// Copyright (c) 1994-2006 Sun Microsystems Inc. // All Rights Reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // - Redistributions of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // - Redistribution in binary form must reproduce the above copyright // notice, this list of conditions and the following disclaimer in the // documentation and/or other materials provided with the distribution. // // - Neither the name of Sun Microsystems or the names of contributors may // be used to endorse or promote products derived from this software without // specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS // IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, // THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR // PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF // LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. // The original source code covered by the above license above has been // modified significantly by Google Inc. // Copyright 2021 the V8 project authors. All rights reserved. #ifndef V8_CODEGEN_RISCV_ASSEMBLER_RISCV_INL_H_ #define V8_CODEGEN_RISCV_ASSEMBLER_RISCV_INL_H_ #include "src/codegen/assembler-arch.h" #include "src/codegen/assembler.h" #include "src/debug/debug.h" #include "src/objects/objects-inl.h" namespace v8 { namespace internal { bool CpuFeatures::SupportsOptimizer() { return IsSupported(FPU); } void Assembler::CheckBuffer() { if (buffer_space() <= kGap) { GrowBuffer(); } } // ----------------------------------------------------------------------------- // RelocInfo. void RelocInfo::apply(intptr_t delta) { if (IsInternalReference(rmode_) || IsInternalReferenceEncoded(rmode_)) { // Absolute code pointer inside code object moves with the code object. Assembler::RelocateInternalReference(rmode_, pc_, delta); } else { DCHECK(IsRelativeCodeTarget(rmode_)); Assembler::RelocateRelativeReference(rmode_, pc_, delta); } } Address RelocInfo::target_address() { DCHECK(IsCodeTargetMode(rmode_) || IsWasmCall(rmode_) || IsNearBuiltinEntry(rmode_) || IsWasmStubCall(rmode_)); return Assembler::target_address_at(pc_, constant_pool_); } Address RelocInfo::target_address_address() { DCHECK(HasTargetAddressAddress()); // Read the address of the word containing the target_address in an // instruction stream. // The only architecture-independent user of this function is the serializer. // The serializer uses it to find out how many raw bytes of instruction to // output before the next target. // For an instruction like LUI/ORI where the target bits are mixed into the // instruction bits, the size of the target will be zero, indicating that the // serializer should not step forward in memory after a target is resolved // and written. In this case the target_address_address function should // return the end of the instructions to be patched, allowing the // deserializer to deserialize the instructions as raw bytes and put them in // place, ready to be patched with the target. After jump optimization, // that is the address of the instruction that follows J/JAL/JR/JALR // instruction. #ifdef V8_TARGET_ARCH_RISCV64 return pc_ + Assembler::kInstructionsFor64BitConstant * kInstrSize; #elif defined(V8_TARGET_ARCH_RISCV32) return pc_ + Assembler::kInstructionsFor32BitConstant * kInstrSize; #endif } Address RelocInfo::constant_pool_entry_address() { UNREACHABLE(); } int RelocInfo::target_address_size() { if (IsCodedSpecially()) { return Assembler::kSpecialTargetSize; } else { return kSystemPointerSize; } } void Assembler::set_target_compressed_address_at( Address pc, Address constant_pool, Tagged_t target, ICacheFlushMode icache_flush_mode) { Assembler::set_target_address_at( pc, constant_pool, static_cast
(target), icache_flush_mode); } Tagged_t Assembler::target_compressed_address_at(Address pc, Address constant_pool) { return static_cast(target_address_at(pc, constant_pool)); } Handle Assembler::code_target_object_handle_at(Address pc, Address constant_pool) { int index = static_cast(target_address_at(pc, constant_pool)) & 0xFFFFFFFF; return GetCodeTarget(index); } Handle Assembler::compressed_embedded_object_handle_at( Address pc, Address const_pool) { return GetEmbeddedObject(target_compressed_address_at(pc, const_pool)); } void Assembler::deserialization_set_special_target_at( Address instruction_payload, Code code, Address target) { set_target_address_at(instruction_payload, !code.is_null() ? code.constant_pool() : kNullAddress, target); } int Assembler::deserialization_special_target_size( Address instruction_payload) { return kSpecialTargetSize; } void Assembler::set_target_internal_reference_encoded_at(Address pc, Address target) { #ifdef V8_TARGET_ARCH_RISCV64 set_target_value_at(pc, static_cast(target)); #elif defined(V8_TARGET_ARCH_RISCV32) set_target_value_at(pc, static_cast(target)); #endif } void Assembler::deserialization_set_target_internal_reference_at( Address pc, Address target, RelocInfo::Mode mode) { if (RelocInfo::IsInternalReferenceEncoded(mode)) { DCHECK(IsLui(instr_at(pc))); set_target_internal_reference_encoded_at(pc, target); } else { DCHECK(RelocInfo::IsInternalReference(mode)); Memory
(pc) = target; } } HeapObject RelocInfo::target_object(PtrComprCageBase cage_base) { DCHECK(IsCodeTarget(rmode_) || IsEmbeddedObjectMode(rmode_)); if (IsCompressedEmbeddedObject(rmode_)) { return HeapObject::cast(Object(V8HeapCompressionScheme::DecompressTagged( cage_base, Assembler::target_compressed_address_at(pc_, constant_pool_)))); } else { return HeapObject::cast( Object(Assembler::target_address_at(pc_, constant_pool_))); } } Handle RelocInfo::target_object_handle(Assembler* origin) { if (IsCodeTarget(rmode_)) { return Handle::cast( origin->code_target_object_handle_at(pc_, constant_pool_)); } else if (IsCompressedEmbeddedObject(rmode_)) { return origin->compressed_embedded_object_handle_at(pc_, constant_pool_); } else if (IsFullEmbeddedObject(rmode_)) { return Handle(reinterpret_cast( Assembler::target_address_at(pc_, constant_pool_))); } else { DCHECK(IsRelativeCodeTarget(rmode_)); return origin->relative_code_target_object_handle_at(pc_); } } void RelocInfo::set_target_object(Heap* heap, HeapObject target, WriteBarrierMode write_barrier_mode, ICacheFlushMode icache_flush_mode) { DCHECK(IsCodeTarget(rmode_) || IsEmbeddedObjectMode(rmode_)); if (IsCompressedEmbeddedObject(rmode_)) { Assembler::set_target_compressed_address_at( pc_, constant_pool_, V8HeapCompressionScheme::CompressObject(target.ptr()), icache_flush_mode); } else { DCHECK(IsFullEmbeddedObject(rmode_)); Assembler::set_target_address_at(pc_, constant_pool_, target.ptr(), icache_flush_mode); } if (write_barrier_mode == UPDATE_WRITE_BARRIER && !instruction_stream().is_null() && !v8_flags.disable_write_barriers) { WriteBarrierForCode(instruction_stream(), this, target); } } Address RelocInfo::target_external_reference() { DCHECK(rmode_ == EXTERNAL_REFERENCE); return Assembler::target_address_at(pc_, constant_pool_); } void RelocInfo::set_target_external_reference( Address target, ICacheFlushMode icache_flush_mode) { DCHECK(rmode_ == RelocInfo::EXTERNAL_REFERENCE); Assembler::set_target_address_at(pc_, constant_pool_, target, icache_flush_mode); } Address RelocInfo::target_internal_reference() { if (IsInternalReference(rmode_)) { return Memory
(pc_); } else { // Encoded internal references are j/jal instructions. DCHECK(IsInternalReferenceEncoded(rmode_)); DCHECK(Assembler::IsLui(Assembler::instr_at(pc_ + 0 * kInstrSize))); Address address = Assembler::target_address_at(pc_); return address; } } Address RelocInfo::target_internal_reference_address() { DCHECK(IsInternalReference(rmode_) || IsInternalReferenceEncoded(rmode_)); return pc_; } Handle Assembler::relative_code_target_object_handle_at( Address pc) const { Instr instr1 = Assembler::instr_at(pc); Instr instr2 = Assembler::instr_at(pc + kInstrSize); DCHECK(IsAuipc(instr1)); DCHECK(IsJalr(instr2)); int32_t code_target_index = BrachlongOffset(instr1, instr2); return Handle::cast(GetEmbeddedObject(code_target_index)); } Builtin Assembler::target_builtin_at(Address pc) { Instr instr1 = Assembler::instr_at(pc); Instr instr2 = Assembler::instr_at(pc + kInstrSize); DCHECK(IsAuipc(instr1)); DCHECK(IsJalr(instr2)); int32_t builtin_id = BrachlongOffset(instr1, instr2); DCHECK(Builtins::IsBuiltinId(builtin_id)); return static_cast(builtin_id); } Builtin RelocInfo::target_builtin_at(Assembler* origin) { DCHECK(IsNearBuiltinEntry(rmode_)); return Assembler::target_builtin_at(pc_); } Address RelocInfo::target_off_heap_target() { DCHECK(IsOffHeapTarget(rmode_)); return Assembler::target_address_at(pc_, constant_pool_); } void RelocInfo::WipeOut() { DCHECK(IsFullEmbeddedObject(rmode_) || IsCodeTarget(rmode_) || IsExternalReference(rmode_) || IsInternalReference(rmode_) || IsInternalReferenceEncoded(rmode_) || IsOffHeapTarget(rmode_)); if (IsInternalReference(rmode_)) { Memory
(pc_) = kNullAddress; } else if (IsInternalReferenceEncoded(rmode_)) { Assembler::set_target_internal_reference_encoded_at(pc_, kNullAddress); } else { Assembler::set_target_address_at(pc_, constant_pool_, kNullAddress); } } EnsureSpace::EnsureSpace(Assembler* assembler) { assembler->CheckBuffer(); } } // namespace internal } // namespace v8 #endif // V8_CODEGEN_RISCV_ASSEMBLER_RISCV_INL_H_