// Copyright 2014 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "src/execution.h" #include "src/api.h" #include "src/bootstrapper.h" #include "src/codegen.h" #include "src/compiler-dispatcher/optimizing-compile-dispatcher.h" #include "src/debug/debug.h" #include "src/isolate-inl.h" #include "src/messages.h" #include "src/runtime-profiler.h" #include "src/vm-state-inl.h" namespace v8 { namespace internal { StackGuard::StackGuard() : isolate_(NULL) { } void StackGuard::set_interrupt_limits(const ExecutionAccess& lock) { DCHECK(isolate_ != NULL); thread_local_.set_jslimit(kInterruptLimit); thread_local_.set_climit(kInterruptLimit); isolate_->heap()->SetStackLimits(); } void StackGuard::reset_limits(const ExecutionAccess& lock) { DCHECK(isolate_ != NULL); thread_local_.set_jslimit(thread_local_.real_jslimit_); thread_local_.set_climit(thread_local_.real_climit_); isolate_->heap()->SetStackLimits(); } static void PrintDeserializedCodeInfo(Handle function) { if (function->code() == function->shared()->code() && function->shared()->deserialized()) { PrintF("[Running deserialized script"); Object* script = function->shared()->script(); if (script->IsScript()) { Object* name = Script::cast(script)->name(); if (name->IsString()) { PrintF(": %s", String::cast(name)->ToCString().get()); } } PrintF("]\n"); } } namespace { MUST_USE_RESULT MaybeHandle Invoke( Isolate* isolate, bool is_construct, Handle target, Handle receiver, int argc, Handle args[], Handle new_target, Execution::MessageHandling message_handling) { DCHECK(!receiver->IsJSGlobalObject()); #ifdef USE_SIMULATOR // Simulators use separate stacks for C++ and JS. JS stack overflow checks // are performed whenever a JS function is called. However, it can be the case // that the C++ stack grows faster than the JS stack, resulting in an overflow // there. Add a check here to make that less likely. StackLimitCheck check(isolate); if (check.HasOverflowed()) { isolate->StackOverflow(); if (message_handling == Execution::MessageHandling::kReport) { isolate->ReportPendingMessages(); } return MaybeHandle(); } #endif // api callbacks can be called directly. if (target->IsJSFunction()) { Handle function = Handle::cast(target); if ((!is_construct || function->IsConstructor()) && function->shared()->IsApiFunction()) { SaveContext save(isolate); isolate->set_context(function->context()); DCHECK(function->context()->global_object()->IsJSGlobalObject()); if (is_construct) receiver = isolate->factory()->the_hole_value(); auto value = Builtins::InvokeApiFunction( isolate, is_construct, function, receiver, argc, args, Handle::cast(new_target)); bool has_exception = value.is_null(); DCHECK(has_exception == isolate->has_pending_exception()); if (has_exception) { if (message_handling == Execution::MessageHandling::kReport) { isolate->ReportPendingMessages(); } return MaybeHandle(); } else { isolate->clear_pending_message(); } return value; } } // Entering JavaScript. VMState state(isolate); CHECK(AllowJavascriptExecution::IsAllowed(isolate)); if (!ThrowOnJavascriptExecution::IsAllowed(isolate)) { isolate->ThrowIllegalOperation(); if (message_handling == Execution::MessageHandling::kReport) { isolate->ReportPendingMessages(); } return MaybeHandle(); } // Placeholder for return value. Object* value = NULL; typedef Object* (*JSEntryFunction)(Object* new_target, Object* target, Object* receiver, int argc, Object*** args); Handle code = is_construct ? isolate->factory()->js_construct_entry_code() : isolate->factory()->js_entry_code(); { // Save and restore context around invocation and block the // allocation of handles without explicit handle scopes. SaveContext save(isolate); SealHandleScope shs(isolate); JSEntryFunction stub_entry = FUNCTION_CAST(code->entry()); if (FLAG_clear_exceptions_on_js_entry) isolate->clear_pending_exception(); // Call the function through the right JS entry stub. Object* orig_func = *new_target; Object* func = *target; Object* recv = *receiver; Object*** argv = reinterpret_cast(args); if (FLAG_profile_deserialization && target->IsJSFunction()) { PrintDeserializedCodeInfo(Handle::cast(target)); } RuntimeCallTimerScope timer(isolate, &RuntimeCallStats::JS_Execution); value = CALL_GENERATED_CODE(isolate, stub_entry, orig_func, func, recv, argc, argv); } #ifdef VERIFY_HEAP if (FLAG_verify_heap) { value->ObjectVerify(); } #endif // Update the pending exception flag and return the value. bool has_exception = value->IsException(isolate); DCHECK(has_exception == isolate->has_pending_exception()); if (has_exception) { if (message_handling == Execution::MessageHandling::kReport) { isolate->ReportPendingMessages(); } return MaybeHandle(); } else { isolate->clear_pending_message(); } return Handle(value, isolate); } MaybeHandle CallInternal(Isolate* isolate, Handle callable, Handle receiver, int argc, Handle argv[], Execution::MessageHandling message_handling) { // Convert calls on global objects to be calls on the global // receiver instead to avoid having a 'this' pointer which refers // directly to a global object. if (receiver->IsJSGlobalObject()) { receiver = handle(Handle::cast(receiver)->global_proxy(), isolate); } return Invoke(isolate, false, callable, receiver, argc, argv, isolate->factory()->undefined_value(), message_handling); } } // namespace // static MaybeHandle Execution::Call(Isolate* isolate, Handle callable, Handle receiver, int argc, Handle argv[]) { return CallInternal(isolate, callable, receiver, argc, argv, MessageHandling::kReport); } // static MaybeHandle Execution::New(Isolate* isolate, Handle constructor, int argc, Handle argv[]) { return New(isolate, constructor, constructor, argc, argv); } // static MaybeHandle Execution::New(Isolate* isolate, Handle constructor, Handle new_target, int argc, Handle argv[]) { return Invoke(isolate, true, constructor, isolate->factory()->undefined_value(), argc, argv, new_target, MessageHandling::kReport); } MaybeHandle Execution::TryCall(Isolate* isolate, Handle callable, Handle receiver, int argc, Handle args[], MessageHandling message_handling, MaybeHandle* exception_out) { bool is_termination = false; MaybeHandle maybe_result; if (exception_out != NULL) *exception_out = MaybeHandle(); DCHECK_IMPLIES(message_handling == MessageHandling::kKeepPending, exception_out == nullptr); // Enter a try-block while executing the JavaScript code. To avoid // duplicate error printing it must be non-verbose. Also, to avoid // creating message objects during stack overflow we shouldn't // capture messages. { v8::TryCatch catcher(reinterpret_cast(isolate)); catcher.SetVerbose(false); catcher.SetCaptureMessage(false); maybe_result = CallInternal(isolate, callable, receiver, argc, args, message_handling); if (maybe_result.is_null()) { DCHECK(isolate->has_pending_exception()); if (isolate->pending_exception() == isolate->heap()->termination_exception()) { is_termination = true; } else { if (exception_out != nullptr) { DCHECK(catcher.HasCaught()); DCHECK(isolate->external_caught_exception()); *exception_out = v8::Utils::OpenHandle(*catcher.Exception()); } } if (message_handling == MessageHandling::kReport) { isolate->OptionalRescheduleException(true); } } } // Re-request terminate execution interrupt to trigger later. if (is_termination) isolate->stack_guard()->RequestTerminateExecution(); return maybe_result; } void StackGuard::SetStackLimit(uintptr_t limit) { ExecutionAccess access(isolate_); // If the current limits are special (e.g. due to a pending interrupt) then // leave them alone. uintptr_t jslimit = SimulatorStack::JsLimitFromCLimit(isolate_, limit); if (thread_local_.jslimit() == thread_local_.real_jslimit_) { thread_local_.set_jslimit(jslimit); } if (thread_local_.climit() == thread_local_.real_climit_) { thread_local_.set_climit(limit); } thread_local_.real_climit_ = limit; thread_local_.real_jslimit_ = jslimit; } void StackGuard::AdjustStackLimitForSimulator() { ExecutionAccess access(isolate_); uintptr_t climit = thread_local_.real_climit_; // If the current limits are special (e.g. due to a pending interrupt) then // leave them alone. uintptr_t jslimit = SimulatorStack::JsLimitFromCLimit(isolate_, climit); if (thread_local_.jslimit() == thread_local_.real_jslimit_) { thread_local_.set_jslimit(jslimit); isolate_->heap()->SetStackLimits(); } } void StackGuard::EnableInterrupts() { ExecutionAccess access(isolate_); if (has_pending_interrupts(access)) { set_interrupt_limits(access); } } void StackGuard::DisableInterrupts() { ExecutionAccess access(isolate_); reset_limits(access); } void StackGuard::PushPostponeInterruptsScope(PostponeInterruptsScope* scope) { ExecutionAccess access(isolate_); // Intercept already requested interrupts. int intercepted = thread_local_.interrupt_flags_ & scope->intercept_mask_; scope->intercepted_flags_ = intercepted; thread_local_.interrupt_flags_ &= ~intercepted; if (!has_pending_interrupts(access)) reset_limits(access); // Add scope to the chain. scope->prev_ = thread_local_.postpone_interrupts_; thread_local_.postpone_interrupts_ = scope; } void StackGuard::PopPostponeInterruptsScope() { ExecutionAccess access(isolate_); PostponeInterruptsScope* top = thread_local_.postpone_interrupts_; // Make intercepted interrupts active. DCHECK((thread_local_.interrupt_flags_ & top->intercept_mask_) == 0); thread_local_.interrupt_flags_ |= top->intercepted_flags_; if (has_pending_interrupts(access)) set_interrupt_limits(access); // Remove scope from chain. thread_local_.postpone_interrupts_ = top->prev_; } bool StackGuard::CheckInterrupt(InterruptFlag flag) { ExecutionAccess access(isolate_); return thread_local_.interrupt_flags_ & flag; } void StackGuard::RequestInterrupt(InterruptFlag flag) { ExecutionAccess access(isolate_); // Check the chain of PostponeInterruptsScopes for interception. if (thread_local_.postpone_interrupts_ && thread_local_.postpone_interrupts_->Intercept(flag)) { return; } // Not intercepted. Set as active interrupt flag. thread_local_.interrupt_flags_ |= flag; set_interrupt_limits(access); // If this isolate is waiting in a futex, notify it to wake up. isolate_->futex_wait_list_node()->NotifyWake(); } void StackGuard::ClearInterrupt(InterruptFlag flag) { ExecutionAccess access(isolate_); // Clear the interrupt flag from the chain of PostponeInterruptsScopes. for (PostponeInterruptsScope* current = thread_local_.postpone_interrupts_; current != NULL; current = current->prev_) { current->intercepted_flags_ &= ~flag; } // Clear the interrupt flag from the active interrupt flags. thread_local_.interrupt_flags_ &= ~flag; if (!has_pending_interrupts(access)) reset_limits(access); } bool StackGuard::CheckAndClearInterrupt(InterruptFlag flag) { ExecutionAccess access(isolate_); bool result = (thread_local_.interrupt_flags_ & flag); thread_local_.interrupt_flags_ &= ~flag; if (!has_pending_interrupts(access)) reset_limits(access); return result; } char* StackGuard::ArchiveStackGuard(char* to) { ExecutionAccess access(isolate_); MemCopy(to, reinterpret_cast(&thread_local_), sizeof(ThreadLocal)); ThreadLocal blank; // Set the stack limits using the old thread_local_. // TODO(isolates): This was the old semantics of constructing a ThreadLocal // (as the ctor called SetStackLimits, which looked at the // current thread_local_ from StackGuard)-- but is this // really what was intended? isolate_->heap()->SetStackLimits(); thread_local_ = blank; return to + sizeof(ThreadLocal); } char* StackGuard::RestoreStackGuard(char* from) { ExecutionAccess access(isolate_); MemCopy(reinterpret_cast(&thread_local_), from, sizeof(ThreadLocal)); isolate_->heap()->SetStackLimits(); return from + sizeof(ThreadLocal); } void StackGuard::FreeThreadResources() { Isolate::PerIsolateThreadData* per_thread = isolate_->FindOrAllocatePerThreadDataForThisThread(); per_thread->set_stack_limit(thread_local_.real_climit_); } void StackGuard::ThreadLocal::Clear() { real_jslimit_ = kIllegalLimit; set_jslimit(kIllegalLimit); real_climit_ = kIllegalLimit; set_climit(kIllegalLimit); postpone_interrupts_ = NULL; interrupt_flags_ = 0; } bool StackGuard::ThreadLocal::Initialize(Isolate* isolate) { bool should_set_stack_limits = false; if (real_climit_ == kIllegalLimit) { const uintptr_t kLimitSize = FLAG_stack_size * KB; DCHECK(GetCurrentStackPosition() > kLimitSize); uintptr_t limit = GetCurrentStackPosition() - kLimitSize; real_jslimit_ = SimulatorStack::JsLimitFromCLimit(isolate, limit); set_jslimit(SimulatorStack::JsLimitFromCLimit(isolate, limit)); real_climit_ = limit; set_climit(limit); should_set_stack_limits = true; } postpone_interrupts_ = NULL; interrupt_flags_ = 0; return should_set_stack_limits; } void StackGuard::ClearThread(const ExecutionAccess& lock) { thread_local_.Clear(); isolate_->heap()->SetStackLimits(); } void StackGuard::InitThread(const ExecutionAccess& lock) { if (thread_local_.Initialize(isolate_)) isolate_->heap()->SetStackLimits(); Isolate::PerIsolateThreadData* per_thread = isolate_->FindOrAllocatePerThreadDataForThisThread(); uintptr_t stored_limit = per_thread->stack_limit(); // You should hold the ExecutionAccess lock when you call this. if (stored_limit != 0) { SetStackLimit(stored_limit); } } // --- C a l l s t o n a t i v e s --- void StackGuard::HandleGCInterrupt() { if (CheckAndClearInterrupt(GC_REQUEST)) { isolate_->heap()->HandleGCRequest(); } } Object* StackGuard::HandleInterrupts() { if (FLAG_verify_predictable) { // Advance synthetic time by making a time request. isolate_->heap()->MonotonicallyIncreasingTimeInMs(); } bool any_interrupt_handled = false; if (FLAG_trace_interrupts) { PrintF("[Handling interrupts: "); } if (CheckAndClearInterrupt(GC_REQUEST)) { if (FLAG_trace_interrupts) { PrintF("GC_REQUEST"); any_interrupt_handled = true; } isolate_->heap()->HandleGCRequest(); } if (CheckDebugBreak()) { if (FLAG_trace_interrupts) { if (any_interrupt_handled) PrintF(", "); PrintF("DEBUG_BREAK"); any_interrupt_handled = true; } isolate_->debug()->HandleDebugBreak(kIgnoreIfTopFrameBlackboxed); } if (CheckAndClearInterrupt(TERMINATE_EXECUTION)) { if (FLAG_trace_interrupts) { if (any_interrupt_handled) PrintF(", "); PrintF("TERMINATE_EXECUTION"); any_interrupt_handled = true; } return isolate_->TerminateExecution(); } if (CheckAndClearInterrupt(DEOPT_MARKED_ALLOCATION_SITES)) { if (FLAG_trace_interrupts) { if (any_interrupt_handled) PrintF(", "); PrintF("DEOPT_MARKED_ALLOCATION_SITES"); any_interrupt_handled = true; } isolate_->heap()->DeoptMarkedAllocationSites(); } if (CheckAndClearInterrupt(INSTALL_CODE)) { if (FLAG_trace_interrupts) { if (any_interrupt_handled) PrintF(", "); PrintF("INSTALL_CODE"); any_interrupt_handled = true; } DCHECK(isolate_->concurrent_recompilation_enabled()); isolate_->optimizing_compile_dispatcher()->InstallOptimizedFunctions(); } if (CheckAndClearInterrupt(API_INTERRUPT)) { if (FLAG_trace_interrupts) { if (any_interrupt_handled) PrintF(", "); PrintF("API_INTERRUPT"); any_interrupt_handled = true; } // Callbacks must be invoked outside of ExecusionAccess lock. isolate_->InvokeApiInterruptCallbacks(); } if (FLAG_trace_interrupts) { if (!any_interrupt_handled) { PrintF("No interrupt flags set"); } PrintF("]\n"); } isolate_->counters()->stack_interrupts()->Increment(); isolate_->counters()->runtime_profiler_ticks()->Increment(); isolate_->runtime_profiler()->MarkCandidatesForOptimization(); return isolate_->heap()->undefined_value(); } } // namespace internal } // namespace v8