// Copyright 2012 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #ifndef V8_CODEGEN_X64_ASSEMBLER_X64_INL_H_ #define V8_CODEGEN_X64_ASSEMBLER_X64_INL_H_ #include "src/codegen/x64/assembler-x64.h" #include "src/base/cpu.h" #include "src/common/v8memory.h" #include "src/debug/debug.h" #include "src/objects/objects-inl.h" namespace v8 { namespace internal { bool CpuFeatures::SupportsOptimizer() { return true; } bool CpuFeatures::SupportsWasmSimd128() { return IsSupported(SSE4_1); } // ----------------------------------------------------------------------------- // Implementation of Assembler void Assembler::emitl(uint32_t x) { WriteUnalignedValue(reinterpret_cast
(pc_), x); pc_ += sizeof(uint32_t); } void Assembler::emitq(uint64_t x) { WriteUnalignedValue(reinterpret_cast
(pc_), x); pc_ += sizeof(uint64_t); } void Assembler::emitw(uint16_t x) { WriteUnalignedValue(reinterpret_cast
(pc_), x); pc_ += sizeof(uint16_t); } void Assembler::emit_runtime_entry(Address entry, RelocInfo::Mode rmode) { DCHECK(RelocInfo::IsRuntimeEntry(rmode)); RecordRelocInfo(rmode); emitl(static_cast(entry - options().code_range_start)); } void Assembler::emit(Immediate x) { if (!RelocInfo::IsNone(x.rmode_)) { RecordRelocInfo(x.rmode_); } emitl(x.value_); } void Assembler::emit(Immediate64 x) { if (!RelocInfo::IsNone(x.rmode_)) { RecordRelocInfo(x.rmode_); } emitq(static_cast(x.value_)); } void Assembler::emit_rex_64(Register reg, Register rm_reg) { emit(0x48 | reg.high_bit() << 2 | rm_reg.high_bit()); } void Assembler::emit_rex_64(XMMRegister reg, Register rm_reg) { emit(0x48 | (reg.code() & 0x8) >> 1 | rm_reg.code() >> 3); } void Assembler::emit_rex_64(Register reg, XMMRegister rm_reg) { emit(0x48 | (reg.code() & 0x8) >> 1 | rm_reg.code() >> 3); } void Assembler::emit_rex_64(XMMRegister reg, XMMRegister rm_reg) { emit(0x48 | (reg.code() & 0x8) >> 1 | rm_reg.code() >> 3); } void Assembler::emit_rex_64(Register reg, Operand op) { emit(0x48 | reg.high_bit() << 2 | op.data().rex); } void Assembler::emit_rex_64(XMMRegister reg, Operand op) { emit(0x48 | (reg.code() & 0x8) >> 1 | op.data().rex); } void Assembler::emit_rex_64(Register rm_reg) { DCHECK_EQ(rm_reg.code() & 0xf, rm_reg.code()); emit(0x48 | rm_reg.high_bit()); } void Assembler::emit_rex_64(Operand op) { emit(0x48 | op.data().rex); } void Assembler::emit_rex_32(Register reg, Register rm_reg) { emit(0x40 | reg.high_bit() << 2 | rm_reg.high_bit()); } void Assembler::emit_rex_32(Register reg, Operand op) { emit(0x40 | reg.high_bit() << 2 | op.data().rex); } void Assembler::emit_rex_32(Register rm_reg) { emit(0x40 | rm_reg.high_bit()); } void Assembler::emit_rex_32(Operand op) { emit(0x40 | op.data().rex); } void Assembler::emit_optional_rex_32(Register reg, Register rm_reg) { byte rex_bits = reg.high_bit() << 2 | rm_reg.high_bit(); if (rex_bits != 0) emit(0x40 | rex_bits); } void Assembler::emit_optional_rex_32(Register reg, Operand op) { byte rex_bits = reg.high_bit() << 2 | op.data().rex; if (rex_bits != 0) emit(0x40 | rex_bits); } void Assembler::emit_optional_rex_32(XMMRegister reg, Operand op) { byte rex_bits = (reg.code() & 0x8) >> 1 | op.data().rex; if (rex_bits != 0) emit(0x40 | rex_bits); } void Assembler::emit_optional_rex_32(XMMRegister reg, XMMRegister base) { byte rex_bits = (reg.code() & 0x8) >> 1 | (base.code() & 0x8) >> 3; if (rex_bits != 0) emit(0x40 | rex_bits); } void Assembler::emit_optional_rex_32(XMMRegister reg, Register base) { byte rex_bits = (reg.code() & 0x8) >> 1 | (base.code() & 0x8) >> 3; if (rex_bits != 0) emit(0x40 | rex_bits); } void Assembler::emit_optional_rex_32(Register reg, XMMRegister base) { byte rex_bits = (reg.code() & 0x8) >> 1 | (base.code() & 0x8) >> 3; if (rex_bits != 0) emit(0x40 | rex_bits); } void Assembler::emit_optional_rex_32(Register rm_reg) { if (rm_reg.high_bit()) emit(0x41); } void Assembler::emit_optional_rex_32(XMMRegister rm_reg) { if (rm_reg.high_bit()) emit(0x41); } void Assembler::emit_optional_rex_32(Operand op) { if (op.data().rex != 0) emit(0x40 | op.data().rex); } // byte 1 of 3-byte VEX void Assembler::emit_vex3_byte1(XMMRegister reg, XMMRegister rm, LeadingOpcode m) { byte rxb = static_cast(~((reg.high_bit() << 2) | rm.high_bit())) << 5; emit(rxb | m); } // byte 1 of 3-byte VEX void Assembler::emit_vex3_byte1(XMMRegister reg, Operand rm, LeadingOpcode m) { byte rxb = static_cast(~((reg.high_bit() << 2) | rm.data().rex)) << 5; emit(rxb | m); } // byte 1 of 2-byte VEX void Assembler::emit_vex2_byte1(XMMRegister reg, XMMRegister v, VectorLength l, SIMDPrefix pp) { byte rv = static_cast(~((reg.high_bit() << 4) | v.code())) << 3; emit(rv | l | pp); } // byte 2 of 3-byte VEX void Assembler::emit_vex3_byte2(VexW w, XMMRegister v, VectorLength l, SIMDPrefix pp) { emit(w | ((~v.code() & 0xf) << 3) | l | pp); } void Assembler::emit_vex_prefix(XMMRegister reg, XMMRegister vreg, XMMRegister rm, VectorLength l, SIMDPrefix pp, LeadingOpcode mm, VexW w) { if (rm.high_bit() || mm != k0F || w != kW0) { emit_vex3_byte0(); emit_vex3_byte1(reg, rm, mm); emit_vex3_byte2(w, vreg, l, pp); } else { emit_vex2_byte0(); emit_vex2_byte1(reg, vreg, l, pp); } } void Assembler::emit_vex_prefix(Register reg, Register vreg, Register rm, VectorLength l, SIMDPrefix pp, LeadingOpcode mm, VexW w) { XMMRegister ireg = XMMRegister::from_code(reg.code()); XMMRegister ivreg = XMMRegister::from_code(vreg.code()); XMMRegister irm = XMMRegister::from_code(rm.code()); emit_vex_prefix(ireg, ivreg, irm, l, pp, mm, w); } void Assembler::emit_vex_prefix(XMMRegister reg, XMMRegister vreg, Operand rm, VectorLength l, SIMDPrefix pp, LeadingOpcode mm, VexW w) { if (rm.data().rex || mm != k0F || w != kW0) { emit_vex3_byte0(); emit_vex3_byte1(reg, rm, mm); emit_vex3_byte2(w, vreg, l, pp); } else { emit_vex2_byte0(); emit_vex2_byte1(reg, vreg, l, pp); } } void Assembler::emit_vex_prefix(Register reg, Register vreg, Operand rm, VectorLength l, SIMDPrefix pp, LeadingOpcode mm, VexW w) { XMMRegister ireg = XMMRegister::from_code(reg.code()); XMMRegister ivreg = XMMRegister::from_code(vreg.code()); emit_vex_prefix(ireg, ivreg, rm, l, pp, mm, w); } Address Assembler::target_address_at(Address pc, Address constant_pool) { return ReadUnalignedValue(pc) + pc + 4; } void Assembler::set_target_address_at(Address pc, Address constant_pool, Address target, ICacheFlushMode icache_flush_mode) { WriteUnalignedValue(pc, static_cast(target - pc - 4)); if (icache_flush_mode != SKIP_ICACHE_FLUSH) { FlushInstructionCache(pc, sizeof(int32_t)); } } void Assembler::deserialization_set_target_internal_reference_at( Address pc, Address target, RelocInfo::Mode mode) { WriteUnalignedValue(pc, target); } void Assembler::deserialization_set_special_target_at( Address instruction_payload, Code code, Address target) { set_target_address_at(instruction_payload, !code.is_null() ? code.constant_pool() : kNullAddress, target); } int Assembler::deserialization_special_target_size( Address instruction_payload) { return kSpecialTargetSize; } Handle Assembler::code_target_object_handle_at(Address pc) { return GetCodeTarget(ReadUnalignedValue(pc)); } Handle Assembler::compressed_embedded_object_handle_at(Address pc) { return GetCompressedEmbeddedObject(ReadUnalignedValue(pc)); } Address Assembler::runtime_entry_at(Address pc) { return ReadUnalignedValue(pc) + options().code_range_start; } // ----------------------------------------------------------------------------- // Implementation of RelocInfo // The modes possibly affected by apply must be in kApplyMask. void RelocInfo::apply(intptr_t delta) { if (IsCodeTarget(rmode_) || IsRuntimeEntry(rmode_)) { WriteUnalignedValue( pc_, ReadUnalignedValue(pc_) - static_cast(delta)); } else if (IsInternalReference(rmode_)) { // Absolute code pointer inside code object moves with the code object. WriteUnalignedValue(pc_, ReadUnalignedValue
(pc_) + delta); } } Address RelocInfo::target_address() { DCHECK(IsCodeTarget(rmode_) || IsRuntimeEntry(rmode_) || IsWasmCall(rmode_)); return Assembler::target_address_at(pc_, constant_pool_); } Address RelocInfo::target_address_address() { DCHECK(IsCodeTarget(rmode_) || IsRuntimeEntry(rmode_) || IsWasmCall(rmode_) || IsWasmStubCall(rmode_) || IsFullEmbeddedObject(rmode_) || IsCompressedEmbeddedObject(rmode_) || IsExternalReference(rmode_) || IsOffHeapTarget(rmode_)); return pc_; } Address RelocInfo::constant_pool_entry_address() { UNREACHABLE(); } int RelocInfo::target_address_size() { if (IsCodedSpecially()) { return Assembler::kSpecialTargetSize; } else { return IsCompressedEmbeddedObject(rmode_) ? kTaggedSize : kSystemPointerSize; } } HeapObject RelocInfo::target_object() { DCHECK(IsCodeTarget(rmode_) || IsEmbeddedObjectMode(rmode_)); if (IsCompressedEmbeddedObject(rmode_)) { CHECK(!host_.is_null()); Object o = static_cast(DecompressTaggedPointer( host_.ptr(), ReadUnalignedValue(pc_))); return HeapObject::cast(o); } return HeapObject::cast(Object(ReadUnalignedValue
(pc_))); } HeapObject RelocInfo::target_object_no_host(Isolate* isolate) { DCHECK(IsCodeTarget(rmode_) || IsEmbeddedObjectMode(rmode_)); if (IsCompressedEmbeddedObject(rmode_)) { Tagged_t compressed = ReadUnalignedValue(pc_); DCHECK(!HAS_SMI_TAG(compressed)); Object obj(DecompressTaggedPointer(isolate, compressed)); return HeapObject::cast(obj); } return HeapObject::cast(Object(ReadUnalignedValue
(pc_))); } Handle RelocInfo::target_object_handle(Assembler* origin) { DCHECK(IsCodeTarget(rmode_) || IsEmbeddedObjectMode(rmode_)); if (IsCodeTarget(rmode_)) { return origin->code_target_object_handle_at(pc_); } else { if (IsCompressedEmbeddedObject(rmode_)) { return origin->compressed_embedded_object_handle_at(pc_); } return Handle::cast(ReadUnalignedValue>(pc_)); } } Address RelocInfo::target_external_reference() { DCHECK(rmode_ == RelocInfo::EXTERNAL_REFERENCE); return ReadUnalignedValue
(pc_); } void RelocInfo::set_target_external_reference( Address target, ICacheFlushMode icache_flush_mode) { DCHECK(rmode_ == RelocInfo::EXTERNAL_REFERENCE); WriteUnalignedValue(pc_, target); if (icache_flush_mode != SKIP_ICACHE_FLUSH) { FlushInstructionCache(pc_, sizeof(Address)); } } Address RelocInfo::target_internal_reference() { DCHECK(rmode_ == INTERNAL_REFERENCE); return ReadUnalignedValue
(pc_); } Address RelocInfo::target_internal_reference_address() { DCHECK(rmode_ == INTERNAL_REFERENCE); return pc_; } void RelocInfo::set_target_object(Heap* heap, HeapObject target, WriteBarrierMode write_barrier_mode, ICacheFlushMode icache_flush_mode) { DCHECK(IsCodeTarget(rmode_) || IsEmbeddedObjectMode(rmode_)); if (IsCompressedEmbeddedObject(rmode_)) { DCHECK(COMPRESS_POINTERS_BOOL); Tagged_t tagged = CompressTagged(target.ptr()); WriteUnalignedValue(pc_, tagged); } else { WriteUnalignedValue(pc_, target.ptr()); } if (icache_flush_mode != SKIP_ICACHE_FLUSH) { FlushInstructionCache(pc_, sizeof(Address)); } if (write_barrier_mode == UPDATE_WRITE_BARRIER && !host().is_null()) { WriteBarrierForCode(host(), this, target); } } Address RelocInfo::target_runtime_entry(Assembler* origin) { DCHECK(IsRuntimeEntry(rmode_)); return origin->runtime_entry_at(pc_); } void RelocInfo::set_target_runtime_entry(Address target, WriteBarrierMode write_barrier_mode, ICacheFlushMode icache_flush_mode) { DCHECK(IsRuntimeEntry(rmode_)); if (target_address() != target) { set_target_address(target, write_barrier_mode, icache_flush_mode); } } Address RelocInfo::target_off_heap_target() { DCHECK(IsOffHeapTarget(rmode_)); return ReadUnalignedValue
(pc_); } void RelocInfo::WipeOut() { if (IsFullEmbeddedObject(rmode_) || IsExternalReference(rmode_) || IsInternalReference(rmode_) || IsOffHeapTarget(rmode_)) { WriteUnalignedValue(pc_, kNullAddress); } else if (IsCompressedEmbeddedObject(rmode_)) { Address smi_address = Smi::FromInt(0).ptr(); WriteUnalignedValue(pc_, CompressTagged(smi_address)); } else if (IsCodeTarget(rmode_) || IsRuntimeEntry(rmode_)) { // Effectively write zero into the relocation. Assembler::set_target_address_at(pc_, constant_pool_, pc_ + sizeof(int32_t)); } else { UNREACHABLE(); } } } // namespace internal } // namespace v8 #endif // V8_CODEGEN_X64_ASSEMBLER_X64_INL_H_