// Copyright 2015 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #ifndef V8_BASE_ATOMIC_UTILS_H_ #define V8_BASE_ATOMIC_UTILS_H_ #include #include #include "src/base/atomicops.h" #include "src/base/macros.h" namespace v8 { namespace base { // Deprecated. Use std::atomic for new code. // Flag using T atomically. Also accepts void* as T. template class AtomicValue { public: AtomicValue() : value_(0) {} explicit AtomicValue(T initial) : value_(cast_helper::to_storage_type(initial)) {} V8_INLINE T Value() const { return cast_helper::to_return_type(base::Acquire_Load(&value_)); } V8_INLINE bool TrySetValue(T old_value, T new_value) { return base::Release_CompareAndSwap( &value_, cast_helper::to_storage_type(old_value), cast_helper::to_storage_type(new_value)) == cast_helper::to_storage_type(old_value); } V8_INLINE void SetBits(T bits, T mask) { DCHECK_EQ(bits & ~mask, static_cast(0)); T old_value; T new_value; do { old_value = Value(); new_value = (old_value & ~mask) | bits; } while (!TrySetValue(old_value, new_value)); } V8_INLINE void SetBit(int bit) { SetBits(static_cast(1) << bit, static_cast(1) << bit); } V8_INLINE void ClearBit(int bit) { SetBits(0, 1 << bit); } V8_INLINE void SetValue(T new_value) { base::Release_Store(&value_, cast_helper::to_storage_type(new_value)); } private: STATIC_ASSERT(sizeof(T) <= sizeof(base::AtomicWord)); template struct cast_helper { static base::AtomicWord to_storage_type(S value) { return static_cast(value); } static S to_return_type(base::AtomicWord value) { return static_cast(value); } }; template struct cast_helper { static base::AtomicWord to_storage_type(S* value) { return reinterpret_cast(value); } static S* to_return_type(base::AtomicWord value) { return reinterpret_cast(value); } }; base::AtomicWord value_; }; class AsAtomic32 { public: template static T Acquire_Load(T* addr) { STATIC_ASSERT(sizeof(T) <= sizeof(base::Atomic32)); return to_return_type(base::Acquire_Load(to_storage_addr(addr))); } template static T Relaxed_Load(T* addr) { STATIC_ASSERT(sizeof(T) <= sizeof(base::Atomic32)); return to_return_type(base::Relaxed_Load(to_storage_addr(addr))); } template static void Release_Store(T* addr, typename std::remove_reference::type new_value) { STATIC_ASSERT(sizeof(T) <= sizeof(base::Atomic32)); base::Release_Store(to_storage_addr(addr), to_storage_type(new_value)); } template static void Relaxed_Store(T* addr, typename std::remove_reference::type new_value) { STATIC_ASSERT(sizeof(T) <= sizeof(base::Atomic32)); base::Relaxed_Store(to_storage_addr(addr), to_storage_type(new_value)); } template static T Release_CompareAndSwap( T* addr, typename std::remove_reference::type old_value, typename std::remove_reference::type new_value) { STATIC_ASSERT(sizeof(T) <= sizeof(base::Atomic32)); return to_return_type(base::Release_CompareAndSwap( to_storage_addr(addr), to_storage_type(old_value), to_storage_type(new_value))); } // Atomically sets bits selected by the mask to the given value. // Returns false if the bits are already set as needed. template static bool SetBits(T* addr, T bits, T mask) { STATIC_ASSERT(sizeof(T) <= sizeof(base::Atomic32)); DCHECK_EQ(bits & ~mask, static_cast(0)); T old_value; T new_value; do { old_value = Relaxed_Load(addr); if ((old_value & mask) == bits) return false; new_value = (old_value & ~mask) | bits; } while (Release_CompareAndSwap(addr, old_value, new_value) != old_value); return true; } private: template static base::Atomic32 to_storage_type(T value) { return static_cast(value); } template static T to_return_type(base::Atomic32 value) { return static_cast(value); } template static base::Atomic32* to_storage_addr(T* value) { return reinterpret_cast(value); } template static const base::Atomic32* to_storage_addr(const T* value) { return reinterpret_cast(value); } }; class AsAtomicWord { public: template static T Acquire_Load(T* addr) { STATIC_ASSERT(sizeof(T) <= sizeof(base::AtomicWord)); return to_return_type(base::Acquire_Load(to_storage_addr(addr))); } template static T Relaxed_Load(T* addr) { STATIC_ASSERT(sizeof(T) <= sizeof(base::AtomicWord)); return to_return_type(base::Relaxed_Load(to_storage_addr(addr))); } template static void Release_Store(T* addr, typename std::remove_reference::type new_value) { STATIC_ASSERT(sizeof(T) <= sizeof(base::AtomicWord)); base::Release_Store(to_storage_addr(addr), to_storage_type(new_value)); } template static void Relaxed_Store(T* addr, typename std::remove_reference::type new_value) { STATIC_ASSERT(sizeof(T) <= sizeof(base::AtomicWord)); base::Relaxed_Store(to_storage_addr(addr), to_storage_type(new_value)); } template static T Release_CompareAndSwap( T* addr, typename std::remove_reference::type old_value, typename std::remove_reference::type new_value) { STATIC_ASSERT(sizeof(T) <= sizeof(base::AtomicWord)); return to_return_type(base::Release_CompareAndSwap( to_storage_addr(addr), to_storage_type(old_value), to_storage_type(new_value))); } // Atomically sets bits selected by the mask to the given value. // Returns false if the bits are already set as needed. template static bool SetBits(T* addr, T bits, T mask) { STATIC_ASSERT(sizeof(T) <= sizeof(base::AtomicWord)); DCHECK_EQ(bits & ~mask, static_cast(0)); T old_value; T new_value; do { old_value = Relaxed_Load(addr); if ((old_value & mask) == bits) return false; new_value = (old_value & ~mask) | bits; } while (Release_CompareAndSwap(addr, old_value, new_value) != old_value); return true; } private: template static base::AtomicWord to_storage_type(T value) { return static_cast(value); } template static T to_return_type(base::AtomicWord value) { return static_cast(value); } template static base::AtomicWord* to_storage_addr(T* value) { return reinterpret_cast(value); } template static const base::AtomicWord* to_storage_addr(const T* value) { return reinterpret_cast(value); } }; class AsAtomic8 { public: template static T Acquire_Load(T* addr) { STATIC_ASSERT(sizeof(T) <= sizeof(base::Atomic8)); return to_return_type(base::Acquire_Load(to_storage_addr(addr))); } template static T Relaxed_Load(T* addr) { STATIC_ASSERT(sizeof(T) <= sizeof(base::Atomic8)); return to_return_type(base::Relaxed_Load(to_storage_addr(addr))); } template static void Release_Store(T* addr, typename std::remove_reference::type new_value) { STATIC_ASSERT(sizeof(T) <= sizeof(base::Atomic8)); base::Release_Store(to_storage_addr(addr), to_storage_type(new_value)); } template static void Relaxed_Store(T* addr, typename std::remove_reference::type new_value) { STATIC_ASSERT(sizeof(T) <= sizeof(base::Atomic8)); base::Relaxed_Store(to_storage_addr(addr), to_storage_type(new_value)); } template static T Release_CompareAndSwap( T* addr, typename std::remove_reference::type old_value, typename std::remove_reference::type new_value) { STATIC_ASSERT(sizeof(T) <= sizeof(base::Atomic8)); return to_return_type(base::Release_CompareAndSwap( to_storage_addr(addr), to_storage_type(old_value), to_storage_type(new_value))); } private: template static base::Atomic8 to_storage_type(T value) { return static_cast(value); } template static T to_return_type(base::Atomic8 value) { return static_cast(value); } template static base::Atomic8* to_storage_addr(T* value) { return reinterpret_cast(value); } template static const base::Atomic8* to_storage_addr(const T* value) { return reinterpret_cast(value); } }; class AsAtomicPointer { public: template static T Acquire_Load(T* addr) { STATIC_ASSERT(sizeof(T) <= sizeof(base::AtomicWord)); return to_return_type(base::Acquire_Load(to_storage_addr(addr))); } template static T Relaxed_Load(T* addr) { STATIC_ASSERT(sizeof(T) <= sizeof(base::AtomicWord)); return to_return_type(base::Relaxed_Load(to_storage_addr(addr))); } template static void Release_Store(T* addr, typename std::remove_reference::type new_value) { STATIC_ASSERT(sizeof(T) <= sizeof(base::AtomicWord)); base::Release_Store(to_storage_addr(addr), to_storage_type(new_value)); } template static void Relaxed_Store(T* addr, typename std::remove_reference::type new_value) { STATIC_ASSERT(sizeof(T) <= sizeof(base::AtomicWord)); base::Relaxed_Store(to_storage_addr(addr), to_storage_type(new_value)); } template static T Release_CompareAndSwap( T* addr, typename std::remove_reference::type old_value, typename std::remove_reference::type new_value) { STATIC_ASSERT(sizeof(T) <= sizeof(base::AtomicWord)); return to_return_type(base::Release_CompareAndSwap( to_storage_addr(addr), to_storage_type(old_value), to_storage_type(new_value))); } private: template static base::AtomicWord to_storage_type(T value) { return reinterpret_cast(value); } template static T to_return_type(base::AtomicWord value) { return reinterpret_cast(value); } template static base::AtomicWord* to_storage_addr(T* value) { return reinterpret_cast(value); } template static const base::AtomicWord* to_storage_addr(const T* value) { return reinterpret_cast(value); } }; // This class is intended to be used as a wrapper for elements of an array // that is passed in to STL functions such as std::sort. It ensures that // elements accesses are atomic. // Usage example: // Object** given_array; // AtomicElement* wrapped = // reinterpret_cast(given_array); // std::sort(wrapped, wrapped + given_length, cmp); // where the cmp function uses the value() accessor to compare the elements. template class AtomicElement { public: AtomicElement(const AtomicElement& other) { AsAtomicPointer::Relaxed_Store( &value_, AsAtomicPointer::Relaxed_Load(&other.value_)); } void operator=(const AtomicElement& other) { AsAtomicPointer::Relaxed_Store( &value_, AsAtomicPointer::Relaxed_Load(&other.value_)); } T value() const { return AsAtomicPointer::Relaxed_Load(&value_); } bool operator<(const AtomicElement& other) const { return value() < other.value(); } bool operator==(const AtomicElement& other) const { return value() == other.value(); } private: T value_; }; } // namespace base } // namespace v8 #endif // V8_BASE_ATOMIC_UTILS_H_