// Copyright 2012 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #if V8_TARGET_ARCH_IA32 #include "src/base/bits.h" #include "src/base/division-by-constant.h" #include "src/base/utils/random-number-generator.h" #include "src/codegen/callable.h" #include "src/codegen/code-factory.h" #include "src/codegen/external-reference-table.h" #include "src/codegen/ia32/assembler-ia32-inl.h" #include "src/codegen/macro-assembler.h" #include "src/debug/debug.h" #include "src/execution/frame-constants.h" #include "src/execution/frames-inl.h" #include "src/heap/memory-chunk.h" #include "src/init/bootstrapper.h" #include "src/logging/counters.h" #include "src/runtime/runtime.h" #include "src/snapshot/embedded/embedded-data.h" #include "src/snapshot/snapshot.h" // Satisfy cpplint check, but don't include platform-specific header. It is // included recursively via macro-assembler.h. #if 0 #include "src/codegen/ia32/macro-assembler-ia32.h" #endif namespace v8 { namespace internal { Operand StackArgumentsAccessor::GetArgumentOperand(int index) const { DCHECK_GE(index, 0); #ifdef V8_REVERSE_JSARGS // arg[0] = esp + kPCOnStackSize; // arg[i] = arg[0] + i * kSystemPointerSize; return Operand(esp, kPCOnStackSize + index * kSystemPointerSize); #else // arg[0] = (esp + kPCOnStackSize) + argc * kSystemPointerSize; // arg[i] = arg[0] - i * kSystemPointerSize; return Operand(esp, argc_, times_system_pointer_size, kPCOnStackSize - index * kSystemPointerSize); #endif } // ------------------------------------------------------------------------- // MacroAssembler implementation. void TurboAssembler::InitializeRootRegister() { ExternalReference isolate_root = ExternalReference::isolate_root(isolate()); Move(kRootRegister, Immediate(isolate_root)); } void TurboAssembler::LoadRoot(Register destination, RootIndex index) { if (root_array_available()) { mov(destination, Operand(kRootRegister, RootRegisterOffsetForRootIndex(index))); return; } if (RootsTable::IsImmortalImmovable(index)) { Handle object = isolate()->root_handle(index); if (object->IsSmi()) { mov(destination, Immediate(Smi::cast(*object))); return; } else { DCHECK(object->IsHeapObject()); mov(destination, Handle::cast(object)); return; } } ExternalReference isolate_root = ExternalReference::isolate_root(isolate()); lea(destination, Operand(isolate_root.address(), RelocInfo::EXTERNAL_REFERENCE)); mov(destination, Operand(destination, RootRegisterOffsetForRootIndex(index))); } void TurboAssembler::CompareRoot(Register with, Register scratch, RootIndex index) { if (root_array_available()) { CompareRoot(with, index); } else { ExternalReference isolate_root = ExternalReference::isolate_root(isolate()); lea(scratch, Operand(isolate_root.address(), RelocInfo::EXTERNAL_REFERENCE)); cmp(with, Operand(scratch, RootRegisterOffsetForRootIndex(index))); } } void TurboAssembler::CompareRoot(Register with, RootIndex index) { if (root_array_available()) { cmp(with, Operand(kRootRegister, RootRegisterOffsetForRootIndex(index))); return; } DCHECK(RootsTable::IsImmortalImmovable(index)); Handle object = isolate()->root_handle(index); if (object->IsHeapObject()) { cmp(with, Handle::cast(object)); } else { cmp(with, Immediate(Smi::cast(*object))); } } void MacroAssembler::PushRoot(RootIndex index) { if (root_array_available()) { DCHECK(RootsTable::IsImmortalImmovable(index)); push(Operand(kRootRegister, RootRegisterOffsetForRootIndex(index))); return; } // TODO(v8:6666): Add a scratch register or remove all uses. DCHECK(RootsTable::IsImmortalImmovable(index)); Handle object = isolate()->root_handle(index); if (object->IsHeapObject()) { Push(Handle::cast(object)); } else { Push(Smi::cast(*object)); } } void MacroAssembler::JumpIfIsInRange(Register value, unsigned lower_limit, unsigned higher_limit, Register scratch, Label* on_in_range, Label::Distance near_jump) { if (lower_limit != 0) { lea(scratch, Operand(value, 0u - lower_limit)); cmp(scratch, Immediate(higher_limit - lower_limit)); } else { cmp(value, Immediate(higher_limit)); } j(below_equal, on_in_range, near_jump); } void TurboAssembler::PushArray(Register array, Register size, Register scratch, PushArrayOrder order) { DCHECK(!AreAliased(array, size, scratch)); Register counter = scratch; Label loop, entry; if (order == PushArrayOrder::kReverse) { mov(counter, 0); jmp(&entry); bind(&loop); Push(Operand(array, counter, times_system_pointer_size, 0)); inc(counter); bind(&entry); cmp(counter, size); j(less, &loop, Label::kNear); } else { mov(counter, size); jmp(&entry); bind(&loop); Push(Operand(array, counter, times_system_pointer_size, 0)); bind(&entry); dec(counter); j(greater_equal, &loop, Label::kNear); } } Operand TurboAssembler::ExternalReferenceAsOperand(ExternalReference reference, Register scratch) { // TODO(jgruber): Add support for enable_root_array_delta_access. if (root_array_available() && options().isolate_independent_code) { if (IsAddressableThroughRootRegister(isolate(), reference)) { // Some external references can be efficiently loaded as an offset from // kRootRegister. intptr_t offset = RootRegisterOffsetForExternalReference(isolate(), reference); return Operand(kRootRegister, offset); } else { // Otherwise, do a memory load from the external reference table. mov(scratch, Operand(kRootRegister, RootRegisterOffsetForExternalReferenceTableEntry( isolate(), reference))); return Operand(scratch, 0); } } Move(scratch, Immediate(reference)); return Operand(scratch, 0); } // TODO(v8:6666): If possible, refactor into a platform-independent function in // TurboAssembler. Operand TurboAssembler::ExternalReferenceAddressAsOperand( ExternalReference reference) { DCHECK(root_array_available()); DCHECK(options().isolate_independent_code); return Operand( kRootRegister, RootRegisterOffsetForExternalReferenceTableEntry(isolate(), reference)); } // TODO(v8:6666): If possible, refactor into a platform-independent function in // TurboAssembler. Operand TurboAssembler::HeapObjectAsOperand(Handle object) { DCHECK(root_array_available()); int builtin_index; RootIndex root_index; if (isolate()->roots_table().IsRootHandle(object, &root_index)) { return Operand(kRootRegister, RootRegisterOffsetForRootIndex(root_index)); } else if (isolate()->builtins()->IsBuiltinHandle(object, &builtin_index)) { return Operand(kRootRegister, RootRegisterOffsetForBuiltinIndex(builtin_index)); } else if (object.is_identical_to(code_object_) && Builtins::IsBuiltinId(maybe_builtin_index_)) { return Operand(kRootRegister, RootRegisterOffsetForBuiltinIndex(maybe_builtin_index_)); } else { // Objects in the constants table need an additional indirection, which // cannot be represented as a single Operand. UNREACHABLE(); } } void TurboAssembler::LoadFromConstantsTable(Register destination, int constant_index) { DCHECK(RootsTable::IsImmortalImmovable(RootIndex::kBuiltinsConstantsTable)); LoadRoot(destination, RootIndex::kBuiltinsConstantsTable); mov(destination, FieldOperand(destination, FixedArray::OffsetOfElementAt(constant_index))); } void TurboAssembler::LoadRootRegisterOffset(Register destination, intptr_t offset) { DCHECK(is_int32(offset)); DCHECK(root_array_available()); if (offset == 0) { mov(destination, kRootRegister); } else { lea(destination, Operand(kRootRegister, static_cast(offset))); } } void TurboAssembler::LoadRootRelative(Register destination, int32_t offset) { DCHECK(root_array_available()); mov(destination, Operand(kRootRegister, offset)); } void TurboAssembler::LoadAddress(Register destination, ExternalReference source) { // TODO(jgruber): Add support for enable_root_array_delta_access. if (root_array_available() && options().isolate_independent_code) { IndirectLoadExternalReference(destination, source); return; } mov(destination, Immediate(source)); } static constexpr Register saved_regs[] = {eax, ecx, edx}; static constexpr int kNumberOfSavedRegs = sizeof(saved_regs) / sizeof(Register); int TurboAssembler::RequiredStackSizeForCallerSaved(SaveFPRegsMode fp_mode, Register exclusion1, Register exclusion2, Register exclusion3) const { int bytes = 0; for (int i = 0; i < kNumberOfSavedRegs; i++) { Register reg = saved_regs[i]; if (reg != exclusion1 && reg != exclusion2 && reg != exclusion3) { bytes += kSystemPointerSize; } } if (fp_mode == kSaveFPRegs) { // Count all XMM registers except XMM0. bytes += kDoubleSize * (XMMRegister::kNumRegisters - 1); } return bytes; } int TurboAssembler::PushCallerSaved(SaveFPRegsMode fp_mode, Register exclusion1, Register exclusion2, Register exclusion3) { // We don't allow a GC during a store buffer overflow so there is no need to // store the registers in any particular way, but we do have to store and // restore them. int bytes = 0; for (int i = 0; i < kNumberOfSavedRegs; i++) { Register reg = saved_regs[i]; if (reg != exclusion1 && reg != exclusion2 && reg != exclusion3) { push(reg); bytes += kSystemPointerSize; } } if (fp_mode == kSaveFPRegs) { // Save all XMM registers except XMM0. int delta = kDoubleSize * (XMMRegister::kNumRegisters - 1); AllocateStackSpace(delta); for (int i = XMMRegister::kNumRegisters - 1; i > 0; i--) { XMMRegister reg = XMMRegister::from_code(i); movsd(Operand(esp, (i - 1) * kDoubleSize), reg); } bytes += delta; } return bytes; } int TurboAssembler::PopCallerSaved(SaveFPRegsMode fp_mode, Register exclusion1, Register exclusion2, Register exclusion3) { int bytes = 0; if (fp_mode == kSaveFPRegs) { // Restore all XMM registers except XMM0. int delta = kDoubleSize * (XMMRegister::kNumRegisters - 1); for (int i = XMMRegister::kNumRegisters - 1; i > 0; i--) { XMMRegister reg = XMMRegister::from_code(i); movsd(reg, Operand(esp, (i - 1) * kDoubleSize)); } add(esp, Immediate(delta)); bytes += delta; } for (int i = kNumberOfSavedRegs - 1; i >= 0; i--) { Register reg = saved_regs[i]; if (reg != exclusion1 && reg != exclusion2 && reg != exclusion3) { pop(reg); bytes += kSystemPointerSize; } } return bytes; } void MacroAssembler::RecordWriteField(Register object, int offset, Register value, Register dst, SaveFPRegsMode save_fp, RememberedSetAction remembered_set_action, SmiCheck smi_check) { // First, check if a write barrier is even needed. The tests below // catch stores of Smis. Label done; // Skip barrier if writing a smi. if (smi_check == INLINE_SMI_CHECK) { JumpIfSmi(value, &done); } // Although the object register is tagged, the offset is relative to the start // of the object, so so offset must be a multiple of kTaggedSize. DCHECK(IsAligned(offset, kTaggedSize)); lea(dst, FieldOperand(object, offset)); if (emit_debug_code()) { Label ok; test_b(dst, Immediate(kTaggedSize - 1)); j(zero, &ok, Label::kNear); int3(); bind(&ok); } RecordWrite(object, dst, value, save_fp, remembered_set_action, OMIT_SMI_CHECK); bind(&done); // Clobber clobbered input registers when running with the debug-code flag // turned on to provoke errors. if (emit_debug_code()) { mov(value, Immediate(bit_cast(kZapValue))); mov(dst, Immediate(bit_cast(kZapValue))); } } void TurboAssembler::SaveRegisters(RegList registers) { DCHECK_GT(NumRegs(registers), 0); for (int i = 0; i < Register::kNumRegisters; ++i) { if ((registers >> i) & 1u) { push(Register::from_code(i)); } } } void TurboAssembler::RestoreRegisters(RegList registers) { DCHECK_GT(NumRegs(registers), 0); for (int i = Register::kNumRegisters - 1; i >= 0; --i) { if ((registers >> i) & 1u) { pop(Register::from_code(i)); } } } void TurboAssembler::CallEphemeronKeyBarrier(Register object, Register address, SaveFPRegsMode fp_mode) { EphemeronKeyBarrierDescriptor descriptor; RegList registers = descriptor.allocatable_registers(); SaveRegisters(registers); Register object_parameter( descriptor.GetRegisterParameter(EphemeronKeyBarrierDescriptor::kObject)); Register slot_parameter(descriptor.GetRegisterParameter( EphemeronKeyBarrierDescriptor::kSlotAddress)); Register fp_mode_parameter( descriptor.GetRegisterParameter(EphemeronKeyBarrierDescriptor::kFPMode)); push(object); push(address); pop(slot_parameter); pop(object_parameter); Move(fp_mode_parameter, Smi::FromEnum(fp_mode)); Call(isolate()->builtins()->builtin_handle(Builtins::kEphemeronKeyBarrier), RelocInfo::CODE_TARGET); RestoreRegisters(registers); } void TurboAssembler::CallRecordWriteStub( Register object, Register address, RememberedSetAction remembered_set_action, SaveFPRegsMode fp_mode) { CallRecordWriteStub( object, address, remembered_set_action, fp_mode, isolate()->builtins()->builtin_handle(Builtins::kRecordWrite), kNullAddress); } void TurboAssembler::CallRecordWriteStub( Register object, Register address, RememberedSetAction remembered_set_action, SaveFPRegsMode fp_mode, Address wasm_target) { CallRecordWriteStub(object, address, remembered_set_action, fp_mode, Handle::null(), wasm_target); } void TurboAssembler::CallRecordWriteStub( Register object, Register address, RememberedSetAction remembered_set_action, SaveFPRegsMode fp_mode, Handle code_target, Address wasm_target) { DCHECK_NE(code_target.is_null(), wasm_target == kNullAddress); // TODO(albertnetymk): For now we ignore remembered_set_action and fp_mode, // i.e. always emit remember set and save FP registers in RecordWriteStub. If // large performance regression is observed, we should use these values to // avoid unnecessary work. RecordWriteDescriptor descriptor; RegList registers = descriptor.allocatable_registers(); SaveRegisters(registers); Register object_parameter( descriptor.GetRegisterParameter(RecordWriteDescriptor::kObject)); Register slot_parameter( descriptor.GetRegisterParameter(RecordWriteDescriptor::kSlot)); Register remembered_set_parameter( descriptor.GetRegisterParameter(RecordWriteDescriptor::kRememberedSet)); Register fp_mode_parameter( descriptor.GetRegisterParameter(RecordWriteDescriptor::kFPMode)); push(object); push(address); pop(slot_parameter); pop(object_parameter); Move(remembered_set_parameter, Smi::FromEnum(remembered_set_action)); Move(fp_mode_parameter, Smi::FromEnum(fp_mode)); if (code_target.is_null()) { // Use {wasm_call} for direct Wasm call within a module. wasm_call(wasm_target, RelocInfo::WASM_STUB_CALL); } else { Call(code_target, RelocInfo::CODE_TARGET); } RestoreRegisters(registers); } void MacroAssembler::RecordWrite(Register object, Register address, Register value, SaveFPRegsMode fp_mode, RememberedSetAction remembered_set_action, SmiCheck smi_check) { DCHECK(object != value); DCHECK(object != address); DCHECK(value != address); AssertNotSmi(object); if ((remembered_set_action == OMIT_REMEMBERED_SET && !FLAG_incremental_marking) || FLAG_disable_write_barriers) { return; } if (emit_debug_code()) { Label ok; cmp(value, Operand(address, 0)); j(equal, &ok, Label::kNear); int3(); bind(&ok); } // First, check if a write barrier is even needed. The tests below // catch stores of Smis and stores into young gen. Label done; if (smi_check == INLINE_SMI_CHECK) { // Skip barrier if writing a smi. JumpIfSmi(value, &done, Label::kNear); } CheckPageFlag(value, value, // Used as scratch. MemoryChunk::kPointersToHereAreInterestingMask, zero, &done, Label::kNear); CheckPageFlag(object, value, // Used as scratch. MemoryChunk::kPointersFromHereAreInterestingMask, zero, &done, Label::kNear); CallRecordWriteStub(object, address, remembered_set_action, fp_mode); bind(&done); // Clobber clobbered registers when running with the debug-code flag // turned on to provoke errors. if (emit_debug_code()) { mov(address, Immediate(bit_cast(kZapValue))); mov(value, Immediate(bit_cast(kZapValue))); } } void MacroAssembler::MaybeDropFrames() { // Check whether we need to drop frames to restart a function on the stack. Label dont_drop; ExternalReference restart_fp = ExternalReference::debug_restart_fp_address(isolate()); mov(eax, ExternalReferenceAsOperand(restart_fp, eax)); test(eax, eax); j(zero, &dont_drop, Label::kNear); Jump(BUILTIN_CODE(isolate(), FrameDropperTrampoline), RelocInfo::CODE_TARGET); bind(&dont_drop); } void TurboAssembler::Cvtsi2ss(XMMRegister dst, Operand src) { xorps(dst, dst); cvtsi2ss(dst, src); } void TurboAssembler::Cvtsi2sd(XMMRegister dst, Operand src) { xorpd(dst, dst); cvtsi2sd(dst, src); } void TurboAssembler::Cvtui2ss(XMMRegister dst, Operand src, Register tmp) { Label done; Register src_reg = src.is_reg_only() ? src.reg() : tmp; if (src_reg == tmp) mov(tmp, src); cvtsi2ss(dst, src_reg); test(src_reg, src_reg); j(positive, &done, Label::kNear); // Compute {src/2 | (src&1)} (retain the LSB to avoid rounding errors). if (src_reg != tmp) mov(tmp, src_reg); shr(tmp, 1); // The LSB is shifted into CF. If it is set, set the LSB in {tmp}. Label msb_not_set; j(not_carry, &msb_not_set, Label::kNear); or_(tmp, Immediate(1)); bind(&msb_not_set); cvtsi2ss(dst, tmp); addss(dst, dst); bind(&done); } void TurboAssembler::Cvttss2ui(Register dst, Operand src, XMMRegister tmp) { Label done; cvttss2si(dst, src); test(dst, dst); j(positive, &done); Move(tmp, static_cast(INT32_MIN)); addss(tmp, src); cvttss2si(dst, tmp); or_(dst, Immediate(0x80000000)); bind(&done); } void TurboAssembler::Cvtui2sd(XMMRegister dst, Operand src, Register scratch) { Label done; cmp(src, Immediate(0)); ExternalReference uint32_bias = ExternalReference::address_of_uint32_bias(); Cvtsi2sd(dst, src); j(not_sign, &done, Label::kNear); addsd(dst, ExternalReferenceAsOperand(uint32_bias, scratch)); bind(&done); } void TurboAssembler::Cvttsd2ui(Register dst, Operand src, XMMRegister tmp) { Move(tmp, -2147483648.0); addsd(tmp, src); cvttsd2si(dst, tmp); add(dst, Immediate(0x80000000)); } void TurboAssembler::Roundps(XMMRegister dst, XMMRegister src, RoundingMode mode) { if (CpuFeatures::IsSupported(AVX)) { CpuFeatureScope scope(this, AVX); vroundps(dst, src, mode); } else { CpuFeatureScope scope(this, SSE4_1); roundps(dst, src, mode); } } void TurboAssembler::Roundpd(XMMRegister dst, XMMRegister src, RoundingMode mode) { if (CpuFeatures::IsSupported(AVX)) { CpuFeatureScope scope(this, AVX); vroundpd(dst, src, mode); } else { CpuFeatureScope scope(this, SSE4_1); roundpd(dst, src, mode); } } void TurboAssembler::ShlPair(Register high, Register low, uint8_t shift) { DCHECK_GE(63, shift); if (shift >= 32) { mov(high, low); if (shift != 32) shl(high, shift - 32); xor_(low, low); } else { shld(high, low, shift); shl(low, shift); } } void TurboAssembler::ShlPair_cl(Register high, Register low) { shld_cl(high, low); shl_cl(low); Label done; test(ecx, Immediate(0x20)); j(equal, &done, Label::kNear); mov(high, low); xor_(low, low); bind(&done); } void TurboAssembler::ShrPair(Register high, Register low, uint8_t shift) { DCHECK_GE(63, shift); if (shift >= 32) { mov(low, high); if (shift != 32) shr(low, shift - 32); xor_(high, high); } else { shrd(low, high, shift); shr(high, shift); } } void TurboAssembler::ShrPair_cl(Register high, Register low) { shrd_cl(low, high); shr_cl(high); Label done; test(ecx, Immediate(0x20)); j(equal, &done, Label::kNear); mov(low, high); xor_(high, high); bind(&done); } void TurboAssembler::SarPair(Register high, Register low, uint8_t shift) { DCHECK_GE(63, shift); if (shift >= 32) { mov(low, high); if (shift != 32) sar(low, shift - 32); sar(high, 31); } else { shrd(low, high, shift); sar(high, shift); } } void TurboAssembler::SarPair_cl(Register high, Register low) { shrd_cl(low, high); sar_cl(high); Label done; test(ecx, Immediate(0x20)); j(equal, &done, Label::kNear); mov(low, high); sar(high, 31); bind(&done); } void TurboAssembler::LoadMap(Register destination, Register object) { mov(destination, FieldOperand(object, HeapObject::kMapOffset)); } void MacroAssembler::CmpObjectType(Register heap_object, InstanceType type, Register map) { LoadMap(map, heap_object); CmpInstanceType(map, type); } void MacroAssembler::CmpInstanceType(Register map, InstanceType type) { cmpw(FieldOperand(map, Map::kInstanceTypeOffset), Immediate(type)); } void MacroAssembler::AssertSmi(Register object) { if (emit_debug_code()) { test(object, Immediate(kSmiTagMask)); Check(equal, AbortReason::kOperandIsNotASmi); } } void MacroAssembler::AssertConstructor(Register object) { if (emit_debug_code()) { test(object, Immediate(kSmiTagMask)); Check(not_equal, AbortReason::kOperandIsASmiAndNotAConstructor); Push(object); LoadMap(object, object); test_b(FieldOperand(object, Map::kBitFieldOffset), Immediate(Map::Bits1::IsConstructorBit::kMask)); Pop(object); Check(not_zero, AbortReason::kOperandIsNotAConstructor); } } void MacroAssembler::AssertFunction(Register object) { if (emit_debug_code()) { test(object, Immediate(kSmiTagMask)); Check(not_equal, AbortReason::kOperandIsASmiAndNotAFunction); Push(object); CmpObjectType(object, JS_FUNCTION_TYPE, object); Pop(object); Check(equal, AbortReason::kOperandIsNotAFunction); } } void MacroAssembler::AssertBoundFunction(Register object) { if (emit_debug_code()) { test(object, Immediate(kSmiTagMask)); Check(not_equal, AbortReason::kOperandIsASmiAndNotABoundFunction); Push(object); CmpObjectType(object, JS_BOUND_FUNCTION_TYPE, object); Pop(object); Check(equal, AbortReason::kOperandIsNotABoundFunction); } } void MacroAssembler::AssertGeneratorObject(Register object) { if (!emit_debug_code()) return; test(object, Immediate(kSmiTagMask)); Check(not_equal, AbortReason::kOperandIsASmiAndNotAGeneratorObject); { Push(object); Register map = object; LoadMap(map, object); Label do_check; // Check if JSGeneratorObject CmpInstanceType(map, JS_GENERATOR_OBJECT_TYPE); j(equal, &do_check, Label::kNear); // Check if JSAsyncFunctionObject. CmpInstanceType(map, JS_ASYNC_FUNCTION_OBJECT_TYPE); j(equal, &do_check, Label::kNear); // Check if JSAsyncGeneratorObject CmpInstanceType(map, JS_ASYNC_GENERATOR_OBJECT_TYPE); bind(&do_check); Pop(object); } Check(equal, AbortReason::kOperandIsNotAGeneratorObject); } void MacroAssembler::AssertUndefinedOrAllocationSite(Register object, Register scratch) { if (emit_debug_code()) { Label done_checking; AssertNotSmi(object); CompareRoot(object, scratch, RootIndex::kUndefinedValue); j(equal, &done_checking); LoadRoot(scratch, RootIndex::kAllocationSiteWithWeakNextMap); cmp(FieldOperand(object, 0), scratch); Assert(equal, AbortReason::kExpectedUndefinedOrCell); bind(&done_checking); } } void MacroAssembler::AssertNotSmi(Register object) { if (emit_debug_code()) { test(object, Immediate(kSmiTagMask)); Check(not_equal, AbortReason::kOperandIsASmi); } } void TurboAssembler::StubPrologue(StackFrame::Type type) { push(ebp); // Caller's frame pointer. mov(ebp, esp); push(Immediate(StackFrame::TypeToMarker(type))); } void TurboAssembler::Prologue() { push(ebp); // Caller's frame pointer. mov(ebp, esp); push(esi); // Callee's context. push(edi); // Callee's JS function. } void TurboAssembler::EnterFrame(StackFrame::Type type) { push(ebp); mov(ebp, esp); push(Immediate(StackFrame::TypeToMarker(type))); } void TurboAssembler::LeaveFrame(StackFrame::Type type) { if (emit_debug_code()) { cmp(Operand(ebp, CommonFrameConstants::kContextOrFrameTypeOffset), Immediate(StackFrame::TypeToMarker(type))); Check(equal, AbortReason::kStackFrameTypesMustMatch); } leave(); } #ifdef V8_OS_WIN void TurboAssembler::AllocateStackSpace(Register bytes_scratch) { // In windows, we cannot increment the stack size by more than one page // (minimum page size is 4KB) without accessing at least one byte on the // page. Check this: // https://msdn.microsoft.com/en-us/library/aa227153(v=vs.60).aspx. Label check_offset; Label touch_next_page; jmp(&check_offset); bind(&touch_next_page); sub(esp, Immediate(kStackPageSize)); // Just to touch the page, before we increment further. mov(Operand(esp, 0), Immediate(0)); sub(bytes_scratch, Immediate(kStackPageSize)); bind(&check_offset); cmp(bytes_scratch, kStackPageSize); j(greater, &touch_next_page); sub(esp, bytes_scratch); } void TurboAssembler::AllocateStackSpace(int bytes) { while (bytes > kStackPageSize) { sub(esp, Immediate(kStackPageSize)); mov(Operand(esp, 0), Immediate(0)); bytes -= kStackPageSize; } sub(esp, Immediate(bytes)); } #endif void MacroAssembler::EnterExitFramePrologue(StackFrame::Type frame_type, Register scratch) { DCHECK(frame_type == StackFrame::EXIT || frame_type == StackFrame::BUILTIN_EXIT); // Set up the frame structure on the stack. DCHECK_EQ(+2 * kSystemPointerSize, ExitFrameConstants::kCallerSPDisplacement); DCHECK_EQ(+1 * kSystemPointerSize, ExitFrameConstants::kCallerPCOffset); DCHECK_EQ(0 * kSystemPointerSize, ExitFrameConstants::kCallerFPOffset); push(ebp); mov(ebp, esp); // Reserve room for entry stack pointer. push(Immediate(StackFrame::TypeToMarker(frame_type))); DCHECK_EQ(-2 * kSystemPointerSize, ExitFrameConstants::kSPOffset); push(Immediate(0)); // Saved entry sp, patched before call. STATIC_ASSERT(edx == kRuntimeCallFunctionRegister); STATIC_ASSERT(esi == kContextRegister); // Save the frame pointer and the context in top. ExternalReference c_entry_fp_address = ExternalReference::Create(IsolateAddressId::kCEntryFPAddress, isolate()); ExternalReference context_address = ExternalReference::Create(IsolateAddressId::kContextAddress, isolate()); ExternalReference c_function_address = ExternalReference::Create(IsolateAddressId::kCFunctionAddress, isolate()); DCHECK(!AreAliased(scratch, ebp, esi, edx)); mov(ExternalReferenceAsOperand(c_entry_fp_address, scratch), ebp); mov(ExternalReferenceAsOperand(context_address, scratch), esi); mov(ExternalReferenceAsOperand(c_function_address, scratch), edx); } void MacroAssembler::EnterExitFrameEpilogue(int argc, bool save_doubles) { // Optionally save all XMM registers. if (save_doubles) { int space = XMMRegister::kNumRegisters * kDoubleSize + argc * kSystemPointerSize; AllocateStackSpace(space); const int offset = -ExitFrameConstants::kFixedFrameSizeFromFp; for (int i = 0; i < XMMRegister::kNumRegisters; i++) { XMMRegister reg = XMMRegister::from_code(i); movsd(Operand(ebp, offset - ((i + 1) * kDoubleSize)), reg); } } else { AllocateStackSpace(argc * kSystemPointerSize); } // Get the required frame alignment for the OS. const int kFrameAlignment = base::OS::ActivationFrameAlignment(); if (kFrameAlignment > 0) { DCHECK(base::bits::IsPowerOfTwo(kFrameAlignment)); and_(esp, -kFrameAlignment); } // Patch the saved entry sp. mov(Operand(ebp, ExitFrameConstants::kSPOffset), esp); } void MacroAssembler::EnterExitFrame(int argc, bool save_doubles, StackFrame::Type frame_type) { EnterExitFramePrologue(frame_type, edi); // Set up argc and argv in callee-saved registers. int offset = StandardFrameConstants::kCallerSPOffset - kSystemPointerSize; mov(edi, eax); lea(esi, Operand(ebp, eax, times_system_pointer_size, offset)); // Reserve space for argc, argv and isolate. EnterExitFrameEpilogue(argc, save_doubles); } void MacroAssembler::EnterApiExitFrame(int argc, Register scratch) { EnterExitFramePrologue(StackFrame::EXIT, scratch); EnterExitFrameEpilogue(argc, false); } void MacroAssembler::LeaveExitFrame(bool save_doubles, bool pop_arguments) { // Optionally restore all XMM registers. if (save_doubles) { const int offset = -ExitFrameConstants::kFixedFrameSizeFromFp; for (int i = 0; i < XMMRegister::kNumRegisters; i++) { XMMRegister reg = XMMRegister::from_code(i); movsd(reg, Operand(ebp, offset - ((i + 1) * kDoubleSize))); } } if (pop_arguments) { // Get the return address from the stack and restore the frame pointer. mov(ecx, Operand(ebp, 1 * kSystemPointerSize)); mov(ebp, Operand(ebp, 0 * kSystemPointerSize)); // Pop the arguments and the receiver from the caller stack. lea(esp, Operand(esi, 1 * kSystemPointerSize)); // Push the return address to get ready to return. push(ecx); } else { // Otherwise just leave the exit frame. leave(); } LeaveExitFrameEpilogue(); } void MacroAssembler::LeaveExitFrameEpilogue() { // Clear the top frame. ExternalReference c_entry_fp_address = ExternalReference::Create(IsolateAddressId::kCEntryFPAddress, isolate()); mov(ExternalReferenceAsOperand(c_entry_fp_address, esi), Immediate(0)); // Restore current context from top and clear it in debug mode. ExternalReference context_address = ExternalReference::Create(IsolateAddressId::kContextAddress, isolate()); mov(esi, ExternalReferenceAsOperand(context_address, esi)); #ifdef DEBUG push(eax); mov(ExternalReferenceAsOperand(context_address, eax), Immediate(Context::kInvalidContext)); pop(eax); #endif } void MacroAssembler::LeaveApiExitFrame() { mov(esp, ebp); pop(ebp); LeaveExitFrameEpilogue(); } void MacroAssembler::PushStackHandler(Register scratch) { // Adjust this code if not the case. STATIC_ASSERT(StackHandlerConstants::kSize == 2 * kSystemPointerSize); STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0); push(Immediate(0)); // Padding. // Link the current handler as the next handler. ExternalReference handler_address = ExternalReference::Create(IsolateAddressId::kHandlerAddress, isolate()); push(ExternalReferenceAsOperand(handler_address, scratch)); // Set this new handler as the current one. mov(ExternalReferenceAsOperand(handler_address, scratch), esp); } void MacroAssembler::PopStackHandler(Register scratch) { STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0); ExternalReference handler_address = ExternalReference::Create(IsolateAddressId::kHandlerAddress, isolate()); pop(ExternalReferenceAsOperand(handler_address, scratch)); add(esp, Immediate(StackHandlerConstants::kSize - kSystemPointerSize)); } void MacroAssembler::CallRuntime(const Runtime::Function* f, int num_arguments, SaveFPRegsMode save_doubles) { // If the expected number of arguments of the runtime function is // constant, we check that the actual number of arguments match the // expectation. CHECK(f->nargs < 0 || f->nargs == num_arguments); // TODO(1236192): Most runtime routines don't need the number of // arguments passed in because it is constant. At some point we // should remove this need and make the runtime routine entry code // smarter. Move(kRuntimeCallArgCountRegister, Immediate(num_arguments)); Move(kRuntimeCallFunctionRegister, Immediate(ExternalReference::Create(f))); Handle code = CodeFactory::CEntry(isolate(), f->result_size, save_doubles); Call(code, RelocInfo::CODE_TARGET); } void MacroAssembler::TailCallRuntime(Runtime::FunctionId fid) { // ----------- S t a t e ------------- // -- esp[0] : return address // -- esp[8] : argument num_arguments - 1 // ... // -- esp[8 * num_arguments] : argument 0 (receiver) // // For runtime functions with variable arguments: // -- eax : number of arguments // ----------------------------------- const Runtime::Function* function = Runtime::FunctionForId(fid); DCHECK_EQ(1, function->result_size); if (function->nargs >= 0) { // TODO(1236192): Most runtime routines don't need the number of // arguments passed in because it is constant. At some point we // should remove this need and make the runtime routine entry code // smarter. Move(kRuntimeCallArgCountRegister, Immediate(function->nargs)); } JumpToExternalReference(ExternalReference::Create(fid)); } void MacroAssembler::JumpToExternalReference(const ExternalReference& ext, bool builtin_exit_frame) { // Set the entry point and jump to the C entry runtime stub. Move(kRuntimeCallFunctionRegister, Immediate(ext)); Handle code = CodeFactory::CEntry(isolate(), 1, kDontSaveFPRegs, kArgvOnStack, builtin_exit_frame); Jump(code, RelocInfo::CODE_TARGET); } void MacroAssembler::JumpToInstructionStream(Address entry) { jmp(entry, RelocInfo::OFF_HEAP_TARGET); } void TurboAssembler::PrepareForTailCall( Register callee_args_count, Register caller_args_count, Register scratch0, Register scratch1, int number_of_temp_values_after_return_address) { DCHECK(!AreAliased(callee_args_count, caller_args_count, scratch0, scratch1)); // Calculate the destination address where we will put the return address // after we drop current frame. Register new_sp_reg = scratch0; sub(caller_args_count, callee_args_count); lea(new_sp_reg, Operand(ebp, caller_args_count, times_system_pointer_size, StandardFrameConstants::kCallerPCOffset - number_of_temp_values_after_return_address * kSystemPointerSize)); if (FLAG_debug_code) { cmp(esp, new_sp_reg); Check(below, AbortReason::kStackAccessBelowStackPointer); } // Copy return address from caller's frame to current frame's return address // to avoid its trashing and let the following loop copy it to the right // place. Register tmp_reg = scratch1; mov(tmp_reg, Operand(ebp, StandardFrameConstants::kCallerPCOffset)); mov(Operand(esp, number_of_temp_values_after_return_address * kSystemPointerSize), tmp_reg); // Restore caller's frame pointer now as it could be overwritten by // the copying loop. mov(ebp, Operand(ebp, StandardFrameConstants::kCallerFPOffset)); // +2 here is to copy both receiver and return address. Register count_reg = caller_args_count; lea(count_reg, Operand(callee_args_count, 2 + number_of_temp_values_after_return_address)); // Now copy callee arguments to the caller frame going backwards to avoid // callee arguments corruption (source and destination areas could overlap). Label loop, entry; jmp(&entry, Label::kNear); bind(&loop); dec(count_reg); mov(tmp_reg, Operand(esp, count_reg, times_system_pointer_size, 0)); mov(Operand(new_sp_reg, count_reg, times_system_pointer_size, 0), tmp_reg); bind(&entry); cmp(count_reg, Immediate(0)); j(not_equal, &loop, Label::kNear); // Leave current frame. mov(esp, new_sp_reg); } void MacroAssembler::InvokePrologue(Register expected_parameter_count, Register actual_parameter_count, Label* done, InvokeFlag flag) { DCHECK_EQ(actual_parameter_count, eax); if (expected_parameter_count != actual_parameter_count) { DCHECK_EQ(expected_parameter_count, ecx); Label regular_invoke; cmp(expected_parameter_count, actual_parameter_count); j(equal, ®ular_invoke); Handle adaptor = BUILTIN_CODE(isolate(), ArgumentsAdaptorTrampoline); if (flag == CALL_FUNCTION) { Call(adaptor, RelocInfo::CODE_TARGET); jmp(done, Label::kNear); } else { Jump(adaptor, RelocInfo::CODE_TARGET); } bind(®ular_invoke); } } void MacroAssembler::CallDebugOnFunctionCall(Register fun, Register new_target, Register expected_parameter_count, Register actual_parameter_count) { FrameScope frame(this, has_frame() ? StackFrame::NONE : StackFrame::INTERNAL); SmiTag(expected_parameter_count); Push(expected_parameter_count); SmiTag(actual_parameter_count); Push(actual_parameter_count); SmiUntag(actual_parameter_count); if (new_target.is_valid()) { Push(new_target); } Push(fun); Push(fun); // Arguments are located 2 words below the base pointer. #ifdef V8_REVERSE_JSARGS Operand receiver_op = Operand(ebp, kSystemPointerSize * 2); #else Operand receiver_op = Operand(ebp, actual_parameter_count, times_system_pointer_size, kSystemPointerSize * 2); #endif Push(receiver_op); CallRuntime(Runtime::kDebugOnFunctionCall); Pop(fun); if (new_target.is_valid()) { Pop(new_target); } Pop(actual_parameter_count); SmiUntag(actual_parameter_count); Pop(expected_parameter_count); SmiUntag(expected_parameter_count); } void MacroAssembler::InvokeFunctionCode(Register function, Register new_target, Register expected_parameter_count, Register actual_parameter_count, InvokeFlag flag) { // You can't call a function without a valid frame. DCHECK(flag == JUMP_FUNCTION || has_frame()); DCHECK_EQ(function, edi); DCHECK_IMPLIES(new_target.is_valid(), new_target == edx); DCHECK(expected_parameter_count == ecx || expected_parameter_count == eax); DCHECK_EQ(actual_parameter_count, eax); // On function call, call into the debugger if necessary. Label debug_hook, continue_after_hook; { ExternalReference debug_hook_active = ExternalReference::debug_hook_on_function_call_address(isolate()); push(eax); cmpb(ExternalReferenceAsOperand(debug_hook_active, eax), Immediate(0)); pop(eax); j(not_equal, &debug_hook, Label::kNear); } bind(&continue_after_hook); // Clear the new.target register if not given. if (!new_target.is_valid()) { Move(edx, isolate()->factory()->undefined_value()); } Label done; InvokePrologue(expected_parameter_count, actual_parameter_count, &done, flag); // We call indirectly through the code field in the function to // allow recompilation to take effect without changing any of the // call sites. static_assert(kJavaScriptCallCodeStartRegister == ecx, "ABI mismatch"); mov(ecx, FieldOperand(function, JSFunction::kCodeOffset)); if (flag == CALL_FUNCTION) { CallCodeObject(ecx); } else { DCHECK(flag == JUMP_FUNCTION); JumpCodeObject(ecx); } jmp(&done, Label::kNear); // Deferred debug hook. bind(&debug_hook); CallDebugOnFunctionCall(function, new_target, expected_parameter_count, actual_parameter_count); jmp(&continue_after_hook, Label::kNear); bind(&done); } void MacroAssembler::InvokeFunction(Register fun, Register new_target, Register actual_parameter_count, InvokeFlag flag) { // You can't call a function without a valid frame. DCHECK(flag == JUMP_FUNCTION || has_frame()); DCHECK(fun == edi); mov(ecx, FieldOperand(edi, JSFunction::kSharedFunctionInfoOffset)); mov(esi, FieldOperand(edi, JSFunction::kContextOffset)); movzx_w(ecx, FieldOperand(ecx, SharedFunctionInfo::kFormalParameterCountOffset)); InvokeFunctionCode(edi, new_target, ecx, actual_parameter_count, flag); } void MacroAssembler::LoadGlobalProxy(Register dst) { LoadNativeContextSlot(dst, Context::GLOBAL_PROXY_INDEX); } void MacroAssembler::LoadNativeContextSlot(Register destination, int index) { // Load the native context from the current context. LoadMap(destination, esi); mov(destination, FieldOperand(destination, Map::kConstructorOrBackPointerOrNativeContextOffset)); // Load the function from the native context. mov(destination, Operand(destination, Context::SlotOffset(index))); } int MacroAssembler::SafepointRegisterStackIndex(int reg_code) { // The registers are pushed starting with the lowest encoding, // which means that lowest encodings are furthest away from // the stack pointer. DCHECK(reg_code >= 0 && reg_code < kNumSafepointRegisters); return kNumSafepointRegisters - reg_code - 1; } void TurboAssembler::Ret() { ret(0); } void TurboAssembler::Ret(int bytes_dropped, Register scratch) { if (is_uint16(bytes_dropped)) { ret(bytes_dropped); } else { pop(scratch); add(esp, Immediate(bytes_dropped)); push(scratch); ret(0); } } void TurboAssembler::Push(Immediate value) { if (root_array_available() && options().isolate_independent_code) { if (value.is_embedded_object()) { Push(HeapObjectAsOperand(value.embedded_object())); return; } else if (value.is_external_reference()) { Push(ExternalReferenceAddressAsOperand(value.external_reference())); return; } } push(value); } void MacroAssembler::Drop(int stack_elements) { if (stack_elements > 0) { add(esp, Immediate(stack_elements * kSystemPointerSize)); } } void TurboAssembler::Move(Register dst, Register src) { if (dst != src) { mov(dst, src); } } void TurboAssembler::Move(Register dst, const Immediate& src) { if (!src.is_heap_object_request() && src.is_zero()) { xor_(dst, dst); // Shorter than mov of 32-bit immediate 0. } else if (src.is_external_reference()) { LoadAddress(dst, src.external_reference()); } else { mov(dst, src); } } void TurboAssembler::Move(Operand dst, const Immediate& src) { // Since there's no scratch register available, take a detour through the // stack. if (root_array_available() && options().isolate_independent_code) { if (src.is_embedded_object() || src.is_external_reference() || src.is_heap_object_request()) { Push(src); pop(dst); return; } } if (src.is_embedded_object()) { mov(dst, src.embedded_object()); } else { mov(dst, src); } } void TurboAssembler::Move(Register dst, Handle src) { if (root_array_available() && options().isolate_independent_code) { IndirectLoadConstant(dst, src); return; } mov(dst, src); } void TurboAssembler::Move(XMMRegister dst, uint32_t src) { if (src == 0) { pxor(dst, dst); } else { unsigned cnt = base::bits::CountPopulation(src); unsigned nlz = base::bits::CountLeadingZeros32(src); unsigned ntz = base::bits::CountTrailingZeros32(src); if (nlz + cnt + ntz == 32) { pcmpeqd(dst, dst); if (ntz == 0) { psrld(dst, 32 - cnt); } else { pslld(dst, 32 - cnt); if (nlz != 0) psrld(dst, nlz); } } else { push(eax); mov(eax, Immediate(src)); movd(dst, Operand(eax)); pop(eax); } } } void TurboAssembler::Move(XMMRegister dst, uint64_t src) { if (src == 0) { pxor(dst, dst); } else { uint32_t lower = static_cast(src); uint32_t upper = static_cast(src >> 32); unsigned cnt = base::bits::CountPopulation(src); unsigned nlz = base::bits::CountLeadingZeros64(src); unsigned ntz = base::bits::CountTrailingZeros64(src); if (nlz + cnt + ntz == 64) { pcmpeqd(dst, dst); if (ntz == 0) { psrlq(dst, 64 - cnt); } else { psllq(dst, 64 - cnt); if (nlz != 0) psrlq(dst, nlz); } } else if (lower == 0) { Move(dst, upper); psllq(dst, 32); } else if (CpuFeatures::IsSupported(SSE4_1)) { CpuFeatureScope scope(this, SSE4_1); push(eax); Move(eax, Immediate(lower)); movd(dst, Operand(eax)); if (upper != lower) { Move(eax, Immediate(upper)); } pinsrd(dst, Operand(eax), 1); pop(eax); } else { push(Immediate(upper)); push(Immediate(lower)); movsd(dst, Operand(esp, 0)); add(esp, Immediate(kDoubleSize)); } } } void TurboAssembler::Pshufhw(XMMRegister dst, Operand src, uint8_t shuffle) { if (CpuFeatures::IsSupported(AVX)) { CpuFeatureScope scope(this, AVX); vpshufhw(dst, src, shuffle); } else { pshufhw(dst, src, shuffle); } } void TurboAssembler::Pshuflw(XMMRegister dst, Operand src, uint8_t shuffle) { if (CpuFeatures::IsSupported(AVX)) { CpuFeatureScope scope(this, AVX); vpshuflw(dst, src, shuffle); } else { pshuflw(dst, src, shuffle); } } void TurboAssembler::Pshufd(XMMRegister dst, Operand src, uint8_t shuffle) { if (CpuFeatures::IsSupported(AVX)) { CpuFeatureScope scope(this, AVX); vpshufd(dst, src, shuffle); } else { pshufd(dst, src, shuffle); } } void TurboAssembler::Psraw(XMMRegister dst, uint8_t shift) { if (CpuFeatures::IsSupported(AVX)) { CpuFeatureScope scope(this, AVX); vpsraw(dst, dst, shift); } else { psraw(dst, shift); } } void TurboAssembler::Psrlw(XMMRegister dst, uint8_t shift) { if (CpuFeatures::IsSupported(AVX)) { CpuFeatureScope scope(this, AVX); vpsrlw(dst, dst, shift); } else { psrlw(dst, shift); } } void TurboAssembler::Psrlq(XMMRegister dst, uint8_t shift) { if (CpuFeatures::IsSupported(AVX)) { CpuFeatureScope scope(this, AVX); vpsrlq(dst, dst, shift); } else { psrlq(dst, shift); } } void TurboAssembler::Psignb(XMMRegister dst, Operand src) { if (CpuFeatures::IsSupported(AVX)) { CpuFeatureScope scope(this, AVX); vpsignb(dst, dst, src); return; } if (CpuFeatures::IsSupported(SSSE3)) { CpuFeatureScope sse_scope(this, SSSE3); psignb(dst, src); return; } FATAL("no AVX or SSE3 support"); } void TurboAssembler::Psignw(XMMRegister dst, Operand src) { if (CpuFeatures::IsSupported(AVX)) { CpuFeatureScope scope(this, AVX); vpsignw(dst, dst, src); return; } if (CpuFeatures::IsSupported(SSSE3)) { CpuFeatureScope sse_scope(this, SSSE3); psignw(dst, src); return; } FATAL("no AVX or SSE3 support"); } void TurboAssembler::Psignd(XMMRegister dst, Operand src) { if (CpuFeatures::IsSupported(AVX)) { CpuFeatureScope scope(this, AVX); vpsignd(dst, dst, src); return; } if (CpuFeatures::IsSupported(SSSE3)) { CpuFeatureScope sse_scope(this, SSSE3); psignd(dst, src); return; } FATAL("no AVX or SSE3 support"); } void TurboAssembler::Pshufb(XMMRegister dst, Operand src) { if (CpuFeatures::IsSupported(AVX)) { CpuFeatureScope scope(this, AVX); vpshufb(dst, dst, src); return; } if (CpuFeatures::IsSupported(SSSE3)) { CpuFeatureScope sse_scope(this, SSSE3); pshufb(dst, src); return; } FATAL("no AVX or SSE3 support"); } void TurboAssembler::Pblendw(XMMRegister dst, Operand src, uint8_t imm8) { if (CpuFeatures::IsSupported(AVX)) { CpuFeatureScope scope(this, AVX); vpblendw(dst, dst, src, imm8); return; } if (CpuFeatures::IsSupported(SSE4_1)) { CpuFeatureScope sse_scope(this, SSE4_1); pblendw(dst, src, imm8); return; } FATAL("no AVX or SSE4.1 support"); } void TurboAssembler::Palignr(XMMRegister dst, Operand src, uint8_t imm8) { if (CpuFeatures::IsSupported(AVX)) { CpuFeatureScope scope(this, AVX); vpalignr(dst, dst, src, imm8); return; } if (CpuFeatures::IsSupported(SSSE3)) { CpuFeatureScope sse_scope(this, SSSE3); palignr(dst, src, imm8); return; } FATAL("no AVX or SSE3 support"); } void TurboAssembler::Pextrb(Register dst, XMMRegister src, uint8_t imm8) { if (CpuFeatures::IsSupported(AVX)) { CpuFeatureScope scope(this, AVX); vpextrb(dst, src, imm8); return; } if (CpuFeatures::IsSupported(SSE4_1)) { CpuFeatureScope sse_scope(this, SSE4_1); pextrb(dst, src, imm8); return; } FATAL("no AVX or SSE4.1 support"); } void TurboAssembler::Pextrw(Register dst, XMMRegister src, uint8_t imm8) { if (CpuFeatures::IsSupported(AVX)) { CpuFeatureScope scope(this, AVX); vpextrw(dst, src, imm8); return; } if (CpuFeatures::IsSupported(SSE4_1)) { CpuFeatureScope sse_scope(this, SSE4_1); pextrw(dst, src, imm8); return; } FATAL("no AVX or SSE4.1 support"); } void TurboAssembler::Pextrd(Register dst, XMMRegister src, uint8_t imm8) { if (imm8 == 0) { Movd(dst, src); return; } if (CpuFeatures::IsSupported(AVX)) { CpuFeatureScope scope(this, AVX); vpextrd(dst, src, imm8); return; } if (CpuFeatures::IsSupported(SSE4_1)) { CpuFeatureScope sse_scope(this, SSE4_1); pextrd(dst, src, imm8); return; } // Without AVX or SSE, we can only have 64-bit values in xmm registers. // We don't have an xmm scratch register, so move the data via the stack. This // path is rarely required, so it's acceptable to be slow. DCHECK_LT(imm8, 2); AllocateStackSpace(kDoubleSize); movsd(Operand(esp, 0), src); mov(dst, Operand(esp, imm8 * kUInt32Size)); add(esp, Immediate(kDoubleSize)); } void TurboAssembler::Pinsrb(XMMRegister dst, Operand src, int8_t imm8) { if (CpuFeatures::IsSupported(AVX)) { CpuFeatureScope scope(this, AVX); vpinsrb(dst, dst, src, imm8); return; } if (CpuFeatures::IsSupported(SSE4_1)) { CpuFeatureScope sse_scope(this, SSE4_1); pinsrb(dst, src, imm8); return; } FATAL("no AVX or SSE4.1 support"); } void TurboAssembler::Pinsrd(XMMRegister dst, Operand src, uint8_t imm8) { if (CpuFeatures::IsSupported(AVX)) { CpuFeatureScope scope(this, AVX); vpinsrd(dst, dst, src, imm8); return; } if (CpuFeatures::IsSupported(SSE4_1)) { CpuFeatureScope sse_scope(this, SSE4_1); pinsrd(dst, src, imm8); return; } // Without AVX or SSE, we can only have 64-bit values in xmm registers. // We don't have an xmm scratch register, so move the data via the stack. This // path is rarely required, so it's acceptable to be slow. DCHECK_LT(imm8, 2); AllocateStackSpace(kDoubleSize); // Write original content of {dst} to the stack. movsd(Operand(esp, 0), dst); // Overwrite the portion specified in {imm8}. if (src.is_reg_only()) { mov(Operand(esp, imm8 * kUInt32Size), src.reg()); } else { movss(dst, src); movss(Operand(esp, imm8 * kUInt32Size), dst); } // Load back the full value into {dst}. movsd(dst, Operand(esp, 0)); add(esp, Immediate(kDoubleSize)); } void TurboAssembler::Pinsrw(XMMRegister dst, Operand src, int8_t imm8) { if (CpuFeatures::IsSupported(AVX)) { CpuFeatureScope scope(this, AVX); vpinsrw(dst, dst, src, imm8); return; } else { pinsrw(dst, src, imm8); return; } } void TurboAssembler::Vbroadcastss(XMMRegister dst, Operand src) { if (CpuFeatures::IsSupported(AVX)) { CpuFeatureScope avx_scope(this, AVX); vbroadcastss(dst, src); return; } movss(dst, src); shufps(dst, dst, static_cast(0)); } void TurboAssembler::Lzcnt(Register dst, Operand src) { if (CpuFeatures::IsSupported(LZCNT)) { CpuFeatureScope scope(this, LZCNT); lzcnt(dst, src); return; } Label not_zero_src; bsr(dst, src); j(not_zero, ¬_zero_src, Label::kNear); mov(dst, 63); // 63^31 == 32 bind(¬_zero_src); xor_(dst, Immediate(31)); // for x in [0..31], 31^x == 31-x. } void TurboAssembler::Tzcnt(Register dst, Operand src) { if (CpuFeatures::IsSupported(BMI1)) { CpuFeatureScope scope(this, BMI1); tzcnt(dst, src); return; } Label not_zero_src; bsf(dst, src); j(not_zero, ¬_zero_src, Label::kNear); mov(dst, 32); // The result of tzcnt is 32 if src = 0. bind(¬_zero_src); } void TurboAssembler::Popcnt(Register dst, Operand src) { if (CpuFeatures::IsSupported(POPCNT)) { CpuFeatureScope scope(this, POPCNT); popcnt(dst, src); return; } FATAL("no POPCNT support"); } void MacroAssembler::LoadWeakValue(Register in_out, Label* target_if_cleared) { cmp(in_out, Immediate(kClearedWeakHeapObjectLower32)); j(equal, target_if_cleared); and_(in_out, Immediate(~kWeakHeapObjectMask)); } void MacroAssembler::IncrementCounter(StatsCounter* counter, int value, Register scratch) { DCHECK_GT(value, 0); if (FLAG_native_code_counters && counter->Enabled()) { Operand operand = ExternalReferenceAsOperand(ExternalReference::Create(counter), scratch); if (value == 1) { inc(operand); } else { add(operand, Immediate(value)); } } } void MacroAssembler::DecrementCounter(StatsCounter* counter, int value, Register scratch) { DCHECK_GT(value, 0); if (FLAG_native_code_counters && counter->Enabled()) { Operand operand = ExternalReferenceAsOperand(ExternalReference::Create(counter), scratch); if (value == 1) { dec(operand); } else { sub(operand, Immediate(value)); } } } void TurboAssembler::Assert(Condition cc, AbortReason reason) { if (emit_debug_code()) Check(cc, reason); } void TurboAssembler::AssertUnreachable(AbortReason reason) { if (emit_debug_code()) Abort(reason); } void TurboAssembler::Check(Condition cc, AbortReason reason) { Label L; j(cc, &L); Abort(reason); // will not return here bind(&L); } void TurboAssembler::CheckStackAlignment() { int frame_alignment = base::OS::ActivationFrameAlignment(); int frame_alignment_mask = frame_alignment - 1; if (frame_alignment > kSystemPointerSize) { DCHECK(base::bits::IsPowerOfTwo(frame_alignment)); Label alignment_as_expected; test(esp, Immediate(frame_alignment_mask)); j(zero, &alignment_as_expected); // Abort if stack is not aligned. int3(); bind(&alignment_as_expected); } } void TurboAssembler::Abort(AbortReason reason) { #ifdef DEBUG const char* msg = GetAbortReason(reason); RecordComment("Abort message: "); RecordComment(msg); #endif // Avoid emitting call to builtin if requested. if (trap_on_abort()) { int3(); return; } if (should_abort_hard()) { // We don't care if we constructed a frame. Just pretend we did. FrameScope assume_frame(this, StackFrame::NONE); PrepareCallCFunction(1, eax); mov(Operand(esp, 0), Immediate(static_cast(reason))); CallCFunction(ExternalReference::abort_with_reason(), 1); return; } Move(edx, Smi::FromInt(static_cast(reason))); // Disable stub call restrictions to always allow calls to abort. if (!has_frame()) { // We don't actually want to generate a pile of code for this, so just // claim there is a stack frame, without generating one. FrameScope scope(this, StackFrame::NONE); Call(BUILTIN_CODE(isolate(), Abort), RelocInfo::CODE_TARGET); } else { Call(BUILTIN_CODE(isolate(), Abort), RelocInfo::CODE_TARGET); } // will not return here int3(); } void TurboAssembler::PrepareCallCFunction(int num_arguments, Register scratch) { int frame_alignment = base::OS::ActivationFrameAlignment(); if (frame_alignment != 0) { // Make stack end at alignment and make room for num_arguments words // and the original value of esp. mov(scratch, esp); AllocateStackSpace((num_arguments + 1) * kSystemPointerSize); DCHECK(base::bits::IsPowerOfTwo(frame_alignment)); and_(esp, -frame_alignment); mov(Operand(esp, num_arguments * kSystemPointerSize), scratch); } else { AllocateStackSpace(num_arguments * kSystemPointerSize); } } void TurboAssembler::CallCFunction(ExternalReference function, int num_arguments) { // Trashing eax is ok as it will be the return value. Move(eax, Immediate(function)); CallCFunction(eax, num_arguments); } void TurboAssembler::CallCFunction(Register function, int num_arguments) { DCHECK_LE(num_arguments, kMaxCParameters); DCHECK(has_frame()); // Check stack alignment. if (emit_debug_code()) { CheckStackAlignment(); } // Save the frame pointer and PC so that the stack layout remains iterable, // even without an ExitFrame which normally exists between JS and C frames. // Find two caller-saved scratch registers. Register pc_scratch = eax; Register scratch = ecx; if (function == eax) pc_scratch = edx; if (function == ecx) scratch = edx; PushPC(); pop(pc_scratch); // See x64 code for reasoning about how to address the isolate data fields. DCHECK_IMPLIES(!root_array_available(), isolate() != nullptr); mov(root_array_available() ? Operand(kRootRegister, IsolateData::fast_c_call_caller_pc_offset()) : ExternalReferenceAsOperand( ExternalReference::fast_c_call_caller_pc_address(isolate()), scratch), pc_scratch); mov(root_array_available() ? Operand(kRootRegister, IsolateData::fast_c_call_caller_fp_offset()) : ExternalReferenceAsOperand( ExternalReference::fast_c_call_caller_fp_address(isolate()), scratch), ebp); call(function); // We don't unset the PC; the FP is the source of truth. mov(root_array_available() ? Operand(kRootRegister, IsolateData::fast_c_call_caller_fp_offset()) : ExternalReferenceAsOperand( ExternalReference::fast_c_call_caller_fp_address(isolate()), scratch), Immediate(0)); if (base::OS::ActivationFrameAlignment() != 0) { mov(esp, Operand(esp, num_arguments * kSystemPointerSize)); } else { add(esp, Immediate(num_arguments * kSystemPointerSize)); } } void TurboAssembler::PushPC() { // Push the current PC onto the stack as "return address" via calling // the next instruction. Label get_pc; call(&get_pc); bind(&get_pc); } void TurboAssembler::Call(Handle code_object, RelocInfo::Mode rmode) { DCHECK_IMPLIES(options().isolate_independent_code, Builtins::IsIsolateIndependentBuiltin(*code_object)); if (options().inline_offheap_trampolines) { int builtin_index = Builtins::kNoBuiltinId; if (isolate()->builtins()->IsBuiltinHandle(code_object, &builtin_index) && Builtins::IsIsolateIndependent(builtin_index)) { // Inline the trampoline. CallBuiltin(builtin_index); return; } } DCHECK(RelocInfo::IsCodeTarget(rmode)); call(code_object, rmode); } void TurboAssembler::LoadEntryFromBuiltinIndex(Register builtin_index) { STATIC_ASSERT(kSystemPointerSize == 4); STATIC_ASSERT(kSmiShiftSize == 0); STATIC_ASSERT(kSmiTagSize == 1); STATIC_ASSERT(kSmiTag == 0); // The builtin_index register contains the builtin index as a Smi. // Untagging is folded into the indexing operand below (we use // times_half_system_pointer_size instead of times_system_pointer_size since // smis are already shifted by one). mov(builtin_index, Operand(kRootRegister, builtin_index, times_half_system_pointer_size, IsolateData::builtin_entry_table_offset())); } void TurboAssembler::CallBuiltinByIndex(Register builtin_index) { LoadEntryFromBuiltinIndex(builtin_index); call(builtin_index); } void TurboAssembler::CallBuiltin(int builtin_index) { DCHECK(Builtins::IsBuiltinId(builtin_index)); RecordCommentForOffHeapTrampoline(builtin_index); CHECK_NE(builtin_index, Builtins::kNoBuiltinId); EmbeddedData d = EmbeddedData::FromBlob(); Address entry = d.InstructionStartOfBuiltin(builtin_index); call(entry, RelocInfo::OFF_HEAP_TARGET); } void TurboAssembler::LoadCodeObjectEntry(Register destination, Register code_object) { // Code objects are called differently depending on whether we are generating // builtin code (which will later be embedded into the binary) or compiling // user JS code at runtime. // * Builtin code runs in --jitless mode and thus must not call into on-heap // Code targets. Instead, we dispatch through the builtins entry table. // * Codegen at runtime does not have this restriction and we can use the // shorter, branchless instruction sequence. The assumption here is that // targets are usually generated code and not builtin Code objects. if (options().isolate_independent_code) { DCHECK(root_array_available()); Label if_code_is_off_heap, out; // Check whether the Code object is an off-heap trampoline. If so, call its // (off-heap) entry point directly without going through the (on-heap) // trampoline. Otherwise, just call the Code object as always. test(FieldOperand(code_object, Code::kFlagsOffset), Immediate(Code::IsOffHeapTrampoline::kMask)); j(not_equal, &if_code_is_off_heap); // Not an off-heap trampoline, the entry point is at // Code::raw_instruction_start(). Move(destination, code_object); add(destination, Immediate(Code::kHeaderSize - kHeapObjectTag)); jmp(&out); // An off-heap trampoline, the entry point is loaded from the builtin entry // table. bind(&if_code_is_off_heap); mov(destination, FieldOperand(code_object, Code::kBuiltinIndexOffset)); mov(destination, Operand(kRootRegister, destination, times_system_pointer_size, IsolateData::builtin_entry_table_offset())); bind(&out); } else { Move(destination, code_object); add(destination, Immediate(Code::kHeaderSize - kHeapObjectTag)); } } void TurboAssembler::CallCodeObject(Register code_object) { LoadCodeObjectEntry(code_object, code_object); call(code_object); } void TurboAssembler::JumpCodeObject(Register code_object) { LoadCodeObjectEntry(code_object, code_object); jmp(code_object); } void TurboAssembler::Jump(const ExternalReference& reference) { DCHECK(root_array_available()); jmp(Operand(kRootRegister, RootRegisterOffsetForExternalReferenceTableEntry( isolate(), reference))); } void TurboAssembler::Jump(Handle code_object, RelocInfo::Mode rmode) { DCHECK_IMPLIES(options().isolate_independent_code, Builtins::IsIsolateIndependentBuiltin(*code_object)); if (options().inline_offheap_trampolines) { int builtin_index = Builtins::kNoBuiltinId; if (isolate()->builtins()->IsBuiltinHandle(code_object, &builtin_index) && Builtins::IsIsolateIndependent(builtin_index)) { // Inline the trampoline. RecordCommentForOffHeapTrampoline(builtin_index); CHECK_NE(builtin_index, Builtins::kNoBuiltinId); EmbeddedData d = EmbeddedData::FromBlob(); Address entry = d.InstructionStartOfBuiltin(builtin_index); jmp(entry, RelocInfo::OFF_HEAP_TARGET); return; } } DCHECK(RelocInfo::IsCodeTarget(rmode)); jmp(code_object, rmode); } void TurboAssembler::RetpolineCall(Register reg) { Label setup_return, setup_target, inner_indirect_branch, capture_spec; jmp(&setup_return); // Jump past the entire retpoline below. bind(&inner_indirect_branch); call(&setup_target); bind(&capture_spec); pause(); jmp(&capture_spec); bind(&setup_target); mov(Operand(esp, 0), reg); ret(0); bind(&setup_return); call(&inner_indirect_branch); // Callee will return after this instruction. } void TurboAssembler::RetpolineCall(Address destination, RelocInfo::Mode rmode) { Label setup_return, setup_target, inner_indirect_branch, capture_spec; jmp(&setup_return); // Jump past the entire retpoline below. bind(&inner_indirect_branch); call(&setup_target); bind(&capture_spec); pause(); jmp(&capture_spec); bind(&setup_target); mov(Operand(esp, 0), destination, rmode); ret(0); bind(&setup_return); call(&inner_indirect_branch); // Callee will return after this instruction. } void TurboAssembler::RetpolineJump(Register reg) { Label setup_target, capture_spec; call(&setup_target); bind(&capture_spec); pause(); jmp(&capture_spec); bind(&setup_target); mov(Operand(esp, 0), reg); ret(0); } void TurboAssembler::CheckPageFlag(Register object, Register scratch, int mask, Condition cc, Label* condition_met, Label::Distance condition_met_distance) { DCHECK(cc == zero || cc == not_zero); if (scratch == object) { and_(scratch, Immediate(~kPageAlignmentMask)); } else { mov(scratch, Immediate(~kPageAlignmentMask)); and_(scratch, object); } if (mask < (1 << kBitsPerByte)) { test_b(Operand(scratch, BasicMemoryChunk::kFlagsOffset), Immediate(mask)); } else { test(Operand(scratch, BasicMemoryChunk::kFlagsOffset), Immediate(mask)); } j(cc, condition_met, condition_met_distance); } void TurboAssembler::ComputeCodeStartAddress(Register dst) { // In order to get the address of the current instruction, we first need // to use a call and then use a pop, thus pushing the return address to // the stack and then popping it into the register. Label current; call(¤t); int pc = pc_offset(); bind(¤t); pop(dst); if (pc != 0) { sub(dst, Immediate(pc)); } } void TurboAssembler::CallForDeoptimization(Address target, int deopt_id, Label* exit, DeoptimizeKind kind) { USE(exit, kind); NoRootArrayScope no_root_array(this); // Save the deopt id in ebx (we don't need the roots array from now on). mov(ebx, deopt_id); call(target, RelocInfo::RUNTIME_ENTRY); } void TurboAssembler::Trap() { int3(); } void TurboAssembler::DebugBreak() { int3(); } } // namespace internal } // namespace v8 #endif // V8_TARGET_ARCH_IA32