// Copyright 2021 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #ifndef V8_CODEGEN_LOONG64_ASSEMBLER_LOONG64_INL_H_ #define V8_CODEGEN_LOONG64_ASSEMBLER_LOONG64_INL_H_ #include "src/codegen/assembler.h" #include "src/codegen/flush-instruction-cache.h" #include "src/codegen/loong64/assembler-loong64.h" #include "src/debug/debug.h" #include "src/objects/objects-inl.h" namespace v8 { namespace internal { bool CpuFeatures::SupportsOptimizer() { return IsSupported(FPU); } // ----------------------------------------------------------------------------- // Operand and MemOperand. bool Operand::is_reg() const { return rm_.is_valid(); } int64_t Operand::immediate() const { DCHECK(!is_reg()); DCHECK(!IsHeapNumberRequest()); return value_.immediate; } // ----------------------------------------------------------------------------- // RelocInfo. void RelocInfo::apply(intptr_t delta) { if (IsInternalReference(rmode_)) { // Absolute code pointer inside code object moves with the code object. Assembler::RelocateInternalReference(rmode_, pc_, delta); } else { DCHECK(IsRelativeCodeTarget(rmode_)); Assembler::RelocateRelativeReference(rmode_, pc_, delta); } } Address RelocInfo::target_address() { DCHECK(IsCodeTargetMode(rmode_) || IsWasmCall(rmode_) || IsWasmStubCall(rmode_)); return Assembler::target_address_at(pc_, constant_pool_); } Address RelocInfo::target_address_address() { DCHECK(HasTargetAddressAddress()); // Read the address of the word containing the target_address in an // instruction stream. // The only architecture-independent user of this function is the serializer. // The serializer uses it to find out how many raw bytes of instruction to // output before the next target. // For an instruction like LUI/ORI where the target bits are mixed into the // instruction bits, the size of the target will be zero, indicating that the // serializer should not step forward in memory after a target is resolved // and written. In this case the target_address_address function should // return the end of the instructions to be patched, allowing the // deserializer to deserialize the instructions as raw bytes and put them in // place, ready to be patched with the target. After jump optimization, // that is the address of the instruction that follows J/JAL/JR/JALR // instruction. return pc_ + Assembler::kInstructionsFor64BitConstant * kInstrSize; } Address RelocInfo::constant_pool_entry_address() { UNREACHABLE(); } int RelocInfo::target_address_size() { return Assembler::kSpecialTargetSize; } void Assembler::deserialization_set_special_target_at( Address instruction_payload, Code code, Address target) { set_target_address_at(instruction_payload, !code.is_null() ? code.constant_pool() : kNullAddress, target); } int Assembler::deserialization_special_target_size( Address instruction_payload) { return kSpecialTargetSize; } void Assembler::deserialization_set_target_internal_reference_at( Address pc, Address target, RelocInfo::Mode mode) { WriteUnalignedValue
(pc, target); } Handle Assembler::compressed_embedded_object_handle_at( Address pc, Address constant_pool) { return GetEmbeddedObject(target_compressed_address_at(pc, constant_pool)); } Handle Assembler::embedded_object_handle_at(Address pc, Address constant_pool) { return GetEmbeddedObject(target_address_at(pc, constant_pool)); } Handle Assembler::code_target_object_handle_at(Address pc, Address constant_pool) { int index = static_cast(target_address_at(pc, constant_pool)) & 0xFFFFFFFF; return GetCodeTarget(index); } HeapObject RelocInfo::target_object(PtrComprCageBase cage_base) { DCHECK(IsCodeTarget(rmode_) || IsFullEmbeddedObject(rmode_) || IsCompressedEmbeddedObject(rmode_)); if (IsCompressedEmbeddedObject(rmode_)) { Tagged_t compressed = Assembler::target_compressed_address_at(pc_, constant_pool_); DCHECK(!HAS_SMI_TAG(compressed)); Object obj( V8HeapCompressionScheme::DecompressTagged(cage_base, compressed)); return HeapObject::cast(obj); } else { return HeapObject::cast( Object(Assembler::target_address_at(pc_, constant_pool_))); } } Handle RelocInfo::target_object_handle(Assembler* origin) { if (IsCodeTarget(rmode_)) { return origin->code_target_object_handle_at(pc_, constant_pool_); } else if (IsFullEmbeddedObject(rmode_)) { return origin->embedded_object_handle_at(pc_, constant_pool_); } else if (IsCompressedEmbeddedObject(rmode_)) { return origin->compressed_embedded_object_handle_at(pc_, constant_pool_); } else { DCHECK(IsRelativeCodeTarget(rmode_)); return origin->relative_code_target_object_handle_at(pc_); } } void RelocInfo::set_target_object(Heap* heap, HeapObject target, WriteBarrierMode write_barrier_mode, ICacheFlushMode icache_flush_mode) { DCHECK(IsCodeTarget(rmode_) || IsFullEmbeddedObject(rmode_)); if (IsCompressedEmbeddedObject(rmode_)) { Assembler::set_target_compressed_address_at( pc_, constant_pool_, V8HeapCompressionScheme::CompressObject(target.ptr()), icache_flush_mode); } else { Assembler::set_target_address_at(pc_, constant_pool_, target.ptr(), icache_flush_mode); } if (!instruction_stream().is_null() && !v8_flags.disable_write_barriers) { WriteBarrierForCode(instruction_stream(), this, target, write_barrier_mode); } } Address RelocInfo::target_external_reference() { DCHECK(rmode_ == EXTERNAL_REFERENCE); return Assembler::target_address_at(pc_, constant_pool_); } void RelocInfo::set_target_external_reference( Address target, ICacheFlushMode icache_flush_mode) { DCHECK(rmode_ == RelocInfo::EXTERNAL_REFERENCE); Assembler::set_target_address_at(pc_, constant_pool_, target, icache_flush_mode); } Address RelocInfo::target_internal_reference() { if (rmode_ == INTERNAL_REFERENCE) { return Memory
(pc_); } else { UNREACHABLE(); } } Address RelocInfo::target_internal_reference_address() { DCHECK(rmode_ == INTERNAL_REFERENCE); return pc_; } Handle Assembler::relative_code_target_object_handle_at( Address pc) const { Instr instr = instr_at(pc); int32_t code_target_index = instr & kImm26Mask; code_target_index = ((code_target_index & 0x3ff) << 22 >> 6) | ((code_target_index >> 10) & kImm16Mask); return GetCodeTarget(code_target_index); } Builtin RelocInfo::target_builtin_at(Assembler* origin) { UNREACHABLE(); } Address RelocInfo::target_off_heap_target() { DCHECK(IsOffHeapTarget(rmode_)); return Assembler::target_address_at(pc_, constant_pool_); } void RelocInfo::WipeOut() { DCHECK(IsFullEmbeddedObject(rmode_) || IsCodeTarget(rmode_) || IsExternalReference(rmode_) || IsInternalReference(rmode_) || IsOffHeapTarget(rmode_)); if (IsInternalReference(rmode_)) { Memory
(pc_) = kNullAddress; } else if (IsCompressedEmbeddedObject(rmode_)) { Assembler::set_target_compressed_address_at(pc_, constant_pool_, kNullAddress); } else { Assembler::set_target_address_at(pc_, constant_pool_, kNullAddress); } } // ----------------------------------------------------------------------------- // Assembler. void Assembler::CheckBuffer() { if (buffer_space() <= kGap) { GrowBuffer(); } } void Assembler::EmitHelper(Instr x) { *reinterpret_cast(pc_) = x; pc_ += kInstrSize; CheckTrampolinePoolQuick(); } template <> inline void Assembler::EmitHelper(uint8_t x); template void Assembler::EmitHelper(T x) { *reinterpret_cast(pc_) = x; pc_ += sizeof(x); CheckTrampolinePoolQuick(); } template <> void Assembler::EmitHelper(uint8_t x) { *reinterpret_cast(pc_) = x; pc_ += sizeof(x); if (reinterpret_cast(pc_) % kInstrSize == 0) { CheckTrampolinePoolQuick(); } } void Assembler::emit(Instr x) { if (!is_buffer_growth_blocked()) { CheckBuffer(); } EmitHelper(x); } void Assembler::emit(uint64_t data) { // CheckForEmitInForbiddenSlot(); if (!is_buffer_growth_blocked()) { CheckBuffer(); } EmitHelper(data); } EnsureSpace::EnsureSpace(Assembler* assembler) { assembler->CheckBuffer(); } } // namespace internal } // namespace v8 #endif // V8_CODEGEN_LOONG64_ASSEMBLER_LOONG64_INL_H_