// Copyright 2021 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include // For LONG_MIN, LONG_MAX. #if V8_TARGET_ARCH_LOONG64 #include "src/base/bits.h" #include "src/base/division-by-constant.h" #include "src/codegen/assembler-inl.h" #include "src/codegen/callable.h" #include "src/codegen/code-factory.h" #include "src/codegen/external-reference-table.h" #include "src/codegen/interface-descriptors-inl.h" #include "src/codegen/macro-assembler.h" #include "src/codegen/register-configuration.h" #include "src/debug/debug.h" #include "src/deoptimizer/deoptimizer.h" #include "src/execution/frames-inl.h" #include "src/heap/memory-chunk.h" #include "src/init/bootstrapper.h" #include "src/logging/counters.h" #include "src/objects/heap-number.h" #include "src/runtime/runtime.h" #include "src/snapshot/snapshot.h" #if V8_ENABLE_WEBASSEMBLY #include "src/wasm/wasm-code-manager.h" #endif // V8_ENABLE_WEBASSEMBLY // Satisfy cpplint check, but don't include platform-specific header. It is // included recursively via macro-assembler.h. #if 0 #include "src/codegen/loong64/macro-assembler-loong64.h" #endif namespace v8 { namespace internal { static inline bool IsZero(const Operand& rk) { if (rk.is_reg()) { return rk.rm() == zero_reg; } else { return rk.immediate() == 0; } } int TurboAssembler::RequiredStackSizeForCallerSaved(SaveFPRegsMode fp_mode, Register exclusion1, Register exclusion2, Register exclusion3) const { int bytes = 0; RegList exclusions = 0; if (exclusion1 != no_reg) { exclusions |= exclusion1.bit(); if (exclusion2 != no_reg) { exclusions |= exclusion2.bit(); if (exclusion3 != no_reg) { exclusions |= exclusion3.bit(); } } } RegList list = kJSCallerSaved & ~exclusions; bytes += NumRegs(list) * kPointerSize; if (fp_mode == SaveFPRegsMode::kSave) { bytes += NumRegs(kCallerSavedFPU) * kDoubleSize; } return bytes; } int TurboAssembler::PushCallerSaved(SaveFPRegsMode fp_mode, Register exclusion1, Register exclusion2, Register exclusion3) { int bytes = 0; RegList exclusions = 0; if (exclusion1 != no_reg) { exclusions |= exclusion1.bit(); if (exclusion2 != no_reg) { exclusions |= exclusion2.bit(); if (exclusion3 != no_reg) { exclusions |= exclusion3.bit(); } } } RegList list = kJSCallerSaved & ~exclusions; MultiPush(list); bytes += NumRegs(list) * kPointerSize; if (fp_mode == SaveFPRegsMode::kSave) { MultiPushFPU(kCallerSavedFPU); bytes += NumRegs(kCallerSavedFPU) * kDoubleSize; } return bytes; } int TurboAssembler::PopCallerSaved(SaveFPRegsMode fp_mode, Register exclusion1, Register exclusion2, Register exclusion3) { int bytes = 0; if (fp_mode == SaveFPRegsMode::kSave) { MultiPopFPU(kCallerSavedFPU); bytes += NumRegs(kCallerSavedFPU) * kDoubleSize; } RegList exclusions = 0; if (exclusion1 != no_reg) { exclusions |= exclusion1.bit(); if (exclusion2 != no_reg) { exclusions |= exclusion2.bit(); if (exclusion3 != no_reg) { exclusions |= exclusion3.bit(); } } } RegList list = kJSCallerSaved & ~exclusions; MultiPop(list); bytes += NumRegs(list) * kPointerSize; return bytes; } void TurboAssembler::LoadRoot(Register destination, RootIndex index) { Ld_d(destination, MemOperand(s6, RootRegisterOffsetForRootIndex(index))); } void TurboAssembler::PushCommonFrame(Register marker_reg) { if (marker_reg.is_valid()) { Push(ra, fp, marker_reg); Add_d(fp, sp, Operand(kPointerSize)); } else { Push(ra, fp); mov(fp, sp); } } void TurboAssembler::PushStandardFrame(Register function_reg) { int offset = -StandardFrameConstants::kContextOffset; if (function_reg.is_valid()) { Push(ra, fp, cp, function_reg, kJavaScriptCallArgCountRegister); offset += 2 * kPointerSize; } else { Push(ra, fp, cp, kJavaScriptCallArgCountRegister); offset += kPointerSize; } Add_d(fp, sp, Operand(offset)); } // Clobbers object, dst, value, and ra, if (ra_status == kRAHasBeenSaved) // The register 'object' contains a heap object pointer. The heap object // tag is shifted away. void MacroAssembler::RecordWriteField(Register object, int offset, Register value, RAStatus ra_status, SaveFPRegsMode save_fp, RememberedSetAction remembered_set_action, SmiCheck smi_check) { // First, check if a write barrier is even needed. The tests below // catch stores of Smis. Label done; // Skip barrier if writing a smi. if (smi_check == SmiCheck::kInline) { JumpIfSmi(value, &done); } // Although the object register is tagged, the offset is relative to the start // of the object, so so offset must be a multiple of kPointerSize. DCHECK(IsAligned(offset, kPointerSize)); if (FLAG_debug_code) { Label ok; BlockTrampolinePoolScope block_trampoline_pool(this); UseScratchRegisterScope temps(this); Register scratch = temps.Acquire(); Add_d(scratch, object, offset - kHeapObjectTag); And(scratch, scratch, Operand(kPointerSize - 1)); Branch(&ok, eq, scratch, Operand(zero_reg)); Abort(AbortReason::kUnalignedCellInWriteBarrier); bind(&ok); } RecordWrite(object, Operand(offset - kHeapObjectTag), value, ra_status, save_fp, remembered_set_action, SmiCheck::kOmit); bind(&done); } void TurboAssembler::MaybeSaveRegisters(RegList registers) { if (registers == 0) return; RegList regs = 0; for (int i = 0; i < Register::kNumRegisters; ++i) { if ((registers >> i) & 1u) { regs |= Register::from_code(i).bit(); } } MultiPush(regs); } void TurboAssembler::MaybeRestoreRegisters(RegList registers) { if (registers == 0) return; RegList regs = 0; for (int i = 0; i < Register::kNumRegisters; ++i) { if ((registers >> i) & 1u) { regs |= Register::from_code(i).bit(); } } MultiPop(regs); } void TurboAssembler::CallEphemeronKeyBarrier(Register object, Operand offset, SaveFPRegsMode fp_mode) { RegList registers = WriteBarrierDescriptor::ComputeSavedRegisters(object); MaybeSaveRegisters(registers); Register object_parameter = WriteBarrierDescriptor::ObjectRegister(); Register slot_address_parameter = WriteBarrierDescriptor::SlotAddressRegister(); MoveObjectAndSlot(object_parameter, slot_address_parameter, object, offset); Call(isolate()->builtins()->code_handle( Builtins::GetEphemeronKeyBarrierStub(fp_mode)), RelocInfo::CODE_TARGET); MaybeRestoreRegisters(registers); } void TurboAssembler::CallRecordWriteStubSaveRegisters( Register object, Operand offset, RememberedSetAction remembered_set_action, SaveFPRegsMode fp_mode, StubCallMode mode) { ASM_CODE_COMMENT(this); RegList registers = WriteBarrierDescriptor::ComputeSavedRegisters(object); MaybeSaveRegisters(registers); Register object_parameter = WriteBarrierDescriptor::ObjectRegister(); Register slot_address_parameter = WriteBarrierDescriptor::SlotAddressRegister(); MoveObjectAndSlot(object_parameter, slot_address_parameter, object, offset); CallRecordWriteStub(object_parameter, slot_address_parameter, remembered_set_action, fp_mode, mode); MaybeRestoreRegisters(registers); } void TurboAssembler::CallRecordWriteStub( Register object, Register slot_address, RememberedSetAction remembered_set_action, SaveFPRegsMode fp_mode, StubCallMode mode) { // Use CallRecordWriteStubSaveRegisters if the object and slot registers // need to be caller saved. DCHECK_EQ(WriteBarrierDescriptor::ObjectRegister(), object); DCHECK_EQ(WriteBarrierDescriptor::SlotAddressRegister(), slot_address); #if V8_ENABLE_WEBASSEMBLY if (mode == StubCallMode::kCallWasmRuntimeStub) { auto wasm_target = wasm::WasmCode::GetRecordWriteStub(remembered_set_action, fp_mode); Call(wasm_target, RelocInfo::WASM_STUB_CALL); #else if (false) { #endif } else { auto builtin = Builtins::GetRecordWriteStub(remembered_set_action, fp_mode); if (options().inline_offheap_trampolines) { // Inline the trampoline. RecordCommentForOffHeapTrampoline(builtin); UseScratchRegisterScope temps(this); Register scratch = temps.Acquire(); li(scratch, Operand(BuiltinEntry(builtin), RelocInfo::OFF_HEAP_TARGET)); Call(scratch); } else { Handle code_target = isolate()->builtins()->code_handle(builtin); Call(code_target, RelocInfo::CODE_TARGET); } } } void TurboAssembler::MoveObjectAndSlot(Register dst_object, Register dst_slot, Register object, Operand offset) { DCHECK_NE(dst_object, dst_slot); // If `offset` is a register, it cannot overlap with `object`. DCHECK_IMPLIES(!offset.IsImmediate(), offset.rm() != object); // If the slot register does not overlap with the object register, we can // overwrite it. if (dst_slot != object) { Add_d(dst_slot, object, offset); mov(dst_object, object); return; } DCHECK_EQ(dst_slot, object); // If the destination object register does not overlap with the offset // register, we can overwrite it. if (offset.IsImmediate() || (offset.rm() != dst_object)) { mov(dst_object, dst_slot); Add_d(dst_slot, dst_slot, offset); return; } DCHECK_EQ(dst_object, offset.rm()); // We only have `dst_slot` and `dst_object` left as distinct registers so we // have to swap them. We write this as a add+sub sequence to avoid using a // scratch register. Add_d(dst_slot, dst_slot, dst_object); Sub_d(dst_object, dst_slot, dst_object); } // If lr_status is kLRHasBeenSaved, lr will be clobbered. // TODO(LOONG_dev): LOONG64 Check this comment // Clobbers object, address, value, and ra, if (ra_status == kRAHasBeenSaved) // The register 'object' contains a heap object pointer. The heap object // tag is shifted away. void MacroAssembler::RecordWrite(Register object, Operand offset, Register value, RAStatus ra_status, SaveFPRegsMode fp_mode, RememberedSetAction remembered_set_action, SmiCheck smi_check) { DCHECK(!AreAliased(object, value)); if (FLAG_debug_code) { UseScratchRegisterScope temps(this); Register scratch = temps.Acquire(); Add_d(scratch, object, offset); Ld_d(scratch, MemOperand(scratch, 0)); Assert(eq, AbortReason::kWrongAddressOrValuePassedToRecordWrite, scratch, Operand(value)); } if ((remembered_set_action == RememberedSetAction::kOmit && !FLAG_incremental_marking) || FLAG_disable_write_barriers) { return; } // First, check if a write barrier is even needed. The tests below // catch stores of smis and stores into the young generation. Label done; if (smi_check == SmiCheck::kInline) { DCHECK_EQ(0, kSmiTag); JumpIfSmi(value, &done); } CheckPageFlag(value, MemoryChunk::kPointersToHereAreInterestingMask, eq, &done); CheckPageFlag(object, MemoryChunk::kPointersFromHereAreInterestingMask, eq, &done); // Record the actual write. if (ra_status == kRAHasNotBeenSaved) { Push(ra); } Register slot_address = WriteBarrierDescriptor::SlotAddressRegister(); DCHECK(!AreAliased(object, slot_address, value)); DCHECK(offset.IsImmediate()); Add_d(slot_address, object, offset); CallRecordWriteStub(object, slot_address, remembered_set_action, fp_mode); if (ra_status == kRAHasNotBeenSaved) { Pop(ra); } bind(&done); } // --------------------------------------------------------------------------- // Instruction macros. void TurboAssembler::Add_w(Register rd, Register rj, const Operand& rk) { if (rk.is_reg()) { add_w(rd, rj, rk.rm()); } else { if (is_int12(rk.immediate()) && !MustUseReg(rk.rmode())) { addi_w(rd, rj, static_cast(rk.immediate())); } else { // li handles the relocation. UseScratchRegisterScope temps(this); Register scratch = temps.Acquire(); DCHECK(rj != scratch); li(scratch, rk); add_w(rd, rj, scratch); } } } void TurboAssembler::Add_d(Register rd, Register rj, const Operand& rk) { if (rk.is_reg()) { add_d(rd, rj, rk.rm()); } else { if (is_int12(rk.immediate()) && !MustUseReg(rk.rmode())) { addi_d(rd, rj, static_cast(rk.immediate())); } else { // li handles the relocation. UseScratchRegisterScope temps(this); Register scratch = temps.Acquire(); DCHECK(rj != scratch); li(scratch, rk); add_d(rd, rj, scratch); } } } void TurboAssembler::Sub_w(Register rd, Register rj, const Operand& rk) { if (rk.is_reg()) { sub_w(rd, rj, rk.rm()); } else { DCHECK(is_int32(rk.immediate())); if (is_int12(-rk.immediate()) && !MustUseReg(rk.rmode())) { // No subi_w instr, use addi_w(x, y, -imm). addi_w(rd, rj, static_cast(-rk.immediate())); } else { UseScratchRegisterScope temps(this); Register scratch = temps.Acquire(); DCHECK(rj != scratch); if (-rk.immediate() >> 12 == 0 && !MustUseReg(rk.rmode())) { // Use load -imm and addu when loading -imm generates one instruction. li(scratch, -rk.immediate()); add_w(rd, rj, scratch); } else { // li handles the relocation. li(scratch, rk); sub_w(rd, rj, scratch); } } } } void TurboAssembler::Sub_d(Register rd, Register rj, const Operand& rk) { if (rk.is_reg()) { sub_d(rd, rj, rk.rm()); } else if (is_int12(-rk.immediate()) && !MustUseReg(rk.rmode())) { // No subi_d instr, use addi_d(x, y, -imm). addi_d(rd, rj, static_cast(-rk.immediate())); } else { DCHECK(rj != t7); int li_count = InstrCountForLi64Bit(rk.immediate()); int li_neg_count = InstrCountForLi64Bit(-rk.immediate()); if (li_neg_count < li_count && !MustUseReg(rk.rmode())) { // Use load -imm and add_d when loading -imm generates one instruction. DCHECK(rk.immediate() != std::numeric_limits::min()); UseScratchRegisterScope temps(this); Register scratch = temps.Acquire(); li(scratch, Operand(-rk.immediate())); add_d(rd, rj, scratch); } else { // li handles the relocation. UseScratchRegisterScope temps(this); Register scratch = temps.Acquire(); li(scratch, rk); sub_d(rd, rj, scratch); } } } void TurboAssembler::Mul_w(Register rd, Register rj, const Operand& rk) { if (rk.is_reg()) { mul_w(rd, rj, rk.rm()); } else { // li handles the relocation. UseScratchRegisterScope temps(this); Register scratch = temps.Acquire(); DCHECK(rj != scratch); li(scratch, rk); mul_w(rd, rj, scratch); } } void TurboAssembler::Mulh_w(Register rd, Register rj, const Operand& rk) { if (rk.is_reg()) { mulh_w(rd, rj, rk.rm()); } else { // li handles the relocation. UseScratchRegisterScope temps(this); Register scratch = temps.Acquire(); DCHECK(rj != scratch); li(scratch, rk); mulh_w(rd, rj, scratch); } } void TurboAssembler::Mulh_wu(Register rd, Register rj, const Operand& rk) { if (rk.is_reg()) { mulh_wu(rd, rj, rk.rm()); } else { // li handles the relocation. UseScratchRegisterScope temps(this); Register scratch = temps.Acquire(); DCHECK(rj != scratch); li(scratch, rk); mulh_wu(rd, rj, scratch); } } void TurboAssembler::Mul_d(Register rd, Register rj, const Operand& rk) { if (rk.is_reg()) { mul_d(rd, rj, rk.rm()); } else { // li handles the relocation. UseScratchRegisterScope temps(this); Register scratch = temps.Acquire(); DCHECK(rj != scratch); li(scratch, rk); mul_d(rd, rj, scratch); } } void TurboAssembler::Mulh_d(Register rd, Register rj, const Operand& rk) { if (rk.is_reg()) { mulh_d(rd, rj, rk.rm()); } else { // li handles the relocation. UseScratchRegisterScope temps(this); Register scratch = temps.Acquire(); DCHECK(rj != scratch); li(scratch, rk); mulh_d(rd, rj, scratch); } } void TurboAssembler::Div_w(Register rd, Register rj, const Operand& rk) { if (rk.is_reg()) { div_w(rd, rj, rk.rm()); } else { // li handles the relocation. UseScratchRegisterScope temps(this); Register scratch = temps.Acquire(); DCHECK(rj != scratch); li(scratch, rk); div_w(rd, rj, scratch); } } void TurboAssembler::Mod_w(Register rd, Register rj, const Operand& rk) { if (rk.is_reg()) { mod_w(rd, rj, rk.rm()); } else { // li handles the relocation. UseScratchRegisterScope temps(this); Register scratch = temps.Acquire(); DCHECK(rj != scratch); li(scratch, rk); mod_w(rd, rj, scratch); } } void TurboAssembler::Mod_wu(Register rd, Register rj, const Operand& rk) { if (rk.is_reg()) { mod_wu(rd, rj, rk.rm()); } else { // li handles the relocation. UseScratchRegisterScope temps(this); Register scratch = temps.Acquire(); DCHECK(rj != scratch); li(scratch, rk); mod_wu(rd, rj, scratch); } } void TurboAssembler::Div_d(Register rd, Register rj, const Operand& rk) { if (rk.is_reg()) { div_d(rd, rj, rk.rm()); } else { // li handles the relocation. UseScratchRegisterScope temps(this); Register scratch = temps.Acquire(); DCHECK(rj != scratch); li(scratch, rk); div_d(rd, rj, scratch); } } void TurboAssembler::Div_wu(Register rd, Register rj, const Operand& rk) { if (rk.is_reg()) { div_wu(rd, rj, rk.rm()); } else { // li handles the relocation. UseScratchRegisterScope temps(this); Register scratch = temps.Acquire(); DCHECK(rj != scratch); li(scratch, rk); div_wu(rd, rj, scratch); } } void TurboAssembler::Div_du(Register rd, Register rj, const Operand& rk) { if (rk.is_reg()) { div_du(rd, rj, rk.rm()); } else { // li handles the relocation. UseScratchRegisterScope temps(this); Register scratch = temps.Acquire(); DCHECK(rj != scratch); li(scratch, rk); div_du(rd, rj, scratch); } } void TurboAssembler::Mod_d(Register rd, Register rj, const Operand& rk) { if (rk.is_reg()) { mod_d(rd, rj, rk.rm()); } else { // li handles the relocation. UseScratchRegisterScope temps(this); Register scratch = temps.Acquire(); DCHECK(rj != scratch); li(scratch, rk); mod_d(rd, rj, scratch); } } void TurboAssembler::Mod_du(Register rd, Register rj, const Operand& rk) { if (rk.is_reg()) { mod_du(rd, rj, rk.rm()); } else { // li handles the relocation. UseScratchRegisterScope temps(this); Register scratch = temps.Acquire(); DCHECK(rj != scratch); li(scratch, rk); mod_du(rd, rj, scratch); } } void TurboAssembler::And(Register rd, Register rj, const Operand& rk) { if (rk.is_reg()) { and_(rd, rj, rk.rm()); } else { if (is_uint12(rk.immediate()) && !MustUseReg(rk.rmode())) { andi(rd, rj, static_cast(rk.immediate())); } else { // li handles the relocation. UseScratchRegisterScope temps(this); Register scratch = temps.Acquire(); DCHECK(rj != scratch); li(scratch, rk); and_(rd, rj, scratch); } } } void TurboAssembler::Or(Register rd, Register rj, const Operand& rk) { if (rk.is_reg()) { or_(rd, rj, rk.rm()); } else { if (is_uint12(rk.immediate()) && !MustUseReg(rk.rmode())) { ori(rd, rj, static_cast(rk.immediate())); } else { // li handles the relocation. UseScratchRegisterScope temps(this); Register scratch = temps.Acquire(); DCHECK(rj != scratch); li(scratch, rk); or_(rd, rj, scratch); } } } void TurboAssembler::Xor(Register rd, Register rj, const Operand& rk) { if (rk.is_reg()) { xor_(rd, rj, rk.rm()); } else { if (is_uint12(rk.immediate()) && !MustUseReg(rk.rmode())) { xori(rd, rj, static_cast(rk.immediate())); } else { // li handles the relocation. UseScratchRegisterScope temps(this); Register scratch = temps.Acquire(); DCHECK(rj != scratch); li(scratch, rk); xor_(rd, rj, scratch); } } } void TurboAssembler::Nor(Register rd, Register rj, const Operand& rk) { if (rk.is_reg()) { nor(rd, rj, rk.rm()); } else { // li handles the relocation. UseScratchRegisterScope temps(this); Register scratch = temps.Acquire(); DCHECK(rj != scratch); li(scratch, rk); nor(rd, rj, scratch); } } void TurboAssembler::Andn(Register rd, Register rj, const Operand& rk) { if (rk.is_reg()) { andn(rd, rj, rk.rm()); } else { // li handles the relocation. UseScratchRegisterScope temps(this); Register scratch = temps.Acquire(); DCHECK(rj != scratch); li(scratch, rk); andn(rd, rj, scratch); } } void TurboAssembler::Orn(Register rd, Register rj, const Operand& rk) { if (rk.is_reg()) { orn(rd, rj, rk.rm()); } else { // li handles the relocation. UseScratchRegisterScope temps(this); Register scratch = temps.Acquire(); DCHECK(rj != scratch); li(scratch, rk); orn(rd, rj, scratch); } } void TurboAssembler::Neg(Register rj, const Operand& rk) { DCHECK(rk.is_reg()); sub_d(rj, zero_reg, rk.rm()); } void TurboAssembler::Slt(Register rd, Register rj, const Operand& rk) { if (rk.is_reg()) { slt(rd, rj, rk.rm()); } else { if (is_int12(rk.immediate()) && !MustUseReg(rk.rmode())) { slti(rd, rj, static_cast(rk.immediate())); } else { // li handles the relocation. UseScratchRegisterScope temps(this); BlockTrampolinePoolScope block_trampoline_pool(this); Register scratch = temps.hasAvailable() ? temps.Acquire() : t8; DCHECK(rj != scratch); li(scratch, rk); slt(rd, rj, scratch); } } } void TurboAssembler::Sltu(Register rd, Register rj, const Operand& rk) { if (rk.is_reg()) { sltu(rd, rj, rk.rm()); } else { if (is_int12(rk.immediate()) && !MustUseReg(rk.rmode())) { sltui(rd, rj, static_cast(rk.immediate())); } else { // li handles the relocation. UseScratchRegisterScope temps(this); BlockTrampolinePoolScope block_trampoline_pool(this); Register scratch = temps.hasAvailable() ? temps.Acquire() : t8; DCHECK(rj != scratch); li(scratch, rk); sltu(rd, rj, scratch); } } } void TurboAssembler::Sle(Register rd, Register rj, const Operand& rk) { if (rk.is_reg()) { slt(rd, rk.rm(), rj); } else { // li handles the relocation. UseScratchRegisterScope temps(this); Register scratch = temps.hasAvailable() ? temps.Acquire() : t8; BlockTrampolinePoolScope block_trampoline_pool(this); DCHECK(rj != scratch); li(scratch, rk); slt(rd, scratch, rj); } xori(rd, rd, 1); } void TurboAssembler::Sleu(Register rd, Register rj, const Operand& rk) { if (rk.is_reg()) { sltu(rd, rk.rm(), rj); } else { // li handles the relocation. UseScratchRegisterScope temps(this); Register scratch = temps.hasAvailable() ? temps.Acquire() : t8; BlockTrampolinePoolScope block_trampoline_pool(this); DCHECK(rj != scratch); li(scratch, rk); sltu(rd, scratch, rj); } xori(rd, rd, 1); } void TurboAssembler::Sge(Register rd, Register rj, const Operand& rk) { Slt(rd, rj, rk); xori(rd, rd, 1); } void TurboAssembler::Sgeu(Register rd, Register rj, const Operand& rk) { Sltu(rd, rj, rk); xori(rd, rd, 1); } void TurboAssembler::Sgt(Register rd, Register rj, const Operand& rk) { if (rk.is_reg()) { slt(rd, rk.rm(), rj); } else { // li handles the relocation. UseScratchRegisterScope temps(this); Register scratch = temps.hasAvailable() ? temps.Acquire() : t8; BlockTrampolinePoolScope block_trampoline_pool(this); DCHECK(rj != scratch); li(scratch, rk); slt(rd, scratch, rj); } } void TurboAssembler::Sgtu(Register rd, Register rj, const Operand& rk) { if (rk.is_reg()) { sltu(rd, rk.rm(), rj); } else { // li handles the relocation. UseScratchRegisterScope temps(this); Register scratch = temps.hasAvailable() ? temps.Acquire() : t8; BlockTrampolinePoolScope block_trampoline_pool(this); DCHECK(rj != scratch); li(scratch, rk); sltu(rd, scratch, rj); } } void TurboAssembler::Rotr_w(Register rd, Register rj, const Operand& rk) { if (rk.is_reg()) { rotr_w(rd, rj, rk.rm()); } else { int64_t ror_value = rk.immediate() % 32; if (ror_value < 0) { ror_value += 32; } rotri_w(rd, rj, ror_value); } } void TurboAssembler::Rotr_d(Register rd, Register rj, const Operand& rk) { if (rk.is_reg()) { rotr_d(rd, rj, rk.rm()); } else { int64_t dror_value = rk.immediate() % 64; if (dror_value < 0) dror_value += 64; rotri_d(rd, rj, dror_value); } } void TurboAssembler::Alsl_w(Register rd, Register rj, Register rk, uint8_t sa, Register scratch) { DCHECK(sa >= 1 && sa <= 31); if (sa <= 4) { alsl_w(rd, rj, rk, sa); } else { Register tmp = rd == rk ? scratch : rd; DCHECK(tmp != rk); slli_w(tmp, rj, sa); add_w(rd, rk, tmp); } } void TurboAssembler::Alsl_d(Register rd, Register rj, Register rk, uint8_t sa, Register scratch) { DCHECK(sa >= 1 && sa <= 31); if (sa <= 4) { alsl_d(rd, rj, rk, sa); } else { Register tmp = rd == rk ? scratch : rd; DCHECK(tmp != rk); slli_d(tmp, rj, sa); add_d(rd, rk, tmp); } } // ------------Pseudo-instructions------------- // Change endianness void TurboAssembler::ByteSwapSigned(Register dest, Register src, int operand_size) { DCHECK(operand_size == 2 || operand_size == 4 || operand_size == 8); if (operand_size == 2) { revb_2h(dest, src); ext_w_h(dest, dest); } else if (operand_size == 4) { revb_2w(dest, src); slli_w(dest, dest, 0); } else { revb_d(dest, dest); } } void TurboAssembler::ByteSwapUnsigned(Register dest, Register src, int operand_size) { DCHECK(operand_size == 2 || operand_size == 4); if (operand_size == 2) { revb_2h(dest, src); bstrins_d(dest, zero_reg, 63, 16); } else { revb_2w(dest, src); bstrins_d(dest, zero_reg, 63, 32); } } void TurboAssembler::Ld_b(Register rd, const MemOperand& rj) { MemOperand source = rj; AdjustBaseAndOffset(&source); if (source.hasIndexReg()) { ldx_b(rd, source.base(), source.index()); } else { ld_b(rd, source.base(), source.offset()); } } void TurboAssembler::Ld_bu(Register rd, const MemOperand& rj) { MemOperand source = rj; AdjustBaseAndOffset(&source); if (source.hasIndexReg()) { ldx_bu(rd, source.base(), source.index()); } else { ld_bu(rd, source.base(), source.offset()); } } void TurboAssembler::St_b(Register rd, const MemOperand& rj) { MemOperand source = rj; AdjustBaseAndOffset(&source); if (source.hasIndexReg()) { stx_b(rd, source.base(), source.index()); } else { st_b(rd, source.base(), source.offset()); } } void TurboAssembler::Ld_h(Register rd, const MemOperand& rj) { MemOperand source = rj; AdjustBaseAndOffset(&source); if (source.hasIndexReg()) { ldx_h(rd, source.base(), source.index()); } else { ld_h(rd, source.base(), source.offset()); } } void TurboAssembler::Ld_hu(Register rd, const MemOperand& rj) { MemOperand source = rj; AdjustBaseAndOffset(&source); if (source.hasIndexReg()) { ldx_hu(rd, source.base(), source.index()); } else { ld_hu(rd, source.base(), source.offset()); } } void TurboAssembler::St_h(Register rd, const MemOperand& rj) { MemOperand source = rj; AdjustBaseAndOffset(&source); if (source.hasIndexReg()) { stx_h(rd, source.base(), source.index()); } else { st_h(rd, source.base(), source.offset()); } } void TurboAssembler::Ld_w(Register rd, const MemOperand& rj) { MemOperand source = rj; if (!(source.hasIndexReg()) && is_int16(source.offset()) && (source.offset() & 0b11) == 0) { ldptr_w(rd, source.base(), source.offset()); return; } AdjustBaseAndOffset(&source); if (source.hasIndexReg()) { ldx_w(rd, source.base(), source.index()); } else { ld_w(rd, source.base(), source.offset()); } } void TurboAssembler::Ld_wu(Register rd, const MemOperand& rj) { MemOperand source = rj; AdjustBaseAndOffset(&source); if (source.hasIndexReg()) { ldx_wu(rd, source.base(), source.index()); } else { ld_wu(rd, source.base(), source.offset()); } } void TurboAssembler::St_w(Register rd, const MemOperand& rj) { MemOperand source = rj; if (!(source.hasIndexReg()) && is_int16(source.offset()) && (source.offset() & 0b11) == 0) { stptr_w(rd, source.base(), source.offset()); return; } AdjustBaseAndOffset(&source); if (source.hasIndexReg()) { stx_w(rd, source.base(), source.index()); } else { st_w(rd, source.base(), source.offset()); } } void TurboAssembler::Ld_d(Register rd, const MemOperand& rj) { MemOperand source = rj; if (!(source.hasIndexReg()) && is_int16(source.offset()) && (source.offset() & 0b11) == 0) { ldptr_d(rd, source.base(), source.offset()); return; } AdjustBaseAndOffset(&source); if (source.hasIndexReg()) { ldx_d(rd, source.base(), source.index()); } else { ld_d(rd, source.base(), source.offset()); } } void TurboAssembler::St_d(Register rd, const MemOperand& rj) { MemOperand source = rj; if (!(source.hasIndexReg()) && is_int16(source.offset()) && (source.offset() & 0b11) == 0) { stptr_d(rd, source.base(), source.offset()); return; } AdjustBaseAndOffset(&source); if (source.hasIndexReg()) { stx_d(rd, source.base(), source.index()); } else { st_d(rd, source.base(), source.offset()); } } void TurboAssembler::Fld_s(FPURegister fd, const MemOperand& src) { MemOperand tmp = src; AdjustBaseAndOffset(&tmp); if (tmp.hasIndexReg()) { fldx_s(fd, tmp.base(), tmp.index()); } else { fld_s(fd, tmp.base(), tmp.offset()); } } void TurboAssembler::Fst_s(FPURegister fs, const MemOperand& src) { MemOperand tmp = src; AdjustBaseAndOffset(&tmp); if (tmp.hasIndexReg()) { fstx_s(fs, tmp.base(), tmp.index()); } else { fst_s(fs, tmp.base(), tmp.offset()); } } void TurboAssembler::Fld_d(FPURegister fd, const MemOperand& src) { MemOperand tmp = src; AdjustBaseAndOffset(&tmp); if (tmp.hasIndexReg()) { fldx_d(fd, tmp.base(), tmp.index()); } else { fld_d(fd, tmp.base(), tmp.offset()); } } void TurboAssembler::Fst_d(FPURegister fs, const MemOperand& src) { MemOperand tmp = src; AdjustBaseAndOffset(&tmp); if (tmp.hasIndexReg()) { fstx_d(fs, tmp.base(), tmp.index()); } else { fst_d(fs, tmp.base(), tmp.offset()); } } void TurboAssembler::Ll_w(Register rd, const MemOperand& rj) { DCHECK(!rj.hasIndexReg()); bool is_one_instruction = is_int14(rj.offset()); if (is_one_instruction) { ll_w(rd, rj.base(), rj.offset()); } else { UseScratchRegisterScope temps(this); Register scratch = temps.Acquire(); li(scratch, rj.offset()); add_d(scratch, scratch, rj.base()); ll_w(rd, scratch, 0); } } void TurboAssembler::Ll_d(Register rd, const MemOperand& rj) { DCHECK(!rj.hasIndexReg()); bool is_one_instruction = is_int14(rj.offset()); if (is_one_instruction) { ll_d(rd, rj.base(), rj.offset()); } else { UseScratchRegisterScope temps(this); Register scratch = temps.Acquire(); li(scratch, rj.offset()); add_d(scratch, scratch, rj.base()); ll_d(rd, scratch, 0); } } void TurboAssembler::Sc_w(Register rd, const MemOperand& rj) { DCHECK(!rj.hasIndexReg()); bool is_one_instruction = is_int14(rj.offset()); if (is_one_instruction) { sc_w(rd, rj.base(), rj.offset()); } else { UseScratchRegisterScope temps(this); Register scratch = temps.Acquire(); li(scratch, rj.offset()); add_d(scratch, scratch, rj.base()); sc_w(rd, scratch, 0); } } void TurboAssembler::Sc_d(Register rd, const MemOperand& rj) { DCHECK(!rj.hasIndexReg()); bool is_one_instruction = is_int14(rj.offset()); if (is_one_instruction) { sc_d(rd, rj.base(), rj.offset()); } else { UseScratchRegisterScope temps(this); Register scratch = temps.Acquire(); li(scratch, rj.offset()); add_d(scratch, scratch, rj.base()); sc_d(rd, scratch, 0); } } void TurboAssembler::li(Register dst, Handle value, LiFlags mode) { // TODO(jgruber,v8:8887): Also consider a root-relative load when generating // non-isolate-independent code. In many cases it might be cheaper than // embedding the relocatable value. if (root_array_available_ && options().isolate_independent_code) { IndirectLoadConstant(dst, value); return; } li(dst, Operand(value), mode); } void TurboAssembler::li(Register dst, ExternalReference value, LiFlags mode) { // TODO(jgruber,v8:8887): Also consider a root-relative load when generating // non-isolate-independent code. In many cases it might be cheaper than // embedding the relocatable value. if (root_array_available_ && options().isolate_independent_code) { IndirectLoadExternalReference(dst, value); return; } li(dst, Operand(value), mode); } void TurboAssembler::li(Register dst, const StringConstantBase* string, LiFlags mode) { li(dst, Operand::EmbeddedStringConstant(string), mode); } static inline int InstrCountForLiLower32Bit(int64_t value) { if (is_int12(static_cast(value)) || is_uint12(static_cast(value)) || !(value & kImm12Mask)) { return 1; } else { return 2; } } void TurboAssembler::LiLower32BitHelper(Register rd, Operand j) { if (is_int12(static_cast(j.immediate()))) { addi_d(rd, zero_reg, j.immediate()); } else if (is_uint12(static_cast(j.immediate()))) { ori(rd, zero_reg, j.immediate() & kImm12Mask); } else { lu12i_w(rd, j.immediate() >> 12 & 0xfffff); if (j.immediate() & kImm12Mask) { ori(rd, rd, j.immediate() & kImm12Mask); } } } int TurboAssembler::InstrCountForLi64Bit(int64_t value) { if (is_int32(value)) { return InstrCountForLiLower32Bit(value); } else if (is_int52(value)) { return InstrCountForLiLower32Bit(value) + 1; } else if ((value & 0xffffffffL) == 0) { // 32 LSBs (Least Significant Bits) all set to zero. uint8_t tzc = base::bits::CountTrailingZeros32(value >> 32); uint8_t lzc = base::bits::CountLeadingZeros32(value >> 32); if (tzc >= 20) { return 1; } else if (tzc + lzc > 12) { return 2; } else { return 3; } } else { int64_t imm21 = (value >> 31) & 0x1fffffL; if (imm21 != 0x1fffffL && imm21 != 0) { return InstrCountForLiLower32Bit(value) + 2; } else { return InstrCountForLiLower32Bit(value) + 1; } } UNREACHABLE(); return INT_MAX; } // All changes to if...else conditions here must be added to // InstrCountForLi64Bit as well. void TurboAssembler::li_optimized(Register rd, Operand j, LiFlags mode) { DCHECK(!j.is_reg()); DCHECK(!MustUseReg(j.rmode())); DCHECK(mode == OPTIMIZE_SIZE); int64_t imm = j.immediate(); BlockTrampolinePoolScope block_trampoline_pool(this); // Normal load of an immediate value which does not need Relocation Info. if (is_int32(imm)) { LiLower32BitHelper(rd, j); } else if (is_int52(imm)) { LiLower32BitHelper(rd, j); lu32i_d(rd, imm >> 32 & 0xfffff); } else if ((imm & 0xffffffffL) == 0) { // 32 LSBs (Least Significant Bits) all set to zero. uint8_t tzc = base::bits::CountTrailingZeros32(imm >> 32); uint8_t lzc = base::bits::CountLeadingZeros32(imm >> 32); if (tzc >= 20) { lu52i_d(rd, zero_reg, imm >> 52 & kImm12Mask); } else if (tzc + lzc > 12) { int32_t mask = (1 << (32 - tzc)) - 1; lu12i_w(rd, imm >> (tzc + 32) & mask); slli_d(rd, rd, tzc + 20); } else { xor_(rd, rd, rd); lu32i_d(rd, imm >> 32 & 0xfffff); lu52i_d(rd, rd, imm >> 52 & kImm12Mask); } } else { int64_t imm21 = (imm >> 31) & 0x1fffffL; LiLower32BitHelper(rd, j); if (imm21 != 0x1fffffL && imm21 != 0) lu32i_d(rd, imm >> 32 & 0xfffff); lu52i_d(rd, rd, imm >> 52 & kImm12Mask); } } void TurboAssembler::li(Register rd, Operand j, LiFlags mode) { DCHECK(!j.is_reg()); BlockTrampolinePoolScope block_trampoline_pool(this); if (!MustUseReg(j.rmode()) && mode == OPTIMIZE_SIZE) { li_optimized(rd, j, mode); } else if (IsOnHeap() && RelocInfo::IsEmbeddedObjectMode(j.rmode())) { BlockGrowBufferScope block_growbuffer(this); int offset = pc_offset(); Address address = j.immediate(); saved_handles_for_raw_object_ptr_.push_back( std::make_pair(offset, address)); Handle object(reinterpret_cast(address)); int64_t immediate = object->ptr(); RecordRelocInfo(j.rmode(), immediate); lu12i_w(rd, immediate >> 12 & 0xfffff); ori(rd, rd, immediate & kImm12Mask); lu32i_d(rd, immediate >> 32 & 0xfffff); } else if (MustUseReg(j.rmode())) { int64_t immediate; if (j.IsHeapObjectRequest()) { RequestHeapObject(j.heap_object_request()); immediate = 0; } else { immediate = j.immediate(); } RecordRelocInfo(j.rmode(), immediate); lu12i_w(rd, immediate >> 12 & 0xfffff); ori(rd, rd, immediate & kImm12Mask); lu32i_d(rd, immediate >> 32 & 0xfffff); } else if (mode == ADDRESS_LOAD) { // We always need the same number of instructions as we may need to patch // this code to load another value which may need all 3 instructions. lu12i_w(rd, j.immediate() >> 12 & 0xfffff); ori(rd, rd, j.immediate() & kImm12Mask); lu32i_d(rd, j.immediate() >> 32 & 0xfffff); } else { // mode == CONSTANT_SIZE - always emit the same instruction // sequence. lu12i_w(rd, j.immediate() >> 12 & 0xfffff); ori(rd, rd, j.immediate() & kImm12Mask); lu32i_d(rd, j.immediate() >> 32 & 0xfffff); lu52i_d(rd, rd, j.immediate() >> 52 & kImm12Mask); } } void TurboAssembler::MultiPush(RegList regs) { int16_t stack_offset = 0; for (int16_t i = kNumRegisters - 1; i >= 0; i--) { if ((regs & (1 << i)) != 0) { stack_offset -= kPointerSize; St_d(ToRegister(i), MemOperand(sp, stack_offset)); } } addi_d(sp, sp, stack_offset); } void TurboAssembler::MultiPush(RegList regs1, RegList regs2) { DCHECK_EQ(regs1 & regs2, 0); int16_t stack_offset = 0; for (int16_t i = kNumRegisters - 1; i >= 0; i--) { if ((regs1 & (1 << i)) != 0) { stack_offset -= kPointerSize; St_d(ToRegister(i), MemOperand(sp, stack_offset)); } } for (int16_t i = kNumRegisters - 1; i >= 0; i--) { if ((regs2 & (1 << i)) != 0) { stack_offset -= kPointerSize; St_d(ToRegister(i), MemOperand(sp, stack_offset)); } } addi_d(sp, sp, stack_offset); } void TurboAssembler::MultiPush(RegList regs1, RegList regs2, RegList regs3) { DCHECK_EQ(regs1 & regs2, 0); DCHECK_EQ(regs1 & regs3, 0); DCHECK_EQ(regs2 & regs3, 0); int16_t stack_offset = 0; for (int16_t i = kNumRegisters - 1; i >= 0; i--) { if ((regs1 & (1 << i)) != 0) { stack_offset -= kPointerSize; St_d(ToRegister(i), MemOperand(sp, stack_offset)); } } for (int16_t i = kNumRegisters - 1; i >= 0; i--) { if ((regs2 & (1 << i)) != 0) { stack_offset -= kPointerSize; St_d(ToRegister(i), MemOperand(sp, stack_offset)); } } for (int16_t i = kNumRegisters - 1; i >= 0; i--) { if ((regs3 & (1 << i)) != 0) { stack_offset -= kPointerSize; St_d(ToRegister(i), MemOperand(sp, stack_offset)); } } addi_d(sp, sp, stack_offset); } void TurboAssembler::MultiPop(RegList regs) { int16_t stack_offset = 0; for (int16_t i = 0; i < kNumRegisters; i++) { if ((regs & (1 << i)) != 0) { Ld_d(ToRegister(i), MemOperand(sp, stack_offset)); stack_offset += kPointerSize; } } addi_d(sp, sp, stack_offset); } void TurboAssembler::MultiPop(RegList regs1, RegList regs2) { DCHECK_EQ(regs1 & regs2, 0); int16_t stack_offset = 0; for (int16_t i = 0; i < kNumRegisters; i++) { if ((regs2 & (1 << i)) != 0) { Ld_d(ToRegister(i), MemOperand(sp, stack_offset)); stack_offset += kPointerSize; } } for (int16_t i = 0; i < kNumRegisters; i++) { if ((regs1 & (1 << i)) != 0) { Ld_d(ToRegister(i), MemOperand(sp, stack_offset)); stack_offset += kPointerSize; } } addi_d(sp, sp, stack_offset); } void TurboAssembler::MultiPop(RegList regs1, RegList regs2, RegList regs3) { DCHECK_EQ(regs1 & regs2, 0); DCHECK_EQ(regs1 & regs3, 0); DCHECK_EQ(regs2 & regs3, 0); int16_t stack_offset = 0; for (int16_t i = 0; i < kNumRegisters; i++) { if ((regs3 & (1 << i)) != 0) { Ld_d(ToRegister(i), MemOperand(sp, stack_offset)); stack_offset += kPointerSize; } } for (int16_t i = 0; i < kNumRegisters; i++) { if ((regs2 & (1 << i)) != 0) { Ld_d(ToRegister(i), MemOperand(sp, stack_offset)); stack_offset += kPointerSize; } } for (int16_t i = 0; i < kNumRegisters; i++) { if ((regs1 & (1 << i)) != 0) { Ld_d(ToRegister(i), MemOperand(sp, stack_offset)); stack_offset += kPointerSize; } } addi_d(sp, sp, stack_offset); } void TurboAssembler::MultiPushFPU(RegList regs) { int16_t num_to_push = base::bits::CountPopulation(regs); int16_t stack_offset = num_to_push * kDoubleSize; Sub_d(sp, sp, Operand(stack_offset)); for (int16_t i = kNumRegisters - 1; i >= 0; i--) { if ((regs & (1 << i)) != 0) { stack_offset -= kDoubleSize; Fst_d(FPURegister::from_code(i), MemOperand(sp, stack_offset)); } } } void TurboAssembler::MultiPopFPU(RegList regs) { int16_t stack_offset = 0; for (int16_t i = 0; i < kNumRegisters; i++) { if ((regs & (1 << i)) != 0) { Fld_d(FPURegister::from_code(i), MemOperand(sp, stack_offset)); stack_offset += kDoubleSize; } } addi_d(sp, sp, stack_offset); } void TurboAssembler::Bstrpick_w(Register rk, Register rj, uint16_t msbw, uint16_t lsbw) { DCHECK_LT(lsbw, msbw); DCHECK_LT(lsbw, 32); DCHECK_LT(msbw, 32); bstrpick_w(rk, rj, msbw, lsbw); } void TurboAssembler::Bstrpick_d(Register rk, Register rj, uint16_t msbw, uint16_t lsbw) { DCHECK_LT(lsbw, msbw); DCHECK_LT(lsbw, 64); DCHECK_LT(msbw, 64); bstrpick_d(rk, rj, msbw, lsbw); } void TurboAssembler::Neg_s(FPURegister fd, FPURegister fj) { fneg_s(fd, fj); } void TurboAssembler::Neg_d(FPURegister fd, FPURegister fj) { fneg_d(fd, fj); } void TurboAssembler::Ffint_d_uw(FPURegister fd, FPURegister fj) { BlockTrampolinePoolScope block_trampoline_pool(this); movfr2gr_s(t8, fj); Ffint_d_uw(fd, t8); } void TurboAssembler::Ffint_d_uw(FPURegister fd, Register rj) { BlockTrampolinePoolScope block_trampoline_pool(this); DCHECK(rj != t7); Bstrpick_d(t7, rj, 31, 0); movgr2fr_d(fd, t7); ffint_d_l(fd, fd); } void TurboAssembler::Ffint_d_ul(FPURegister fd, FPURegister fj) { BlockTrampolinePoolScope block_trampoline_pool(this); movfr2gr_d(t8, fj); Ffint_d_ul(fd, t8); } void TurboAssembler::Ffint_d_ul(FPURegister fd, Register rj) { BlockTrampolinePoolScope block_trampoline_pool(this); DCHECK(rj != t7); Label msb_clear, conversion_done; Branch(&msb_clear, ge, rj, Operand(zero_reg)); // Rj >= 2^63 andi(t7, rj, 1); srli_d(rj, rj, 1); or_(t7, t7, rj); movgr2fr_d(fd, t7); ffint_d_l(fd, fd); fadd_d(fd, fd, fd); Branch(&conversion_done); bind(&msb_clear); // Rs < 2^63, we can do simple conversion. movgr2fr_d(fd, rj); ffint_d_l(fd, fd); bind(&conversion_done); } void TurboAssembler::Ffint_s_uw(FPURegister fd, FPURegister fj) { BlockTrampolinePoolScope block_trampoline_pool(this); movfr2gr_d(t8, fj); Ffint_s_uw(fd, t8); } void TurboAssembler::Ffint_s_uw(FPURegister fd, Register rj) { BlockTrampolinePoolScope block_trampoline_pool(this); DCHECK(rj != t7); bstrpick_d(t7, rj, 31, 0); movgr2fr_d(fd, t7); ffint_s_l(fd, fd); } void TurboAssembler::Ffint_s_ul(FPURegister fd, FPURegister fj) { BlockTrampolinePoolScope block_trampoline_pool(this); movfr2gr_d(t8, fj); Ffint_s_ul(fd, t8); } void TurboAssembler::Ffint_s_ul(FPURegister fd, Register rj) { BlockTrampolinePoolScope block_trampoline_pool(this); DCHECK(rj != t7); Label positive, conversion_done; Branch(&positive, ge, rj, Operand(zero_reg)); // Rs >= 2^31. andi(t7, rj, 1); srli_d(rj, rj, 1); or_(t7, t7, rj); movgr2fr_d(fd, t7); ffint_s_l(fd, fd); fadd_s(fd, fd, fd); Branch(&conversion_done); bind(&positive); // Rs < 2^31, we can do simple conversion. movgr2fr_d(fd, rj); ffint_s_l(fd, fd); bind(&conversion_done); } void MacroAssembler::Ftintrne_l_d(FPURegister fd, FPURegister fj) { ftintrne_l_d(fd, fj); } void MacroAssembler::Ftintrm_l_d(FPURegister fd, FPURegister fj) { ftintrm_l_d(fd, fj); } void MacroAssembler::Ftintrp_l_d(FPURegister fd, FPURegister fj) { ftintrp_l_d(fd, fj); } void MacroAssembler::Ftintrz_l_d(FPURegister fd, FPURegister fj) { ftintrz_l_d(fd, fj); } void MacroAssembler::Ftintrz_l_ud(FPURegister fd, FPURegister fj, FPURegister scratch) { BlockTrampolinePoolScope block_trampoline_pool(this); // Load to GPR. movfr2gr_d(t8, fj); // Reset sign bit. { UseScratchRegisterScope temps(this); Register scratch1 = temps.Acquire(); li(scratch1, 0x7FFFFFFFFFFFFFFFl); and_(t8, t8, scratch1); } movgr2fr_d(scratch, t8); Ftintrz_l_d(fd, scratch); } void TurboAssembler::Ftintrz_uw_d(FPURegister fd, FPURegister fj, FPURegister scratch) { BlockTrampolinePoolScope block_trampoline_pool(this); Ftintrz_uw_d(t8, fj, scratch); movgr2fr_w(fd, t8); } void TurboAssembler::Ftintrz_uw_s(FPURegister fd, FPURegister fj, FPURegister scratch) { BlockTrampolinePoolScope block_trampoline_pool(this); Ftintrz_uw_s(t8, fj, scratch); movgr2fr_w(fd, t8); } void TurboAssembler::Ftintrz_ul_d(FPURegister fd, FPURegister fj, FPURegister scratch, Register result) { BlockTrampolinePoolScope block_trampoline_pool(this); Ftintrz_ul_d(t8, fj, scratch, result); movgr2fr_d(fd, t8); } void TurboAssembler::Ftintrz_ul_s(FPURegister fd, FPURegister fj, FPURegister scratch, Register result) { BlockTrampolinePoolScope block_trampoline_pool(this); Ftintrz_ul_s(t8, fj, scratch, result); movgr2fr_d(fd, t8); } void MacroAssembler::Ftintrz_w_d(FPURegister fd, FPURegister fj) { ftintrz_w_d(fd, fj); } void MacroAssembler::Ftintrne_w_d(FPURegister fd, FPURegister fj) { ftintrne_w_d(fd, fj); } void MacroAssembler::Ftintrm_w_d(FPURegister fd, FPURegister fj) { ftintrm_w_d(fd, fj); } void MacroAssembler::Ftintrp_w_d(FPURegister fd, FPURegister fj) { ftintrp_w_d(fd, fj); } void TurboAssembler::Ftintrz_uw_d(Register rd, FPURegister fj, FPURegister scratch) { DCHECK(fj != scratch); DCHECK(rd != t7); { // Load 2^31 into scratch as its float representation. UseScratchRegisterScope temps(this); Register scratch1 = temps.Acquire(); li(scratch1, 0x41E00000); movgr2fr_w(scratch, zero_reg); movgr2frh_w(scratch, scratch1); } // Test if scratch > fd. // If fd < 2^31 we can convert it normally. Label simple_convert; CompareF64(fj, scratch, CLT); BranchTrueShortF(&simple_convert); // First we subtract 2^31 from fd, then trunc it to rs // and add 2^31 to rj. fsub_d(scratch, fj, scratch); ftintrz_w_d(scratch, scratch); movfr2gr_s(rd, scratch); Or(rd, rd, 1 << 31); Label done; Branch(&done); // Simple conversion. bind(&simple_convert); ftintrz_w_d(scratch, fj); movfr2gr_s(rd, scratch); bind(&done); } void TurboAssembler::Ftintrz_uw_s(Register rd, FPURegister fj, FPURegister scratch) { DCHECK(fj != scratch); DCHECK(rd != t7); { // Load 2^31 into scratch as its float representation. UseScratchRegisterScope temps(this); Register scratch1 = temps.Acquire(); li(scratch1, 0x4F000000); movgr2fr_w(scratch, scratch1); } // Test if scratch > fs. // If fs < 2^31 we can convert it normally. Label simple_convert; CompareF32(fj, scratch, CLT); BranchTrueShortF(&simple_convert); // First we subtract 2^31 from fs, then trunc it to rd // and add 2^31 to rd. fsub_s(scratch, fj, scratch); ftintrz_w_s(scratch, scratch); movfr2gr_s(rd, scratch); Or(rd, rd, 1 << 31); Label done; Branch(&done); // Simple conversion. bind(&simple_convert); ftintrz_w_s(scratch, fj); movfr2gr_s(rd, scratch); bind(&done); } void TurboAssembler::Ftintrz_ul_d(Register rd, FPURegister fj, FPURegister scratch, Register result) { DCHECK(fj != scratch); DCHECK(result.is_valid() ? !AreAliased(rd, result, t7) : !AreAliased(rd, t7)); Label simple_convert, done, fail; if (result.is_valid()) { mov(result, zero_reg); Move(scratch, -1.0); // If fd =< -1 or unordered, then the conversion fails. CompareF64(fj, scratch, CLE); BranchTrueShortF(&fail); CompareIsNanF64(fj, scratch); BranchTrueShortF(&fail); } // Load 2^63 into scratch as its double representation. li(t7, 0x43E0000000000000); movgr2fr_d(scratch, t7); // Test if scratch > fs. // If fs < 2^63 we can convert it normally. CompareF64(fj, scratch, CLT); BranchTrueShortF(&simple_convert); // First we subtract 2^63 from fs, then trunc it to rd // and add 2^63 to rd. fsub_d(scratch, fj, scratch); ftintrz_l_d(scratch, scratch); movfr2gr_d(rd, scratch); Or(rd, rd, Operand(1UL << 63)); Branch(&done); // Simple conversion. bind(&simple_convert); ftintrz_l_d(scratch, fj); movfr2gr_d(rd, scratch); bind(&done); if (result.is_valid()) { // Conversion is failed if the result is negative. { UseScratchRegisterScope temps(this); Register scratch1 = temps.Acquire(); addi_d(scratch1, zero_reg, -1); srli_d(scratch1, scratch1, 1); // Load 2^62. movfr2gr_d(result, scratch); xor_(result, result, scratch1); } Slt(result, zero_reg, result); } bind(&fail); } void TurboAssembler::Ftintrz_ul_s(Register rd, FPURegister fj, FPURegister scratch, Register result) { DCHECK(fj != scratch); DCHECK(result.is_valid() ? !AreAliased(rd, result, t7) : !AreAliased(rd, t7)); Label simple_convert, done, fail; if (result.is_valid()) { mov(result, zero_reg); Move(scratch, -1.0f); // If fd =< -1 or unordered, then the conversion fails. CompareF32(fj, scratch, CLE); BranchTrueShortF(&fail); CompareIsNanF32(fj, scratch); BranchTrueShortF(&fail); } { // Load 2^63 into scratch as its float representation. UseScratchRegisterScope temps(this); Register scratch1 = temps.Acquire(); li(scratch1, 0x5F000000); movgr2fr_w(scratch, scratch1); } // Test if scratch > fs. // If fs < 2^63 we can convert it normally. CompareF32(fj, scratch, CLT); BranchTrueShortF(&simple_convert); // First we subtract 2^63 from fs, then trunc it to rd // and add 2^63 to rd. fsub_s(scratch, fj, scratch); ftintrz_l_s(scratch, scratch); movfr2gr_d(rd, scratch); Or(rd, rd, Operand(1UL << 63)); Branch(&done); // Simple conversion. bind(&simple_convert); ftintrz_l_s(scratch, fj); movfr2gr_d(rd, scratch); bind(&done); if (result.is_valid()) { // Conversion is failed if the result is negative or unordered. { UseScratchRegisterScope temps(this); Register scratch1 = temps.Acquire(); addi_d(scratch1, zero_reg, -1); srli_d(scratch1, scratch1, 1); // Load 2^62. movfr2gr_d(result, scratch); xor_(result, result, scratch1); } Slt(result, zero_reg, result); } bind(&fail); } void TurboAssembler::RoundDouble(FPURegister dst, FPURegister src, FPURoundingMode mode) { BlockTrampolinePoolScope block_trampoline_pool(this); Register scratch = t8; movfcsr2gr(scratch); li(t7, Operand(mode)); movgr2fcsr(t7); frint_d(dst, src); movgr2fcsr(scratch); } void TurboAssembler::Floor_d(FPURegister dst, FPURegister src) { RoundDouble(dst, src, mode_floor); } void TurboAssembler::Ceil_d(FPURegister dst, FPURegister src) { RoundDouble(dst, src, mode_ceil); } void TurboAssembler::Trunc_d(FPURegister dst, FPURegister src) { RoundDouble(dst, src, mode_trunc); } void TurboAssembler::Round_d(FPURegister dst, FPURegister src) { RoundDouble(dst, src, mode_round); } void TurboAssembler::RoundFloat(FPURegister dst, FPURegister src, FPURoundingMode mode) { BlockTrampolinePoolScope block_trampoline_pool(this); Register scratch = t8; movfcsr2gr(scratch); li(t7, Operand(mode)); movgr2fcsr(t7); frint_s(dst, src); movgr2fcsr(scratch); } void TurboAssembler::Floor_s(FPURegister dst, FPURegister src) { RoundFloat(dst, src, mode_floor); } void TurboAssembler::Ceil_s(FPURegister dst, FPURegister src) { RoundFloat(dst, src, mode_ceil); } void TurboAssembler::Trunc_s(FPURegister dst, FPURegister src) { RoundFloat(dst, src, mode_trunc); } void TurboAssembler::Round_s(FPURegister dst, FPURegister src) { RoundFloat(dst, src, mode_round); } void TurboAssembler::CompareF(FPURegister cmp1, FPURegister cmp2, FPUCondition cc, CFRegister cd, bool f32) { if (f32) { fcmp_cond_s(cc, cmp1, cmp2, cd); } else { fcmp_cond_d(cc, cmp1, cmp2, cd); } } void TurboAssembler::CompareIsNanF(FPURegister cmp1, FPURegister cmp2, CFRegister cd, bool f32) { CompareF(cmp1, cmp2, CUN, cd, f32); } void TurboAssembler::BranchTrueShortF(Label* target, CFRegister cj) { bcnez(cj, target); } void TurboAssembler::BranchFalseShortF(Label* target, CFRegister cj) { bceqz(cj, target); } void TurboAssembler::BranchTrueF(Label* target, CFRegister cj) { // TODO(yuyin): can be optimzed bool long_branch = target->is_bound() ? !is_near(target, OffsetSize::kOffset21) : is_trampoline_emitted(); if (long_branch) { Label skip; BranchFalseShortF(&skip, cj); Branch(target); bind(&skip); } else { BranchTrueShortF(target, cj); } } void TurboAssembler::BranchFalseF(Label* target, CFRegister cj) { bool long_branch = target->is_bound() ? !is_near(target, OffsetSize::kOffset21) : is_trampoline_emitted(); if (long_branch) { Label skip; BranchTrueShortF(&skip, cj); Branch(target); bind(&skip); } else { BranchFalseShortF(target, cj); } } void TurboAssembler::FmoveLow(FPURegister dst, Register src_low) { UseScratchRegisterScope temps(this); Register scratch = temps.Acquire(); DCHECK(src_low != scratch); movfrh2gr_s(scratch, dst); movgr2fr_w(dst, src_low); movgr2frh_w(dst, scratch); } void TurboAssembler::Move(FPURegister dst, uint32_t src) { UseScratchRegisterScope temps(this); Register scratch = temps.Acquire(); li(scratch, Operand(static_cast(src))); movgr2fr_w(dst, scratch); } void TurboAssembler::Move(FPURegister dst, uint64_t src) { // Handle special values first. if (src == bit_cast(0.0) && has_double_zero_reg_set_) { fmov_d(dst, kDoubleRegZero); } else if (src == bit_cast(-0.0) && has_double_zero_reg_set_) { Neg_d(dst, kDoubleRegZero); } else { UseScratchRegisterScope temps(this); Register scratch = temps.Acquire(); li(scratch, Operand(static_cast(src))); movgr2fr_d(dst, scratch); if (dst == kDoubleRegZero) has_double_zero_reg_set_ = true; } } void TurboAssembler::Movz(Register rd, Register rj, Register rk) { UseScratchRegisterScope temps(this); Register scratch = temps.Acquire(); maskeqz(scratch, rj, rk); masknez(rd, rd, rk); or_(rd, rd, scratch); } void TurboAssembler::Movn(Register rd, Register rj, Register rk) { UseScratchRegisterScope temps(this); Register scratch = temps.Acquire(); masknez(scratch, rj, rk); maskeqz(rd, rd, rk); or_(rd, rd, scratch); } void TurboAssembler::LoadZeroOnCondition(Register rd, Register rj, const Operand& rk, Condition cond) { BlockTrampolinePoolScope block_trampoline_pool(this); switch (cond) { case cc_always: mov(rd, zero_reg); break; case eq: if (rj == zero_reg) { if (rk.is_reg()) { LoadZeroIfConditionZero(rd, rk.rm()); } else if (rk.immediate() == 0) { mov(rd, zero_reg); } } else if (IsZero(rk)) { LoadZeroIfConditionZero(rd, rj); } else { Sub_d(t7, rj, rk); LoadZeroIfConditionZero(rd, t7); } break; case ne: if (rj == zero_reg) { if (rk.is_reg()) { LoadZeroIfConditionNotZero(rd, rk.rm()); } else if (rk.immediate() != 0) { mov(rd, zero_reg); } } else if (IsZero(rk)) { LoadZeroIfConditionNotZero(rd, rj); } else { Sub_d(t7, rj, rk); LoadZeroIfConditionNotZero(rd, t7); } break; // Signed comparison. case greater: Sgt(t7, rj, rk); LoadZeroIfConditionNotZero(rd, t7); break; case greater_equal: Sge(t7, rj, rk); LoadZeroIfConditionNotZero(rd, t7); // rj >= rk break; case less: Slt(t7, rj, rk); LoadZeroIfConditionNotZero(rd, t7); // rj < rk break; case less_equal: Sle(t7, rj, rk); LoadZeroIfConditionNotZero(rd, t7); // rj <= rk break; // Unsigned comparison. case Ugreater: Sgtu(t7, rj, rk); LoadZeroIfConditionNotZero(rd, t7); // rj > rk break; case Ugreater_equal: Sgeu(t7, rj, rk); LoadZeroIfConditionNotZero(rd, t7); // rj >= rk break; case Uless: Sltu(t7, rj, rk); LoadZeroIfConditionNotZero(rd, t7); // rj < rk break; case Uless_equal: Sleu(t7, rj, rk); LoadZeroIfConditionNotZero(rd, t7); // rj <= rk break; default: UNREACHABLE(); } // namespace internal } // namespace internal void TurboAssembler::LoadZeroIfConditionNotZero(Register dest, Register condition) { maskeqz(dest, dest, condition); } void TurboAssembler::LoadZeroIfConditionZero(Register dest, Register condition) { masknez(dest, dest, condition); } void TurboAssembler::LoadZeroIfFPUCondition(Register dest, CFRegister cc) { UseScratchRegisterScope temps(this); Register scratch = temps.Acquire(); movcf2gr(scratch, cc); LoadZeroIfConditionNotZero(dest, scratch); } void TurboAssembler::LoadZeroIfNotFPUCondition(Register dest, CFRegister cc) { UseScratchRegisterScope temps(this); Register scratch = temps.Acquire(); movcf2gr(scratch, cc); LoadZeroIfConditionZero(dest, scratch); } void TurboAssembler::Clz_w(Register rd, Register rj) { clz_w(rd, rj); } void TurboAssembler::Clz_d(Register rd, Register rj) { clz_d(rd, rj); } void TurboAssembler::Ctz_w(Register rd, Register rj) { ctz_w(rd, rj); } void TurboAssembler::Ctz_d(Register rd, Register rj) { ctz_d(rd, rj); } // TODO(LOONG_dev): Optimize like arm64, use simd instruction void TurboAssembler::Popcnt_w(Register rd, Register rj) { // https://graphics.stanford.edu/~seander/bithacks.html#CountBitsSetParallel // // A generalization of the best bit counting method to integers of // bit-widths up to 128 (parameterized by type T) is this: // // v = v - ((v >> 1) & (T)~(T)0/3); // temp // v = (v & (T)~(T)0/15*3) + ((v >> 2) & (T)~(T)0/15*3); // temp // v = (v + (v >> 4)) & (T)~(T)0/255*15; // temp // c = (T)(v * ((T)~(T)0/255)) >> (sizeof(T) - 1) * BITS_PER_BYTE; //count // // There are algorithms which are faster in the cases where very few // bits are set but the algorithm here attempts to minimize the total // number of instructions executed even when a large number of bits // are set. int32_t B0 = 0x55555555; // (T)~(T)0/3 int32_t B1 = 0x33333333; // (T)~(T)0/15*3 int32_t B2 = 0x0F0F0F0F; // (T)~(T)0/255*15 int32_t value = 0x01010101; // (T)~(T)0/255 uint32_t shift = 24; // (sizeof(T) - 1) * BITS_PER_BYTE UseScratchRegisterScope temps(this); BlockTrampolinePoolScope block_trampoline_pool(this); Register scratch = temps.Acquire(); Register scratch2 = t8; srli_w(scratch, rj, 1); li(scratch2, B0); And(scratch, scratch, scratch2); Sub_w(scratch, rj, scratch); li(scratch2, B1); And(rd, scratch, scratch2); srli_w(scratch, scratch, 2); And(scratch, scratch, scratch2); Add_w(scratch, rd, scratch); srli_w(rd, scratch, 4); Add_w(rd, rd, scratch); li(scratch2, B2); And(rd, rd, scratch2); li(scratch, value); Mul_w(rd, rd, scratch); srli_w(rd, rd, shift); } void TurboAssembler::Popcnt_d(Register rd, Register rj) { int64_t B0 = 0x5555555555555555l; // (T)~(T)0/3 int64_t B1 = 0x3333333333333333l; // (T)~(T)0/15*3 int64_t B2 = 0x0F0F0F0F0F0F0F0Fl; // (T)~(T)0/255*15 int64_t value = 0x0101010101010101l; // (T)~(T)0/255 uint32_t shift = 56; // (sizeof(T) - 1) * BITS_PER_BYTE UseScratchRegisterScope temps(this); BlockTrampolinePoolScope block_trampoline_pool(this); Register scratch = temps.Acquire(); Register scratch2 = t8; srli_d(scratch, rj, 1); li(scratch2, B0); And(scratch, scratch, scratch2); Sub_d(scratch, rj, scratch); li(scratch2, B1); And(rd, scratch, scratch2); srli_d(scratch, scratch, 2); And(scratch, scratch, scratch2); Add_d(scratch, rd, scratch); srli_d(rd, scratch, 4); Add_d(rd, rd, scratch); li(scratch2, B2); And(rd, rd, scratch2); li(scratch, value); Mul_d(rd, rd, scratch); srli_d(rd, rd, shift); } void TurboAssembler::ExtractBits(Register dest, Register source, Register pos, int size, bool sign_extend) { sra_d(dest, source, pos); bstrpick_d(dest, dest, size - 1, 0); if (sign_extend) { switch (size) { case 8: ext_w_b(dest, dest); break; case 16: ext_w_h(dest, dest); break; case 32: // sign-extend word slli_w(dest, dest, 0); break; default: UNREACHABLE(); } } } void TurboAssembler::InsertBits(Register dest, Register source, Register pos, int size) { Rotr_d(dest, dest, pos); bstrins_d(dest, source, size - 1, 0); { UseScratchRegisterScope temps(this); Register scratch = temps.Acquire(); Sub_d(scratch, zero_reg, pos); Rotr_d(dest, dest, scratch); } } void TurboAssembler::TryInlineTruncateDoubleToI(Register result, DoubleRegister double_input, Label* done) { DoubleRegister single_scratch = kScratchDoubleReg.low(); BlockTrampolinePoolScope block_trampoline_pool(this); UseScratchRegisterScope temps(this); Register scratch = temps.Acquire(); Register scratch2 = temps.Acquire(); ftintrz_l_d(single_scratch, double_input); movfr2gr_d(scratch2, single_scratch); li(scratch, 1L << 63); Xor(scratch, scratch, scratch2); rotri_d(scratch2, scratch, 1); movfr2gr_s(result, single_scratch); Branch(done, ne, scratch, Operand(scratch2)); // Truncate NaN to zero. CompareIsNanF64(double_input, double_input); Move(result, zero_reg); bcnez(FCC0, done); } void TurboAssembler::TruncateDoubleToI(Isolate* isolate, Zone* zone, Register result, DoubleRegister double_input, StubCallMode stub_mode) { Label done; TryInlineTruncateDoubleToI(result, double_input, &done); // If we fell through then inline version didn't succeed - call stub instead. Sub_d(sp, sp, Operand(kDoubleSize + kSystemPointerSize)); // Put input on stack. St_d(ra, MemOperand(sp, kSystemPointerSize)); Fst_d(double_input, MemOperand(sp, 0)); #if V8_ENABLE_WEBASSEMBLY if (stub_mode == StubCallMode::kCallWasmRuntimeStub) { Call(wasm::WasmCode::kDoubleToI, RelocInfo::WASM_STUB_CALL); #else // For balance. if (false) { #endif // V8_ENABLE_WEBASSEMBLY } else { Call(BUILTIN_CODE(isolate, DoubleToI), RelocInfo::CODE_TARGET); } Pop(ra, result); bind(&done); } // BRANCH_ARGS_CHECK checks that conditional jump arguments are correct. #define BRANCH_ARGS_CHECK(cond, rj, rk) \ DCHECK((cond == cc_always && rj == zero_reg && rk.rm() == zero_reg) || \ (cond != cc_always && (rj != zero_reg || rk.rm() != zero_reg))) void TurboAssembler::Branch(Label* L, bool need_link) { int offset = GetOffset(L, OffsetSize::kOffset26); if (need_link) { bl(offset); } else { b(offset); } } void TurboAssembler::Branch(Label* L, Condition cond, Register rj, const Operand& rk, bool need_link) { if (L->is_bound()) { BRANCH_ARGS_CHECK(cond, rj, rk); if (!BranchShortOrFallback(L, cond, rj, rk, need_link)) { if (cond != cc_always) { Label skip; Condition neg_cond = NegateCondition(cond); BranchShort(&skip, neg_cond, rj, rk, need_link); Branch(L, need_link); bind(&skip); } else { Branch(L); } } } else { if (is_trampoline_emitted()) { if (cond != cc_always) { Label skip; Condition neg_cond = NegateCondition(cond); BranchShort(&skip, neg_cond, rj, rk, need_link); Branch(L, need_link); bind(&skip); } else { Branch(L); } } else { BranchShort(L, cond, rj, rk, need_link); } } } void TurboAssembler::Branch(Label* L, Condition cond, Register rj, RootIndex index) { UseScratchRegisterScope temps(this); Register scratch = temps.Acquire(); LoadRoot(scratch, index); Branch(L, cond, rj, Operand(scratch)); } int32_t TurboAssembler::GetOffset(Label* L, OffsetSize bits) { return branch_offset_helper(L, bits) >> 2; } Register TurboAssembler::GetRkAsRegisterHelper(const Operand& rk, Register scratch) { Register r2 = no_reg; if (rk.is_reg()) { r2 = rk.rm(); } else { r2 = scratch; li(r2, rk); } return r2; } bool TurboAssembler::BranchShortOrFallback(Label* L, Condition cond, Register rj, const Operand& rk, bool need_link) { UseScratchRegisterScope temps(this); BlockTrampolinePoolScope block_trampoline_pool(this); Register scratch = temps.hasAvailable() ? temps.Acquire() : t8; DCHECK_NE(rj, zero_reg); // Be careful to always use shifted_branch_offset only just before the // branch instruction, as the location will be remember for patching the // target. { BlockTrampolinePoolScope block_trampoline_pool(this); int offset = 0; switch (cond) { case cc_always: if (L->is_bound() && !is_near(L, OffsetSize::kOffset26)) return false; offset = GetOffset(L, OffsetSize::kOffset26); if (need_link) { bl(offset); } else { b(offset); } break; case eq: if (rk.is_reg() && rj.code() == rk.rm().code()) { // beq is used here to make the code patchable. Otherwise b should // be used which has no condition field so is not patchable. if (L->is_bound() && !is_near(L, OffsetSize::kOffset16)) return false; if (need_link) pcaddi(ra, 2); offset = GetOffset(L, OffsetSize::kOffset16); beq(rj, rj, offset); } else if (IsZero(rk)) { if (L->is_bound() && !is_near(L, OffsetSize::kOffset21)) return false; if (need_link) pcaddi(ra, 2); offset = GetOffset(L, OffsetSize::kOffset21); beqz(rj, offset); } else { if (L->is_bound() && !is_near(L, OffsetSize::kOffset16)) return false; if (need_link) pcaddi(ra, 2); // We don't want any other register but scratch clobbered. Register sc = GetRkAsRegisterHelper(rk, scratch); offset = GetOffset(L, OffsetSize::kOffset16); beq(rj, sc, offset); } break; case ne: if (rk.is_reg() && rj.code() == rk.rm().code()) { if (L->is_bound() && !is_near(L, OffsetSize::kOffset16)) return false; if (need_link) pcaddi(ra, 2); // bne is used here to make the code patchable. Otherwise we // should not generate any instruction. offset = GetOffset(L, OffsetSize::kOffset16); bne(rj, rj, offset); } else if (IsZero(rk)) { if (L->is_bound() && !is_near(L, OffsetSize::kOffset21)) return false; if (need_link) pcaddi(ra, 2); offset = GetOffset(L, OffsetSize::kOffset21); bnez(rj, offset); } else { if (L->is_bound() && !is_near(L, OffsetSize::kOffset16)) return false; if (need_link) pcaddi(ra, 2); // We don't want any other register but scratch clobbered. Register sc = GetRkAsRegisterHelper(rk, scratch); offset = GetOffset(L, OffsetSize::kOffset16); bne(rj, sc, offset); } break; // Signed comparison. case greater: // rj > rk if (rk.is_reg() && rj.code() == rk.rm().code()) { // No code needs to be emitted. } else if (IsZero(rk)) { if (L->is_bound() && !is_near(L, OffsetSize::kOffset16)) return false; if (need_link) pcaddi(ra, 2); offset = GetOffset(L, OffsetSize::kOffset16); blt(zero_reg, rj, offset); } else { if (L->is_bound() && !is_near(L, OffsetSize::kOffset16)) return false; if (need_link) pcaddi(ra, 2); Register sc = GetRkAsRegisterHelper(rk, scratch); DCHECK(rj != sc); offset = GetOffset(L, OffsetSize::kOffset16); blt(sc, rj, offset); } break; case greater_equal: // rj >= rk if (rk.is_reg() && rj.code() == rk.rm().code()) { if (L->is_bound() && !is_near(L, OffsetSize::kOffset26)) return false; if (need_link) pcaddi(ra, 2); offset = GetOffset(L, OffsetSize::kOffset26); b(offset); } else if (IsZero(rk)) { if (L->is_bound() && !is_near(L, OffsetSize::kOffset16)) return false; if (need_link) pcaddi(ra, 2); offset = GetOffset(L, OffsetSize::kOffset16); bge(rj, zero_reg, offset); } else { if (L->is_bound() && !is_near(L, OffsetSize::kOffset16)) return false; if (need_link) pcaddi(ra, 2); Register sc = GetRkAsRegisterHelper(rk, scratch); DCHECK(rj != sc); offset = GetOffset(L, OffsetSize::kOffset16); bge(rj, sc, offset); } break; case less: // rj < rk if (rk.is_reg() && rj.code() == rk.rm().code()) { // No code needs to be emitted. } else if (IsZero(rk)) { if (L->is_bound() && !is_near(L, OffsetSize::kOffset16)) return false; if (need_link) pcaddi(ra, 2); offset = GetOffset(L, OffsetSize::kOffset16); blt(rj, zero_reg, offset); } else { if (L->is_bound() && !is_near(L, OffsetSize::kOffset16)) return false; if (need_link) pcaddi(ra, 2); Register sc = GetRkAsRegisterHelper(rk, scratch); DCHECK(rj != sc); offset = GetOffset(L, OffsetSize::kOffset16); blt(rj, sc, offset); } break; case less_equal: // rj <= rk if (rk.is_reg() && rj.code() == rk.rm().code()) { if (L->is_bound() && !is_near(L, OffsetSize::kOffset26)) return false; if (need_link) pcaddi(ra, 2); offset = GetOffset(L, OffsetSize::kOffset26); b(offset); } else if (IsZero(rk)) { if (L->is_bound() && !is_near(L, OffsetSize::kOffset16)) return false; if (need_link) pcaddi(ra, 2); offset = GetOffset(L, OffsetSize::kOffset16); bge(zero_reg, rj, offset); } else { if (L->is_bound() && !is_near(L, OffsetSize::kOffset16)) return false; if (need_link) pcaddi(ra, 2); Register sc = GetRkAsRegisterHelper(rk, scratch); DCHECK(rj != sc); offset = GetOffset(L, OffsetSize::kOffset16); bge(sc, rj, offset); } break; // Unsigned comparison. case Ugreater: // rj > rk if (rk.is_reg() && rj.code() == rk.rm().code()) { // No code needs to be emitted. } else if (IsZero(rk)) { if (L->is_bound() && !is_near(L, OffsetSize::kOffset26)) return false; if (need_link) pcaddi(ra, 2); offset = GetOffset(L, OffsetSize::kOffset26); bnez(rj, offset); } else { if (L->is_bound() && !is_near(L, OffsetSize::kOffset16)) return false; if (need_link) pcaddi(ra, 2); Register sc = GetRkAsRegisterHelper(rk, scratch); DCHECK(rj != sc); offset = GetOffset(L, OffsetSize::kOffset16); bltu(sc, rj, offset); } break; case Ugreater_equal: // rj >= rk if (rk.is_reg() && rj.code() == rk.rm().code()) { if (L->is_bound() && !is_near(L, OffsetSize::kOffset26)) return false; if (need_link) pcaddi(ra, 2); offset = GetOffset(L, OffsetSize::kOffset26); b(offset); } else if (IsZero(rk)) { if (L->is_bound() && !is_near(L, OffsetSize::kOffset26)) return false; if (need_link) pcaddi(ra, 2); offset = GetOffset(L, OffsetSize::kOffset26); b(offset); } else { if (L->is_bound() && !is_near(L, OffsetSize::kOffset16)) return false; if (need_link) pcaddi(ra, 2); Register sc = GetRkAsRegisterHelper(rk, scratch); DCHECK(rj != sc); offset = GetOffset(L, OffsetSize::kOffset16); bgeu(rj, sc, offset); } break; case Uless: // rj < rk if (rk.is_reg() && rj.code() == rk.rm().code()) { // No code needs to be emitted. } else if (IsZero(rk)) { // No code needs to be emitted. } else { if (L->is_bound() && !is_near(L, OffsetSize::kOffset16)) return false; if (need_link) pcaddi(ra, 2); Register sc = GetRkAsRegisterHelper(rk, scratch); DCHECK(rj != sc); offset = GetOffset(L, OffsetSize::kOffset16); bltu(rj, sc, offset); } break; case Uless_equal: // rj <= rk if (rk.is_reg() && rj.code() == rk.rm().code()) { if (L->is_bound() && !is_near(L, OffsetSize::kOffset26)) return false; if (need_link) pcaddi(ra, 2); offset = GetOffset(L, OffsetSize::kOffset26); b(offset); } else if (IsZero(rk)) { if (L->is_bound() && !is_near(L, OffsetSize::kOffset21)) return false; if (need_link) pcaddi(ra, 2); beqz(rj, L); } else { if (L->is_bound() && !is_near(L, OffsetSize::kOffset16)) return false; if (need_link) pcaddi(ra, 2); Register sc = GetRkAsRegisterHelper(rk, scratch); DCHECK(rj != sc); offset = GetOffset(L, OffsetSize::kOffset16); bgeu(sc, rj, offset); } break; default: UNREACHABLE(); } } return true; } void TurboAssembler::BranchShort(Label* L, Condition cond, Register rj, const Operand& rk, bool need_link) { BRANCH_ARGS_CHECK(cond, rj, rk); bool result = BranchShortOrFallback(L, cond, rj, rk, need_link); DCHECK(result); USE(result); } void TurboAssembler::LoadFromConstantsTable(Register destination, int constant_index) { DCHECK(RootsTable::IsImmortalImmovable(RootIndex::kBuiltinsConstantsTable)); LoadRoot(destination, RootIndex::kBuiltinsConstantsTable); Ld_d(destination, FieldMemOperand(destination, FixedArray::kHeaderSize + constant_index * kPointerSize)); } void TurboAssembler::LoadRootRelative(Register destination, int32_t offset) { Ld_d(destination, MemOperand(kRootRegister, offset)); } void TurboAssembler::LoadRootRegisterOffset(Register destination, intptr_t offset) { if (offset == 0) { Move(destination, kRootRegister); } else { Add_d(destination, kRootRegister, Operand(offset)); } } void TurboAssembler::Jump(Register target, Condition cond, Register rj, const Operand& rk) { BlockTrampolinePoolScope block_trampoline_pool(this); if (cond == cc_always) { jirl(zero_reg, target, 0); } else { BRANCH_ARGS_CHECK(cond, rj, rk); Label skip; Branch(&skip, NegateCondition(cond), rj, rk); jirl(zero_reg, target, 0); bind(&skip); } } void TurboAssembler::Jump(intptr_t target, RelocInfo::Mode rmode, Condition cond, Register rj, const Operand& rk) { Label skip; if (cond != cc_always) { Branch(&skip, NegateCondition(cond), rj, rk); } { BlockTrampolinePoolScope block_trampoline_pool(this); li(t7, Operand(target, rmode)); jirl(zero_reg, t7, 0); bind(&skip); } } void TurboAssembler::Jump(Address target, RelocInfo::Mode rmode, Condition cond, Register rj, const Operand& rk) { DCHECK(!RelocInfo::IsCodeTarget(rmode)); Jump(static_cast(target), rmode, cond, rj, rk); } void TurboAssembler::Jump(Handle code, RelocInfo::Mode rmode, Condition cond, Register rj, const Operand& rk) { DCHECK(RelocInfo::IsCodeTarget(rmode)); BlockTrampolinePoolScope block_trampoline_pool(this); Label skip; if (cond != cc_always) { BranchShort(&skip, NegateCondition(cond), rj, rk); } Builtin builtin = Builtin::kNoBuiltinId; bool target_is_isolate_independent_builtin = isolate()->builtins()->IsBuiltinHandle(code, &builtin) && Builtins::IsIsolateIndependent(builtin); if (target_is_isolate_independent_builtin && options().use_pc_relative_calls_and_jumps) { int32_t code_target_index = AddCodeTarget(code); RecordRelocInfo(RelocInfo::RELATIVE_CODE_TARGET); b(code_target_index); bind(&skip); return; } else if (root_array_available_ && options().isolate_independent_code) { UNREACHABLE(); /*int offset = code->builtin_index() * kSystemPointerSize + IsolateData::builtin_entry_table_offset(); Ld_d(t7, MemOperand(kRootRegister, offset)); Jump(t7, cc_always, rj, rk); bind(&skip); return;*/ } else if (options().inline_offheap_trampolines && target_is_isolate_independent_builtin) { // Inline the trampoline. RecordCommentForOffHeapTrampoline(builtin); li(t7, Operand(BuiltinEntry(builtin), RelocInfo::OFF_HEAP_TARGET)); Jump(t7, cc_always, rj, rk); bind(&skip); return; } Jump(static_cast(code.address()), rmode, cc_always, rj, rk); bind(&skip); } void TurboAssembler::Jump(const ExternalReference& reference) { li(t7, reference); Jump(t7); } // Note: To call gcc-compiled C code on loonarch, you must call through t[0-8]. void TurboAssembler::Call(Register target, Condition cond, Register rj, const Operand& rk) { BlockTrampolinePoolScope block_trampoline_pool(this); if (cond == cc_always) { jirl(ra, target, 0); } else { BRANCH_ARGS_CHECK(cond, rj, rk); Label skip; Branch(&skip, NegateCondition(cond), rj, rk); jirl(ra, target, 0); bind(&skip); } set_last_call_pc_(pc_); } void MacroAssembler::JumpIfIsInRange(Register value, unsigned lower_limit, unsigned higher_limit, Label* on_in_range) { if (lower_limit != 0) { UseScratchRegisterScope temps(this); Register scratch = temps.Acquire(); Sub_d(scratch, value, Operand(lower_limit)); Branch(on_in_range, ls, scratch, Operand(higher_limit - lower_limit)); } else { Branch(on_in_range, ls, value, Operand(higher_limit - lower_limit)); } } void TurboAssembler::Call(Address target, RelocInfo::Mode rmode, Condition cond, Register rj, const Operand& rk) { BlockTrampolinePoolScope block_trampoline_pool(this); Label skip; if (cond != cc_always) { BranchShort(&skip, NegateCondition(cond), rj, rk); } intptr_t offset_diff = target - pc_offset(); if (RelocInfo::IsNone(rmode) && is_int28(offset_diff)) { bl(offset_diff >> 2); } else if (RelocInfo::IsNone(rmode) && is_int38(offset_diff)) { pcaddu18i(t7, static_cast(offset_diff) >> 18); jirl(ra, t7, (offset_diff & 0x3ffff) >> 2); } else { li(t7, Operand(static_cast(target), rmode), ADDRESS_LOAD); Call(t7, cc_always, rj, rk); } bind(&skip); } void TurboAssembler::Call(Handle code, RelocInfo::Mode rmode, Condition cond, Register rj, const Operand& rk) { BlockTrampolinePoolScope block_trampoline_pool(this); Label skip; if (cond != cc_always) { BranchShort(&skip, NegateCondition(cond), rj, rk); } Builtin builtin = Builtin::kNoBuiltinId; bool target_is_isolate_independent_builtin = isolate()->builtins()->IsBuiltinHandle(code, &builtin) && Builtins::IsIsolateIndependent(builtin); if (target_is_isolate_independent_builtin && options().use_pc_relative_calls_and_jumps) { int32_t code_target_index = AddCodeTarget(code); RecordCommentForOffHeapTrampoline(builtin); RecordRelocInfo(RelocInfo::RELATIVE_CODE_TARGET); bl(code_target_index); set_last_call_pc_(pc_); bind(&skip); RecordComment("]"); return; } else if (root_array_available_ && options().isolate_independent_code) { UNREACHABLE(); /*int offset = code->builtin_index() * kSystemPointerSize + IsolateData::builtin_entry_table_offset(); LoadRootRelative(t7, offset); Call(t7, cond, rj, rk); bind(&skip); return;*/ } else if (options().inline_offheap_trampolines && target_is_isolate_independent_builtin) { // Inline the trampoline. RecordCommentForOffHeapTrampoline(builtin); li(t7, Operand(BuiltinEntry(builtin), RelocInfo::OFF_HEAP_TARGET)); Call(t7, cond, rj, rk); bind(&skip); return; } DCHECK(RelocInfo::IsCodeTarget(rmode)); DCHECK(code->IsExecutable()); Call(code.address(), rmode, cc_always, rj, rk); bind(&skip); } void TurboAssembler::LoadEntryFromBuiltinIndex(Register builtin_index) { STATIC_ASSERT(kSystemPointerSize == 8); STATIC_ASSERT(kSmiTagSize == 1); STATIC_ASSERT(kSmiTag == 0); // The builtin_index register contains the builtin index as a Smi. SmiUntag(builtin_index, builtin_index); Alsl_d(builtin_index, builtin_index, kRootRegister, kSystemPointerSizeLog2, t7); Ld_d(builtin_index, MemOperand(builtin_index, IsolateData::builtin_entry_table_offset())); } void TurboAssembler::LoadEntryFromBuiltin(Builtin builtin, Register destination) { Ld_d(destination, EntryFromBuiltinAsOperand(builtin)); } MemOperand TurboAssembler::EntryFromBuiltinAsOperand(Builtin builtin) { DCHECK(root_array_available()); return MemOperand(kRootRegister, IsolateData::BuiltinEntrySlotOffset(builtin)); } void TurboAssembler::CallBuiltinByIndex(Register builtin_index) { LoadEntryFromBuiltinIndex(builtin_index); Call(builtin_index); } void TurboAssembler::CallBuiltin(Builtin builtin) { RecordCommentForOffHeapTrampoline(builtin); Call(BuiltinEntry(builtin), RelocInfo::OFF_HEAP_TARGET); if (FLAG_code_comments) RecordComment("]"); } void TurboAssembler::PatchAndJump(Address target) { UseScratchRegisterScope temps(this); Register scratch = temps.Acquire(); pcaddi(scratch, 4); Ld_d(t7, MemOperand(scratch, 0)); jirl(zero_reg, t7, 0); nop(); DCHECK_EQ(reinterpret_cast(pc_) % 8, 0); *reinterpret_cast(pc_) = target; // pc_ should be align. pc_ += sizeof(uint64_t); } void TurboAssembler::StoreReturnAddressAndCall(Register target) { // This generates the final instruction sequence for calls to C functions // once an exit frame has been constructed. // // Note that this assumes the caller code (i.e. the Code object currently // being generated) is immovable or that the callee function cannot trigger // GC, since the callee function will return to it. Assembler::BlockTrampolinePoolScope block_trampoline_pool(this); static constexpr int kNumInstructionsToJump = 2; Label find_ra; // Adjust the value in ra to point to the correct return location, 2nd // instruction past the real call into C code (the jirl)), and push it. // This is the return address of the exit frame. pcaddi(ra, kNumInstructionsToJump + 1); bind(&find_ra); // This spot was reserved in EnterExitFrame. St_d(ra, MemOperand(sp, 0)); // Stack is still aligned. // TODO(LOONG_dev): can be jirl target? a0 -- a7? jirl(zero_reg, target, 0); // Make sure the stored 'ra' points to this position. DCHECK_EQ(kNumInstructionsToJump, InstructionsGeneratedSince(&find_ra)); } void TurboAssembler::Ret(Condition cond, Register rj, const Operand& rk) { Jump(ra, cond, rj, rk); } void TurboAssembler::Drop(int count, Condition cond, Register reg, const Operand& op) { if (count <= 0) { return; } Label skip; if (cond != al) { Branch(&skip, NegateCondition(cond), reg, op); } Add_d(sp, sp, Operand(count * kPointerSize)); if (cond != al) { bind(&skip); } } void MacroAssembler::Swap(Register reg1, Register reg2, Register scratch) { if (scratch == no_reg) { Xor(reg1, reg1, Operand(reg2)); Xor(reg2, reg2, Operand(reg1)); Xor(reg1, reg1, Operand(reg2)); } else { mov(scratch, reg1); mov(reg1, reg2); mov(reg2, scratch); } } void TurboAssembler::Call(Label* target) { Branch(target, true); } void TurboAssembler::Push(Smi smi) { UseScratchRegisterScope temps(this); Register scratch = temps.Acquire(); li(scratch, Operand(smi)); Push(scratch); } void TurboAssembler::Push(Handle handle) { UseScratchRegisterScope temps(this); Register scratch = temps.Acquire(); li(scratch, Operand(handle)); Push(scratch); } void TurboAssembler::PushArray(Register array, Register size, Register scratch, Register scratch2, PushArrayOrder order) { DCHECK(!AreAliased(array, size, scratch, scratch2)); Label loop, entry; if (order == PushArrayOrder::kReverse) { mov(scratch, zero_reg); jmp(&entry); bind(&loop); Alsl_d(scratch2, scratch, array, kPointerSizeLog2, t7); Ld_d(scratch2, MemOperand(scratch2, 0)); Push(scratch2); Add_d(scratch, scratch, Operand(1)); bind(&entry); Branch(&loop, less, scratch, Operand(size)); } else { mov(scratch, size); jmp(&entry); bind(&loop); Alsl_d(scratch2, scratch, array, kPointerSizeLog2, t7); Ld_d(scratch2, MemOperand(scratch2, 0)); Push(scratch2); bind(&entry); Add_d(scratch, scratch, Operand(-1)); Branch(&loop, greater_equal, scratch, Operand(zero_reg)); } } // --------------------------------------------------------------------------- // Exception handling. void MacroAssembler::PushStackHandler() { // Adjust this code if not the case. STATIC_ASSERT(StackHandlerConstants::kSize == 2 * kPointerSize); STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0 * kPointerSize); Push(Smi::zero()); // Padding. // Link the current handler as the next handler. li(t2, ExternalReference::Create(IsolateAddressId::kHandlerAddress, isolate())); Ld_d(t1, MemOperand(t2, 0)); Push(t1); // Set this new handler as the current one. St_d(sp, MemOperand(t2, 0)); } void MacroAssembler::PopStackHandler() { STATIC_ASSERT(StackHandlerConstants::kNextOffset == 0); Pop(a1); Add_d(sp, sp, Operand( static_cast(StackHandlerConstants::kSize - kPointerSize))); UseScratchRegisterScope temps(this); Register scratch = temps.Acquire(); li(scratch, ExternalReference::Create(IsolateAddressId::kHandlerAddress, isolate())); St_d(a1, MemOperand(scratch, 0)); } void TurboAssembler::FPUCanonicalizeNaN(const DoubleRegister dst, const DoubleRegister src) { fsub_d(dst, src, kDoubleRegZero); } // ----------------------------------------------------------------------------- // JavaScript invokes. void MacroAssembler::LoadStackLimit(Register destination, StackLimitKind kind) { DCHECK(root_array_available()); Isolate* isolate = this->isolate(); ExternalReference limit = kind == StackLimitKind::kRealStackLimit ? ExternalReference::address_of_real_jslimit(isolate) : ExternalReference::address_of_jslimit(isolate); DCHECK(TurboAssembler::IsAddressableThroughRootRegister(isolate, limit)); intptr_t offset = TurboAssembler::RootRegisterOffsetForExternalReference(isolate, limit); CHECK(is_int32(offset)); Ld_d(destination, MemOperand(kRootRegister, static_cast(offset))); } void MacroAssembler::StackOverflowCheck(Register num_args, Register scratch1, Register scratch2, Label* stack_overflow) { // Check the stack for overflow. We are not trying to catch // interruptions (e.g. debug break and preemption) here, so the "real stack // limit" is checked. LoadStackLimit(scratch1, StackLimitKind::kRealStackLimit); // Make scratch1 the space we have left. The stack might already be overflowed // here which will cause scratch1 to become negative. sub_d(scratch1, sp, scratch1); // Check if the arguments will overflow the stack. slli_d(scratch2, num_args, kPointerSizeLog2); // Signed comparison. Branch(stack_overflow, le, scratch1, Operand(scratch2)); } void MacroAssembler::InvokePrologue(Register expected_parameter_count, Register actual_parameter_count, Label* done, InvokeType type) { Label regular_invoke; // a0: actual arguments count // a1: function (passed through to callee) // a2: expected arguments count DCHECK_EQ(actual_parameter_count, a0); DCHECK_EQ(expected_parameter_count, a2); // If the expected parameter count is equal to the adaptor sentinel, no need // to push undefined value as arguments. Branch(®ular_invoke, eq, expected_parameter_count, Operand(kDontAdaptArgumentsSentinel)); // If overapplication or if the actual argument count is equal to the // formal parameter count, no need to push extra undefined values. sub_d(expected_parameter_count, expected_parameter_count, actual_parameter_count); Branch(®ular_invoke, le, expected_parameter_count, Operand(zero_reg)); Label stack_overflow; StackOverflowCheck(expected_parameter_count, t0, t1, &stack_overflow); // Underapplication. Move the arguments already in the stack, including the // receiver and the return address. { Label copy; Register src = a6, dest = a7; mov(src, sp); slli_d(t0, expected_parameter_count, kSystemPointerSizeLog2); Sub_d(sp, sp, Operand(t0)); // Update stack pointer. mov(dest, sp); mov(t0, actual_parameter_count); bind(©); Ld_d(t1, MemOperand(src, 0)); St_d(t1, MemOperand(dest, 0)); Sub_d(t0, t0, Operand(1)); Add_d(src, src, Operand(kSystemPointerSize)); Add_d(dest, dest, Operand(kSystemPointerSize)); Branch(©, ge, t0, Operand(zero_reg)); } // Fill remaining expected arguments with undefined values. LoadRoot(t0, RootIndex::kUndefinedValue); { Label loop; bind(&loop); St_d(t0, MemOperand(a7, 0)); Sub_d(expected_parameter_count, expected_parameter_count, Operand(1)); Add_d(a7, a7, Operand(kSystemPointerSize)); Branch(&loop, gt, expected_parameter_count, Operand(zero_reg)); } b(®ular_invoke); bind(&stack_overflow); { FrameScope frame(this, has_frame() ? StackFrame::NONE : StackFrame::INTERNAL); CallRuntime(Runtime::kThrowStackOverflow); break_(0xCC); } bind(®ular_invoke); } void MacroAssembler::CallDebugOnFunctionCall(Register fun, Register new_target, Register expected_parameter_count, Register actual_parameter_count) { // Load receiver to pass it later to DebugOnFunctionCall hook. LoadReceiver(t0, actual_parameter_count); FrameScope frame(this, has_frame() ? StackFrame::NONE : StackFrame::INTERNAL); SmiTag(expected_parameter_count); Push(expected_parameter_count); SmiTag(actual_parameter_count); Push(actual_parameter_count); if (new_target.is_valid()) { Push(new_target); } // TODO(LOONG_dev): MultiPush/Pop Push(fun); Push(fun); Push(t0); CallRuntime(Runtime::kDebugOnFunctionCall); Pop(fun); if (new_target.is_valid()) { Pop(new_target); } Pop(actual_parameter_count); SmiUntag(actual_parameter_count); Pop(expected_parameter_count); SmiUntag(expected_parameter_count); } void MacroAssembler::InvokeFunctionCode(Register function, Register new_target, Register expected_parameter_count, Register actual_parameter_count, InvokeType type) { // You can't call a function without a valid frame. DCHECK_IMPLIES(type == InvokeType::kCall, has_frame()); DCHECK_EQ(function, a1); DCHECK_IMPLIES(new_target.is_valid(), new_target == a3); // On function call, call into the debugger if necessary. Label debug_hook, continue_after_hook; { li(t0, ExternalReference::debug_hook_on_function_call_address(isolate())); Ld_b(t0, MemOperand(t0, 0)); BranchShort(&debug_hook, ne, t0, Operand(zero_reg)); } bind(&continue_after_hook); // Clear the new.target register if not given. if (!new_target.is_valid()) { LoadRoot(a3, RootIndex::kUndefinedValue); } Label done; InvokePrologue(expected_parameter_count, actual_parameter_count, &done, type); // We call indirectly through the code field in the function to // allow recompilation to take effect without changing any of the // call sites. Register code = kJavaScriptCallCodeStartRegister; Ld_d(code, FieldMemOperand(function, JSFunction::kCodeOffset)); switch (type) { case InvokeType::kCall: CallCodeObject(code); break; case InvokeType::kJump: JumpCodeObject(code); break; } Branch(&done); // Deferred debug hook. bind(&debug_hook); CallDebugOnFunctionCall(function, new_target, expected_parameter_count, actual_parameter_count); Branch(&continue_after_hook); // Continue here if InvokePrologue does handle the invocation due to // mismatched parameter counts. bind(&done); } void MacroAssembler::InvokeFunctionWithNewTarget( Register function, Register new_target, Register actual_parameter_count, InvokeType type) { // You can't call a function without a valid frame. DCHECK_IMPLIES(type == InvokeType::kCall, has_frame()); // Contract with called JS functions requires that function is passed in a1. DCHECK_EQ(function, a1); Register expected_parameter_count = a2; Register temp_reg = t0; Ld_d(temp_reg, FieldMemOperand(a1, JSFunction::kSharedFunctionInfoOffset)); Ld_d(cp, FieldMemOperand(a1, JSFunction::kContextOffset)); // The argument count is stored as uint16_t Ld_hu(expected_parameter_count, FieldMemOperand(temp_reg, SharedFunctionInfo::kFormalParameterCountOffset)); InvokeFunctionCode(a1, new_target, expected_parameter_count, actual_parameter_count, type); } void MacroAssembler::InvokeFunction(Register function, Register expected_parameter_count, Register actual_parameter_count, InvokeType type) { // You can't call a function without a valid frame. DCHECK_IMPLIES(type == InvokeType::kCall, has_frame()); // Contract with called JS functions requires that function is passed in a1. DCHECK_EQ(function, a1); // Get the function and setup the context. Ld_d(cp, FieldMemOperand(a1, JSFunction::kContextOffset)); InvokeFunctionCode(a1, no_reg, expected_parameter_count, actual_parameter_count, type); } // --------------------------------------------------------------------------- // Support functions. void MacroAssembler::GetObjectType(Register object, Register map, Register type_reg) { LoadMap(map, object); Ld_hu(type_reg, FieldMemOperand(map, Map::kInstanceTypeOffset)); } void MacroAssembler::GetInstanceTypeRange(Register map, Register type_reg, InstanceType lower_limit, Register range) { Ld_hu(type_reg, FieldMemOperand(map, Map::kInstanceTypeOffset)); Sub_d(range, type_reg, Operand(lower_limit)); } // ----------------------------------------------------------------------------- // Runtime calls. void TurboAssembler::AddOverflow_d(Register dst, Register left, const Operand& right, Register overflow) { BlockTrampolinePoolScope block_trampoline_pool(this); UseScratchRegisterScope temps(this); Register scratch = temps.Acquire(); Register scratch2 = temps.Acquire(); Register right_reg = no_reg; if (!right.is_reg()) { li(scratch, Operand(right)); right_reg = scratch; } else { right_reg = right.rm(); } DCHECK(left != scratch2 && right_reg != scratch2 && dst != scratch2 && overflow != scratch2); DCHECK(overflow != left && overflow != right_reg); if (dst == left || dst == right_reg) { add_d(scratch2, left, right_reg); xor_(overflow, scratch2, left); xor_(scratch, scratch2, right_reg); and_(overflow, overflow, scratch); mov(dst, scratch2); } else { add_d(dst, left, right_reg); xor_(overflow, dst, left); xor_(scratch, dst, right_reg); and_(overflow, overflow, scratch); } } void TurboAssembler::SubOverflow_d(Register dst, Register left, const Operand& right, Register overflow) { BlockTrampolinePoolScope block_trampoline_pool(this); UseScratchRegisterScope temps(this); Register scratch = temps.Acquire(); Register scratch2 = temps.Acquire(); Register right_reg = no_reg; if (!right.is_reg()) { li(scratch, Operand(right)); right_reg = scratch; } else { right_reg = right.rm(); } DCHECK(left != scratch2 && right_reg != scratch2 && dst != scratch2 && overflow != scratch2); DCHECK(overflow != left && overflow != right_reg); if (dst == left || dst == right_reg) { Sub_d(scratch2, left, right_reg); xor_(overflow, left, scratch2); xor_(scratch, left, right_reg); and_(overflow, overflow, scratch); mov(dst, scratch2); } else { sub_d(dst, left, right_reg); xor_(overflow, left, dst); xor_(scratch, left, right_reg); and_(overflow, overflow, scratch); } } void TurboAssembler::MulOverflow_w(Register dst, Register left, const Operand& right, Register overflow) { BlockTrampolinePoolScope block_trampoline_pool(this); UseScratchRegisterScope temps(this); Register scratch = temps.Acquire(); Register scratch2 = temps.Acquire(); Register right_reg = no_reg; if (!right.is_reg()) { li(scratch, Operand(right)); right_reg = scratch; } else { right_reg = right.rm(); } DCHECK(left != scratch2 && right_reg != scratch2 && dst != scratch2 && overflow != scratch2); DCHECK(overflow != left && overflow != right_reg); if (dst == left || dst == right_reg) { Mul_w(scratch2, left, right_reg); Mulh_w(overflow, left, right_reg); mov(dst, scratch2); } else { Mul_w(dst, left, right_reg); Mulh_w(overflow, left, right_reg); } srai_d(scratch2, dst, 32); xor_(overflow, overflow, scratch2); } void MacroAssembler::CallRuntime(const Runtime::Function* f, int num_arguments, SaveFPRegsMode save_doubles) { // All parameters are on the stack. v0 has the return value after call. // If the expected number of arguments of the runtime function is // constant, we check that the actual number of arguments match the // expectation. CHECK(f->nargs < 0 || f->nargs == num_arguments); // TODO(1236192): Most runtime routines don't need the number of // arguments passed in because it is constant. At some point we // should remove this need and make the runtime routine entry code // smarter. PrepareCEntryArgs(num_arguments); PrepareCEntryFunction(ExternalReference::Create(f)); Handle code = CodeFactory::CEntry(isolate(), f->result_size, save_doubles); Call(code, RelocInfo::CODE_TARGET); } void MacroAssembler::TailCallRuntime(Runtime::FunctionId fid) { const Runtime::Function* function = Runtime::FunctionForId(fid); DCHECK_EQ(1, function->result_size); if (function->nargs >= 0) { PrepareCEntryArgs(function->nargs); } JumpToExternalReference(ExternalReference::Create(fid)); } void MacroAssembler::JumpToExternalReference(const ExternalReference& builtin, bool builtin_exit_frame) { PrepareCEntryFunction(builtin); Handle code = CodeFactory::CEntry(isolate(), 1, SaveFPRegsMode::kIgnore, ArgvMode::kStack, builtin_exit_frame); Jump(code, RelocInfo::CODE_TARGET, al, zero_reg, Operand(zero_reg)); } void MacroAssembler::JumpToInstructionStream(Address entry) { li(kOffHeapTrampolineRegister, Operand(entry, RelocInfo::OFF_HEAP_TARGET)); Jump(kOffHeapTrampolineRegister); } void MacroAssembler::LoadWeakValue(Register out, Register in, Label* target_if_cleared) { Branch(target_if_cleared, eq, in, Operand(kClearedWeakHeapObjectLower32)); And(out, in, Operand(~kWeakHeapObjectMask)); } void MacroAssembler::EmitIncrementCounter(StatsCounter* counter, int value, Register scratch1, Register scratch2) { DCHECK_GT(value, 0); if (FLAG_native_code_counters && counter->Enabled()) { // This operation has to be exactly 32-bit wide in case the external // reference table redirects the counter to a uint32_t dummy_stats_counter_ // field. li(scratch2, ExternalReference::Create(counter)); Ld_w(scratch1, MemOperand(scratch2, 0)); Add_w(scratch1, scratch1, Operand(value)); St_w(scratch1, MemOperand(scratch2, 0)); } } void MacroAssembler::EmitDecrementCounter(StatsCounter* counter, int value, Register scratch1, Register scratch2) { DCHECK_GT(value, 0); if (FLAG_native_code_counters && counter->Enabled()) { // This operation has to be exactly 32-bit wide in case the external // reference table redirects the counter to a uint32_t dummy_stats_counter_ // field. li(scratch2, ExternalReference::Create(counter)); Ld_w(scratch1, MemOperand(scratch2, 0)); Sub_w(scratch1, scratch1, Operand(value)); St_w(scratch1, MemOperand(scratch2, 0)); } } // ----------------------------------------------------------------------------- // Debugging. void TurboAssembler::Trap() { stop(); } void TurboAssembler::DebugBreak() { stop(); } void TurboAssembler::Assert(Condition cc, AbortReason reason, Register rs, Operand rk) { if (FLAG_debug_code) Check(cc, reason, rs, rk); } void TurboAssembler::Check(Condition cc, AbortReason reason, Register rj, Operand rk) { Label L; Branch(&L, cc, rj, rk); Abort(reason); // Will not return here. bind(&L); } void TurboAssembler::Abort(AbortReason reason) { Label abort_start; bind(&abort_start); if (FLAG_code_comments) { const char* msg = GetAbortReason(reason); RecordComment("Abort message: "); RecordComment(msg); } // Avoid emitting call to builtin if requested. if (trap_on_abort()) { stop(); return; } if (should_abort_hard()) { // We don't care if we constructed a frame. Just pretend we did. FrameScope assume_frame(this, StackFrame::NONE); PrepareCallCFunction(0, a0); li(a0, Operand(static_cast(reason))); CallCFunction(ExternalReference::abort_with_reason(), 1); return; } Move(a0, Smi::FromInt(static_cast(reason))); // Disable stub call restrictions to always allow calls to abort. if (!has_frame()) { // We don't actually want to generate a pile of code for this, so just // claim there is a stack frame, without generating one. FrameScope scope(this, StackFrame::NONE); Call(BUILTIN_CODE(isolate(), Abort), RelocInfo::CODE_TARGET); } else { Call(BUILTIN_CODE(isolate(), Abort), RelocInfo::CODE_TARGET); } // Will not return here. if (is_trampoline_pool_blocked()) { // If the calling code cares about the exact number of // instructions generated, we insert padding here to keep the size // of the Abort macro constant. // Currently in debug mode with debug_code enabled the number of // generated instructions is 10, so we use this as a maximum value. static const int kExpectedAbortInstructions = 10; int abort_instructions = InstructionsGeneratedSince(&abort_start); DCHECK_LE(abort_instructions, kExpectedAbortInstructions); while (abort_instructions++ < kExpectedAbortInstructions) { nop(); } } } void TurboAssembler::LoadMap(Register destination, Register object) { Ld_d(destination, FieldMemOperand(object, HeapObject::kMapOffset)); } void MacroAssembler::LoadNativeContextSlot(Register dst, int index) { LoadMap(dst, cp); Ld_d(dst, FieldMemOperand( dst, Map::kConstructorOrBackPointerOrNativeContextOffset)); Ld_d(dst, MemOperand(dst, Context::SlotOffset(index))); } void TurboAssembler::StubPrologue(StackFrame::Type type) { UseScratchRegisterScope temps(this); Register scratch = temps.Acquire(); li(scratch, Operand(StackFrame::TypeToMarker(type))); PushCommonFrame(scratch); } void TurboAssembler::Prologue() { PushStandardFrame(a1); } void TurboAssembler::EnterFrame(StackFrame::Type type) { BlockTrampolinePoolScope block_trampoline_pool(this); Push(ra, fp); Move(fp, sp); if (!StackFrame::IsJavaScript(type)) { li(kScratchReg, Operand(StackFrame::TypeToMarker(type))); Push(kScratchReg); } #if V8_ENABLE_WEBASSEMBLY if (type == StackFrame::WASM) Push(kWasmInstanceRegister); #endif // V8_ENABLE_WEBASSEMBLY } void TurboAssembler::LeaveFrame(StackFrame::Type type) { addi_d(sp, fp, 2 * kPointerSize); Ld_d(ra, MemOperand(fp, 1 * kPointerSize)); Ld_d(fp, MemOperand(fp, 0 * kPointerSize)); } void MacroAssembler::EnterExitFrame(bool save_doubles, int stack_space, StackFrame::Type frame_type) { DCHECK(frame_type == StackFrame::EXIT || frame_type == StackFrame::BUILTIN_EXIT); // Set up the frame structure on the stack. STATIC_ASSERT(2 * kPointerSize == ExitFrameConstants::kCallerSPDisplacement); STATIC_ASSERT(1 * kPointerSize == ExitFrameConstants::kCallerPCOffset); STATIC_ASSERT(0 * kPointerSize == ExitFrameConstants::kCallerFPOffset); // This is how the stack will look: // fp + 2 (==kCallerSPDisplacement) - old stack's end // [fp + 1 (==kCallerPCOffset)] - saved old ra // [fp + 0 (==kCallerFPOffset)] - saved old fp // [fp - 1 StackFrame::EXIT Smi // [fp - 2 (==kSPOffset)] - sp of the called function // fp - (2 + stack_space + alignment) == sp == [fp - kSPOffset] - top of the // new stack (will contain saved ra) // Save registers and reserve room for saved entry sp. addi_d(sp, sp, -2 * kPointerSize - ExitFrameConstants::kFixedFrameSizeFromFp); St_d(ra, MemOperand(sp, 3 * kPointerSize)); St_d(fp, MemOperand(sp, 2 * kPointerSize)); { UseScratchRegisterScope temps(this); Register scratch = temps.Acquire(); li(scratch, Operand(StackFrame::TypeToMarker(frame_type))); St_d(scratch, MemOperand(sp, 1 * kPointerSize)); } // Set up new frame pointer. addi_d(fp, sp, ExitFrameConstants::kFixedFrameSizeFromFp); if (FLAG_debug_code) { St_d(zero_reg, MemOperand(fp, ExitFrameConstants::kSPOffset)); } { BlockTrampolinePoolScope block_trampoline_pool(this); // Save the frame pointer and the context in top. li(t8, ExternalReference::Create(IsolateAddressId::kCEntryFPAddress, isolate())); St_d(fp, MemOperand(t8, 0)); li(t8, ExternalReference::Create(IsolateAddressId::kContextAddress, isolate())); St_d(cp, MemOperand(t8, 0)); } const int frame_alignment = MacroAssembler::ActivationFrameAlignment(); if (save_doubles) { // The stack is already aligned to 0 modulo 8 for stores with sdc1. int kNumOfSavedRegisters = FPURegister::kNumRegisters / 2; int space = kNumOfSavedRegisters * kDoubleSize; Sub_d(sp, sp, Operand(space)); // Remember: we only need to save every 2nd double FPU value. for (int i = 0; i < kNumOfSavedRegisters; i++) { FPURegister reg = FPURegister::from_code(2 * i); Fst_d(reg, MemOperand(sp, i * kDoubleSize)); } } // Reserve place for the return address, stack space and an optional slot // (used by DirectCEntry to hold the return value if a struct is // returned) and align the frame preparing for calling the runtime function. DCHECK_GE(stack_space, 0); Sub_d(sp, sp, Operand((stack_space + 2) * kPointerSize)); if (frame_alignment > 0) { DCHECK(base::bits::IsPowerOfTwo(frame_alignment)); And(sp, sp, Operand(-frame_alignment)); // Align stack. } // Set the exit frame sp value to point just before the return address // location. UseScratchRegisterScope temps(this); Register scratch = temps.Acquire(); addi_d(scratch, sp, kPointerSize); St_d(scratch, MemOperand(fp, ExitFrameConstants::kSPOffset)); } void MacroAssembler::LeaveExitFrame(bool save_doubles, Register argument_count, bool do_return, bool argument_count_is_length) { BlockTrampolinePoolScope block_trampoline_pool(this); // Optionally restore all double registers. if (save_doubles) { // Remember: we only need to restore every 2nd double FPU value. int kNumOfSavedRegisters = FPURegister::kNumRegisters / 2; Sub_d(t8, fp, Operand(ExitFrameConstants::kFixedFrameSizeFromFp + kNumOfSavedRegisters * kDoubleSize)); for (int i = 0; i < kNumOfSavedRegisters; i++) { FPURegister reg = FPURegister::from_code(2 * i); Fld_d(reg, MemOperand(t8, i * kDoubleSize)); } } // Clear top frame. li(t8, ExternalReference::Create(IsolateAddressId::kCEntryFPAddress, isolate())); St_d(zero_reg, MemOperand(t8, 0)); // Restore current context from top and clear it in debug mode. li(t8, ExternalReference::Create(IsolateAddressId::kContextAddress, isolate())); Ld_d(cp, MemOperand(t8, 0)); if (FLAG_debug_code) { UseScratchRegisterScope temp(this); Register scratch = temp.Acquire(); li(scratch, Operand(Context::kInvalidContext)); St_d(scratch, MemOperand(t8, 0)); } // Pop the arguments, restore registers, and return. mov(sp, fp); // Respect ABI stack constraint. Ld_d(fp, MemOperand(sp, ExitFrameConstants::kCallerFPOffset)); Ld_d(ra, MemOperand(sp, ExitFrameConstants::kCallerPCOffset)); if (argument_count.is_valid()) { if (argument_count_is_length) { add_d(sp, sp, argument_count); } else { Alsl_d(sp, argument_count, sp, kPointerSizeLog2, t8); } } addi_d(sp, sp, 2 * kPointerSize); if (do_return) { Ret(); } } int TurboAssembler::ActivationFrameAlignment() { #if V8_HOST_ARCH_LOONG64 // Running on the real platform. Use the alignment as mandated by the local // environment. // Note: This will break if we ever start generating snapshots on one LOONG64 // platform for another LOONG64 platform with a different alignment. return base::OS::ActivationFrameAlignment(); #else // V8_HOST_ARCH_LOONG64 // If we are using the simulator then we should always align to the expected // alignment. As the simulator is used to generate snapshots we do not know // if the target platform will need alignment, so this is controlled from a // flag. return FLAG_sim_stack_alignment; #endif // V8_HOST_ARCH_LOONG64 } void MacroAssembler::AssertStackIsAligned() { if (FLAG_debug_code) { const int frame_alignment = ActivationFrameAlignment(); const int frame_alignment_mask = frame_alignment - 1; if (frame_alignment > kPointerSize) { Label alignment_as_expected; DCHECK(base::bits::IsPowerOfTwo(frame_alignment)); { UseScratchRegisterScope temps(this); Register scratch = temps.Acquire(); andi(scratch, sp, frame_alignment_mask); Branch(&alignment_as_expected, eq, scratch, Operand(zero_reg)); } // Don't use Check here, as it will call Runtime_Abort re-entering here. stop(); bind(&alignment_as_expected); } } } void TurboAssembler::SmiUntag(Register dst, const MemOperand& src) { if (SmiValuesAre32Bits()) { Ld_w(dst, MemOperand(src.base(), SmiWordOffset(src.offset()))); } else { DCHECK(SmiValuesAre31Bits()); Ld_w(dst, src); SmiUntag(dst); } } void TurboAssembler::JumpIfSmi(Register value, Label* smi_label) { DCHECK_EQ(0, kSmiTag); UseScratchRegisterScope temps(this); Register scratch = temps.Acquire(); andi(scratch, value, kSmiTagMask); Branch(smi_label, eq, scratch, Operand(zero_reg)); } void MacroAssembler::JumpIfNotSmi(Register value, Label* not_smi_label) { DCHECK_EQ(0, kSmiTag); UseScratchRegisterScope temps(this); Register scratch = temps.Acquire(); andi(scratch, value, kSmiTagMask); Branch(not_smi_label, ne, scratch, Operand(zero_reg)); } void MacroAssembler::AssertNotSmi(Register object) { if (FLAG_debug_code) { STATIC_ASSERT(kSmiTag == 0); UseScratchRegisterScope temps(this); Register scratch = temps.Acquire(); andi(scratch, object, kSmiTagMask); Check(ne, AbortReason::kOperandIsASmi, scratch, Operand(zero_reg)); } } void MacroAssembler::AssertSmi(Register object) { if (FLAG_debug_code) { STATIC_ASSERT(kSmiTag == 0); UseScratchRegisterScope temps(this); Register scratch = temps.Acquire(); andi(scratch, object, kSmiTagMask); Check(eq, AbortReason::kOperandIsASmi, scratch, Operand(zero_reg)); } } void MacroAssembler::AssertConstructor(Register object) { if (FLAG_debug_code) { BlockTrampolinePoolScope block_trampoline_pool(this); STATIC_ASSERT(kSmiTag == 0); SmiTst(object, t8); Check(ne, AbortReason::kOperandIsASmiAndNotAConstructor, t8, Operand(zero_reg)); LoadMap(t8, object); Ld_bu(t8, FieldMemOperand(t8, Map::kBitFieldOffset)); And(t8, t8, Operand(Map::Bits1::IsConstructorBit::kMask)); Check(ne, AbortReason::kOperandIsNotAConstructor, t8, Operand(zero_reg)); } } void MacroAssembler::AssertFunction(Register object) { if (FLAG_debug_code) { BlockTrampolinePoolScope block_trampoline_pool(this); STATIC_ASSERT(kSmiTag == 0); SmiTst(object, t8); Check(ne, AbortReason::kOperandIsASmiAndNotAFunction, t8, Operand(zero_reg)); Push(object); LoadMap(object, object); GetInstanceTypeRange(object, object, FIRST_JS_FUNCTION_TYPE, t8); Check(ls, AbortReason::kOperandIsNotAFunction, t8, Operand(LAST_JS_FUNCTION_TYPE - FIRST_JS_FUNCTION_TYPE)); Pop(object); } } void MacroAssembler::AssertBoundFunction(Register object) { if (FLAG_debug_code) { BlockTrampolinePoolScope block_trampoline_pool(this); STATIC_ASSERT(kSmiTag == 0); SmiTst(object, t8); Check(ne, AbortReason::kOperandIsASmiAndNotABoundFunction, t8, Operand(zero_reg)); GetObjectType(object, t8, t8); Check(eq, AbortReason::kOperandIsNotABoundFunction, t8, Operand(JS_BOUND_FUNCTION_TYPE)); } } void MacroAssembler::AssertGeneratorObject(Register object) { if (!FLAG_debug_code) return; BlockTrampolinePoolScope block_trampoline_pool(this); STATIC_ASSERT(kSmiTag == 0); SmiTst(object, t8); Check(ne, AbortReason::kOperandIsASmiAndNotAGeneratorObject, t8, Operand(zero_reg)); GetObjectType(object, t8, t8); Label done; // Check if JSGeneratorObject Branch(&done, eq, t8, Operand(JS_GENERATOR_OBJECT_TYPE)); // Check if JSAsyncFunctionObject (See MacroAssembler::CompareInstanceType) Branch(&done, eq, t8, Operand(JS_ASYNC_FUNCTION_OBJECT_TYPE)); // Check if JSAsyncGeneratorObject Branch(&done, eq, t8, Operand(JS_ASYNC_GENERATOR_OBJECT_TYPE)); Abort(AbortReason::kOperandIsNotAGeneratorObject); bind(&done); } void MacroAssembler::AssertUndefinedOrAllocationSite(Register object, Register scratch) { if (FLAG_debug_code) { Label done_checking; AssertNotSmi(object); LoadRoot(scratch, RootIndex::kUndefinedValue); Branch(&done_checking, eq, object, Operand(scratch)); GetObjectType(object, scratch, scratch); Assert(eq, AbortReason::kExpectedUndefinedOrCell, scratch, Operand(ALLOCATION_SITE_TYPE)); bind(&done_checking); } } void TurboAssembler::Float32Max(FPURegister dst, FPURegister src1, FPURegister src2, Label* out_of_line) { if (src1 == src2) { Move_s(dst, src1); return; } // Check if one of operands is NaN. CompareIsNanF32(src1, src2); BranchTrueF(out_of_line); fmax_s(dst, src1, src2); } void TurboAssembler::Float32MaxOutOfLine(FPURegister dst, FPURegister src1, FPURegister src2) { fadd_s(dst, src1, src2); } void TurboAssembler::Float32Min(FPURegister dst, FPURegister src1, FPURegister src2, Label* out_of_line) { if (src1 == src2) { Move_s(dst, src1); return; } // Check if one of operands is NaN. CompareIsNanF32(src1, src2); BranchTrueF(out_of_line); fmin_s(dst, src1, src2); } void TurboAssembler::Float32MinOutOfLine(FPURegister dst, FPURegister src1, FPURegister src2) { fadd_s(dst, src1, src2); } void TurboAssembler::Float64Max(FPURegister dst, FPURegister src1, FPURegister src2, Label* out_of_line) { if (src1 == src2) { Move_d(dst, src1); return; } // Check if one of operands is NaN. CompareIsNanF64(src1, src2); BranchTrueF(out_of_line); fmax_d(dst, src1, src2); } void TurboAssembler::Float64MaxOutOfLine(FPURegister dst, FPURegister src1, FPURegister src2) { fadd_d(dst, src1, src2); } void TurboAssembler::Float64Min(FPURegister dst, FPURegister src1, FPURegister src2, Label* out_of_line) { if (src1 == src2) { Move_d(dst, src1); return; } // Check if one of operands is NaN. CompareIsNanF64(src1, src2); BranchTrueF(out_of_line); fmin_d(dst, src1, src2); } void TurboAssembler::Float64MinOutOfLine(FPURegister dst, FPURegister src1, FPURegister src2) { fadd_d(dst, src1, src2); } static const int kRegisterPassedArguments = 8; int TurboAssembler::CalculateStackPassedWords(int num_reg_arguments, int num_double_arguments) { int stack_passed_words = 0; num_reg_arguments += 2 * num_double_arguments; // Up to eight simple arguments are passed in registers a0..a7. if (num_reg_arguments > kRegisterPassedArguments) { stack_passed_words += num_reg_arguments - kRegisterPassedArguments; } return stack_passed_words; } void TurboAssembler::PrepareCallCFunction(int num_reg_arguments, int num_double_arguments, Register scratch) { int frame_alignment = ActivationFrameAlignment(); // Up to eight simple arguments in a0..a3, a4..a7, No argument slots. // Remaining arguments are pushed on the stack. int stack_passed_arguments = CalculateStackPassedWords(num_reg_arguments, num_double_arguments); if (frame_alignment > kPointerSize) { // Make stack end at alignment and make room for num_arguments - 4 words // and the original value of sp. mov(scratch, sp); Sub_d(sp, sp, Operand((stack_passed_arguments + 1) * kPointerSize)); DCHECK(base::bits::IsPowerOfTwo(frame_alignment)); bstrins_d(sp, zero_reg, std::log2(frame_alignment) - 1, 0); St_d(scratch, MemOperand(sp, stack_passed_arguments * kPointerSize)); } else { Sub_d(sp, sp, Operand(stack_passed_arguments * kPointerSize)); } } void TurboAssembler::PrepareCallCFunction(int num_reg_arguments, Register scratch) { PrepareCallCFunction(num_reg_arguments, 0, scratch); } void TurboAssembler::CallCFunction(ExternalReference function, int num_reg_arguments, int num_double_arguments) { BlockTrampolinePoolScope block_trampoline_pool(this); li(t7, function); CallCFunctionHelper(t7, num_reg_arguments, num_double_arguments); } void TurboAssembler::CallCFunction(Register function, int num_reg_arguments, int num_double_arguments) { CallCFunctionHelper(function, num_reg_arguments, num_double_arguments); } void TurboAssembler::CallCFunction(ExternalReference function, int num_arguments) { CallCFunction(function, num_arguments, 0); } void TurboAssembler::CallCFunction(Register function, int num_arguments) { CallCFunction(function, num_arguments, 0); } void TurboAssembler::CallCFunctionHelper(Register function, int num_reg_arguments, int num_double_arguments) { DCHECK_LE(num_reg_arguments + num_double_arguments, kMaxCParameters); DCHECK(has_frame()); // Make sure that the stack is aligned before calling a C function unless // running in the simulator. The simulator has its own alignment check which // provides more information. #if V8_HOST_ARCH_LOONG64 if (FLAG_debug_code) { int frame_alignment = base::OS::ActivationFrameAlignment(); int frame_alignment_mask = frame_alignment - 1; if (frame_alignment > kPointerSize) { DCHECK(base::bits::IsPowerOfTwo(frame_alignment)); Label alignment_as_expected; { Register scratch = t8; And(scratch, sp, Operand(frame_alignment_mask)); Branch(&alignment_as_expected, eq, scratch, Operand(zero_reg)); } // Don't use Check here, as it will call Runtime_Abort possibly // re-entering here. stop(); bind(&alignment_as_expected); } } #endif // V8_HOST_ARCH_LOONG64 // Just call directly. The function called cannot cause a GC, or // allow preemption, so the return address in the link register // stays correct. { BlockTrampolinePoolScope block_trampoline_pool(this); if (function != t7) { mov(t7, function); function = t7; } // Save the frame pointer and PC so that the stack layout remains iterable, // even without an ExitFrame which normally exists between JS and C frames. // 't' registers are caller-saved so this is safe as a scratch register. Register pc_scratch = t1; Register scratch = t2; DCHECK(!AreAliased(pc_scratch, scratch, function)); pcaddi(pc_scratch, 1); // See x64 code for reasoning about how to address the isolate data fields. if (root_array_available()) { St_d(pc_scratch, MemOperand(kRootRegister, IsolateData::fast_c_call_caller_pc_offset())); St_d(fp, MemOperand(kRootRegister, IsolateData::fast_c_call_caller_fp_offset())); } else { DCHECK_NOT_NULL(isolate()); li(scratch, ExternalReference::fast_c_call_caller_pc_address(isolate())); St_d(pc_scratch, MemOperand(scratch, 0)); li(scratch, ExternalReference::fast_c_call_caller_fp_address(isolate())); St_d(fp, MemOperand(scratch, 0)); } Call(function); // We don't unset the PC; the FP is the source of truth. if (root_array_available()) { St_d(zero_reg, MemOperand(kRootRegister, IsolateData::fast_c_call_caller_fp_offset())); } else { DCHECK_NOT_NULL(isolate()); li(scratch, ExternalReference::fast_c_call_caller_fp_address(isolate())); St_d(zero_reg, MemOperand(scratch, 0)); } } int stack_passed_arguments = CalculateStackPassedWords(num_reg_arguments, num_double_arguments); if (base::OS::ActivationFrameAlignment() > kPointerSize) { Ld_d(sp, MemOperand(sp, stack_passed_arguments * kPointerSize)); } else { Add_d(sp, sp, Operand(stack_passed_arguments * kPointerSize)); } } #undef BRANCH_ARGS_CHECK void TurboAssembler::CheckPageFlag(const Register& object, int mask, Condition cc, Label* condition_met) { UseScratchRegisterScope temps(this); temps.Include(t8); Register scratch = temps.Acquire(); And(scratch, object, Operand(~kPageAlignmentMask)); Ld_d(scratch, MemOperand(scratch, BasicMemoryChunk::kFlagsOffset)); And(scratch, scratch, Operand(mask)); Branch(condition_met, cc, scratch, Operand(zero_reg)); } Register GetRegisterThatIsNotOneOf(Register reg1, Register reg2, Register reg3, Register reg4, Register reg5, Register reg6) { RegList regs = 0; if (reg1.is_valid()) regs |= reg1.bit(); if (reg2.is_valid()) regs |= reg2.bit(); if (reg3.is_valid()) regs |= reg3.bit(); if (reg4.is_valid()) regs |= reg4.bit(); if (reg5.is_valid()) regs |= reg5.bit(); if (reg6.is_valid()) regs |= reg6.bit(); const RegisterConfiguration* config = RegisterConfiguration::Default(); for (int i = 0; i < config->num_allocatable_general_registers(); ++i) { int code = config->GetAllocatableGeneralCode(i); Register candidate = Register::from_code(code); if (regs & candidate.bit()) continue; return candidate; } UNREACHABLE(); } void TurboAssembler::ComputeCodeStartAddress(Register dst) { // TODO(LOONG_dev): range check, add Pcadd macro function? pcaddi(dst, -pc_offset() >> 2); } void TurboAssembler::CallForDeoptimization(Builtin target, int, Label* exit, DeoptimizeKind kind, Label* ret, Label*) { BlockTrampolinePoolScope block_trampoline_pool(this); Ld_d(t7, MemOperand(kRootRegister, IsolateData::BuiltinEntrySlotOffset(target))); Call(t7); DCHECK_EQ(SizeOfCodeGeneratedSince(exit), (kind == DeoptimizeKind::kLazy) ? Deoptimizer::kLazyDeoptExitSize : Deoptimizer::kNonLazyDeoptExitSize); if (kind == DeoptimizeKind::kEagerWithResume) { Branch(ret); DCHECK_EQ(SizeOfCodeGeneratedSince(exit), Deoptimizer::kEagerWithResumeBeforeArgsSize); } } void TurboAssembler::LoadCodeObjectEntry(Register destination, Register code_object) { // Code objects are called differently depending on whether we are generating // builtin code (which will later be embedded into the binary) or compiling // user JS code at runtime. // * Builtin code runs in --jitless mode and thus must not call into on-heap // Code targets. Instead, we dispatch through the builtins entry table. // * Codegen at runtime does not have this restriction and we can use the // shorter, branchless instruction sequence. The assumption here is that // targets are usually generated code and not builtin Code objects. if (options().isolate_independent_code) { DCHECK(root_array_available()); Label if_code_is_off_heap, out; Register scratch = t8; DCHECK(!AreAliased(destination, scratch)); DCHECK(!AreAliased(code_object, scratch)); // Check whether the Code object is an off-heap trampoline. If so, call its // (off-heap) entry point directly without going through the (on-heap) // trampoline. Otherwise, just call the Code object as always. Ld_w(scratch, FieldMemOperand(code_object, Code::kFlagsOffset)); And(scratch, scratch, Operand(Code::IsOffHeapTrampoline::kMask)); BranchShort(&if_code_is_off_heap, ne, scratch, Operand(zero_reg)); // Not an off-heap trampoline object, the entry point is at // Code::raw_instruction_start(). Add_d(destination, code_object, Code::kHeaderSize - kHeapObjectTag); Branch(&out); // An off-heap trampoline, the entry point is loaded from the builtin entry // table. bind(&if_code_is_off_heap); Ld_w(scratch, FieldMemOperand(code_object, Code::kBuiltinIndexOffset)); // TODO(liuyu): don't use scratch_reg in Alsl_d; Alsl_d(destination, scratch, kRootRegister, kSystemPointerSizeLog2, zero_reg); Ld_d(destination, MemOperand(destination, IsolateData::builtin_entry_table_offset())); bind(&out); } else { Add_d(destination, code_object, Code::kHeaderSize - kHeapObjectTag); } } void TurboAssembler::CallCodeObject(Register code_object) { LoadCodeObjectEntry(code_object, code_object); Call(code_object); } void TurboAssembler::JumpCodeObject(Register code_object, JumpMode jump_mode) { DCHECK_EQ(JumpMode::kJump, jump_mode); LoadCodeObjectEntry(code_object, code_object); Jump(code_object); } } // namespace internal } // namespace v8 #endif // V8_TARGET_ARCH_LOONG64