// Copyright 2010 the V8 project authors. All rights reserved. // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following // disclaimer in the documentation and/or other materials provided // with the distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived // from this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #ifndef V8_LITHIUM_ALLOCATOR_H_ #define V8_LITHIUM_ALLOCATOR_H_ #include "v8.h" #include "data-flow.h" #include "zone.h" namespace v8 { namespace internal { // Forward declarations. class HBasicBlock; class HGraph; class HInstruction; class HPhi; class HTracer; class HValue; class BitVector; class StringStream; class LArgument; class LChunk; class LConstantOperand; class LGap; class LParallelMove; class LPointerMap; class LStackSlot; class LRegister; // This class represents a single point of a LOperand's lifetime. // For each lithium instruction there are exactly two lifetime positions: // the beginning and the end of the instruction. Lifetime positions for // different lithium instructions are disjoint. class LifetimePosition { public: // Return the lifetime position that corresponds to the beginning of // the instruction with the given index. static LifetimePosition FromInstructionIndex(int index) { return LifetimePosition(index * kStep); } // Returns a numeric representation of this lifetime position. int Value() const { return value_; } // Returns the index of the instruction to which this lifetime position // corresponds. int InstructionIndex() const { ASSERT(IsValid()); return value_ / kStep; } // Returns true if this lifetime position corresponds to the instruction // start. bool IsInstructionStart() const { return (value_ & (kStep - 1)) == 0; } // Returns the lifetime position for the start of the instruction which // corresponds to this lifetime position. LifetimePosition InstructionStart() const { ASSERT(IsValid()); return LifetimePosition(value_ & ~(kStep - 1)); } // Returns the lifetime position for the end of the instruction which // corresponds to this lifetime position. LifetimePosition InstructionEnd() const { ASSERT(IsValid()); return LifetimePosition(InstructionStart().Value() + kStep/2); } // Returns the lifetime position for the beginning of the next instruction. LifetimePosition NextInstruction() const { ASSERT(IsValid()); return LifetimePosition(InstructionStart().Value() + kStep); } // Returns the lifetime position for the beginning of the previous // instruction. LifetimePosition PrevInstruction() const { ASSERT(IsValid()); ASSERT(value_ > 1); return LifetimePosition(InstructionStart().Value() - kStep); } // Constructs the lifetime position which does not correspond to any // instruction. LifetimePosition() : value_(-1) {} // Returns true if this lifetime positions corrensponds to some // instruction. bool IsValid() const { return value_ != -1; } static inline LifetimePosition Invalid() { return LifetimePosition(); } static inline LifetimePosition MaxPosition() { // We have to use this kind of getter instead of static member due to // crash bug in GDB. return LifetimePosition(kMaxInt); } private: static const int kStep = 2; // Code relies on kStep being a power of two. STATIC_ASSERT(IS_POWER_OF_TWO(kStep)); explicit LifetimePosition(int value) : value_(value) { } int value_; }; enum RegisterKind { NONE, GENERAL_REGISTERS, DOUBLE_REGISTERS }; class LOperand: public ZoneObject { public: enum Kind { INVALID, UNALLOCATED, CONSTANT_OPERAND, STACK_SLOT, DOUBLE_STACK_SLOT, REGISTER, DOUBLE_REGISTER, ARGUMENT }; LOperand() : value_(KindField::encode(INVALID)) { } Kind kind() const { return KindField::decode(value_); } int index() const { return static_cast(value_) >> kKindFieldWidth; } bool IsConstantOperand() const { return kind() == CONSTANT_OPERAND; } bool IsStackSlot() const { return kind() == STACK_SLOT; } bool IsDoubleStackSlot() const { return kind() == DOUBLE_STACK_SLOT; } bool IsRegister() const { return kind() == REGISTER; } bool IsDoubleRegister() const { return kind() == DOUBLE_REGISTER; } bool IsArgument() const { return kind() == ARGUMENT; } bool IsUnallocated() const { return kind() == UNALLOCATED; } bool Equals(LOperand* other) const { return value_ == other->value_; } int VirtualRegister(); void PrintTo(StringStream* stream); void ConvertTo(Kind kind, int index) { value_ = KindField::encode(kind); value_ |= index << kKindFieldWidth; ASSERT(this->index() == index); } protected: static const int kKindFieldWidth = 3; class KindField : public BitField { }; LOperand(Kind kind, int index) { ConvertTo(kind, index); } unsigned value_; }; class LUnallocated: public LOperand { public: enum Policy { NONE, ANY, FIXED_REGISTER, FIXED_DOUBLE_REGISTER, FIXED_SLOT, MUST_HAVE_REGISTER, WRITABLE_REGISTER, SAME_AS_FIRST_INPUT, IGNORE }; // Lifetime of operand inside the instruction. enum Lifetime { // USED_AT_START operand is guaranteed to be live only at // instruction start. Register allocator is free to assign the same register // to some other operand used inside instruction (i.e. temporary or // output). USED_AT_START, // USED_AT_END operand is treated as live until the end of // instruction. This means that register allocator will not reuse it's // register for any other operand inside instruction. USED_AT_END }; explicit LUnallocated(Policy policy) : LOperand(UNALLOCATED, 0) { Initialize(policy, 0, USED_AT_END); } LUnallocated(Policy policy, int fixed_index) : LOperand(UNALLOCATED, 0) { Initialize(policy, fixed_index, USED_AT_END); } LUnallocated(Policy policy, Lifetime lifetime) : LOperand(UNALLOCATED, 0) { Initialize(policy, 0, lifetime); } // The superclass has a KindField. Some policies have a signed fixed // index in the upper bits. static const int kPolicyWidth = 4; static const int kLifetimeWidth = 1; static const int kVirtualRegisterWidth = 17; static const int kPolicyShift = kKindFieldWidth; static const int kLifetimeShift = kPolicyShift + kPolicyWidth; static const int kVirtualRegisterShift = kLifetimeShift + kLifetimeWidth; static const int kFixedIndexShift = kVirtualRegisterShift + kVirtualRegisterWidth; class PolicyField : public BitField { }; class LifetimeField : public BitField { }; class VirtualRegisterField : public BitField { }; static const int kMaxVirtualRegisters = 1 << (kVirtualRegisterWidth + 1); static const int kMaxFixedIndices = 128; bool HasIgnorePolicy() const { return policy() == IGNORE; } bool HasNoPolicy() const { return policy() == NONE; } bool HasAnyPolicy() const { return policy() == ANY; } bool HasFixedPolicy() const { return policy() == FIXED_REGISTER || policy() == FIXED_DOUBLE_REGISTER || policy() == FIXED_SLOT; } bool HasRegisterPolicy() const { return policy() == WRITABLE_REGISTER || policy() == MUST_HAVE_REGISTER; } bool HasSameAsInputPolicy() const { return policy() == SAME_AS_FIRST_INPUT; } Policy policy() const { return PolicyField::decode(value_); } void set_policy(Policy policy) { value_ &= ~PolicyField::mask(); value_ |= PolicyField::encode(policy); } int fixed_index() const { return static_cast(value_) >> kFixedIndexShift; } unsigned virtual_register() const { return VirtualRegisterField::decode(value_); } void set_virtual_register(unsigned id) { value_ &= ~VirtualRegisterField::mask(); value_ |= VirtualRegisterField::encode(id); } LUnallocated* CopyUnconstrained() { LUnallocated* result = new LUnallocated(ANY); result->set_virtual_register(virtual_register()); return result; } static LUnallocated* cast(LOperand* op) { ASSERT(op->IsUnallocated()); return reinterpret_cast(op); } bool IsUsedAtStart() { return LifetimeField::decode(value_) == USED_AT_START; } private: void Initialize(Policy policy, int fixed_index, Lifetime lifetime) { value_ |= PolicyField::encode(policy); value_ |= LifetimeField::encode(lifetime); value_ |= fixed_index << kFixedIndexShift; ASSERT(this->fixed_index() == fixed_index); } }; class LMoveOperands BASE_EMBEDDED { public: LMoveOperands(LOperand* from, LOperand* to) : from_(from), to_(to) { } LOperand* from() const { return from_; } LOperand* to() const { return to_; } bool IsRedundant() const { return IsEliminated() || from_->Equals(to_) || IsIgnored(); } bool IsEliminated() const { return from_ == NULL; } bool IsIgnored() const { if (to_ != NULL && to_->IsUnallocated() && LUnallocated::cast(to_)->HasIgnorePolicy()) { return true; } return false; } void Eliminate() { from_ = to_ = NULL; } private: LOperand* from_; LOperand* to_; }; class LConstantOperand: public LOperand { public: static LConstantOperand* Create(int index) { ASSERT(index >= 0); if (index < kNumCachedOperands) return &cache[index]; return new LConstantOperand(index); } static LConstantOperand* cast(LOperand* op) { ASSERT(op->IsConstantOperand()); return reinterpret_cast(op); } static void SetupCache(); private: static const int kNumCachedOperands = 128; static LConstantOperand cache[]; LConstantOperand() : LOperand() { } explicit LConstantOperand(int index) : LOperand(CONSTANT_OPERAND, index) { } }; class LArgument: public LOperand { public: explicit LArgument(int index) : LOperand(ARGUMENT, index) { } static LArgument* cast(LOperand* op) { ASSERT(op->IsArgument()); return reinterpret_cast(op); } }; class LStackSlot: public LOperand { public: static LStackSlot* Create(int index) { ASSERT(index >= 0); if (index < kNumCachedOperands) return &cache[index]; return new LStackSlot(index); } static LStackSlot* cast(LOperand* op) { ASSERT(op->IsStackSlot()); return reinterpret_cast(op); } static void SetupCache(); private: static const int kNumCachedOperands = 128; static LStackSlot cache[]; LStackSlot() : LOperand() { } explicit LStackSlot(int index) : LOperand(STACK_SLOT, index) { } }; class LDoubleStackSlot: public LOperand { public: static LDoubleStackSlot* Create(int index) { ASSERT(index >= 0); if (index < kNumCachedOperands) return &cache[index]; return new LDoubleStackSlot(index); } static LDoubleStackSlot* cast(LOperand* op) { ASSERT(op->IsStackSlot()); return reinterpret_cast(op); } static void SetupCache(); private: static const int kNumCachedOperands = 128; static LDoubleStackSlot cache[]; LDoubleStackSlot() : LOperand() { } explicit LDoubleStackSlot(int index) : LOperand(DOUBLE_STACK_SLOT, index) { } }; class LRegister: public LOperand { public: static LRegister* Create(int index) { ASSERT(index >= 0); if (index < kNumCachedOperands) return &cache[index]; return new LRegister(index); } static LRegister* cast(LOperand* op) { ASSERT(op->IsRegister()); return reinterpret_cast(op); } static void SetupCache(); private: static const int kNumCachedOperands = 16; static LRegister cache[]; LRegister() : LOperand() { } explicit LRegister(int index) : LOperand(REGISTER, index) { } }; class LDoubleRegister: public LOperand { public: static LDoubleRegister* Create(int index) { ASSERT(index >= 0); if (index < kNumCachedOperands) return &cache[index]; return new LDoubleRegister(index); } static LDoubleRegister* cast(LOperand* op) { ASSERT(op->IsDoubleRegister()); return reinterpret_cast(op); } static void SetupCache(); private: static const int kNumCachedOperands = 16; static LDoubleRegister cache[]; LDoubleRegister() : LOperand() { } explicit LDoubleRegister(int index) : LOperand(DOUBLE_REGISTER, index) { } }; // A register-allocator view of a Lithium instruction. It contains the id of // the output operand and a list of input operand uses. class InstructionSummary: public ZoneObject { public: InstructionSummary() : output_operand_(NULL), input_count_(0), operands_(4), is_call_(false), is_save_doubles_(false) {} // Output operands. LOperand* Output() const { return output_operand_; } void SetOutput(LOperand* output) { ASSERT(output_operand_ == NULL); output_operand_ = output; } // Input operands. int InputCount() const { return input_count_; } LOperand* InputAt(int i) const { ASSERT(i < input_count_); return operands_[i]; } void AddInput(LOperand* input) { operands_.InsertAt(input_count_, input); input_count_++; } // Temporary operands. int TempCount() const { return operands_.length() - input_count_; } LOperand* TempAt(int i) const { return operands_[i + input_count_]; } void AddTemp(LOperand* temp) { operands_.Add(temp); } void MarkAsCall() { is_call_ = true; } bool IsCall() const { return is_call_; } void MarkAsSaveDoubles() { is_save_doubles_ = true; } bool IsSaveDoubles() const { return is_save_doubles_; } private: LOperand* output_operand_; int input_count_; ZoneList operands_; bool is_call_; bool is_save_doubles_; }; // Representation of the non-empty interval [start,end[. class UseInterval: public ZoneObject { public: UseInterval(LifetimePosition start, LifetimePosition end) : start_(start), end_(end), next_(NULL) { ASSERT(start.Value() < end.Value()); } LifetimePosition start() const { return start_; } LifetimePosition end() const { return end_; } UseInterval* next() const { return next_; } // Split this interval at the given position without effecting the // live range that owns it. The interval must contain the position. void SplitAt(LifetimePosition pos); // If this interval intersects with other return smallest position // that belongs to both of them. LifetimePosition Intersect(const UseInterval* other) const { if (other->start().Value() < start_.Value()) return other->Intersect(this); if (other->start().Value() < end_.Value()) return other->start(); return LifetimePosition::Invalid(); } bool Contains(LifetimePosition point) const { return start_.Value() <= point.Value() && point.Value() < end_.Value(); } private: void set_start(LifetimePosition start) { start_ = start; } void set_next(UseInterval* next) { next_ = next; } LifetimePosition start_; LifetimePosition end_; UseInterval* next_; friend class LiveRange; // Assigns to start_. }; // Representation of a use position. class UsePosition: public ZoneObject { public: UsePosition(LifetimePosition pos, LOperand* operand) : operand_(operand), hint_(NULL), pos_(pos), next_(NULL), requires_reg_(false), register_beneficial_(true) { if (operand_ != NULL && operand_->IsUnallocated()) { LUnallocated* unalloc = LUnallocated::cast(operand_); requires_reg_ = unalloc->HasRegisterPolicy(); register_beneficial_ = !unalloc->HasAnyPolicy(); } ASSERT(pos_.IsValid()); } LOperand* operand() const { return operand_; } bool HasOperand() const { return operand_ != NULL; } LOperand* hint() const { return hint_; } void set_hint(LOperand* hint) { hint_ = hint; } bool HasHint() const { return hint_ != NULL && !hint_->IsUnallocated(); } bool RequiresRegister() const; bool RegisterIsBeneficial() const; LifetimePosition pos() const { return pos_; } UsePosition* next() const { return next_; } private: void set_next(UsePosition* next) { next_ = next; } LOperand* operand_; LOperand* hint_; LifetimePosition pos_; UsePosition* next_; bool requires_reg_; bool register_beneficial_; friend class LiveRange; }; // Representation of SSA values' live ranges as a collection of (continuous) // intervals over the instruction ordering. class LiveRange: public ZoneObject { public: static const int kInvalidAssignment = 0x7fffffff; explicit LiveRange(int id) : id_(id), spilled_(false), assigned_register_(kInvalidAssignment), assigned_register_kind_(NONE), last_interval_(NULL), first_interval_(NULL), first_pos_(NULL), parent_(NULL), next_(NULL), current_interval_(NULL), last_processed_use_(NULL), spill_start_index_(kMaxInt) { spill_operand_ = new LUnallocated(LUnallocated::IGNORE); } UseInterval* first_interval() const { return first_interval_; } UsePosition* first_pos() const { return first_pos_; } LiveRange* parent() const { return parent_; } LiveRange* TopLevel() { return (parent_ == NULL) ? this : parent_; } LiveRange* next() const { return next_; } bool IsChild() const { return parent() != NULL; } bool IsParent() const { return parent() == NULL; } int id() const { return id_; } bool IsFixed() const { return id_ < 0; } bool IsEmpty() const { return first_interval() == NULL; } LOperand* CreateAssignedOperand(); int assigned_register() const { return assigned_register_; } int spill_start_index() const { return spill_start_index_; } void set_assigned_register(int reg, RegisterKind register_kind) { ASSERT(!HasRegisterAssigned() && !IsSpilled()); assigned_register_ = reg; assigned_register_kind_ = register_kind; ConvertOperands(); } void MakeSpilled() { ASSERT(!IsSpilled()); ASSERT(TopLevel()->HasAllocatedSpillOperand()); spilled_ = true; assigned_register_ = kInvalidAssignment; ConvertOperands(); } // Returns use position in this live range that follows both start // and last processed use position. // Modifies internal state of live range! UsePosition* NextUsePosition(LifetimePosition start); // Returns use position for which register is required in this live // range and which follows both start and last processed use position // Modifies internal state of live range! UsePosition* NextRegisterPosition(LifetimePosition start); // Returns use position for which register is beneficial in this live // range and which follows both start and last processed use position // Modifies internal state of live range! UsePosition* NextUsePositionRegisterIsBeneficial(LifetimePosition start); // Can this live range be spilled at this position. bool CanBeSpilled(LifetimePosition pos); // Split this live range at the given position which must follow the start of // the range. // All uses following the given position will be moved from this // live range to the result live range. void SplitAt(LifetimePosition position, LiveRange* result); bool IsDouble() const { return assigned_register_kind_ == DOUBLE_REGISTERS; } bool HasRegisterAssigned() const { return assigned_register_ != kInvalidAssignment; } bool IsSpilled() const { return spilled_; } UsePosition* FirstPosWithHint() const; LOperand* FirstHint() const { UsePosition* pos = FirstPosWithHint(); if (pos != NULL) return pos->hint(); return NULL; } LifetimePosition Start() const { ASSERT(!IsEmpty()); return first_interval()->start(); } LifetimePosition End() const { ASSERT(!IsEmpty()); return last_interval_->end(); } bool HasAllocatedSpillOperand() const { return spill_operand_ != NULL && !spill_operand_->IsUnallocated(); } LOperand* GetSpillOperand() const { return spill_operand_; } void SetSpillOperand(LOperand* operand) { ASSERT(!operand->IsUnallocated()); ASSERT(spill_operand_ != NULL); ASSERT(spill_operand_->IsUnallocated()); spill_operand_->ConvertTo(operand->kind(), operand->index()); } void SetSpillStartIndex(int start) { spill_start_index_ = Min(start, spill_start_index_); } bool ShouldBeAllocatedBefore(const LiveRange* other) const; bool CanCover(LifetimePosition position) const; bool Covers(LifetimePosition position); LifetimePosition FirstIntersection(LiveRange* other); // Add a new interval or a new use position to this live range. void EnsureInterval(LifetimePosition start, LifetimePosition end); void AddUseInterval(LifetimePosition start, LifetimePosition end); UsePosition* AddUsePosition(LifetimePosition pos, LOperand* operand); UsePosition* AddUsePosition(LifetimePosition pos); // Shorten the most recently added interval by setting a new start. void ShortenTo(LifetimePosition start); #ifdef DEBUG // True if target overlaps an existing interval. bool HasOverlap(UseInterval* target) const; void Verify() const; #endif private: void ConvertOperands(); UseInterval* FirstSearchIntervalForPosition(LifetimePosition position) const; void AdvanceLastProcessedMarker(UseInterval* to_start_of, LifetimePosition but_not_past) const; int id_; bool spilled_; int assigned_register_; RegisterKind assigned_register_kind_; UseInterval* last_interval_; UseInterval* first_interval_; UsePosition* first_pos_; LiveRange* parent_; LiveRange* next_; // This is used as a cache, it doesn't affect correctness. mutable UseInterval* current_interval_; UsePosition* last_processed_use_; LOperand* spill_operand_; int spill_start_index_; }; class GrowableBitVector BASE_EMBEDDED { public: GrowableBitVector() : bits_(NULL) { } bool Contains(int value) const { if (!InBitsRange(value)) return false; return bits_->Contains(value); } void Add(int value) { EnsureCapacity(value); bits_->Add(value); } private: static const int kInitialLength = 1024; bool InBitsRange(int value) const { return bits_ != NULL && bits_->length() > value; } void EnsureCapacity(int value) { if (InBitsRange(value)) return; int new_length = bits_ == NULL ? kInitialLength : bits_->length(); while (new_length <= value) new_length *= 2; BitVector* new_bits = new BitVector(new_length); if (bits_ != NULL) new_bits->CopyFrom(*bits_); bits_ = new_bits; } BitVector* bits_; }; class LAllocator BASE_EMBEDDED { public: explicit LAllocator(int first_virtual_register, HGraph* graph) : chunk_(NULL), summaries_(0), next_summary_(NULL), summary_stack_(2), live_in_sets_(0), live_ranges_(16), fixed_live_ranges_(8), fixed_double_live_ranges_(8), unhandled_live_ranges_(8), active_live_ranges_(8), inactive_live_ranges_(8), reusable_slots_(8), next_virtual_register_(first_virtual_register), first_artificial_register_(first_virtual_register), mode_(NONE), num_registers_(-1), graph_(graph), has_osr_entry_(false) {} static void Setup(); static void TraceAlloc(const char* msg, ...); // Lithium translation support. // Record a use of an input operand in the current instruction. void RecordUse(HValue* value, LUnallocated* operand); // Record the definition of the output operand. void RecordDefinition(HInstruction* instr, LUnallocated* operand); // Record a temporary operand. void RecordTemporary(LUnallocated* operand); // Marks the current instruction as a call. void MarkAsCall(); // Marks the current instruction as requiring saving double registers. void MarkAsSaveDoubles(); // Checks whether the value of a given virtual register is tagged. bool HasTaggedValue(int virtual_register) const; // Returns the register kind required by the given virtual register. RegisterKind RequiredRegisterKind(int virtual_register) const; // Begin a new instruction. void BeginInstruction(); // Summarize the current instruction. void SummarizeInstruction(int index); // Summarize the current instruction. void OmitInstruction(); // Control max function size. static int max_initial_value_ids(); void Allocate(LChunk* chunk); const ZoneList* live_ranges() const { return &live_ranges_; } const ZoneList* fixed_live_ranges() const { return &fixed_live_ranges_; } const ZoneList* fixed_double_live_ranges() const { return &fixed_double_live_ranges_; } LChunk* chunk() const { return chunk_; } HGraph* graph() const { return graph_; } void MarkAsOsrEntry() { // There can be only one. ASSERT(!has_osr_entry_); // Simply set a flag to find and process instruction later. has_osr_entry_ = true; } #ifdef DEBUG void Verify() const; #endif private: void MeetRegisterConstraints(); void ResolvePhis(); void BuildLiveRanges(); void AllocateGeneralRegisters(); void AllocateDoubleRegisters(); void ConnectRanges(); void ResolveControlFlow(); void PopulatePointerMaps(); void ProcessOsrEntry(); void AllocateRegisters(); bool CanEagerlyResolveControlFlow(HBasicBlock* block) const; inline bool SafePointsAreInOrder() const; // Liveness analysis support. void InitializeLivenessAnalysis(); BitVector* ComputeLiveOut(HBasicBlock* block); void AddInitialIntervals(HBasicBlock* block, BitVector* live_out); void ProcessInstructions(HBasicBlock* block, BitVector* live); void MeetRegisterConstraints(HBasicBlock* block); void MeetConstraintsBetween(InstructionSummary* first, InstructionSummary* second, int gap_index); void ResolvePhis(HBasicBlock* block); // Helper methods for building intervals. LOperand* AllocateFixed(LUnallocated* operand, int pos, bool is_tagged); LiveRange* LiveRangeFor(LOperand* operand); void Define(LifetimePosition position, LOperand* operand, LOperand* hint); void Use(LifetimePosition block_start, LifetimePosition position, LOperand* operand, LOperand* hint); void AddConstraintsGapMove(int index, LOperand* from, LOperand* to); // Helper methods for updating the life range lists. void AddToActive(LiveRange* range); void AddToInactive(LiveRange* range); void AddToUnhandledSorted(LiveRange* range); void AddToUnhandledUnsorted(LiveRange* range); void SortUnhandled(); bool UnhandledIsSorted(); void ActiveToHandled(LiveRange* range); void ActiveToInactive(LiveRange* range); void InactiveToHandled(LiveRange* range); void InactiveToActive(LiveRange* range); void FreeSpillSlot(LiveRange* range); LOperand* TryReuseSpillSlot(LiveRange* range); // Helper methods for allocating registers. bool TryAllocateFreeReg(LiveRange* range); void AllocateBlockedReg(LiveRange* range); // Live range splitting helpers. // Split the given range at the given position. // If range starts at or after the given position then the // original range is returned. // Otherwise returns the live range that starts at pos and contains // all uses from the original range that follow pos. Uses at pos will // still be owned by the original range after splitting. LiveRange* SplitAt(LiveRange* range, LifetimePosition pos); // Split the given range in a position from the interval [start, end]. LiveRange* SplitBetween(LiveRange* range, LifetimePosition start, LifetimePosition end); // Find a lifetime position in the interval [start, end] which // is optimal for splitting: it is either header of the outermost // loop covered by this interval or the latest possible position. LifetimePosition FindOptimalSplitPos(LifetimePosition start, LifetimePosition end); // Spill the given life range after position pos. void SpillAfter(LiveRange* range, LifetimePosition pos); // Spill the given life range after position start and up to position end. void SpillBetween(LiveRange* range, LifetimePosition start, LifetimePosition end); void SplitAndSpillIntersecting(LiveRange* range); void Spill(LiveRange* range); bool IsBlockBoundary(LifetimePosition pos); void AddGapMove(int pos, LiveRange* prev, LiveRange* next); // Helper methods for resolving control flow. void ResolveControlFlow(LiveRange* range, HBasicBlock* block, HBasicBlock* pred); // Return parallel move that should be used to connect ranges split at the // given position. LParallelMove* GetConnectingParallelMove(LifetimePosition pos); // Return the block which contains give lifetime position. HBasicBlock* GetBlock(LifetimePosition pos); // Current active summary. InstructionSummary* current_summary() const { return summary_stack_.last(); } // Get summary for given instruction index. InstructionSummary* GetSummary(int index) const { return summaries_[index]; } // Helper methods for the fixed registers. int RegisterCount() const; static int FixedLiveRangeID(int index) { return -index - 1; } static int FixedDoubleLiveRangeID(int index); LiveRange* FixedLiveRangeFor(int index); LiveRange* FixedDoubleLiveRangeFor(int index); LiveRange* LiveRangeFor(int index); HPhi* LookupPhi(LOperand* operand) const; LGap* GetLastGap(HBasicBlock* block) const; const char* RegisterName(int allocation_index); LChunk* chunk_; ZoneList summaries_; InstructionSummary* next_summary_; ZoneList summary_stack_; // During liveness analysis keep a mapping from block id to live_in sets // for blocks already analyzed. ZoneList live_in_sets_; // Liveness analysis results. ZoneList live_ranges_; // Lists of live ranges ZoneList fixed_live_ranges_; ZoneList fixed_double_live_ranges_; ZoneList unhandled_live_ranges_; ZoneList active_live_ranges_; ZoneList inactive_live_ranges_; ZoneList reusable_slots_; // Next virtual register number to be assigned to temporaries. int next_virtual_register_; int first_artificial_register_; GrowableBitVector double_artificial_registers_; RegisterKind mode_; int num_registers_; HGraph* graph_; bool has_osr_entry_; DISALLOW_COPY_AND_ASSIGN(LAllocator); }; } } // namespace v8::internal #endif // V8_LITHIUM_ALLOCATOR_H_