// Copyright 2013 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "src/hydrogen-bce.h" namespace v8 { namespace internal { // We try to "factor up" HBoundsCheck instructions towards the root of the // dominator tree. // For now we handle checks where the index is like "exp + int32value". // If in the dominator tree we check "exp + v1" and later (dominated) // "exp + v2", if v2 <= v1 we can safely remove the second check, and if // v2 > v1 we can use v2 in the 1st check and again remove the second. // To do so we keep a dictionary of all checks where the key if the pair // "exp, length". // The class BoundsCheckKey represents this key. class BoundsCheckKey : public ZoneObject { public: HValue* IndexBase() const { return index_base_; } HValue* Length() const { return length_; } uint32_t Hash() { return static_cast(index_base_->Hashcode() ^ length_->Hashcode()); } static BoundsCheckKey* Create(Zone* zone, HBoundsCheck* check, int32_t* offset) { if (!check->index()->representation().IsSmiOrInteger32()) return NULL; HValue* index_base = NULL; HConstant* constant = NULL; bool is_sub = false; if (check->index()->IsAdd()) { HAdd* index = HAdd::cast(check->index()); if (index->left()->IsConstant()) { constant = HConstant::cast(index->left()); index_base = index->right(); } else if (index->right()->IsConstant()) { constant = HConstant::cast(index->right()); index_base = index->left(); } } else if (check->index()->IsSub()) { HSub* index = HSub::cast(check->index()); is_sub = true; if (index->right()->IsConstant()) { constant = HConstant::cast(index->right()); index_base = index->left(); } } else if (check->index()->IsConstant()) { index_base = check->block()->graph()->GetConstant0(); constant = HConstant::cast(check->index()); } if (constant != NULL && constant->HasInteger32Value()) { *offset = is_sub ? - constant->Integer32Value() : constant->Integer32Value(); } else { *offset = 0; index_base = check->index(); } return new(zone) BoundsCheckKey(index_base, check->length()); } private: BoundsCheckKey(HValue* index_base, HValue* length) : index_base_(index_base), length_(length) { } HValue* index_base_; HValue* length_; DISALLOW_COPY_AND_ASSIGN(BoundsCheckKey); }; // Data about each HBoundsCheck that can be eliminated or moved. // It is the "value" in the dictionary indexed by "base-index, length" // (the key is BoundsCheckKey). // We scan the code with a dominator tree traversal. // Traversing the dominator tree we keep a stack (implemented as a singly // linked list) of "data" for each basic block that contains a relevant check // with the same key (the dictionary holds the head of the list). // We also keep all the "data" created for a given basic block in a list, and // use it to "clean up" the dictionary when backtracking in the dominator tree // traversal. // Doing this each dictionary entry always directly points to the check that // is dominating the code being examined now. // We also track the current "offset" of the index expression and use it to // decide if any check is already "covered" (so it can be removed) or not. class BoundsCheckBbData: public ZoneObject { public: BoundsCheckKey* Key() const { return key_; } int32_t LowerOffset() const { return lower_offset_; } int32_t UpperOffset() const { return upper_offset_; } HBasicBlock* BasicBlock() const { return basic_block_; } HBoundsCheck* LowerCheck() const { return lower_check_; } HBoundsCheck* UpperCheck() const { return upper_check_; } BoundsCheckBbData* NextInBasicBlock() const { return next_in_bb_; } BoundsCheckBbData* FatherInDominatorTree() const { return father_in_dt_; } bool OffsetIsCovered(int32_t offset) const { return offset >= LowerOffset() && offset <= UpperOffset(); } bool HasSingleCheck() { return lower_check_ == upper_check_; } void UpdateUpperOffsets(HBoundsCheck* check, int32_t offset) { BoundsCheckBbData* data = FatherInDominatorTree(); while (data != NULL && data->UpperCheck() == check) { DCHECK(data->upper_offset_ < offset); data->upper_offset_ = offset; data = data->FatherInDominatorTree(); } } void UpdateLowerOffsets(HBoundsCheck* check, int32_t offset) { BoundsCheckBbData* data = FatherInDominatorTree(); while (data != NULL && data->LowerCheck() == check) { DCHECK(data->lower_offset_ > offset); data->lower_offset_ = offset; data = data->FatherInDominatorTree(); } } // The goal of this method is to modify either upper_offset_ or // lower_offset_ so that also new_offset is covered (the covered // range grows). // // The precondition is that new_check follows UpperCheck() and // LowerCheck() in the same basic block, and that new_offset is not // covered (otherwise we could simply remove new_check). // // If HasSingleCheck() is true then new_check is added as "second check" // (either upper or lower; note that HasSingleCheck() becomes false). // Otherwise one of the current checks is modified so that it also covers // new_offset, and new_check is removed. void CoverCheck(HBoundsCheck* new_check, int32_t new_offset) { DCHECK(new_check->index()->representation().IsSmiOrInteger32()); bool keep_new_check = false; if (new_offset > upper_offset_) { upper_offset_ = new_offset; if (HasSingleCheck()) { keep_new_check = true; upper_check_ = new_check; } else { TightenCheck(upper_check_, new_check, new_offset); UpdateUpperOffsets(upper_check_, upper_offset_); } } else if (new_offset < lower_offset_) { lower_offset_ = new_offset; if (HasSingleCheck()) { keep_new_check = true; lower_check_ = new_check; } else { TightenCheck(lower_check_, new_check, new_offset); UpdateLowerOffsets(lower_check_, lower_offset_); } } else { // Should never have called CoverCheck() in this case. UNREACHABLE(); } if (!keep_new_check) { if (FLAG_trace_bce) { base::OS::Print("Eliminating check #%d after tightening\n", new_check->id()); } new_check->block()->graph()->isolate()->counters()-> bounds_checks_eliminated()->Increment(); new_check->DeleteAndReplaceWith(new_check->ActualValue()); } else { HBoundsCheck* first_check = new_check == lower_check_ ? upper_check_ : lower_check_; if (FLAG_trace_bce) { base::OS::Print("Moving second check #%d after first check #%d\n", new_check->id(), first_check->id()); } // The length is guaranteed to be live at first_check. DCHECK(new_check->length() == first_check->length()); HInstruction* old_position = new_check->next(); new_check->Unlink(); new_check->InsertAfter(first_check); MoveIndexIfNecessary(new_check->index(), new_check, old_position); } } BoundsCheckBbData(BoundsCheckKey* key, int32_t lower_offset, int32_t upper_offset, HBasicBlock* bb, HBoundsCheck* lower_check, HBoundsCheck* upper_check, BoundsCheckBbData* next_in_bb, BoundsCheckBbData* father_in_dt) : key_(key), lower_offset_(lower_offset), upper_offset_(upper_offset), basic_block_(bb), lower_check_(lower_check), upper_check_(upper_check), next_in_bb_(next_in_bb), father_in_dt_(father_in_dt) { } private: BoundsCheckKey* key_; int32_t lower_offset_; int32_t upper_offset_; HBasicBlock* basic_block_; HBoundsCheck* lower_check_; HBoundsCheck* upper_check_; BoundsCheckBbData* next_in_bb_; BoundsCheckBbData* father_in_dt_; void MoveIndexIfNecessary(HValue* index_raw, HBoundsCheck* insert_before, HInstruction* end_of_scan_range) { // index_raw can be HAdd(index_base, offset), HSub(index_base, offset), // HConstant(offset) or index_base directly. // In the latter case, no need to move anything. if (index_raw->IsAdd() || index_raw->IsSub()) { HArithmeticBinaryOperation* index = HArithmeticBinaryOperation::cast(index_raw); HValue* left_input = index->left(); HValue* right_input = index->right(); bool must_move_index = false; bool must_move_left_input = false; bool must_move_right_input = false; for (HInstruction* cursor = end_of_scan_range; cursor != insert_before;) { if (cursor == left_input) must_move_left_input = true; if (cursor == right_input) must_move_right_input = true; if (cursor == index) must_move_index = true; if (cursor->previous() == NULL) { cursor = cursor->block()->dominator()->end(); } else { cursor = cursor->previous(); } } if (must_move_index) { index->Unlink(); index->InsertBefore(insert_before); } // The BCE algorithm only selects mergeable bounds checks that share // the same "index_base", so we'll only ever have to move constants. if (must_move_left_input) { HConstant::cast(left_input)->Unlink(); HConstant::cast(left_input)->InsertBefore(index); } if (must_move_right_input) { HConstant::cast(right_input)->Unlink(); HConstant::cast(right_input)->InsertBefore(index); } } else if (index_raw->IsConstant()) { HConstant* index = HConstant::cast(index_raw); bool must_move = false; for (HInstruction* cursor = end_of_scan_range; cursor != insert_before;) { if (cursor == index) must_move = true; if (cursor->previous() == NULL) { cursor = cursor->block()->dominator()->end(); } else { cursor = cursor->previous(); } } if (must_move) { index->Unlink(); index->InsertBefore(insert_before); } } } void TightenCheck(HBoundsCheck* original_check, HBoundsCheck* tighter_check, int32_t new_offset) { DCHECK(original_check->length() == tighter_check->length()); MoveIndexIfNecessary(tighter_check->index(), original_check, tighter_check); original_check->ReplaceAllUsesWith(original_check->index()); original_check->SetOperandAt(0, tighter_check->index()); if (FLAG_trace_bce) { base::OS::Print("Tightened check #%d with offset %d from #%d\n", original_check->id(), new_offset, tighter_check->id()); } } DISALLOW_COPY_AND_ASSIGN(BoundsCheckBbData); }; static bool BoundsCheckKeyMatch(void* key1, void* key2) { BoundsCheckKey* k1 = static_cast(key1); BoundsCheckKey* k2 = static_cast(key2); return k1->IndexBase() == k2->IndexBase() && k1->Length() == k2->Length(); } BoundsCheckTable::BoundsCheckTable(Zone* zone) : ZoneHashMap(BoundsCheckKeyMatch, ZoneHashMap::kDefaultHashMapCapacity, ZoneAllocationPolicy(zone)) { } BoundsCheckBbData** BoundsCheckTable::LookupOrInsert(BoundsCheckKey* key, Zone* zone) { return reinterpret_cast( &(Lookup(key, key->Hash(), true, ZoneAllocationPolicy(zone))->value)); } void BoundsCheckTable::Insert(BoundsCheckKey* key, BoundsCheckBbData* data, Zone* zone) { Lookup(key, key->Hash(), true, ZoneAllocationPolicy(zone))->value = data; } void BoundsCheckTable::Delete(BoundsCheckKey* key) { Remove(key, key->Hash()); } class HBoundsCheckEliminationState { public: HBasicBlock* block_; BoundsCheckBbData* bb_data_list_; int index_; }; // Eliminates checks in bb and recursively in the dominated blocks. // Also replace the results of check instructions with the original value, if // the result is used. This is safe now, since we don't do code motion after // this point. It enables better register allocation since the value produced // by check instructions is really a copy of the original value. void HBoundsCheckEliminationPhase::EliminateRedundantBoundsChecks( HBasicBlock* entry) { // Allocate the stack. HBoundsCheckEliminationState* stack = zone()->NewArray(graph()->blocks()->length()); // Explicitly push the entry block. stack[0].block_ = entry; stack[0].bb_data_list_ = PreProcessBlock(entry); stack[0].index_ = 0; int stack_depth = 1; // Implement depth-first traversal with a stack. while (stack_depth > 0) { int current = stack_depth - 1; HBoundsCheckEliminationState* state = &stack[current]; const ZoneList* children = state->block_->dominated_blocks(); if (state->index_ < children->length()) { // Recursively visit children blocks. HBasicBlock* child = children->at(state->index_++); int next = stack_depth++; stack[next].block_ = child; stack[next].bb_data_list_ = PreProcessBlock(child); stack[next].index_ = 0; } else { // Finished with all children; post process the block. PostProcessBlock(state->block_, state->bb_data_list_); stack_depth--; } } } BoundsCheckBbData* HBoundsCheckEliminationPhase::PreProcessBlock( HBasicBlock* bb) { BoundsCheckBbData* bb_data_list = NULL; for (HInstructionIterator it(bb); !it.Done(); it.Advance()) { HInstruction* i = it.Current(); if (!i->IsBoundsCheck()) continue; HBoundsCheck* check = HBoundsCheck::cast(i); int32_t offset; BoundsCheckKey* key = BoundsCheckKey::Create(zone(), check, &offset); if (key == NULL) continue; BoundsCheckBbData** data_p = table_.LookupOrInsert(key, zone()); BoundsCheckBbData* data = *data_p; if (data == NULL) { bb_data_list = new(zone()) BoundsCheckBbData(key, offset, offset, bb, check, check, bb_data_list, NULL); *data_p = bb_data_list; if (FLAG_trace_bce) { base::OS::Print("Fresh bounds check data for block #%d: [%d]\n", bb->block_id(), offset); } } else if (data->OffsetIsCovered(offset)) { bb->graph()->isolate()->counters()-> bounds_checks_eliminated()->Increment(); if (FLAG_trace_bce) { base::OS::Print("Eliminating bounds check #%d, offset %d is covered\n", check->id(), offset); } check->DeleteAndReplaceWith(check->ActualValue()); } else if (data->BasicBlock() == bb) { // TODO(jkummerow): I think the following logic would be preferable: // if (data->Basicblock() == bb || // graph()->use_optimistic_licm() || // bb->IsLoopSuccessorDominator()) { // data->CoverCheck(check, offset) // } else { // /* add pristine BCBbData like in (data == NULL) case above */ // } // Even better would be: distinguish between read-only dominator-imposed // knowledge and modifiable upper/lower checks. // What happens currently is that the first bounds check in a dominated // block will stay around while any further checks are hoisted out, // which doesn't make sense. Investigate/fix this in a future CL. data->CoverCheck(check, offset); } else if (graph()->use_optimistic_licm() || bb->IsLoopSuccessorDominator()) { int32_t new_lower_offset = offset < data->LowerOffset() ? offset : data->LowerOffset(); int32_t new_upper_offset = offset > data->UpperOffset() ? offset : data->UpperOffset(); bb_data_list = new(zone()) BoundsCheckBbData(key, new_lower_offset, new_upper_offset, bb, data->LowerCheck(), data->UpperCheck(), bb_data_list, data); if (FLAG_trace_bce) { base::OS::Print("Updated bounds check data for block #%d: [%d - %d]\n", bb->block_id(), new_lower_offset, new_upper_offset); } table_.Insert(key, bb_data_list, zone()); } } return bb_data_list; } void HBoundsCheckEliminationPhase::PostProcessBlock( HBasicBlock* block, BoundsCheckBbData* data) { while (data != NULL) { if (data->FatherInDominatorTree()) { table_.Insert(data->Key(), data->FatherInDominatorTree(), zone()); } else { table_.Delete(data->Key()); } data = data->NextInBasicBlock(); } } } } // namespace v8::internal