize, ExitFrameConstants::kCallerSPDisplacement); ASSERT_EQ(1 * kPointerSize, ExitFrameConstants::kCallerPCOffset); ASSERT_EQ(0 * kPointerSize, ExitFrameConstants::kCallerFPOffset); Push(lr, fp); mov(fp, Operand(sp)); // Set up new frame pointer. // Reserve room for saved entry sp and code object. sub(sp, sp, Operand(2 * kPointerSize)); if (emit_debug_code()) { mov(ip, Operand(0)); str(ip, MemOperand(fp, ExitFrameConstants::kSPOffset)); } mov(ip, Operand(CodeObject())); str(ip, MemOperand(fp, ExitFrameConstants::kCodeOffset)); // Save the frame pointer and the context in top. mov(ip, Operand(ExternalReference(Isolate::kCEntryFPAddress, isolate()))); str(fp, MemOperand(ip)); mov(ip, Operand(ExternalReference(Isolate::kContextAddress, isolate()))); str(cp, MemOperand(ip)); // Optionally save all double registers. if (save_doubles) { DwVfpRegister first = d0; DwVfpRegister last = DwVfpRegister::from_code(DwVfpRegister::kNumRegisters - 1); vstm(db_w, sp, first, last); // Note that d0 will be accessible at // fp - 2 * kPointerSize - DwVfpRegister::kNumRegisters * kDoubleSize, // since the sp slot and code slot were pushed after the fp. } // Reserve place for the return address and stack space and align the frame // preparing for calling the runtime function. const int frame_alignment = MacroAssembler::ActivationFrameAlignment(); sub(sp, sp, Operand((stack_space + 1) * kPointerSize)); if (frame_alignment > 0) { ASSERT(IsPowerOf2(frame_alignment)); and_(sp, sp, Operand(-frame_alignment)); } // Set the exit frame sp value to point just before the return address // location. add(ip, sp, Operand(kPointerSize)); str(ip, MemOperand(fp, ExitFrameConstants::kSPOffset)); } void MacroAssembler::InitializeNewString(Register string, Register length, Heap::RootListIndex map_index, Register scratch1, Register scratch2) { mov(scratch1, Operand(length, LSL, kSmiTagSize)); LoadRoot(scratch2, map_index); str(scratch1, FieldMemOperand(string, String::kLengthOffset)); mov(scratch1, Operand(String::kEmptyHashField)); str(scratch2, FieldMemOperand(string, HeapObject::kMapOffset)); str(scratch1, FieldMemOperand(string, String::kHashFieldOffset)); } int MacroAssembler::ActivationFrameAlignment() { #if defined(V8_HOST_ARCH_ARM) // Running on the real platform. Use the alignment as mandated by the local // environment. // Note: This will break if we ever start generating snapshots on one ARM // platform for another ARM platform with a different alignment. return OS::ActivationFrameAlignment(); #else // defined(V8_HOST_ARCH_ARM) // If we are using the simulator then we should always align to the expected // alignment. As the simulator is used to generate snapshots we do not know // if the target platform will need alignment, so this is controlled from a // flag. return FLAG_sim_stack_alignment; #endif // defined(V8_HOST_ARCH_ARM) } void MacroAssembler::LeaveExitFrame(bool save_doubles, Register argument_count) { // Optionally restore all double registers. if (save_doubles) { // Calculate the stack location of the saved doubles and restore them. const int offset = 2 * kPointerSize; sub(r3, fp, Operand(offset + DwVfpRegister::kNumRegisters * kDoubleSize)); DwVfpRegister first = d0; DwVfpRegister last = DwVfpRegister::from_code(DwVfpRegister::kNumRegisters - 1); vldm(ia, r3, first, last); } // Clear top frame. mov(r3, Operand(0, RelocInfo::NONE)); mov(ip, Operand(ExternalReference(Isolate::kCEntryFPAddress, isolate()))); str(r3, MemOperand(ip)); // Restore current context from top and clear it in debug mode. mov(ip, Operand(ExternalReference(Isolate::kContextAddress, isolate()))); ldr(cp, MemOperand(ip)); #ifdef DEBUG str(r3, MemOperand(ip)); #endif // Tear down the exit frame, pop the arguments, and return. mov(sp, Operand(fp)); ldm(ia_w, sp, fp.bit() | lr.bit()); if (argument_count.is_valid()) { add(sp, sp, Operand(argument_count, LSL, kPointerSizeLog2)); } } void MacroAssembler::GetCFunctionDoubleResult(const DoubleRegister dst) { if (use_eabi_hardfloat()) { Move(dst, d0); } else { vmov(dst, r0, r1); } } void MacroAssembler::SetCallKind(Register dst, CallKind call_kind) { // This macro takes the dst register to make the code more readable // at the call sites. However, the dst register has to be r5 to // follow the calling convention which requires the call type to be // in r5. ASSERT(dst.is(r5)); if (call_kind == CALL_AS_FUNCTION) { mov(dst, Operand(Smi::FromInt(1))); } else { mov(dst, Operand(Smi::FromInt(0))); } } void MacroAssembler::InvokePrologue(const ParameterCount& expected, const ParameterCount& actual, Handle code_constant, Register code_reg, Label* done, bool* definitely_mismatches, InvokeFlag flag, const CallWrapper& call_wrapper, CallKind call_kind) { bool definitely_matches = false; *definitely_mismatches = false; Label regular_invoke; // Check whether the expected and actual arguments count match. If not, // setup registers according to contract with ArgumentsAdaptorTrampoline: // r0: actual arguments count // r1: function (passed through to callee) // r2: expected arguments count // r3: callee code entry // The code below is made a lot easier because the calling code already sets // up actual and expected registers according to the contract if values are // passed in registers. ASSERT(actual.is_immediate() || actual.reg().is(r0)); ASSERT(expected.is_immediate() || expected.reg().is(r2)); ASSERT((!code_constant.is_null() && code_reg.is(no_reg)) || code_reg.is(r3)); if (expected.is_immediate()) { ASSERT(actual.is_immediate()); if (expected.immediate() == actual.immediate()) { definitely_matches = true; } else { mov(r0, Operand(actual.immediate())); const int sentinel = SharedFunctionInfo::kDontAdaptArgumentsSentinel; if (expected.immediate() == sentinel) { // Don't worry about adapting arguments for builtins that // don't want that done. Skip adaption code by making it look // like we have a match between expected and actual number of // arguments. definitely_matches = true; } else { *definitely_mismatches = true; mov(r2, Operand(expected.immediate())); } } } else { if (actual.is_immediate()) { cmp(expected.reg(), Operand(actual.immediate())); b(eq, ®ular_invoke); mov(r0, Operand(actual.immediate())); } else { cmp(expected.reg(), Operand(actual.reg())); b(eq, ®ular_invoke); } } if (!definitely_matches) { if (!code_constant.is_null()) { mov(r3, Operand(code_constant)); add(r3, r3, Operand(Code::kHeaderSize - kHeapObjectTag)); } Handle adaptor = isolate()->builtins()->ArgumentsAdaptorTrampoline(); if (flag == CALL_FUNCTION) { call_wrapper.BeforeCall(CallSize(adaptor)); SetCallKind(r5, call_kind); Call(adaptor); call_wrapper.AfterCall(); if (!*definitely_mismatches) { b(done); } } else { SetCallKind(r5, call_kind); Jump(adaptor, RelocInfo::CODE_TARGET); } bind(®ular_invoke); } } void MacroAssembler::InvokeCode(Register code, const ParameterCount& expected, const ParameterCount& actual, InvokeFlag flag, const CallWrapper& call_wrapper, CallKind call_kind) { // You can't call a function without a valid frame. ASSERT(flag == JUMP_FUNCTION || has_frame()); Label done; bool definitely_mismatches = false; InvokePrologue(expected, actual, Handle::null(), code, &done, &definitely_mismatches, flag, call_wrapper, call_kind); if (!definitely_mismatches) { if (flag == CALL_FUNCTION) { call_wrapper.BeforeCall(CallSize(code)); SetCallKind(r5, call_kind); Call(code); call_wrapper.AfterCall(); } else { ASSERT(flag == JUMP_FUNCTION); SetCallKind(r5, call_kind); Jump(code); } // Continue here if InvokePrologue does handle the invocation due to // mismatched parameter counts. bind(&done); } } void MacroAssembler::InvokeCode(Handle code, const ParameterCount& expected, const ParameterCount& actual, RelocInfo::Mode rmode, InvokeFlag flag, CallKind call_kind) { // You can't call a function without a valid frame. ASSERT(flag == JUMP_FUNCTION || has_frame()); Label done; bool definitely_mismatches = false; InvokePrologue(expected, actual, code, no_reg, &done, &definitely_mismatches, flag, NullCallWrapper(), call_kind); if (!definitely_mismatches) { if (flag == CALL_FUNCTION) { SetCallKind(r5, call_kind); Call(code, rmode); } else { SetCallKind(r5, call_kind); Jump(code, rmode); } // Continue here if InvokePrologue does handle the invocation due to // mismatched parameter counts. bind(&done); } } void MacroAssembler::InvokeFunction(Register fun, const ParameterCount& actual, InvokeFlag flag, const CallWrapper& call_wrapper, CallKind call_kind) { // You can't call a function without a valid frame. ASSERT(flag == JUMP_FUNCTION || has_frame()); // Contract with called JS functions requires that function is passed in r1. ASSERT(fun.is(r1)); Register expected_reg = r2; Register code_reg = r3; ldr(code_reg, FieldMemOperand(r1, JSFunction::kSharedFunctionInfoOffset)); ldr(cp, FieldMemOperand(r1, JSFunction::kContextOffset)); ldr(expected_reg, FieldMemOperand(code_reg, SharedFunctionInfo::kFormalParameterCountOffset)); mov(expected_reg, Operand(expected_reg, ASR, kSmiTagSize)); ldr(code_reg, FieldMemOperand(r1, JSFunction::kCodeEntryOffset)); ParameterCount expected(expected_reg); InvokeCode(code_reg, expected, actual, flag, call_wrapper, call_kind); } void MacroAssembler::InvokeFunction(Handle function, const ParameterCount& actual, InvokeFlag flag, const CallWrapper& call_wrapper, CallKind call_kind) { // You can't call a function without a valid frame. ASSERT(flag == JUMP_FUNCTION || has_frame()); // Get the function and setup the context. LoadHeapObject(r1, function); ldr(cp, FieldMemOperand(r1, JSFunction::kContextOffset)); ParameterCount expected(function->shared()->formal_parameter_count()); // We call indirectly through the code field in the function to // allow recompilation to take effect without changing any of the // call sites. ldr(r3, FieldMemOperand(r1, JSFunction::kCodeEntryOffset)); InvokeCode(r3, expected, actual, flag, call_wrapper, call_kind); } void MacroAssembler::IsObjectJSObjectType(Register heap_object, Register map, Register scratch, Label* fail) { ldr(map, FieldMemOperand(heap_object, HeapObject::kMapOffset)); IsInstanceJSObjectType(map, scratch, fail); } void MacroAssembler::IsInstanceJSObjectType(Register map, Register scratch, Label* fail) { ldrb(scratch, FieldMemOperand(map, Map::kInstanceTypeOffset)); cmp(scratch, Operand(FIRST_NONCALLABLE_SPEC_OBJECT_TYPE)); b(lt, fail); cmp(scratch, Operand(LAST_NONCALLABLE_SPEC_OBJECT_TYPE)); b(gt, fail); } void MacroAssembler::IsObjectJSStringType(Register object, Register scratch, Label* fail) { ASSERT(kNotStringTag != 0); ldr(scratch, FieldMemOperand(object, HeapObject::kMapOffset)); ldrb(scratch, FieldMemOperand(scratch, Map::kInstanceTypeOffset)); tst(scratch, Operand(kIsNotStringMask)); b(ne, fail); } #ifdef ENABLE_DEBUGGER_SUPPORT void MacroAssembler::DebugBreak() { mov(r0, Operand(0, RelocInfo::NONE)); mov(r1, Operand(ExternalReference(Runtime::kDebugBreak, isolate()))); CEntryStub ces(1); ASSERT(AllowThisStubCall(&ces)); Call(ces.GetCode(), RelocInfo::DEBUG_BREAK); } #endif void MacroAssembler::PushTryHandler(StackHandler::Kind kind, int handler_index) { // Adjust this code if not the case. STATIC_ASSERT(StackHandlerConstants::kSize == 5 * kPointerSize); STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0 * kPointerSize); STATIC_ASSERT(StackHandlerConstants::kCodeOffset == 1 * kPointerSize); STATIC_ASSERT(StackHandlerConstants::kStateOffset == 2 * kPointerSize); STATIC_ASSERT(StackHandlerConstants::kContextOffset == 3 * kPointerSize); STATIC_ASSERT(StackHandlerConstants::kFPOffset == 4 * kPointerSize); // For the JSEntry handler, we must preserve r0-r4, r5-r7 are available. // We will build up the handler from the bottom by pushing on the stack. // Set up the code object (r5) and the state (r6) for pushing. unsigned state = StackHandler::IndexField::encode(handler_index) | StackHandler::KindField::encode(kind); mov(r5, Operand(CodeObject())); mov(r6, Operand(state)); // Push the frame pointer, context, state, and code object. if (kind == StackHandler::JS_ENTRY) { mov(r7, Operand(Smi::FromInt(0))); // Indicates no context. mov(ip, Operand(0, RelocInfo::NONE)); // NULL frame pointer. stm(db_w, sp, r5.bit() | r6.bit() | r7.bit() | ip.bit()); } else { stm(db_w, sp, r5.bit() | r6.bit() | cp.bit() | fp.bit()); } // Link the current handler as the next handler. mov(r6, Operand(ExternalReference(Isolate::kHandlerAddress, isolate()))); ldr(r5, MemOperand(r6)); push(r5); // Set this new handler as the current one. str(sp, MemOperand(r6)); } void MacroAssembler::PopTryHandler() { STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0); pop(r1); mov(ip, Operand(ExternalReference(Isolate::kHandlerAddress, isolate()))); add(sp, sp, Operand(StackHandlerConstants::kSize - kPointerSize)); str(r1, MemOperand(ip)); } void MacroAssembler::JumpToHandlerEntry() { // Compute the handler entry address and jump to it. The handler table is // a fixed array of (smi-tagged) code offsets. // r0 = exception, r1 = code object, r2 = state. ldr(r3, FieldMemOperand(r1, Code::kHandlerTableOffset)); // Handler table. add(r3, r3, Operand(FixedArray::kHeaderSize - kHeapObjectTag)); mov(r2, Operand(r2, LSR, StackHandler::kKindWidth)); // Handler index. ldr(r2, MemOperand(r3, r2, LSL, kPointerSizeLog2)); // Smi-tagged offset. add(r1, r1, Operand(Code::kHeaderSize - kHeapObjectTag)); // Code start. add(pc, r1, Operand(r2, ASR, kSmiTagSize)); // Jump. } void MacroAssembler::Throw(Register value) { // Adjust this code if not the case. STATIC_ASSERT(StackHandlerConstants::kSize == 5 * kPointerSize); STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0); STATIC_ASSERT(StackHandlerConstants::kCodeOffset == 1 * kPointerSize); STATIC_ASSERT(StackHandlerConstants::kStateOffset == 2 * kPointerSize); STATIC_ASSERT(StackHandlerConstants::kContextOffset == 3 * kPointerSize); STATIC_ASSERT(StackHandlerConstants::kFPOffset == 4 * kPointerSize); // The exception is expected in r0. if (!value.is(r0)) { mov(r0, value); } // Drop the stack pointer to the top of the top handler. mov(r3, Operand(ExternalReference(Isolate::kHandlerAddress, isolate()))); ldr(sp, MemOperand(r3)); // Restore the next handler. pop(r2); str(r2, MemOperand(r3)); // Get the code object (r1) and state (r2). Restore the context and frame // pointer. ldm(ia_w, sp, r1.bit() | r2.bit() | cp.bit() | fp.bit()); // If the handler is a JS frame, restore the context to the frame. // (kind == ENTRY) == (fp == 0) == (cp == 0), so we could test either fp // or cp. tst(cp, cp); str(cp, MemOperand(fp, StandardFrameConstants::kContextOffset), ne); JumpToHandlerEntry(); } void MacroAssembler::ThrowUncatchable(Register value) { // Adjust this code if not the case. STATIC_ASSERT(StackHandlerConstants::kSize == 5 * kPointerSize); STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0 * kPointerSize); STATIC_ASSERT(StackHandlerConstants::kCodeOffset == 1 * kPointerSize); STATIC_ASSERT(StackHandlerConstants::kStateOffset == 2 * kPointerSize); STATIC_ASSERT(StackHandlerConstants::kContextOffset == 3 * kPointerSize); STATIC_ASSERT(StackHandlerConstants::kFPOffset == 4 * kPointerSize); // The exception is expected in r0. if (!value.is(r0)) { mov(r0, value); } // Drop the stack pointer to the top of the top stack handler. mov(r3, Operand(ExternalReference(Isolate::kHandlerAddress, isolate()))); ldr(sp, MemOperand(r3)); // Unwind the handlers until the ENTRY handler is found. Label fetch_next, check_kind; jmp(&check_kind); bind(&fetch_next); ldr(sp, MemOperand(sp, StackHandlerConstants::kNextOffset)); bind(&check_kind); STATIC_ASSERT(StackHandler::JS_ENTRY == 0); ldr(r2, MemOperand(sp, StackHandlerConstants::kStateOffset)); tst(r2, Operand(StackHandler::KindField::kMask)); b(ne, &fetch_next); // Set the top handler address to next handler past the top ENTRY handler. pop(r2); str(r2, MemOperand(r3)); // Get the code object (r1) and state (r2). Clear the context and frame // pointer (0 was saved in the handler). ldm(ia_w, sp, r1.bit() | r2.bit() | cp.bit() | fp.bit()); JumpToHandlerEntry(); } void MacroAssembler::CheckAccessGlobalProxy(Register holder_reg, Register scratch, Label* miss) { Label same_contexts; ASSERT(!holder_reg.is(scratch)); ASSERT(!holder_reg.is(ip)); ASSERT(!scratch.is(ip)); // Load current lexical context from the stack frame. ldr(scratch, MemOperand(fp, StandardFrameConstants::kContextOffset)); // In debug mode, make sure the lexical context is set. #ifdef DEBUG cmp(scratch, Operand(0, RelocInfo::NONE)); Check(ne, "we should not have an empty lexical context"); #endif // Load the global context of the current context. int offset = Context::kHeaderSize + Context::GLOBAL_INDEX * kPointerSize; ldr(scratch, FieldMemOperand(scratch, offset)); ldr(scratch, FieldMemOperand(scratch, GlobalObject::kGlobalContextOffset)); // Check the context is a global context. if (emit_debug_code()) { // TODO(119): avoid push(holder_reg)/pop(holder_reg) // Cannot use ip as a temporary in this verification code. Due to the fact // that ip is clobbered as part of cmp with an object Operand. push(holder_reg); // Temporarily save holder on the stack. // Read the first word and compare to the global_context_map. ldr(holder_reg, FieldMemOperand(scratch, HeapObject::kMapOffset)); LoadRoot(ip, Heap::kGlobalContextMapRootIndex); cmp(holder_reg, ip); Check(eq, "JSGlobalObject::global_context should be a global context."); pop(holder_reg); // Restore holder. } // Check if both contexts are the same. ldr(ip, FieldMemOperand(holder_reg, JSGlobalProxy::kContextOffset)); cmp(scratch, Operand(ip)); b(eq, &same_contexts); // Check the context is a global context. if (emit_debug_code()) { // TODO(119): avoid push(holder_reg)/pop(holder_reg) // Cannot use ip as a temporary in this verification code. Due to the fact // that ip is clobbered as part of cmp with an object Operand. push(holder_reg); // Temporarily save holder on the stack. mov(holder_reg, ip); // Move ip to its holding place. LoadRoot(ip, Heap::kNullValueRootIndex); cmp(holder_reg, ip); Check(ne, "JSGlobalProxy::context() should not be null."); ldr(holder_reg, FieldMemOperand(holder_reg, HeapObject::kMapOffset)); LoadRoot(ip, Heap::kGlobalContextMapRootIndex); cmp(holder_reg, ip); Check(eq, "JSGlobalObject::global_context should be a global context."); // Restore ip is not needed. ip is reloaded below. pop(holder_reg); // Restore holder. // Restore ip to holder's context. ldr(ip, FieldMemOperand(holder_reg, JSGlobalProxy::kContextOffset)); } // Check that the security token in the calling global object is // compatible with the security token in the receiving global // object. int token_offset = Context::kHeaderSize + Context::SECURITY_TOKEN_INDEX * kPointerSize; ldr(scratch, FieldMemOperand(scratch, token_offset)); ldr(ip, FieldMemOperand(ip, token_offset)); cmp(scratch, Operand(ip)); b(ne, miss); bind(&same_contexts); } void MacroAssembler::GetNumberHash(Register t0, Register scratch) { // First of all we assign the hash seed to scratch. LoadRoot(scratch, Heap::kHashSeedRootIndex); SmiUntag(scratch); // Xor original key with a seed. eor(t0, t0, Operand(scratch)); // Compute the hash code from the untagged key. This must be kept in sync // with ComputeIntegerHash in utils.h. // // hash = ~hash + (hash << 15); mvn(scratch, Operand(t0)); add(t0, scratch, Operand(t0, LSL, 15)); // hash = hash ^ (hash >> 12); eor(t0, t0, Operand(t0, LSR, 12)); // hash = hash + (hash << 2); add(t0, t0, Operand(t0, LSL, 2)); // hash = hash ^ (hash >> 4); eor(t0, t0, Operand(t0, LSR, 4)); // hash = hash * 2057; mov(scratch, Operand(t0, LSL, 11)); add(t0, t0, Operand(t0, LSL, 3)); add(t0, t0, scratch); // hash = hash ^ (hash >> 16); eor(t0, t0, Operand(t0, LSR, 16)); } void MacroAssembler::LoadFromNumberDictionary(Label* miss, Register elements, Register key, Register result, Register t0, Register t1, Register t2) { // Register use: // // elements - holds the slow-case elements of the receiver on entry. // Unchanged unless 'result' is the same register. // // key - holds the smi key on entry. // Unchanged unless 'result' is the same register. // // result - holds the result on exit if the load succeeded. // Allowed to be the same as 'key' or 'result'. // Unchanged on bailout so 'key' or 'result' can be used // in further computation. // // Scratch registers: // // t0 - holds the untagged key on entry and holds the hash once computed. // // t1 - used to hold the capacity mask of the dictionary // // t2 - used for the index into the dictionary. Label done; GetNumberHash(t0, t1); // Compute the capacity mask. ldr(t1, FieldMemOperand(elements, SeededNumberDictionary::kCapacityOffset)); mov(t1, Operand(t1, ASR, kSmiTagSize)); // convert smi to int sub(t1, t1, Operand(1)); // Generate an unrolled loop that performs a few probes before giving up. static const int kProbes = 4; for (int i = 0; i < kProbes; i++) { // Use t2 for index calculations and keep the hash intact in t0. mov(t2, t0); // Compute the masked index: (hash + i + i * i) & mask. if (i > 0) { add(t2, t2, Operand(SeededNumberDictionary::GetProbeOffset(i))); } and_(t2, t2, Operand(t1)); // Scale the index by multiplying by the element size. ASSERT(SeededNumberDictionary::kEntrySize == 3); add(t2, t2, Operand(t2, LSL, 1)); // t2 = t2 * 3 // Check if the key is identical to the name. add(t2, elements, Operand(t2, LSL, kPointerSizeLog2)); ldr(ip, FieldMemOperand(t2, SeededNumberDictionary::kElementsStartOffset)); cmp(key, Operand(ip)); if (i != kProbes - 1) { b(eq, &done); } else { b(ne, miss); } } bind(&done); // Check that the value is a normal property. // t2: elements + (index * kPointerSize) const int kDetailsOffset = SeededNumberDictionary::kElementsStartOffset + 2 * kPointerSize; ldr(t1, FieldMemOperand(t2, kDetailsOffset)); tst(t1, Operand(Smi::FromInt(PropertyDetails::TypeField::kMask))); b(ne, miss); // Get the value at the masked, scaled index and return. const int kValueOffset = SeededNumberDictionary::kElementsStartOffset + kPointerSize; ldr(result, FieldMemOperand(t2, kValueOffset)); } void MacroAssembler::AllocateInNewSpace(int object_size, Register result, Register scratch1, Register scratch2, Label* gc_required, AllocationFlags flags) { if (!FLAG_inline_new) { if (emit_debug_code()) { // Trash the registers to simulate an allocation failure. mov(result, Operand(0x7091)); mov(scratch1, Operand(0x7191)); mov(scratch2, Operand(0x7291)); } jmp(gc_required); return; } ASSERT(!result.is(scratch1)); ASSERT(!result.is(scratch2)); ASSERT(!scratch1.is(scratch2)); ASSERT(!scratch1.is(ip)); ASSERT(!scratch2.is(ip)); // Make object size into bytes. if ((flags & SIZE_IN_WORDS) != 0) { object_size *= kPointerSize; } ASSERT_EQ(0, object_size & kObjectAlignmentMask); // Check relative positions of allocation top and limit addresses. // The values must be adjacent in memory to allow the use of LDM. // Also, assert that the registers are numbered such that the values // are loaded in the correct order. ExternalReference new_space_allocation_top = ExternalReference::new_space_allocation_top_address(isolate()); ExternalReference new_space_allocation_limit = ExternalReference::new_space_allocation_limit_address(isolate()); intptr_t top = reinterpret_cast(new_space_allocation_top.address()); intptr_t limit = reinterpret_cast(new_space_allocation_limit.address()); ASSERT((limit - top) == kPointerSize); ASSERT(result.code() < ip.code()); // Set up allocation top address and object size registers. Register topaddr = scratch1; Register obj_size_reg = scratch2; mov(topaddr, Operand(new_space_allocation_top)); mov(obj_size_reg, Operand(object_size)); // This code stores a temporary value in ip. This is OK, as the code below // does not need ip for implicit literal generation. if ((flags & RESULT_CONTAINS_TOP) == 0) { // Load allocation top into result and allocation limit into ip. ldm(ia, topaddr, result.bit() | ip.bit()); } else { if (emit_debug_code()) { // Assert that result actually contains top on entry. ip is used // immediately below so this use of ip does not cause difference with // respect to register content between debug and release mode. ldr(ip, MemOperand(topaddr)); cmp(result, ip); Check(eq, "Unexpected allocation top"); } // Load allocation limit into ip. Result already contains allocation top. ldr(ip, MemOperand(topaddr, limit - top)); } // Calculate new top and bail out if new space is exhausted. Use result // to calculate the new top. add(scratch2, result, Operand(obj_size_reg), SetCC); b(cs, gc_required); cmp(scratch2, Operand(ip)); b(hi, gc_required); str(scratch2, MemOperand(topaddr)); // Tag object if requested. if ((flags & TAG_OBJECT) != 0) { add(result, result, Operand(kHeapObjectTag)); } } void MacroAssembler::AllocateInNewSpace(Register object_size, Register result, Register scratch1, Register scratch2, Label* gc_required, AllocationFlags flags) { if (!FLAG_inline_new) { if (emit_debug_code()) { // Trash the registers to simulate an allocation failure. mov(result, Operand(0x7091)); mov(scratch1, Operand(0x7191)); mov(scratch2, Operand(0x7291)); } jmp(gc_required); return; } // Assert that the register arguments are different and that none of // them are ip. ip is used explicitly in the code generated below. ASSERT(!result.is(scratch1)); ASSERT(!result.is(scratch2)); ASSERT(!scratch1.is(scratch2)); ASSERT(!object_size.is(ip)); ASSERT(!result.is(ip)); ASSERT(!scratch1.is(ip)); ASSERT(!scratch2.is(ip)); // Check relative positions of allocation top and limit addresses. // The values must be adjacent in memory to allow the use of LDM. // Also, assert that the registers are numbered such that the values // are loaded in the correct order. ExternalReference new_space_allocation_top = ExternalReference::new_space_allocation_top_address(isolate()); ExternalReference new_space_allocation_limit = ExternalReference::new_space_allocation_limit_address(isolate()); intptr_t top = reinterpret_cast(new_space_allocation_top.address()); intptr_t limit = reinterpret_cast(new_space_allocation_limit.address()); ASSERT((limit - top) == kPointerSize); ASSERT(result.code() < ip.code()); // Set up allocation top address. Register topaddr = scratch1; mov(topaddr, Operand(new_space_allocation_top)); // This code stores a temporary value in ip. This is OK, as the code below // does not need ip for implicit literal generation. if ((flags & RESULT_CONTAINS_TOP) == 0) { // Load allocation top into result and allocation limit into ip. ldm(ia, topaddr, result.bit() | ip.bit()); } else { if (emit_debug_code()) { // Assert that result actually contains top on entry. ip is used // immediately below so this use of ip does not cause difference with // respect to register content between debug and release mode. ldr(ip, MemOperand(topaddr)); cmp(result, ip); Check(eq, "Unexpected allocation top"); } // Load allocation limit into ip. Result already contains allocation top. ldr(ip, MemOperand(topaddr, limit - top)); } // Calculate new top and bail out if new space is exhausted. Use result // to calculate the new top. Object size may be in words so a shift is // required to get the number of bytes. if ((flags & SIZE_IN_WORDS) != 0) { add(scratch2, result, Operand(object_size, LSL, kPointerSizeLog2), SetCC); } else { add(scratch2, result, Operand(object_size), SetCC); } b(cs, gc_required); cmp(scratch2, Operand(ip)); b(hi, gc_required); // Update allocation top. result temporarily holds the new top. if (emit_debug_code()) { tst(scratch2, Operand(kObjectAlignmentMask)); Check(eq, "Unaligned allocation in new space"); } str(scratch2, MemOperand(topaddr)); // Tag object if requested. if ((flags & TAG_OBJECT) != 0) { add(result, result, Operand(kHeapObjectTag)); } } void MacroAssembler::UndoAllocationInNewSpace(Register object, Register scratch) { ExternalReference new_space_allocation_top = ExternalReference::new_space_allocation_top_address(isolate()); // Make sure the object has no tag before resetting top. and_(object, object, Operand(~kHeapObjectTagMask)); #ifdef DEBUG // Check that the object un-allocated is below the current top. mov(scratch, Operand(new_space_allocation_top)); ldr(scratch, MemOperand(scratch)); cmp(object, scratch); Check(lt, "Undo allocation of non allocated memory"); #endif // Write the address of the object to un-allocate as the current top. mov(scratch, Operand(new_space_allocation_top)); str(object, MemOperand(scratch)); } void MacroAssembler::AllocateTwoByteString(Register result, Register length, Register scratch1, Register scratch2, Register scratch3, Label* gc_required) { // Calculate the number of bytes needed for the characters in the string while // observing object alignment. ASSERT((SeqTwoByteString::kHeaderSize & kObjectAlignmentMask) == 0); mov(scratch1, Operand(length, LSL, 1)); // Length in bytes, not chars. add(scratch1, scratch1, Operand(kObjectAlignmentMask + SeqTwoByteString::kHeaderSize)); and_(scratch1, scratch1, Operand(~kObjectAlignmentMask)); // Allocate two-byte string in new space. AllocateInNewSpace(scratch1, result, scratch2, scratch3, gc_required, TAG_OBJECT); // Set the map, length and hash field. InitializeNewString(result, length, Heap::kStringMapRootIndex, scratch1, scratch2); } void MacroAssembler::AllocateAsciiString(Register result, Register length, Register scratch1, Register scratch2, Register scratch3, Label* gc_required) { // Calculate the number of bytes needed for the characters in the string while // observing object alignment. ASSERT((SeqAsciiString::kHeaderSize & kObjectAlignmentMask) == 0); ASSERT(kCharSize == 1); add(scratch1, length, Operand(kObjectAlignmentMask + SeqAsciiString::kHeaderSize)); and_(scratch1, scratch1, Operand(~kObjectAlignmentMask)); // Allocate ASCII string in new space. AllocateInNewSpace(scratch1, result, scratch2, scratch3, gc_required, TAG_OBJECT); // Set the map, length and hash field. InitializeNewString(result, length, Heap::kAsciiStringMapRootIndex, scratch1, scratch2); } void MacroAssembler::AllocateTwoByteConsString(Register result, Register length, Register scratch1, Register scratch2, Label* gc_required) { AllocateInNewSpace(ConsString::kSize, result, scratch1, scratch2, gc_required, TAG_OBJECT); InitializeNewString(result, length, Heap::kConsStringMapRootIndex, scratch1, scratch2); } void MacroAssembler::AllocateAsciiConsString(Register result, Register length, Register scratch1, Register scratch2, Label* gc_required) { AllocateInNewSpace(ConsString::kSize, result, scratch1, scratch2, gc_required, TAG_OBJECT); InitializeNewString(result, length, Heap::kConsAsciiStringMapRootIndex, scratch1, scratch2); } void MacroAssembler::AllocateTwoByteSlicedString(Register result, Register length, Register scratch1, Register scratch2, Label* gc_required) { AllocateInNewSpace(SlicedString::kSize, result, scratch1, scratch2, gc_required, TAG_OBJECT); InitializeNewString(result, length, Heap::kSlicedStringMapRootIndex, scratch1, scratch2); } void MacroAssembler::AllocateAsciiSlicedString(Register result, Register length, Register scratch1, Register scratch2, Label* gc_required) { AllocateInNewSpace(SlicedString::kSize, result, scratch1, scratch2, gc_required, TAG_OBJECT); InitializeNewString(result, length, Heap::kSlicedAsciiStringMapRootIndex, scratch1, scratch2); } void MacroAssembler::CompareObjectType(Register object, Register map, Register type_reg, InstanceType type) { ldr(map, FieldMemOperand(object, HeapObject::kMapOffset)); CompareInstanceType(map, type_reg, type); } void MacroAssembler::CompareInstanceType(Register map, Register type_reg, InstanceType type) { ldrb(type_reg, FieldMemOperand(map, Map::kInstanceTypeOffset)); cmp(type_reg, Operand(type)); } void MacroAssembler::CompareRoot(Register obj, Heap::RootListIndex index) { ASSERT(!obj.is(ip)); LoadRoot(ip, index); cmp(obj, ip); } void MacroAssembler::CheckFastElements(Register map, Register scratch, Label* fail) { STATIC_ASSERT(FAST_SMI_ELEMENTS == 0); STATIC_ASSERT(FAST_HOLEY_SMI_ELEMENTS == 1); STATIC_ASSERT(FAST_ELEMENTS == 2); STATIC_ASSERT(FAST_HOLEY_ELEMENTS == 3); ldrb(scratch, FieldMemOperand(map, Map::kBitField2Offset)); cmp(scratch, Operand(Map::kMaximumBitField2FastHoleyElementValue)); b(hi, fail); } void MacroAssembler::CheckFastObjectElements(Register map, Register scratch, Label* fail) { STATIC_ASSERT(FAST_SMI_ELEMENTS == 0); STATIC_ASSERT(FAST_HOLEY_SMI_ELEMENTS == 1); STATIC_ASSERT(FAST_ELEMENTS == 2); STATIC_ASSERT(FAST_HOLEY_ELEMENTS == 3); ldrb(scratch, FieldMemOperand(map, Map::kBitField2Offset)); cmp(scratch, Operand(Map::kMaximumBitField2FastHoleySmiElementValue)); b(ls, fail); cmp(scratch, Operand(Map::kMaximumBitField2FastHoleyElementValue)); b(hi, fail); } void MacroAssembler::CheckFastSmiElements(Register map, Register scratch, Label* fail) { STATIC_ASSERT(FAST_SMI_ELEMENTS == 0); STATIC_ASSERT(FAST_HOLEY_SMI_ELEMENTS == 1); ldrb(scratch, FieldMemOperand(map, Map::kBitField2Offset)); cmp(scratch, Operand(Map::kMaximumBitField2FastHoleySmiElementValue)); b(hi, fail); } void MacroAssembler::StoreNumberToDoubleElements(Register value_reg, Register key_reg, Register receiver_reg, Register elements_reg, Register scratch1, Register scratch2, Register scratch3, Register scratch4, Label* fail) { Label smi_value, maybe_nan, have_double_value, is_nan, done; Register mantissa_reg = scratch2; Register exponent_reg = scratch3; // Handle smi values specially. JumpIfSmi(value_reg, &smi_value); // Ensure that the object is a heap number CheckMap(value_reg, scratch1, isolate()->factory()->heap_number_map(), fail, DONT_DO_SMI_CHECK); // Check for nan: all NaN values have a value greater (signed) than 0x7ff00000 // in the exponent. mov(scratch1, Operand(kNaNOrInfinityLowerBoundUpper32)); ldr(exponent_reg, FieldMemOperand(value_reg, HeapNumber::kExponentOffset)); cmp(exponent_reg, scratch1); b(ge, &maybe_nan); ldr(mantissa_reg, FieldMemOperand(value_reg, HeapNumber::kMantissaOffset)); bind(&have_double_value); add(scratch1, elements_reg, Operand(key_reg, LSL, kDoubleSizeLog2 - kSmiTagSize)); str(mantissa_reg, FieldMemOperand(scratch1, FixedDoubleArray::kHeaderSize)); uint32_t offset = FixedDoubleArray::kHeaderSize + sizeof(kHoleNanLower32); str(exponent_reg, FieldMemOperand(scratch1, offset)); jmp(&done); bind(&maybe_nan); // Could be NaN or Infinity. If fraction is not zero, it's NaN, otherwise // it's an Infinity, and the non-NaN code path applies. b(gt, &is_nan); ldr(mantissa_reg, FieldMemOperand(value_reg, HeapNumber::kMantissaOffset)); cmp(mantissa_reg, Operand(0)); b(eq, &have_double_value); bind(&is_nan); // Load canonical NaN for storing into the double array. uint64_t nan_int64 = BitCast( FixedDoubleArray::canonical_not_the_hole_nan_as_double()); mov(mantissa_reg, Operand(static_cast(nan_int64))); mov(exponent_reg, Operand(static_cast(nan_int64 >> 32))); jmp(&have_double_value); bind(&smi_value); add(scratch1, elements_reg, Operand(FixedDoubleArray::kHeaderSize - kHeapObjectTag)); add(scratch1, scratch1, Operand(key_reg, LSL, kDoubleSizeLog2 - kSmiTagSize)); // scratch1 is now effective address of the double element FloatingPointHelper::Destination destination; if (CpuFeatures::IsSupported(VFP3)) { destination = FloatingPointHelper::kVFPRegisters; } else { destination = FloatingPointHelper::kCoreRegisters; } Register untagged_value = receiver_reg; SmiUntag(untagged_value, value_reg); FloatingPointHelper::ConvertIntToDouble(this, untagged_value, destination, d0, mantissa_reg, exponent_reg, scratch4, s2); if (destination == FloatingPointHelper::kVFPRegisters) { CpuFeatures::Scope scope(VFP3); vstr(d0, scratch1, 0); } else { str(mantissa_reg, MemOperand(scratch1, 0)); str(exponent_reg, MemOperand(scratch1, Register::kSizeInBytes)); } bind(&done); } void MacroAssembler::CompareMap(Register obj, Register scratch, Handle map, Label* early_success, CompareMapMode mode) { ldr(scratch, FieldMemOperand(obj, HeapObject::kMapOffset)); CompareMap(scratch, map, early_success, mode); } void MacroAssembler::CompareMap(Register obj_map, Handle map, Label* early_success, CompareMapMode mode) { cmp(obj_map, Operand(map)); if (mode == ALLOW_ELEMENT_TRANSITION_MAPS) { ElementsKind kind = map->elements_kind(); if (IsFastElementsKind(kind)) { bool packed = IsFastPackedElementsKind(kind); Map* current_map = *map; while (CanTransitionToMoreGeneralFastElementsKind(kind, packed)) { kind = GetNextMoreGeneralFastElementsKind(kind, packed); current_map = current_map->LookupElementsTransitionMap(kind); if (!current_map) break; b(eq, early_success); cmp(obj_map, Operand(Handle(current_map))); } } } } void MacroAssembler::CheckMap(Register obj, Register scratch, Handle map, Label* fail, SmiCheckType smi_check_type, CompareMapMode mode) { if (smi_check_type == DO_SMI_CHECK) { JumpIfSmi(obj, fail); } Label success; CompareMap(obj, scratch, map, &success, mode); b(ne, fail); bind(&success); } void MacroAssembler::CheckMap(Register obj, Register scratch, Heap::RootListIndex index, Label* fail, SmiCheckType smi_check_type) { if (smi_check_type == DO_SMI_CHECK) { JumpIfSmi(obj, fail); } ldr(scratch, FieldMemOperand(obj, HeapObject::kMapOffset)); LoadRoot(ip, index); cmp(scratch, ip); b(ne, fail); } void MacroAssembler::DispatchMap(Register obj, Register scratch, Handle map, Handle success, SmiCheckType smi_check_type) { Label fail; if (smi_check_type == DO_SMI_CHECK) { JumpIfSmi(obj, &fail); } ldr(scratch, FieldMemOperand(obj, HeapObject::kMapOffset)); mov(ip, Operand(map)); cmp(scratch, ip); Jump(success, RelocInfo::CODE_TARGET, eq); bind(&fail); } void MacroAssembler::TryGetFunctionPrototype(Register function, Register result, Register scratch, Label* miss, bool miss_on_bound_function) { // Check that the receiver isn't a smi. JumpIfSmi(function, miss); // Check that the function really is a function. Load map into result reg. CompareObjectType(function, result, scratch, JS_FUNCTION_TYPE); b(ne, miss); if (miss_on_bound_function) { ldr(scratch, FieldMemOperand(function, JSFunction::kSharedFunctionInfoOffset)); ldr(scratch, FieldMemOperand(scratch, SharedFunctionInfo::kCompilerHintsOffset)); tst(scratch, Operand(Smi::FromInt(1 << SharedFunctionInfo::kBoundFunction))); b(ne, miss); } // Make sure that the function has an instance prototype. Label non_instance; ldrb(scratch, FieldMemOperand(result, Map::kBitFieldOffset)); tst(scratch, Operand(1 << Map::kHasNonInstancePrototype)); b(ne, &non_instance); // Get the prototype or initial map from the function. ldr(result, FieldMemOperand(function, JSFunction::kPrototypeOrInitialMapOffset)); // If the prototype or initial map is the hole, don't return it and // simply miss the cache instead. This will allow us to allocate a // prototype object on-demand in the runtime system. LoadRoot(ip, Heap::kTheHoleValueRootIndex); cmp(result, ip); b(eq, miss); // If the function does not have an initial map, we're done. Label done; CompareObjectType(result, scratch, scratch, MAP_TYPE); b(ne, &done); // Get the prototype from the initial map. ldr(result, FieldMemOperand(result, Map::kPrototypeOffset)); jmp(&done); // Non-instance prototype: Fetch prototype from constructor field // in initial map. bind(&non_instance); ldr(result, FieldMemOperand(result, Map::kConstructorOffset)); // All done. bind(&done); } void MacroAssembler::CallStub(CodeStub* stub, Condition cond) { ASSERT(AllowThisStubCall(stub)); // Stub calls are not allowed in some stubs. Call(stub->GetCode(), RelocInfo::CODE_TARGET, kNoASTId, cond); } void MacroAssembler::TailCallStub(CodeStub* stub, Condition cond) { ASSERT(allow_stub_calls_ || stub->CompilingCallsToThisStubIsGCSafe()); Jump(stub->GetCode(), RelocInfo::CODE_TARGET, cond); } static int AddressOffset(ExternalReference ref0, ExternalReference ref1) { return ref0.address() - ref1.address(); } void MacroAssembler::CallApiFunctionAndReturn(ExternalReference function, int stack_space) { ExternalReference next_address = ExternalReference::handle_scope_next_address(); const int kNextOffset = 0; const int kLimitOffset = AddressOffset( ExternalReference::handle_scope_limit_address(), next_address); const int kLevelOffset = AddressOffset( ExternalReference::handle_scope_level_address(), next_address); // Allocate HandleScope in callee-save registers. mov(r7, Operand(next_address)); ldr(r4, MemOperand(r7, kNextOffset)); ldr(r5, MemOperand(r7, kLimitOffset)); ldr(r6, MemOperand(r7, kLevelOffset)); add(r6, r6, Operand(1)); str(r6, MemOperand(r7, kLevelOffset)); // Native call returns to the DirectCEntry stub which redirects to the // return address pushed on stack (could have moved after GC). // DirectCEntry stub itself is generated early and never moves. DirectCEntryStub stub; stub.GenerateCall(this, function); Label promote_scheduled_exception; Label delete_allocated_handles; Label leave_exit_frame; // If result is non-zero, dereference to get the result value // otherwise set it to undefined. cmp(r0, Operand(0)); LoadRoot(r0, Heap::kUndefinedValueRootIndex, eq); ldr(r0, MemOperand(r0), ne); // No more valid handles (the result handle was the last one). Restore // previous handle scope. str(r4, MemOperand(r7, kNextOffset)); if (emit_debug_code()) { ldr(r1, MemOperand(r7, kLevelOffset)); cmp(r1, r6); Check(eq, "Unexpected level after return from api call"); } sub(r6, r6, Operand(1)); str(r6, MemOperand(r7, kLevelOffset)); ldr(ip, MemOperand(r7, kLimitOffset)); cmp(r5, ip); b(ne, &delete_allocated_handles); // Check if the function scheduled an exception. bind(&leave_exit_frame); LoadRoot(r4, Heap::kTheHoleValueRootIndex); mov(ip, Operand(ExternalReference::scheduled_exception_address(isolate()))); ldr(r5, MemOperand(ip)); cmp(r4, r5); b(ne, &promote_scheduled_exception); // LeaveExitFrame expects unwind space to be in a register. mov(r4, Operand(stack_space)); LeaveExitFrame(false, r4); mov(pc, lr); bind(&promote_scheduled_exception); TailCallExternalReference( ExternalReference(Runtime::kPromoteScheduledException, isolate()), 0, 1); // HandleScope limit has changed. Delete allocated extensions. bind(&delete_allocated_handles); str(r5, MemOperand(r7, kLimitOffset)); mov(r4, r0); PrepareCallCFunction(1, r5); mov(r0, Operand(ExternalReference::isolate_address())); CallCFunction( ExternalReference::delete_handle_scope_extensions(isolate()), 1); mov(r0, r4); jmp(&leave_exit_frame); } bool MacroAssembler::AllowThisStubCall(CodeStub* stub) { if (!has_frame_ && stub->SometimesSetsUpAFrame()) return false; return allow_stub_calls_ || stub->CompilingCallsToThisStubIsGCSafe(); } void MacroAssembler::IllegalOperation(int num_arguments) { if (num_arguments > 0) { add(sp, sp, Operand(num_arguments * kPointerSize)); } LoadRoot(r0, Heap::kUndefinedValueRootIndex); } void MacroAssembler::IndexFromHash(Register hash, Register index) { // If the hash field contains an array index pick it out. The assert checks // that the constants for the maximum number of digits for an array index // cached in the hash field and the number of bits reserved for it does not // conflict. ASSERT(TenToThe(String::kMaxCachedArrayIndexLength) < (1 << String::kArrayIndexValueBits)); // We want the smi-tagged index in key. kArrayIndexValueMask has zeros in // the low kHashShift bits. STATIC_ASSERT(kSmiTag == 0); Ubfx(hash, hash, String::kHashShift, String::kArrayIndexValueBits); mov(index, Operand(hash, LSL, kSmiTagSize)); } void MacroAssembler::IntegerToDoubleConversionWithVFP3(Register inReg, Register outHighReg, Register outLowReg) { // ARMv7 VFP3 instructions to implement integer to double conversion. mov(r7, Operand(inReg, ASR, kSmiTagSize)); vmov(s15, r7); vcvt_f64_s32(d7, s15); vmov(outLowReg, outHighReg, d7); } void MacroAssembler::ObjectToDoubleVFPRegister(Register object, DwVfpRegister result, Register scratch1, Register scratch2, Register heap_number_map, SwVfpRegister scratch3, Label* not_number, ObjectToDoubleFlags flags) { Label done; if ((flags & OBJECT_NOT_SMI) == 0) { Label not_smi; JumpIfNotSmi(object, ¬_smi); // Remove smi tag and convert to double. mov(scratch1, Operand(object, ASR, kSmiTagSize)); vmov(scratch3, scratch1); vcvt_f64_s32(result, scratch3); b(&done); bind(¬_smi); } // Check for heap number and load double value from it. ldr(scratch1, FieldMemOperand(object, HeapObject::kMapOffset)); sub(scratch2, object, Operand(kHeapObjectTag)); cmp(scratch1, heap_number_map); b(ne, not_number); if ((flags & AVOID_NANS_AND_INFINITIES) != 0) { // If exponent is all ones the number is either a NaN or +/-Infinity. ldr(scratch1, FieldMemOperand(object, HeapNumber::kExponentOffset)); Sbfx(scratch1, scratch1, HeapNumber::kExponentShift, HeapNumber::kExponentBits); // All-one value sign extend to -1. cmp(scratch1, Operand(-1)); b(eq, not_number); } vldr(result, scratch2, HeapNumber::kValueOffset); bind(&done); } void MacroAssembler::SmiToDoubleVFPRegister(Register smi, DwVfpRegister value, Register scratch1, SwVfpRegister scratch2) { mov(scratch1, Operand(smi, ASR, kSmiTagSize)); vmov(scratch2, scratch1); vcvt_f64_s32(value, scratch2); } // Tries to get a signed int32 out of a double precision floating point heap // number. Rounds towards 0. Branch to 'not_int32' if the double is out of the // 32bits signed integer range. void MacroAssembler::ConvertToInt32(Register source, Register dest, Register scratch, Register scratch2, DwVfpRegister double_scratch, Label *not_int32) { if (CpuFeatures::IsSupported(VFP3)) { CpuFeatures::Scope scope(VFP3); sub(scratch, source, Operand(kHeapObjectTag)); vldr(double_scratch, scratch, HeapNumber::kValueOffset); vcvt_s32_f64(double_scratch.low(), double_scratch); vmov(dest, double_scratch.low()); // Signed vcvt instruction will saturate to the minimum (0x80000000) or // maximun (0x7fffffff) signed 32bits integer when the double is out of // range. When substracting one, the minimum signed integer becomes the // maximun signed integer. sub(scratch, dest, Operand(1)); cmp(scratch, Operand(LONG_MAX - 1)); // If equal then dest was LONG_MAX, if greater dest was LONG_MIN. b(ge, not_int32); } else { // This code is faster for doubles that are in the ranges -0x7fffffff to // -0x40000000 or 0x40000000 to 0x7fffffff. This corresponds almost to // the range of signed int32 values that are not Smis. Jumps to the label // 'not_int32' if the double isn't in the range -0x80000000.0 to // 0x80000000.0 (excluding the endpoints). Label right_exponent, done; // Get exponent word. ldr(scratch, FieldMemOperand(source, HeapNumber::kExponentOffset)); // Get exponent alone in scratch2. Ubfx(scratch2, scratch, HeapNumber::kExponentShift, HeapNumber::kExponentBits); // Load dest with zero. We use this either for the final shift or // for the answer. mov(dest, Operand(0, RelocInfo::NONE)); // Check whether the exponent matches a 32 bit signed int that is not a Smi. // A non-Smi integer is 1.xxx * 2^30 so the exponent is 30 (biased). This is // the exponent that we are fastest at and also the highest exponent we can // handle here. const uint32_t non_smi_exponent = HeapNumber::kExponentBias + 30; // The non_smi_exponent, 0x41d, is too big for ARM's immediate field so we // split it up to avoid a constant pool entry. You can't do that in general // for cmp because of the overflow flag, but we know the exponent is in the // range 0-2047 so there is no overflow. int fudge_factor = 0x400; sub(scratch2, scratch2, Operand(fudge_factor)); cmp(scratch2, Operand(non_smi_exponent - fudge_factor)); // If we have a match of the int32-but-not-Smi exponent then skip some // logic. b(eq, &right_exponent); // If the exponent is higher than that then go to slow case. This catches // numbers that don't fit in a signed int32, infinities and NaNs. b(gt, not_int32); // We know the exponent is smaller than 30 (biased). If it is less than // 0 (biased) then the number is smaller in magnitude than 1.0 * 2^0, i.e. // it rounds to zero. const uint32_t zero_exponent = HeapNumber::kExponentBias + 0; sub(scratch2, scratch2, Operand(zero_exponent - fudge_factor), SetCC); // Dest already has a Smi zero. b(lt, &done); // We have an exponent between 0 and 30 in scratch2. Subtract from 30 to // get how much to shift down. rsb(dest, scratch2, Operand(30)); bind(&right_exponent); // Get the top bits of the mantissa. and_(scratch2, scratch, Operand(HeapNumber::kMantissaMask)); // Put back the implicit 1. orr(scratch2, scratch2, Operand(1 << HeapNumber::kExponentShift)); // Shift up the mantissa bits to take up the space the exponent used to // take. We just orred in the implicit bit so that took care of one and // we want to leave the sign bit 0 so we subtract 2 bits from the shift // distance. const int shift_distance = HeapNumber::kNonMantissaBitsInTopWord - 2; mov(scratch2, Operand(scratch2, LSL, shift_distance)); // Put sign in zero flag. tst(scratch, Operand(HeapNumber::kSignMask)); // Get the second half of the double. For some exponents we don't // actually need this because the bits get shifted out again, but // it's probably slower to test than just to do it. ldr(scratch, FieldMemOperand(source, HeapNumber::kMantissaOffset)); // Shift down 22 bits to get the last 10 bits. orr(scratch, scratch2, Operand(scratch, LSR, 32 - shift_distance)); // Move down according to the exponent. mov(dest, Operand(scratch, LSR, dest)); // Fix sign if sign bit was set. rsb(dest, dest, Operand(0, RelocInfo::NONE), LeaveCC, ne); bind(&done); } } void MacroAssembler::EmitVFPTruncate(VFPRoundingMode rounding_mode, SwVfpRegister result, DwVfpRegister double_input, Register scratch1, Register scratch2, CheckForInexactConversion check_inexact) { ASSERT(CpuFeatures::IsSupported(VFP3)); CpuFeatures::Scope scope(VFP3); Register prev_fpscr = scratch1; Register scratch = scratch2; int32_t check_inexact_conversion = (check_inexact == kCheckForInexactConversion) ? kVFPInexactExceptionBit : 0; // Set custom FPCSR: // - Set rounding mode. // - Clear vfp cumulative exception flags. // - Make sure Flush-to-zero mode control bit is unset. vmrs(prev_fpscr); bic(scratch, prev_fpscr, Operand(kVFPExceptionMask | check_inexact_conversion | kVFPRoundingModeMask | kVFPFlushToZeroMask)); // 'Round To Nearest' is encoded by 0b00 so no bits need to be set. if (rounding_mode != kRoundToNearest) { orr(scratch, scratch, Operand(rounding_mode)); } vmsr(scratch); // Convert the argument to an integer. vcvt_s32_f64(result, double_input, (rounding_mode == kRoundToZero) ? kDefaultRoundToZero : kFPSCRRounding); // Retrieve FPSCR. vmrs(scratch); // Restore FPSCR. vmsr(prev_fpscr); // Check for vfp exceptions. tst(scratch, Operand(kVFPExceptionMask | check_inexact_conversion)); } void MacroAssembler::EmitOutOfInt32RangeTruncate(Register result, Register input_high, Register input_low, Register scratch) { Label done, normal_exponent, restore_sign; // Extract the biased exponent in result. Ubfx(result, input_high, HeapNumber::kExponentShift, HeapNumber::kExponentBits); // Check for Infinity and NaNs, which should return 0. cmp(result, Operand(HeapNumber::kExponentMask)); mov(result, Operand(0), LeaveCC, eq); b(eq, &done); // Express exponent as delta to (number of mantissa bits + 31). sub(result, result, Operand(HeapNumber::kExponentBias + HeapNumber::kMantissaBits + 31), SetCC); // If the delta is strictly positive, all bits would be shifted away, // which means that we can return 0. b(le, &normal_exponent); mov(result, Operand(0)); b(&done); bind(&normal_exponent); const int kShiftBase = HeapNumber::kNonMantissaBitsInTopWord - 1; // Calculate shift. add(scratch, result, Operand(kShiftBase + HeapNumber::kMantissaBits), SetCC); // Save the sign. Register sign = result; result = no_reg; and_(sign, input_high, Operand(HeapNumber::kSignMask)); // Set the implicit 1 before the mantissa part in input_high. orr(input_high, input_high, Operand(1 << HeapNumber::kMantissaBitsInTopWord)); // Shift the mantissa bits to the correct position. // We don't need to clear non-mantissa bits as they will be shifted away. // If they weren't, it would mean that the answer is in the 32bit range. mov(input_high, Operand(input_high, LSL, scratch)); // Replace the shifted bits with bits from the lower mantissa word. Label pos_shift, shift_done; rsb(scratch, scratch, Operand(32), SetCC); b(&pos_shift, ge); // Negate scratch. rsb(scratch, scratch, Operand(0)); mov(input_low, Operand(input_low, LSL, scratch)); b(&shift_done); bind(&pos_shift); mov(input_low, Operand(input_low, LSR, scratch)); bind(&shift_done); orr(input_high, input_high, Operand(input_low)); // Restore sign if necessary. cmp(sign, Operand(0)); result = sign; sign = no_reg; rsb(result, input_high, Operand(0), LeaveCC, ne); mov(result, input_high, LeaveCC, eq); bind(&done); } void MacroAssembler::EmitECMATruncate(Register result, DwVfpRegister double_input, SwVfpRegister single_scratch, Register scratch, Register input_high, Register input_low) { CpuFeatures::Scope scope(VFP3); ASSERT(!input_high.is(result)); ASSERT(!input_low.is(result)); ASSERT(!input_low.is(input_high)); ASSERT(!scratch.is(result) && !scratch.is(input_high) && !scratch.is(input_low)); ASSERT(!single_scratch.is(double_input.low()) && !single_scratch.is(double_input.high())); Label done; // Clear cumulative exception flags. ClearFPSCRBits(kVFPExceptionMask, scratch); // Try a conversion to a signed integer. vcvt_s32_f64(single_scratch, double_input); vmov(result, single_scratch); // Retrieve he FPSCR. vmrs(scratch); // Check for overflow and NaNs. tst(scratch, Operand(kVFPOverflowExceptionBit | kVFPUnderflowExceptionBit | kVFPInvalidOpExceptionBit)); // If we had no exceptions we are done. b(eq, &done); // Load the double value and perform a manual truncation. vmov(input_low, input_high, double_input); EmitOutOfInt32RangeTruncate(result, input_high, input_low, scratch); bind(&done); } void MacroAssembler::GetLeastBitsFromSmi(Register dst, Register src, int num_least_bits) { if (CpuFeatures::IsSupported(ARMv7)) { ubfx(dst, src, kSmiTagSize, num_least_bits); } else { mov(dst, Operand(src, ASR, kSmiTagSize)); and_(dst, dst, Operand((1 << num_least_bits) - 1)); } } void MacroAssembler::GetLeastBitsFromInt32(Register dst, Register src, int num_least_bits) { and_(dst, src, Operand((1 << num_least_bits) - 1)); } void MacroAssembler::CallRuntime(const Runtime::Function* f, int num_arguments) { // All parameters are on the stack. r0 has the return value after call. // If the expected number of arguments of the runtime function is // constant, we check that the actual number of arguments match the // expectation. if (f->nargs >= 0 && f->nargs != num_arguments) { IllegalOperation(num_arguments); return; } // TODO(1236192): Most runtime routines don't need the number of // arguments passed in because it is constant. At some point we // should remove this need and make the runtime routine entry code // smarter. mov(r0, Operand(num_arguments)); mov(r1, Operand(ExternalReference(f, isolate()))); CEntryStub stub(1); CallStub(&stub); } void MacroAssembler::CallRuntime(Runtime::FunctionId fid, int num_arguments) { CallRuntime(Runtime::FunctionForId(fid), num_arguments); } void MacroAssembler::CallRuntimeSaveDoubles(Runtime::FunctionId id) { const Runtime::Function* function = Runtime::FunctionForId(id); mov(r0, Operand(function->nargs)); mov(r1, Operand(ExternalReference(function, isolate()))); CEntryStub stub(1, kSaveFPRegs); CallStub(&stub); } void MacroAssembler::CallExternalReference(const ExternalReference& ext, int num_arguments) { mov(r0, Operand(num_arguments)); mov(r1, Operand(ext)); CEntryStub stub(1); CallStub(&stub); } void MacroAssembler::TailCallExternalReference(const ExternalReference& ext, int num_arguments, int result_size) { // TODO(1236192): Most runtime routines don't need the number of // arguments passed in because it is constant. At some point we // should remove this need and make the runtime routine entry code // smarter. mov(r0, Operand(num_arguments)); JumpToExternalReference(ext); } void MacroAssembler::TailCallRuntime(Runtime::FunctionId fid, int num_arguments, int result_size) { TailCallExternalReference(ExternalReference(fid, isolate()), num_arguments, result_size); } void MacroAssembler::JumpToExternalReference(const ExternalReference& builtin) { #if defined(__thumb__) // Thumb mode builtin. ASSERT((reinterpret_cast(builtin.address()) & 1) == 1); #endif mov(r1, Operand(builtin)); CEntryStub stub(1); Jump(stub.GetCode(), RelocInfo::CODE_TARGET); } void MacroAssembler::InvokeBuiltin(Builtins::JavaScript id, InvokeFlag flag, const CallWrapper& call_wrapper) { // You can't call a builtin without a valid frame. ASSERT(flag == JUMP_FUNCTION || has_frame()); GetBuiltinEntry(r2, id); if (flag == CALL_FUNCTION) { call_wrapper.BeforeCall(CallSize(r2)); SetCallKind(r5, CALL_AS_METHOD); Call(r2); call_wrapper.AfterCall(); } else { ASSERT(flag == JUMP_FUNCTION); SetCallKind(r5, CALL_AS_METHOD); Jump(r2); } } void MacroAssembler::GetBuiltinFunction(Register target, Builtins::JavaScript id) { // Load the builtins object into target register. ldr(target, MemOperand(cp, Context::SlotOffset(Context::GLOBAL_INDEX))); ldr(target, FieldMemOperand(target, GlobalObject::kBuiltinsOffset)); // Load the JavaScript builtin function from the builtins object. ldr(target, FieldMemOperand(target, JSBuiltinsObject::OffsetOfFunctionWithId(id))); } void MacroAssembler::GetBuiltinEntry(Register target, Builtins::JavaScript id) { ASSERT(!target.is(r1)); GetBuiltinFunction(r1, id); // Load the code entry point from the builtins object. ldr(target, FieldMemOperand(r1, JSFunction::kCodeEntryOffset)); } void MacroAssembler::SetCounter(StatsCounter* counter, int value, Register scratch1, Register scratch2) { if (FLAG_native_code_counters && counter->Enabled()) { mov(scratch1, Operand(value)); mov(scratch2, Operand(ExternalReference(counter))); str(scratch1, MemOperand(scratch2)); } } void MacroAssembler::IncrementCounter(StatsCounter* counter, int value, Register scratch1, Register scratch2) { ASSERT(value > 0); if (FLAG_native_code_counters && counter->Enabled()) { mov(scratch2, Operand(ExternalReference(counter))); ldr(scratch1, MemOperand(scratch2)); add(scratch1, scratch1, Operand(value)); str(scratch1, MemOperand(scratch2)); } } void MacroAssembler::DecrementCounter(StatsCounter* counter, int value, Register scratch1, Register scratch2) { ASSERT(value > 0); if (FLAG_native_code_counters && counter->Enabled()) { mov(scratch2, Operand(ExternalReference(counter))); ldr(scratch1, MemOperand(scratch2)); sub(scratch1, scratch1, Operand(value)); str(scratch1, MemOperand(scratch2)); } } void MacroAssembler::Assert(Condition cond, const char* msg) { if (emit_debug_code()) Check(cond, msg); } void MacroAssembler::AssertRegisterIsRoot(Register reg, Heap::RootListIndex index) { if (emit_debug_code()) { LoadRoot(ip, index); cmp(reg, ip); Check(eq, "Register did not match expected root"); } } void MacroAssembler::AssertFastElements(Register elements) { if (emit_debug_code()) { ASSERT(!elements.is(ip)); Label ok; push(elements); ldr(elements, FieldMemOperand(elements, HeapObject::kMapOffset)); LoadRoot(ip, Heap::kFixedArrayMapRootIndex); cmp(elements, ip); b(eq, &ok); LoadRoot(ip, Heap::kFixedDoubleArrayMapRootIndex); cmp(elements, ip); b(eq, &ok); LoadRoot(ip, Heap::kFixedCOWArrayMapRootIndex); cmp(elements, ip); b(eq, &ok); Abort("JSObject with fast elements map has slow elements"); bind(&ok); pop(elements); } } void MacroAssembler::Check(Condition cond, const char* msg) { Label L; b(cond, &L); Abort(msg); // will not return here bind(&L); } void MacroAssembler::Abort(const char* msg) { Label abort_start; bind(&abort_start); // We want to pass the msg string like a smi to avoid GC // problems, however msg is not guaranteed to be aligned // properly. Instead, we pass an aligned pointer that is // a proper v8 smi, but also pass the alignment difference // from the real pointer as a smi. intptr_t p1 = reinterpret_cast(msg); intptr_t p0 = (p1 & ~kSmiTagMask) + kSmiTag; ASSERT(reinterpret_cast(p0)->IsSmi()); #ifdef DEBUG if (msg != NULL) { RecordComment("Abort message: "); RecordComment(msg); } #endif mov(r0, Operand(p0)); push(r0); mov(r0, Operand(Smi::FromInt(p1 - p0))); push(r0); // Disable stub call restrictions to always allow calls to abort. if (!has_frame_) { // We don't actually want to generate a pile of code for this, so just // claim there is a stack frame, without generating one. FrameScope scope(this, StackFrame::NONE); CallRuntime(Runtime::kAbort, 2); } else { CallRuntime(Runtime::kAbort, 2); } // will not return here if (is_const_pool_blocked()) { // If the calling code cares about the exact number of // instructions generated, we insert padding here to keep the size // of the Abort macro constant. static const int kExpectedAbortInstructions = 10; int abort_instructions = InstructionsGeneratedSince(&abort_start); ASSERT(abort_instructions <= kExpectedAbortInstructions); while (abort_instructions++ < kExpectedAbortInstructions) { nop(); } } } void MacroAssembler::LoadContext(Register dst, int context_chain_length) { if (context_chain_length > 0) { // Move up the chain of contexts to the context containing the slot. ldr(dst, MemOperand(cp, Context::SlotOffset(Context::PREVIOUS_INDEX))); for (int i = 1; i < context_chain_length; i++) { ldr(dst, MemOperand(dst, Context::SlotOffset(Context::PREVIOUS_INDEX))); } } else { // Slot is in the current function context. Move it into the // destination register in case we store into it (the write barrier // cannot be allowed to destroy the context in esi). mov(dst, cp); } } void MacroAssembler::LoadTransitionedArrayMapConditional( ElementsKind expected_kind, ElementsKind transitioned_kind, Register map_in_out, Register scratch, Label* no_map_match) { // Load the global or builtins object from the current context. ldr(scratch, MemOperand(cp, Context::SlotOffset(Context::GLOBAL_INDEX))); ldr(scratch, FieldMemOperand(scratch, GlobalObject::kGlobalContextOffset)); // Check that the function's map is the same as the expected cached map. ldr(scratch, MemOperand(scratch, Context::SlotOffset(Context::JS_ARRAY_MAPS_INDEX))); size_t offset = expected_kind * kPointerSize + FixedArrayBase::kHeaderSize; ldr(ip, FieldMemOperand(scratch, offset)); cmp(map_in_out, ip); b(ne, no_map_match); // Use the transitioned cached map. offset = transitioned_kind * kPointerSize + FixedArrayBase::kHeaderSize; ldr(map_in_out, FieldMemOperand(scratch, offset)); } void MacroAssembler::LoadInitialArrayMap( Register function_in, Register scratch, Register map_out, bool can_have_holes) { ASSERT(!function_in.is(map_out)); Label done; ldr(map_out, FieldMemOperand(function_in, JSFunction::kPrototypeOrInitialMapOffset)); if (!FLAG_smi_only_arrays) { ElementsKind kind = can_have_holes ? FAST_HOLEY_ELEMENTS : FAST_ELEMENTS; LoadTransitionedArrayMapConditional(FAST_SMI_ELEMENTS, kind, map_out, scratch, &done); } else if (can_have_holes) { LoadTransitionedArrayMapConditional(FAST_SMI_ELEMENTS, FAST_HOLEY_SMI_ELEMENTS, map_out, scratch, &done); } bind(&done); } void MacroAssembler::LoadGlobalFunction(int index, Register function) { // Load the global or builtins object from the current context. ldr(function, MemOperand(cp, Context::SlotOffset(Context::GLOBAL_INDEX))); // Load the global context from the global or builtins object. ldr(function, FieldMemOperand(function, GlobalObject::kGlobalContextOffset)); // Load the function from the global context. ldr(function, MemOperand(function, Context::SlotOffset(index))); } void MacroAssembler::LoadGlobalFunctionInitialMap(Register function, Register map, Register scratch) { // Load the initial map. The global functions all have initial maps. ldr(map, FieldMemOperand(function, JSFunction::kPrototypeOrInitialMapOffset)); if (emit_debug_code()) { Label ok, fail; CheckMap(map, scratch, Heap::kMetaMapRootIndex, &fail, DO_SMI_CHECK); b(&ok); bind(&fail); Abort("Global functions must have initial map"); bind(&ok); } } void MacroAssembler::JumpIfNotPowerOfTwoOrZero( Register reg, Register scratch, Label* not_power_of_two_or_zero) { sub(scratch, reg, Operand(1), SetCC); b(mi, not_power_of_two_or_zero); tst(scratch, reg); b(ne, not_power_of_two_or_zero); } void MacroAssembler::JumpIfNotPowerOfTwoOrZeroAndNeg( Register reg, Register scratch, Label* zero_and_neg, Label* not_power_of_two) { sub(scratch, reg, Operand(1), SetCC); b(mi, zero_and_neg); tst(scratch, reg); b(ne, not_power_of_two); } void MacroAssembler::JumpIfNotBothSmi(Register reg1, Register reg2, Label* on_not_both_smi) { STATIC_ASSERT(kSmiTag == 0); tst(reg1, Operand(kSmiTagMask)); tst(reg2, Operand(kSmiTagMask), eq); b(ne, on_not_both_smi); } void MacroAssembler::UntagAndJumpIfSmi( Register dst, Register src, Label* smi_case) { STATIC_ASSERT(kSmiTag == 0); mov(dst, Operand(src, ASR, kSmiTagSize), SetCC); b(cc, smi_case); // Shifter carry is not set for a smi. } void MacroAssembler::UntagAndJumpIfNotSmi( Register dst, Register src, Label* non_smi_case) { STATIC_ASSERT(kSmiTag == 0); mov(dst, Operand(src, ASR, kSmiTagSize), SetCC); b(cs, non_smi_case); // Shifter carry is set for a non-smi. } void MacroAssembler::JumpIfEitherSmi(Register reg1, Register reg2, Label* on_either_smi) { STATIC_ASSERT(kSmiTag == 0); tst(reg1, Operand(kSmiTagMask)); tst(reg2, Operand(kSmiTagMask), ne); b(eq, on_either_smi); } void MacroAssembler::AbortIfSmi(Register object) { STATIC_ASSERT(kSmiTag == 0); tst(object, Operand(kSmiTagMask)); Assert(ne, "Operand is a smi"); } void MacroAssembler::AbortIfNotSmi(Register object) { STATIC_ASSERT(kSmiTag == 0); tst(object, Operand(kSmiTagMask)); Assert(eq, "Operand is not smi"); } void MacroAssembler::AbortIfNotString(Register object) { STATIC_ASSERT(kSmiTag == 0); tst(object, Operand(kSmiTagMask)); Assert(ne, "Operand is not a string"); push(object); ldr(object, FieldMemOperand(object, HeapObject::kMapOffset)); CompareInstanceType(object, object, FIRST_NONSTRING_TYPE); pop(object); Assert(lo, "Operand is not a string"); } void MacroAssembler::AbortIfNotRootValue(Register src, Heap::RootListIndex root_value_index, const char* message) { CompareRoot(src, root_value_index); Assert(eq, message); } void MacroAssembler::JumpIfNotHeapNumber(Register object, Register heap_number_map, Register scratch, Label* on_not_heap_number) { ldr(scratch, FieldMemOperand(object, HeapObject::kMapOffset)); AssertRegisterIsRoot(heap_number_map, Heap::kHeapNumberMapRootIndex); cmp(scratch, heap_number_map); b(ne, on_not_heap_number); } void MacroAssembler::JumpIfNonSmisNotBothSequentialAsciiStrings( Register first, Register second, Register scratch1, Register scratch2, Label* failure) { // Test that both first and second are sequential ASCII strings. // Assume that they are non-smis. ldr(scratch1, FieldMemOperand(first, HeapObject::kMapOffset)); ldr(scratch2, FieldMemOperand(second, HeapObject::kMapOffset)); ldrb(scratch1, FieldMemOperand(scratch1, Map::kInstanceTypeOffset)); ldrb(scratch2, FieldMemOperand(scratch2, Map::kInstanceTypeOffset)); JumpIfBothInstanceTypesAreNotSequentialAscii(scratch1, scratch2, scratch1, scratch2, failure); } void MacroAssembler::JumpIfNotBothSequentialAsciiStrings(Register first, Register second, Register scratch1, Register scratch2, Label* failure) { // Check that neither is a smi. STATIC_ASSERT(kSmiTag == 0); and_(scratch1, first, Operand(second)); JumpIfSmi(scratch1, failure); JumpIfNonSmisNotBothSequentialAsciiStrings(first, second, scratch1, scratch2, failure); } // Allocates a heap number or jumps to the need_gc label if the young space // is full and a scavenge is needed. void MacroAssembler::AllocateHeapNumber(Register result, Register scratch1, Register scratch2, Register heap_number_map, Label* gc_required) { // Allocate an object in the heap for the heap number and tag it as a heap // object. AllocateInNewSpace(HeapNumber::kSize, result, scratch1, scratch2, gc_required, TAG_OBJECT); // Store heap number map in the allocated object. AssertRegisterIsRoot(heap_number_map, Heap::kHeapNumberMapRootIndex); str(heap_number_map, FieldMemOperand(result, HeapObject::kMapOffset)); } void MacroAssembler::AllocateHeapNumberWithValue(Register result, DwVfpRegister value, Register scratch1, Register scratch2, Register heap_number_map, Label* gc_required) { AllocateHeapNumber(result, scratch1, scratch2, heap_number_map, gc_required); sub(scratch1, result, Operand(kHeapObjectTag)); vstr(value, scratch1, HeapNumber::kValueOffset); } // Copies a fixed number of fields of heap objects from src to dst. void MacroAssembler::CopyFields(Register dst, Register src, RegList temps, int field_count) { // At least one bit set in the first 15 registers. ASSERT((temps & ((1 << 15) - 1)) != 0); ASSERT((temps & dst.bit()) == 0); ASSERT((temps & src.bit()) == 0); // Primitive implementation using only one temporary register. Register tmp = no_reg; // Find a temp register in temps list. for (int i = 0; i < 15; i++) { if ((temps & (1 << i)) != 0) { tmp.set_code(i); break; } } ASSERT(!tmp.is(no_reg)); for (int i = 0; i < field_count; i++) { ldr(tmp, FieldMemOperand(src, i * kPointerSize)); str(tmp, FieldMemOperand(dst, i * kPointerSize)); } } void MacroAssembler::CopyBytes(Register src, Register dst, Register length, Register scratch) { Label align_loop, align_loop_1, word_loop, byte_loop, byte_loop_1, done; // Align src before copying in word size chunks. bind(&align_loop); cmp(length, Operand(0)); b(eq, &done); bind(&align_loop_1); tst(src, Operand(kPointerSize - 1)); b(eq, &word_loop); ldrb(scratch, MemOperand(src, 1, PostIndex)); strb(scratch, MemOperand(dst, 1, PostIndex)); sub(length, length, Operand(1), SetCC); b(ne, &byte_loop_1); // Copy bytes in word size chunks. bind(&word_loop); if (emit_debug_code()) { tst(src, Operand(kPointerSize - 1)); Assert(eq, "Expecting alignment for CopyBytes"); } cmp(length, Operand(kPointerSize)); b(lt, &byte_loop); ldr(scratch, MemOperand(src, kPointerSize, PostIndex)); #if CAN_USE_UNALIGNED_ACCESSES str(scratch, MemOperand(dst, kPointerSize, PostIndex)); #else strb(scratch, MemOperand(dst, 1, PostIndex)); mov(scratch, Operand(scratch, LSR, 8)); strb(scratch, MemOperand(dst, 1, PostIndex)); mov(scratch, Operand(scratch, LSR, 8)); strb(scratch, MemOperand(dst, 1, PostIndex)); mov(scratch, Operand(scratch, LSR, 8)); strb(scratch, MemOperand(dst, 1, PostIndex)); #endif sub(length, length, Operand(kPointerSize)); b(&word_loop); // Copy the last bytes if any left. bind(&byte_loop); cmp(length, Operand(0)); b(eq, &done); bind(&byte_loop_1); ldrb(scratch, MemOperand(src, 1, PostIndex)); strb(scratch, MemOperand(dst, 1, PostIndex)); sub(length, length, Operand(1), SetCC); b(ne, &byte_loop_1); bind(&done); } void MacroAssembler::InitializeFieldsWithFiller(Register start_offset, Register end_offset, Register filler) { Label loop, entry; b(&entry); bind(&loop); str(filler, MemOperand(start_offset, kPointerSize, PostIndex)); bind(&entry); cmp(start_offset, end_offset); b(lt, &loop); } void MacroAssembler::CountLeadingZeros(Register zeros, // Answer. Register source, // Input. Register scratch) { ASSERT(!zeros.is(source) || !source.is(scratch)); ASSERT(!zeros.is(scratch)); ASSERT(!scratch.is(ip)); ASSERT(!source.is(ip)); ASSERT(!zeros.is(ip)); #ifdef CAN_USE_ARMV5_INSTRUCTIONS clz(zeros, source); // This instruction is only supported after ARM5. #else // Order of the next two lines is important: zeros register // can be the same as source register. Move(scratch, source); mov(zeros, Operand(0, RelocInfo::NONE)); // Top 16. tst(scratch, Operand(0xffff0000)); add(zeros, zeros, Operand(16), LeaveCC, eq); mov(scratch, Operand(scratch, LSL, 16), LeaveCC, eq); // Top 8. tst(scratch, Operand(0xff000000)); add(zeros, zeros, Operand(8), LeaveCC, eq); mov(scratch, Operand(scratch, LSL, 8), LeaveCC, eq); // Top 4. tst(scratch, Operand(0xf0000000)); add(zeros, zeros, Operand(4), LeaveCC, eq); mov(scratch, Operand(scratch, LSL, 4), LeaveCC, eq); // Top 2. tst(scratch, Operand(0xc0000000)); add(zeros, zeros, Operand(2), LeaveCC, eq); mov(scratch, Operand(scratch, LSL, 2), LeaveCC, eq); // Top bit. tst(scratch, Operand(0x80000000u)); add(zeros, zeros, Operand(1), LeaveCC, eq); #endif } void MacroAssembler::JumpIfBothInstanceTypesAreNotSequentialAscii( Register first, Register second, Register scratch1, Register scratch2, Label* failure) { int kFlatAsciiStringMask = kIsNotStringMask | kStringEncodingMask | kStringRepresentationMask; int kFlatAsciiStringTag = ASCII_STRING_TYPE; and_(scratch1, first, Operand(kFlatAsciiStringMask)); and_(scratch2, second, Operand(kFlatAsciiStringMask)); cmp(scratch1, Operand(kFlatAsciiStringTag)); // Ignore second test if first test failed. cmp(scratch2, Operand(kFlatAsciiStringTag), eq); b(ne, failure); } void MacroAssembler::JumpIfInstanceTypeIsNotSequentialAscii(Register type, Register scratch, Label* failure) { int kFlatAsciiStringMask = kIsNotStringMask | kStringEncodingMask | kStringRepresentationMask; int kFlatAsciiStringTag = ASCII_STRING_TYPE; and_(scratch, type, Operand(kFlatAsciiStringMask)); cmp(scratch, Operand(kFlatAsciiStringTag)); b(ne, failure); } static const int kRegisterPassedArguments = 4; int MacroAssembler::CalculateStackPassedWords(int num_reg_arguments, int num_double_arguments) { int stack_passed_words = 0; if (use_eabi_hardfloat()) { // In the hard floating point calling convention, we can use // all double registers to pass doubles. if (num_double_arguments > DoubleRegister::kNumRegisters) { stack_passed_words += 2 * (num_double_arguments - DoubleRegister::kNumRegisters); } } else { // In the soft floating point calling convention, every double // argument is passed using two registers. num_reg_arguments += 2 * num_double_arguments; } // Up to four simple arguments are passed in registers r0..r3. if (num_reg_arguments > kRegisterPassedArguments) { stack_passed_words += num_reg_arguments - kRegisterPassedArguments; } return stack_passed_words; } void MacroAssembler::PrepareCallCFunction(int num_reg_arguments, int num_double_arguments, Register scratch) { int frame_alignment = ActivationFrameAlignment(); int stack_passed_arguments = CalculateStackPassedWords( num_reg_arguments, num_double_arguments); if (frame_alignment > kPointerSize) { // Make stack end at alignment and make room for num_arguments - 4 words // and the original value of sp. mov(scratch, sp); sub(sp, sp, Operand((stack_passed_arguments + 1) * kPointerSize)); ASSERT(IsPowerOf2(frame_alignment)); and_(sp, sp, Operand(-frame_alignment)); str(scratch, MemOperand(sp, stack_passed_arguments * kPointerSize)); } else { sub(sp, sp, Operand(stack_passed_arguments * kPointerSize)); } } void MacroAssembler::PrepareCallCFunction(int num_reg_arguments, Register scratch) { PrepareCallCFunction(num_reg_arguments, 0, scratch); } void MacroAssembler::SetCallCDoubleArguments(DoubleRegister dreg) { if (use_eabi_hardfloat()) { Move(d0, dreg); } else { vmov(r0, r1, dreg); } } void MacroAssembler::SetCallCDoubleArguments(DoubleRegister dreg1, DoubleRegister dreg2) { if (use_eabi_hardfloat()) { if (dreg2.is(d0)) { ASSERT(!dreg1.is(d1)); Move(d1, dreg2); Move(d0, dreg1); } else { Move(d0, dreg1); Move(d1, dreg2); } } else { vmov(r0, r1, dreg1); vmov(r2, r3, dreg2); } } void MacroAssembler::SetCallCDoubleArguments(DoubleRegister dreg, Register reg) { if (use_eabi_hardfloat()) { Move(d0, dreg); Move(r0, reg); } else { Move(r2, reg); vmov(r0, r1, dreg); } } void MacroAssembler::CallCFunction(ExternalReference function, int num_reg_arguments, int num_double_arguments) { mov(ip, Operand(function)); CallCFunctionHelper(ip, num_reg_arguments, num_double_arguments); } void MacroAssembler::CallCFunction(Register function, int num_reg_arguments, int num_double_arguments) { CallCFunctionHelper(function, num_reg_arguments, num_double_arguments); } void MacroAssembler::CallCFunction(ExternalReference function, int num_arguments) { CallCFunction(function, num_arguments, 0); } void MacroAssembler::CallCFunction(Register function, int num_arguments) { CallCFunction(function, num_arguments, 0); } void MacroAssembler::CallCFunctionHelper(Register function, int num_reg_arguments, int num_double_arguments) { ASSERT(has_frame()); // Make sure that the stack is aligned before calling a C function unless // running in the simulator. The simulator has its own alignment check which // provides more information. #if defined(V8_HOST_ARCH_ARM) if (emit_debug_code()) { int frame_alignment = OS::ActivationFrameAlignment(); int frame_alignment_mask = frame_alignment - 1; if (frame_alignment > kPointerSize) { ASSERT(IsPowerOf2(frame_alignment)); Label alignment_as_expected; tst(sp, Operand(frame_alignment_mask)); b(eq, &alignment_as_expected); // Don't use Check here, as it will call Runtime_Abort possibly // re-entering here. stop("Unexpected alignment"); bind(&alignment_as_expected); } } #endif // Just call directly. The function called cannot cause a GC, or // allow preemption, so the return address in the link register // stays correct. Call(function); int stack_passed_arguments = CalculateStackPassedWords( num_reg_arguments, num_double_arguments); if (ActivationFrameAlignment() > kPointerSize) { ldr(sp, MemOperand(sp, stack_passed_arguments * kPointerSize)); } else { add(sp, sp, Operand(stack_passed_arguments * sizeof(kPointerSize))); } } void MacroAssembler::GetRelocatedValueLocation(Register ldr_location, Register result) { const uint32_t kLdrOffsetMask = (1 << 12) - 1; const int32_t kPCRegOffset = 2 * kPointerSize; ldr(result, MemOperand(ldr_location)); if (emit_debug_code()) { // Check that the instruction is a ldr reg, [pc + offset] . and_(result, result, Operand(kLdrPCPattern)); cmp(result, Operand(kLdrPCPattern)); Check(eq, "The instruction to patch should be a load from pc."); // Result was clobbered. Restore it. ldr(result, MemOperand(ldr_location)); } // Get the address of the constant. and_(result, result, Operand(kLdrOffsetMask)); add(result, ldr_location, Operand(result)); add(result, result, Operand(kPCRegOffset)); } void MacroAssembler::CheckPageFlag( Register object, Register scratch, int mask, Condition cc, Label* condition_met) { and_(scratch, object, Operand(~Page::kPageAlignmentMask)); ldr(scratch, MemOperand(scratch, MemoryChunk::kFlagsOffset)); tst(scratch, Operand(mask)); b(cc, condition_met); } void MacroAssembler::JumpIfBlack(Register object, Register scratch0, Register scratch1, Label* on_black) { HasColor(object, scratch0, scratch1, on_black, 1, 0); // kBlackBitPattern. ASSERT(strcmp(Marking::kBlackBitPattern, "10") == 0); } void MacroAssembler::HasColor(Register object, Register bitmap_scratch, Register mask_scratch, Label* has_color, int first_bit, int second_bit) { ASSERT(!AreAliased(object, bitmap_scratch, mask_scratch, no_reg)); GetMarkBits(object, bitmap_scratch, mask_scratch); Label other_color, word_boundary; ldr(ip, MemOperand(bitmap_scratch, MemoryChunk::kHeaderSize)); tst(ip, Operand(mask_scratch)); b(first_bit == 1 ? eq : ne, &other_color); // Shift left 1 by adding. add(mask_scratch, mask_scratch, Operand(mask_scratch), SetCC); b(eq, &word_boundary); tst(ip, Operand(mask_scratch)); b(second_bit == 1 ? ne : eq, has_color); jmp(&other_color); bind(&word_boundary); ldr(ip, MemOperand(bitmap_scratch, MemoryChunk::kHeaderSize + kPointerSize)); tst(ip, Operand(1)); b(second_bit == 1 ? ne : eq, has_color); bind(&other_color); } // Detect some, but not all, common pointer-free objects. This is used by the // incremental write barrier which doesn't care about oddballs (they are always // marked black immediately so this code is not hit). void MacroAssembler::JumpIfDataObject(Register value, Register scratch, Label* not_data_object) { Label is_data_object; ldr(scratch, FieldMemOperand(value, HeapObject::kMapOffset)); CompareRoot(scratch, Heap::kHeapNumberMapRootIndex); b(eq, &is_data_object); ASSERT(kIsIndirectStringTag == 1 && kIsIndirectStringMask == 1); ASSERT(kNotStringTag == 0x80 && kIsNotStringMask == 0x80); // If it's a string and it's not a cons string then it's an object containing // no GC pointers. ldrb(scratch, FieldMemOperand(scratch, Map::kInstanceTypeOffset)); tst(scratch, Operand(kIsIndirectStringMask | kIsNotStringMask)); b(ne, not_data_object); bind(&is_data_object); } void MacroAssembler::GetMarkBits(Register addr_reg, Register bitmap_reg, Register mask_reg) { ASSERT(!AreAliased(addr_reg, bitmap_reg, mask_reg, no_reg)); and_(bitmap_reg, addr_reg, Operand(~Page::kPageAlignmentMask)); Ubfx(mask_reg, addr_reg, kPointerSizeLog2, Bitmap::kBitsPerCellLog2); const int kLowBits = kPointerSizeLog2 + Bitmap::kBitsPerCellLog2; Ubfx(ip, addr_reg, kLowBits, kPageSizeBits - kLowBits); add(bitmap_reg, bitmap_reg, Operand(ip, LSL, kPointerSizeLog2)); mov(ip, Operand(1)); mov(mask_reg, Operand(ip, LSL, mask_reg)); } void MacroAssembler::EnsureNotWhite( Register value, Register bitmap_scratch, Register mask_scratch, Register load_scratch, Label* value_is_white_and_not_data) { ASSERT(!AreAliased(value, bitmap_scratch, mask_scratch, ip)); GetMarkBits(value, bitmap_scratch, mask_scratch); // If the value is black or grey we don't need to do anything. ASSERT(strcmp(Marking::kWhiteBitPattern, "00") == 0); ASSERT(strcmp(Marking::kBlackBitPattern, "10") == 0); ASSERT(strcmp(Marking::kGreyBitPattern, "11") == 0); ASSERT(strcmp(Marking::kImpossibleBitPattern, "01") == 0); Label done; // Since both black and grey have a 1 in the first position and white does // not have a 1 there we only need to check one bit. ldr(load_scratch, MemOperand(bitmap_scratch, MemoryChunk::kHeaderSize)); tst(mask_scratch, load_scratch); b(ne, &done); if (emit_debug_code()) { // Check for impossible bit pattern. Label ok; // LSL may overflow, making the check conservative. tst(load_scratch, Operand(mask_scratch, LSL, 1)); b(eq, &ok); stop("Impossible marking bit pattern"); bind(&ok); } // Value is white. We check whether it is data that doesn't need scanning. // Currently only checks for HeapNumber and non-cons strings. Register map = load_scratch; // Holds map while checking type. Register length = load_scratch; // Holds length of object after testing type. Label is_data_object; // Check for heap-number ldr(map, FieldMemOperand(value, HeapObject::kMapOffset)); CompareRoot(map, Heap::kHeapNumberMapRootIndex); mov(length, Operand(HeapNumber::kSize), LeaveCC, eq); b(eq, &is_data_object); // Check for strings. ASSERT(kIsIndirectStringTag == 1 && kIsIndirectStringMask == 1); ASSERT(kNotStringTag == 0x80 && kIsNotStringMask == 0x80); // If it's a string and it's not a cons string then it's an object containing // no GC pointers. Register instance_type = load_scratch; ldrb(instance_type, FieldMemOperand(map, Map::kInstanceTypeOffset)); tst(instance_type, Operand(kIsIndirectStringMask | kIsNotStringMask)); b(ne, value_is_white_and_not_data); // It's a non-indirect (non-cons and non-slice) string. // If it's external, the length is just ExternalString::kSize. // Otherwise it's String::kHeaderSize + string->length() * (1 or 2). // External strings are the only ones with the kExternalStringTag bit // set. ASSERT_EQ(0, kSeqStringTag & kExternalStringTag); ASSERT_EQ(0, kConsStringTag & kExternalStringTag); tst(instance_type, Operand(kExternalStringTag)); mov(length, Operand(ExternalString::kSize), LeaveCC, ne); b(ne, &is_data_object); // Sequential string, either ASCII or UC16. // For ASCII (char-size of 1) we shift the smi tag away to get the length. // For UC16 (char-size of 2) we just leave the smi tag in place, thereby // getting the length multiplied by 2. ASSERT(kAsciiStringTag == 4 && kStringEncodingMask == 4); ASSERT(kSmiTag == 0 && kSmiTagSize == 1); ldr(ip, FieldMemOperand(value, String::kLengthOffset)); tst(instance_type, Operand(kStringEncodingMask)); mov(ip, Operand(ip, LSR, 1), LeaveCC, ne); add(length, ip, Operand(SeqString::kHeaderSize + kObjectAlignmentMask)); and_(length, length, Operand(~kObjectAlignmentMask)); bind(&is_data_object); // Value is a data object, and it is white. Mark it black. Since we know // that the object is white we can make it black by flipping one bit. ldr(ip, MemOperand(bitmap_scratch, MemoryChunk::kHeaderSize)); orr(ip, ip, Operand(mask_scratch)); str(ip, MemOperand(bitmap_scratch, MemoryChunk::kHeaderSize)); and_(bitmap_scratch, bitmap_scratch, Operand(~Page::kPageAlignmentMask)); ldr(ip, MemOperand(bitmap_scratch, MemoryChunk::kLiveBytesOffset)); add(ip, ip, Operand(length)); str(ip, MemOperand(bitmap_scratch, MemoryChunk::kLiveBytesOffset)); bind(&done); } void MacroAssembler::ClampUint8(Register output_reg, Register input_reg) { Usat(output_reg, 8, Operand(input_reg)); } void MacroAssembler::ClampDoubleToUint8(Register result_reg, DoubleRegister input_reg, DoubleRegister temp_double_reg) { Label above_zero; Label done; Label in_bounds; Vmov(temp_double_reg, 0.0); VFPCompareAndSetFlags(input_reg, temp_double_reg); b(gt, &above_zero); // Double value is less than zero, NaN or Inf, return 0. mov(result_reg, Operand(0)); b(al, &done); // Double value is >= 255, return 255. bind(&above_zero); Vmov(temp_double_reg, 255.0); VFPCompareAndSetFlags(input_reg, temp_double_reg); b(le, &in_bounds); mov(result_reg, Operand(255)); b(al, &done); // In 0-255 range, round and truncate. bind(&in_bounds); Vmov(temp_double_reg, 0.5); vadd(temp_double_reg, input_reg, temp_double_reg); vcvt_u32_f64(temp_double_reg.low(), temp_double_reg); vmov(result_reg, temp_double_reg.low()); bind(&done); } void MacroAssembler::LoadInstanceDescriptors(Register map, Register descriptors) { ldr(descriptors, FieldMemOperand(map, Map::kInstanceDescriptorsOrBitField3Offset)); Label not_smi; JumpIfNotSmi(descriptors, ¬_smi); mov(descriptors, Operand(FACTORY->empty_descriptor_array())); bind(¬_smi); } void MacroAssembler::CheckEnumCache(Register null_value, Label* call_runtime) { Label next; // Preload a couple of values used in the loop. Register empty_fixed_array_value = r6; LoadRoot(empty_fixed_array_value, Heap::kEmptyFixedArrayRootIndex); Register empty_descriptor_array_value = r7; LoadRoot(empty_descriptor_array_value, Heap::kEmptyDescriptorArrayRootIndex); mov(r1, r0); bind(&next); // Check that there are no elements. Register r1 contains the // current JS object we've reached through the prototype chain. ldr(r2, FieldMemOperand(r1, JSObject::kElementsOffset)); cmp(r2, empty_fixed_array_value); b(ne, call_runtime); // Check that instance descriptors are not empty so that we can // check for an enum cache. Leave the map in r2 for the subsequent // prototype load. ldr(r2, FieldMemOperand(r1, HeapObject::kMapOffset)); ldr(r3, FieldMemOperand(r2, Map::kInstanceDescriptorsOrBitField3Offset)); JumpIfSmi(r3, call_runtime); // Check that there is an enum cache in the non-empty instance // descriptors (r3). This is the case if the next enumeration // index field does not contain a smi. ldr(r3, FieldMemOperand(r3, DescriptorArray::kEnumerationIndexOffset)); JumpIfSmi(r3, call_runtime); // For all objects but the receiver, check that the cache is empty. Label check_prototype; cmp(r1, r0); b(eq, &check_prototype); ldr(r3, FieldMemOperand(r3, DescriptorArray::kEnumCacheBridgeCacheOffset)); cmp(r3, empty_fixed_array_value); b(ne, call_runtime); // Load the prototype from the map and loop if non-null. bind(&check_prototype); ldr(r1, FieldMemOperand(r2, Map::kPrototypeOffset)); cmp(r1, null_value); b(ne, &next); } #ifdef DEBUG bool AreAliased(Register reg1, Register reg2, Register reg3, Register reg4, Register reg5, Register reg6) { int n_of_valid_regs = reg1.is_valid() + reg2.is_valid() + reg3.is_valid() + reg4.is_valid() + reg5.is_valid() + reg6.is_valid(); RegList regs = 0; if (reg1.is_valid()) regs |= reg1.bit(); if (reg2.is_valid()) regs |= reg2.bit(); if (reg3.is_valid()) regs |= reg3.bit(); if (reg4.is_valid()) regs |= reg4.bit(); if (reg5.is_valid()) regs |= reg5.bit(); if (reg6.is_valid()) regs |= reg6.bit(); int n_of_non_aliasing_regs = NumRegs(regs); return n_of_valid_regs != n_of_non_aliasing_regs; } #endif CodePatcher::CodePatcher(byte* address, int instructions) : address_(address), instructions_(instructions), size_(instructions * Assembler::kInstrSize), masm_(NULL, address, size_ + Assembler::kGap) { // Create a new macro assembler pointing to the address of the code to patch. // The size is adjusted with kGap on order for the assembler to generate size // bytes of instructions without failing with buffer size constraints. ASSERT(masm_.reloc_info_writer.pos() == address_ + size_ + Assembler::kGap); } CodePatcher::~CodePatcher() { // Indicate that code has changed. CPU::FlushICache(address_, size_); // Check that the code was patched as expected. ASSERT(masm_.pc_ == address_ + size_); ASSERT(masm_.reloc_info_writer.pos() == address_ + size_ + Assembler::kGap); } void CodePatcher::Emit(Instr instr) { masm()->emit(instr); } void CodePatcher::Emit(Address addr) { masm()->emit(reinterpret_cast(addr)); } void CodePatcher::EmitCondition(Condition cond) { Instr instr = Assembler::instr_at(masm_.pc_); instr = (instr & ~kCondMask) | cond; masm_.emit(instr); } } } // namespace v8::internal #endif // V8_TARGET_ARCH_ARM