// Copyright 2009 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include #include #include #include #include #include #include #include #include #include #include "src/d8.h" #if !V8_OS_NACL #include #endif namespace v8 { // If the buffer ends in the middle of a UTF-8 sequence then we return // the length of the string up to but not including the incomplete UTF-8 // sequence. If the buffer ends with a valid UTF-8 sequence then we // return the whole buffer. static int LengthWithoutIncompleteUtf8(char* buffer, int len) { int answer = len; // 1-byte encoding. static const int kUtf8SingleByteMask = 0x80; static const int kUtf8SingleByteValue = 0x00; // 2-byte encoding. static const int kUtf8TwoByteMask = 0xe0; static const int kUtf8TwoByteValue = 0xc0; // 3-byte encoding. static const int kUtf8ThreeByteMask = 0xf0; static const int kUtf8ThreeByteValue = 0xe0; // 4-byte encoding. static const int kUtf8FourByteMask = 0xf8; static const int kUtf8FourByteValue = 0xf0; // Subsequent bytes of a multi-byte encoding. static const int kMultiByteMask = 0xc0; static const int kMultiByteValue = 0x80; int multi_byte_bytes_seen = 0; while (answer > 0) { int c = buffer[answer - 1]; // Ends in valid single-byte sequence? if ((c & kUtf8SingleByteMask) == kUtf8SingleByteValue) return answer; // Ends in one or more subsequent bytes of a multi-byte value? if ((c & kMultiByteMask) == kMultiByteValue) { multi_byte_bytes_seen++; answer--; } else { if ((c & kUtf8TwoByteMask) == kUtf8TwoByteValue) { if (multi_byte_bytes_seen >= 1) { return answer + 2; } return answer - 1; } else if ((c & kUtf8ThreeByteMask) == kUtf8ThreeByteValue) { if (multi_byte_bytes_seen >= 2) { return answer + 3; } return answer - 1; } else if ((c & kUtf8FourByteMask) == kUtf8FourByteValue) { if (multi_byte_bytes_seen >= 3) { return answer + 4; } return answer - 1; } else { return answer; // Malformed UTF-8. } } } return 0; } // Suspends the thread until there is data available from the child process. // Returns false on timeout, true on data ready. static bool WaitOnFD(int fd, int read_timeout, int total_timeout, const struct timeval& start_time) { fd_set readfds, writefds, exceptfds; struct timeval timeout; int gone = 0; if (total_timeout != -1) { struct timeval time_now; gettimeofday(&time_now, NULL); int seconds = time_now.tv_sec - start_time.tv_sec; gone = seconds * 1000 + (time_now.tv_usec - start_time.tv_usec) / 1000; if (gone >= total_timeout) return false; } FD_ZERO(&readfds); FD_ZERO(&writefds); FD_ZERO(&exceptfds); FD_SET(fd, &readfds); FD_SET(fd, &exceptfds); if (read_timeout == -1 || (total_timeout != -1 && total_timeout - gone < read_timeout)) { read_timeout = total_timeout - gone; } timeout.tv_usec = (read_timeout % 1000) * 1000; timeout.tv_sec = read_timeout / 1000; #if V8_OS_NACL // PNaCL has no support for select. int number_of_fds_ready = -1; #else int number_of_fds_ready = select(fd + 1, &readfds, &writefds, &exceptfds, read_timeout != -1 ? &timeout : NULL); #endif return number_of_fds_ready == 1; } // Checks whether we ran out of time on the timeout. Returns true if we ran out // of time, false if we still have time. static bool TimeIsOut(const struct timeval& start_time, const int& total_time) { if (total_time == -1) return false; struct timeval time_now; gettimeofday(&time_now, NULL); // Careful about overflow. int seconds = time_now.tv_sec - start_time.tv_sec; if (seconds > 100) { if (seconds * 1000 > total_time) return true; return false; } int useconds = time_now.tv_usec - start_time.tv_usec; if (seconds * 1000000 + useconds > total_time * 1000) { return true; } return false; } // A utility class that does a non-hanging waitpid on the child process if we // bail out of the System() function early. If you don't ever do a waitpid on // a subprocess then it turns into one of those annoying 'zombie processes'. class ZombieProtector { public: explicit ZombieProtector(int pid): pid_(pid) { } ~ZombieProtector() { if (pid_ != 0) waitpid(pid_, NULL, 0); } void ChildIsDeadNow() { pid_ = 0; } private: int pid_; }; // A utility class that closes a file descriptor when it goes out of scope. class OpenFDCloser { public: explicit OpenFDCloser(int fd): fd_(fd) { } ~OpenFDCloser() { close(fd_); } private: int fd_; }; // A utility class that takes the array of command arguments and puts then in an // array of new[]ed UTF-8 C strings. Deallocates them again when it goes out of // scope. class ExecArgs { public: ExecArgs() { exec_args_[0] = NULL; } bool Init(Isolate* isolate, Handle arg0, Handle command_args) { String::Utf8Value prog(arg0); if (*prog == NULL) { const char* message = "os.system(): String conversion of program name failed"; isolate->ThrowException(String::NewFromUtf8(isolate, message)); return false; } int len = prog.length() + 3; char* c_arg = new char[len]; snprintf(c_arg, len, "%s", *prog); exec_args_[0] = c_arg; int i = 1; for (unsigned j = 0; j < command_args->Length(); i++, j++) { Handle arg(command_args->Get(Integer::New(isolate, j))); String::Utf8Value utf8_arg(arg); if (*utf8_arg == NULL) { exec_args_[i] = NULL; // Consistent state for destructor. const char* message = "os.system(): String conversion of argument failed."; isolate->ThrowException(String::NewFromUtf8(isolate, message)); return false; } int len = utf8_arg.length() + 1; char* c_arg = new char[len]; snprintf(c_arg, len, "%s", *utf8_arg); exec_args_[i] = c_arg; } exec_args_[i] = NULL; return true; } ~ExecArgs() { for (unsigned i = 0; i < kMaxArgs; i++) { if (exec_args_[i] == NULL) { return; } delete [] exec_args_[i]; exec_args_[i] = 0; } } static const unsigned kMaxArgs = 1000; char* const* arg_array() const { return exec_args_; } const char* arg0() const { return exec_args_[0]; } private: char* exec_args_[kMaxArgs + 1]; }; // Gets the optional timeouts from the arguments to the system() call. static bool GetTimeouts(const v8::FunctionCallbackInfo& args, int* read_timeout, int* total_timeout) { if (args.Length() > 3) { if (args[3]->IsNumber()) { *total_timeout = args[3]->Int32Value(); } else { args.GetIsolate()->ThrowException(String::NewFromUtf8( args.GetIsolate(), "system: Argument 4 must be a number")); return false; } } if (args.Length() > 2) { if (args[2]->IsNumber()) { *read_timeout = args[2]->Int32Value(); } else { args.GetIsolate()->ThrowException(String::NewFromUtf8( args.GetIsolate(), "system: Argument 3 must be a number")); return false; } } return true; } static const int kReadFD = 0; static const int kWriteFD = 1; // This is run in the child process after fork() but before exec(). It normally // ends with the child process being replaced with the desired child program. // It only returns if an error occurred. static void ExecSubprocess(int* exec_error_fds, int* stdout_fds, const ExecArgs& exec_args) { close(exec_error_fds[kReadFD]); // Don't need this in the child. close(stdout_fds[kReadFD]); // Don't need this in the child. close(1); // Close stdout. dup2(stdout_fds[kWriteFD], 1); // Dup pipe fd to stdout. close(stdout_fds[kWriteFD]); // Don't need the original fd now. fcntl(exec_error_fds[kWriteFD], F_SETFD, FD_CLOEXEC); execvp(exec_args.arg0(), exec_args.arg_array()); // Only get here if the exec failed. Write errno to the parent to tell // them it went wrong. If it went well the pipe is closed. int err = errno; int bytes_written; do { bytes_written = write(exec_error_fds[kWriteFD], &err, sizeof(err)); } while (bytes_written == -1 && errno == EINTR); // Return (and exit child process). } // Runs in the parent process. Checks that the child was able to exec (closing // the file desriptor), or reports an error if it failed. static bool ChildLaunchedOK(Isolate* isolate, int* exec_error_fds) { int bytes_read; int err; do { bytes_read = read(exec_error_fds[kReadFD], &err, sizeof(err)); } while (bytes_read == -1 && errno == EINTR); if (bytes_read != 0) { isolate->ThrowException(String::NewFromUtf8(isolate, strerror(err))); return false; } return true; } // Accumulates the output from the child in a string handle. Returns true if it // succeeded or false if an exception was thrown. static Handle GetStdout(Isolate* isolate, int child_fd, const struct timeval& start_time, int read_timeout, int total_timeout) { Handle accumulator = String::Empty(isolate); int fullness = 0; static const int kStdoutReadBufferSize = 4096; char buffer[kStdoutReadBufferSize]; if (fcntl(child_fd, F_SETFL, O_NONBLOCK) != 0) { return isolate->ThrowException( String::NewFromUtf8(isolate, strerror(errno))); } int bytes_read; do { bytes_read = read(child_fd, buffer + fullness, kStdoutReadBufferSize - fullness); if (bytes_read == -1) { if (errno == EAGAIN) { if (!WaitOnFD(child_fd, read_timeout, total_timeout, start_time) || (TimeIsOut(start_time, total_timeout))) { return isolate->ThrowException( String::NewFromUtf8(isolate, "Timed out waiting for output")); } continue; } else if (errno == EINTR) { continue; } else { break; } } if (bytes_read + fullness > 0) { int length = bytes_read == 0 ? bytes_read + fullness : LengthWithoutIncompleteUtf8(buffer, bytes_read + fullness); Handle addition = String::NewFromUtf8(isolate, buffer, String::kNormalString, length); accumulator = String::Concat(accumulator, addition); fullness = bytes_read + fullness - length; memcpy(buffer, buffer + length, fullness); } } while (bytes_read != 0); return accumulator; } // Modern Linux has the waitid call, which is like waitpid, but more useful // if you want a timeout. If we don't have waitid we can't limit the time // waiting for the process to exit without losing the information about // whether it exited normally. In the common case this doesn't matter because // we don't get here before the child has closed stdout and most programs don't // do that before they exit. // // We're disabling usage of waitid in Mac OS X because it doens't work for us: // a parent process hangs on waiting while a child process is already a zombie. // See http://code.google.com/p/v8/issues/detail?id=401. #if defined(WNOWAIT) && !defined(ANDROID) && !defined(__APPLE__) \ && !defined(__NetBSD__) #if !defined(__FreeBSD__) #define HAS_WAITID 1 #endif #endif // Get exit status of child. static bool WaitForChild(Isolate* isolate, int pid, ZombieProtector& child_waiter, // NOLINT const struct timeval& start_time, int read_timeout, int total_timeout) { #ifdef HAS_WAITID siginfo_t child_info; child_info.si_pid = 0; int useconds = 1; // Wait for child to exit. while (child_info.si_pid == 0) { waitid(P_PID, pid, &child_info, WEXITED | WNOHANG | WNOWAIT); usleep(useconds); if (useconds < 1000000) useconds <<= 1; if ((read_timeout != -1 && useconds / 1000 > read_timeout) || (TimeIsOut(start_time, total_timeout))) { isolate->ThrowException(String::NewFromUtf8( isolate, "Timed out waiting for process to terminate")); kill(pid, SIGINT); return false; } } if (child_info.si_code == CLD_KILLED) { char message[999]; snprintf(message, sizeof(message), "Child killed by signal %d", child_info.si_status); isolate->ThrowException(String::NewFromUtf8(isolate, message)); return false; } if (child_info.si_code == CLD_EXITED && child_info.si_status != 0) { char message[999]; snprintf(message, sizeof(message), "Child exited with status %d", child_info.si_status); isolate->ThrowException(String::NewFromUtf8(isolate, message)); return false; } #else // No waitid call. int child_status; waitpid(pid, &child_status, 0); // We hang here if the child doesn't exit. child_waiter.ChildIsDeadNow(); if (WIFSIGNALED(child_status)) { char message[999]; snprintf(message, sizeof(message), "Child killed by signal %d", WTERMSIG(child_status)); isolate->ThrowException(String::NewFromUtf8(isolate, message)); return false; } if (WEXITSTATUS(child_status) != 0) { char message[999]; int exit_status = WEXITSTATUS(child_status); snprintf(message, sizeof(message), "Child exited with status %d", exit_status); isolate->ThrowException(String::NewFromUtf8(isolate, message)); return false; } #endif // No waitid call. return true; } // Implementation of the system() function (see d8.h for details). void Shell::System(const v8::FunctionCallbackInfo& args) { HandleScope scope(args.GetIsolate()); int read_timeout = -1; int total_timeout = -1; if (!GetTimeouts(args, &read_timeout, &total_timeout)) return; Handle command_args; if (args.Length() > 1) { if (!args[1]->IsArray()) { args.GetIsolate()->ThrowException(String::NewFromUtf8( args.GetIsolate(), "system: Argument 2 must be an array")); return; } command_args = Handle::Cast(args[1]); } else { command_args = Array::New(args.GetIsolate(), 0); } if (command_args->Length() > ExecArgs::kMaxArgs) { args.GetIsolate()->ThrowException(String::NewFromUtf8( args.GetIsolate(), "Too many arguments to system()")); return; } if (args.Length() < 1) { args.GetIsolate()->ThrowException(String::NewFromUtf8( args.GetIsolate(), "Too few arguments to system()")); return; } struct timeval start_time; gettimeofday(&start_time, NULL); ExecArgs exec_args; if (!exec_args.Init(args.GetIsolate(), args[0], command_args)) { return; } int exec_error_fds[2]; int stdout_fds[2]; if (pipe(exec_error_fds) != 0) { args.GetIsolate()->ThrowException( String::NewFromUtf8(args.GetIsolate(), "pipe syscall failed.")); return; } if (pipe(stdout_fds) != 0) { args.GetIsolate()->ThrowException( String::NewFromUtf8(args.GetIsolate(), "pipe syscall failed.")); return; } pid_t pid = fork(); if (pid == 0) { // Child process. ExecSubprocess(exec_error_fds, stdout_fds, exec_args); exit(1); } // Parent process. Ensure that we clean up if we exit this function early. ZombieProtector child_waiter(pid); close(exec_error_fds[kWriteFD]); close(stdout_fds[kWriteFD]); OpenFDCloser error_read_closer(exec_error_fds[kReadFD]); OpenFDCloser stdout_read_closer(stdout_fds[kReadFD]); if (!ChildLaunchedOK(args.GetIsolate(), exec_error_fds)) return; Handle accumulator = GetStdout(args.GetIsolate(), stdout_fds[kReadFD], start_time, read_timeout, total_timeout); if (accumulator->IsUndefined()) { kill(pid, SIGINT); // On timeout, kill the subprocess. args.GetReturnValue().Set(accumulator); return; } if (!WaitForChild(args.GetIsolate(), pid, child_waiter, start_time, read_timeout, total_timeout)) { return; } args.GetReturnValue().Set(accumulator); } void Shell::ChangeDirectory(const v8::FunctionCallbackInfo& args) { if (args.Length() != 1) { const char* message = "chdir() takes one argument"; args.GetIsolate()->ThrowException( String::NewFromUtf8(args.GetIsolate(), message)); return; } String::Utf8Value directory(args[0]); if (*directory == NULL) { const char* message = "os.chdir(): String conversion of argument failed."; args.GetIsolate()->ThrowException( String::NewFromUtf8(args.GetIsolate(), message)); return; } if (chdir(*directory) != 0) { args.GetIsolate()->ThrowException( String::NewFromUtf8(args.GetIsolate(), strerror(errno))); return; } } void Shell::SetUMask(const v8::FunctionCallbackInfo& args) { if (args.Length() != 1) { const char* message = "umask() takes one argument"; args.GetIsolate()->ThrowException( String::NewFromUtf8(args.GetIsolate(), message)); return; } if (args[0]->IsNumber()) { #if V8_OS_NACL // PNaCL has no support for umask. int previous = 0; #else int previous = umask(args[0]->Int32Value()); #endif args.GetReturnValue().Set(previous); return; } else { const char* message = "umask() argument must be numeric"; args.GetIsolate()->ThrowException( String::NewFromUtf8(args.GetIsolate(), message)); return; } } static bool CheckItsADirectory(Isolate* isolate, char* directory) { struct stat stat_buf; int stat_result = stat(directory, &stat_buf); if (stat_result != 0) { isolate->ThrowException(String::NewFromUtf8(isolate, strerror(errno))); return false; } if ((stat_buf.st_mode & S_IFDIR) != 0) return true; isolate->ThrowException(String::NewFromUtf8(isolate, strerror(EEXIST))); return false; } // Returns true for success. Creates intermediate directories as needed. No // error if the directory exists already. static bool mkdirp(Isolate* isolate, char* directory, mode_t mask) { int result = mkdir(directory, mask); if (result == 0) return true; if (errno == EEXIST) { return CheckItsADirectory(isolate, directory); } else if (errno == ENOENT) { // Intermediate path element is missing. char* last_slash = strrchr(directory, '/'); if (last_slash == NULL) { isolate->ThrowException(String::NewFromUtf8(isolate, strerror(errno))); return false; } *last_slash = 0; if (!mkdirp(isolate, directory, mask)) return false; *last_slash = '/'; result = mkdir(directory, mask); if (result == 0) return true; if (errno == EEXIST) { return CheckItsADirectory(isolate, directory); } isolate->ThrowException(String::NewFromUtf8(isolate, strerror(errno))); return false; } else { isolate->ThrowException(String::NewFromUtf8(isolate, strerror(errno))); return false; } } void Shell::MakeDirectory(const v8::FunctionCallbackInfo& args) { mode_t mask = 0777; if (args.Length() == 2) { if (args[1]->IsNumber()) { mask = args[1]->Int32Value(); } else { const char* message = "mkdirp() second argument must be numeric"; args.GetIsolate()->ThrowException( String::NewFromUtf8(args.GetIsolate(), message)); return; } } else if (args.Length() != 1) { const char* message = "mkdirp() takes one or two arguments"; args.GetIsolate()->ThrowException( String::NewFromUtf8(args.GetIsolate(), message)); return; } String::Utf8Value directory(args[0]); if (*directory == NULL) { const char* message = "os.mkdirp(): String conversion of argument failed."; args.GetIsolate()->ThrowException( String::NewFromUtf8(args.GetIsolate(), message)); return; } mkdirp(args.GetIsolate(), *directory, mask); } void Shell::RemoveDirectory(const v8::FunctionCallbackInfo& args) { if (args.Length() != 1) { const char* message = "rmdir() takes one or two arguments"; args.GetIsolate()->ThrowException( String::NewFromUtf8(args.GetIsolate(), message)); return; } String::Utf8Value directory(args[0]); if (*directory == NULL) { const char* message = "os.rmdir(): String conversion of argument failed."; args.GetIsolate()->ThrowException( String::NewFromUtf8(args.GetIsolate(), message)); return; } rmdir(*directory); } void Shell::SetEnvironment(const v8::FunctionCallbackInfo& args) { if (args.Length() != 2) { const char* message = "setenv() takes two arguments"; args.GetIsolate()->ThrowException( String::NewFromUtf8(args.GetIsolate(), message)); return; } String::Utf8Value var(args[0]); String::Utf8Value value(args[1]); if (*var == NULL) { const char* message = "os.setenv(): String conversion of variable name failed."; args.GetIsolate()->ThrowException( String::NewFromUtf8(args.GetIsolate(), message)); return; } if (*value == NULL) { const char* message = "os.setenv(): String conversion of variable contents failed."; args.GetIsolate()->ThrowException( String::NewFromUtf8(args.GetIsolate(), message)); return; } setenv(*var, *value, 1); } void Shell::UnsetEnvironment(const v8::FunctionCallbackInfo& args) { if (args.Length() != 1) { const char* message = "unsetenv() takes one argument"; args.GetIsolate()->ThrowException( String::NewFromUtf8(args.GetIsolate(), message)); return; } String::Utf8Value var(args[0]); if (*var == NULL) { const char* message = "os.setenv(): String conversion of variable name failed."; args.GetIsolate()->ThrowException( String::NewFromUtf8(args.GetIsolate(), message)); return; } unsetenv(*var); } void Shell::AddOSMethods(Isolate* isolate, Handle os_templ) { os_templ->Set(String::NewFromUtf8(isolate, "system"), FunctionTemplate::New(isolate, System)); os_templ->Set(String::NewFromUtf8(isolate, "chdir"), FunctionTemplate::New(isolate, ChangeDirectory)); os_templ->Set(String::NewFromUtf8(isolate, "setenv"), FunctionTemplate::New(isolate, SetEnvironment)); os_templ->Set(String::NewFromUtf8(isolate, "unsetenv"), FunctionTemplate::New(isolate, UnsetEnvironment)); os_templ->Set(String::NewFromUtf8(isolate, "umask"), FunctionTemplate::New(isolate, SetUMask)); os_templ->Set(String::NewFromUtf8(isolate, "mkdirp"), FunctionTemplate::New(isolate, MakeDirectory)); os_templ->Set(String::NewFromUtf8(isolate, "rmdir"), FunctionTemplate::New(isolate, RemoveDirectory)); } } // namespace v8