// Copyright 2012 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #ifndef V8_LOGGING_COUNTERS_H_ #define V8_LOGGING_COUNTERS_H_ #include #include "include/v8-callbacks.h" #include "src/base/atomic-utils.h" #include "src/base/optional.h" #include "src/base/platform/elapsed-timer.h" #include "src/base/platform/time.h" #include "src/common/globals.h" #include "src/logging/counters-definitions.h" #include "src/logging/runtime-call-stats.h" #include "src/objects/code-kind.h" #include "src/objects/fixed-array.h" #include "src/objects/objects.h" #include "src/utils/allocation.h" namespace v8 { namespace internal { // StatsCounters is an interface for plugging into external // counters for monitoring. Counters can be looked up and // manipulated by name. class Counters; class Isolate; class StatsTable { public: StatsTable(const StatsTable&) = delete; StatsTable& operator=(const StatsTable&) = delete; // Register an application-defined function for recording // subsequent counter statistics. void SetCounterFunction(CounterLookupCallback f); // Register an application-defined function to create histograms for // recording subsequent histogram samples. void SetCreateHistogramFunction(CreateHistogramCallback f) { create_histogram_function_ = f; } // Register an application-defined function to add a sample // to a histogram created with CreateHistogram function. void SetAddHistogramSampleFunction(AddHistogramSampleCallback f) { add_histogram_sample_function_ = f; } bool HasCounterFunction() const { return lookup_function_ != nullptr; } // Lookup the location of a counter by name. If the lookup // is successful, returns a non-nullptr pointer for writing the // value of the counter. Each thread calling this function // may receive a different location to store it's counter. // The return value must not be cached and re-used across // threads, although a single thread is free to cache it. int* FindLocation(const char* name) { if (!lookup_function_) return nullptr; return lookup_function_(name); } // Create a histogram by name. If the create is successful, // returns a non-nullptr pointer for use with AddHistogramSample // function. min and max define the expected minimum and maximum // sample values. buckets is the maximum number of buckets // that the samples will be grouped into. void* CreateHistogram(const char* name, int min, int max, size_t buckets) { if (!create_histogram_function_) return nullptr; return create_histogram_function_(name, min, max, buckets); } // Add a sample to a histogram created with the CreateHistogram // function. void AddHistogramSample(void* histogram, int sample) { if (!add_histogram_sample_function_) return; return add_histogram_sample_function_(histogram, sample); } private: friend class Counters; explicit StatsTable(Counters* counters); CounterLookupCallback lookup_function_; CreateHistogramCallback create_histogram_function_; AddHistogramSampleCallback add_histogram_sample_function_; }; // StatsCounters are dynamically created values which can be tracked in the // StatsTable. They are designed to be lightweight to create and easy to use. // // Internally, a counter represents a value in a row of a StatsTable. // The row has a 32bit value for each process/thread in the table and also // a name (stored in the table metadata). Since the storage location can be // thread-specific, this class cannot be shared across threads. // This class is thread-safe. class StatsCounter { public: void Set(int value) { GetPtr()->store(value, std::memory_order_relaxed); } void Increment(int value = 1) { GetPtr()->fetch_add(value, std::memory_order_relaxed); } void Decrement(int value = 1) { GetPtr()->fetch_sub(value, std::memory_order_relaxed); } // Returns true if this counter is enabled (a lookup function was provided and // it returned a non-null pointer). V8_EXPORT_PRIVATE bool Enabled(); // Get the internal pointer to the counter. This is used // by the code generator to emit code that manipulates a // given counter without calling the runtime system. std::atomic* GetInternalPointer() { return GetPtr(); } private: friend class Counters; void Init(Counters* counters, const char* name) { DCHECK_NULL(counters_); DCHECK_NOT_NULL(counters); // Counter names always start with "c:V8.". DCHECK_EQ(0, memcmp(name, "c:V8.", 5)); counters_ = counters; name_ = name; } V8_NOINLINE V8_EXPORT_PRIVATE std::atomic* SetupPtrFromStatsTable(); // Reset the cached internal pointer. void Reset() { ptr_.store(nullptr, std::memory_order_relaxed); } // Returns the cached address of this counter location. std::atomic* GetPtr() { auto* ptr = ptr_.load(std::memory_order_acquire); if (V8_LIKELY(ptr)) return ptr; return SetupPtrFromStatsTable(); } Counters* counters_ = nullptr; const char* name_ = nullptr; // A pointer to an atomic, set atomically in {GetPtr}. std::atomic*> ptr_{nullptr}; }; // A Histogram represents a dynamically created histogram in the // StatsTable. Note: This class is thread safe. class Histogram { public: // Add a single sample to this histogram. void AddSample(int sample); // Returns true if this histogram is enabled. bool Enabled() { return histogram_ != nullptr; } const char* name() const { return name_; } int min() const { return min_; } int max() const { return max_; } int num_buckets() const { return num_buckets_; } // Asserts that |expected_counters| are the same as the Counters this // Histogram reports to. void AssertReportsToCounters(Counters* expected_counters) { DCHECK_EQ(counters_, expected_counters); } protected: Histogram() = default; Histogram(const Histogram&) = delete; Histogram& operator=(const Histogram&) = delete; void Initialize(const char* name, int min, int max, int num_buckets, Counters* counters) { name_ = name; min_ = min; max_ = max; num_buckets_ = num_buckets; histogram_ = nullptr; counters_ = counters; DCHECK_NOT_NULL(counters_); } Counters* counters() const { return counters_; } // Reset the cached internal pointer to nullptr; the histogram will be // created lazily, the first time it is needed. void Reset() { histogram_ = nullptr; } // Lazily create the histogram, if it has not been created yet. void EnsureCreated(bool create_new = true) { if (create_new && histogram_.load(std::memory_order_acquire) == nullptr) { base::MutexGuard Guard(&mutex_); if (histogram_.load(std::memory_order_relaxed) == nullptr) histogram_.store(CreateHistogram(), std::memory_order_release); } } private: friend class Counters; V8_EXPORT_PRIVATE void* CreateHistogram() const; const char* name_; int min_; int max_; int num_buckets_; std::atomic histogram_; Counters* counters_; base::Mutex mutex_; }; enum class TimedHistogramResolution { MILLISECOND, MICROSECOND }; // A thread safe histogram timer. It also allows distributions of // nested timed results. class TimedHistogram : public Histogram { public: // Records a TimeDelta::Max() result. Useful to record percentage of tasks // that never got to run in a given scenario. Log if isolate non-null. void RecordAbandon(base::ElapsedTimer* timer, Isolate* isolate); // Add a single sample to this histogram. V8_EXPORT_PRIVATE void AddTimedSample(base::TimeDelta sample); #ifdef DEBUG // Ensures that we don't have nested timers for TimedHistogram per thread, use // NestedTimedHistogram which correctly pause and resume timers. // This method assumes that each timer is alternating between stopped and // started on a single thread. Multiple timers can be active on different // threads. bool ToggleRunningState(bool expected_is_running) const; #endif // DEBUG protected: void Stop(base::ElapsedTimer* timer); void LogStart(Isolate* isolate); void LogEnd(Isolate* isolate); friend class Counters; TimedHistogramResolution resolution_; TimedHistogram() = default; TimedHistogram(const TimedHistogram&) = delete; TimedHistogram& operator=(const TimedHistogram&) = delete; void Initialize(const char* name, int min, int max, TimedHistogramResolution resolution, int num_buckets, Counters* counters) { Histogram::Initialize(name, min, max, num_buckets, counters); resolution_ = resolution; } }; class NestedTimedHistogramScope; class PauseNestedTimedHistogramScope; // A NestedTimedHistogram allows distributions of nested timed results. class NestedTimedHistogram : public TimedHistogram { public: // Note: public for testing purposes only. NestedTimedHistogram(const char* name, int min, int max, TimedHistogramResolution resolution, int num_buckets, Counters* counters) : NestedTimedHistogram() { Initialize(name, min, max, resolution, num_buckets, counters); } private: friend class Counters; friend class NestedTimedHistogramScope; friend class PauseNestedTimedHistogramScope; inline NestedTimedHistogramScope* Enter(NestedTimedHistogramScope* next) { NestedTimedHistogramScope* previous = current_; current_ = next; return previous; } inline void Leave(NestedTimedHistogramScope* previous) { current_ = previous; } NestedTimedHistogramScope* current_ = nullptr; NestedTimedHistogram() = default; NestedTimedHistogram(const NestedTimedHistogram&) = delete; NestedTimedHistogram& operator=(const NestedTimedHistogram&) = delete; }; // A histogram timer that can aggregate events within a larger scope. // // Intended use of this timer is to have an outer (aggregating) and an inner // (to be aggregated) scope, where the inner scope measure the time of events, // and all those inner scope measurements will be summed up by the outer scope. // An example use might be to aggregate the time spent in lazy compilation // while running a script. // // Helpers: // - AggregatingHistogramTimerScope, the "outer" scope within which // times will be summed up. // - AggregatedHistogramTimerScope, the "inner" scope which defines the // events to be timed. class AggregatableHistogramTimer : public Histogram { public: // Start/stop the "outer" scope. void Start() { time_ = base::TimeDelta(); } void Stop() { if (time_ != base::TimeDelta()) { // Only add non-zero samples, since zero samples represent situations // where there were no aggregated samples added. AddSample(static_cast(time_.InMicroseconds())); } } // Add a time value ("inner" scope). void Add(base::TimeDelta other) { time_ += other; } private: friend class Counters; AggregatableHistogramTimer() = default; AggregatableHistogramTimer(const AggregatableHistogramTimer&) = delete; AggregatableHistogramTimer& operator=(const AggregatableHistogramTimer&) = delete; base::TimeDelta time_; }; // A helper class for use with AggregatableHistogramTimer. This is the // // outer-most timer scope used with an AggregatableHistogramTimer. It will // // aggregate the information from the inner AggregatedHistogramTimerScope. class V8_NODISCARD AggregatingHistogramTimerScope { public: explicit AggregatingHistogramTimerScope(AggregatableHistogramTimer* histogram) : histogram_(histogram) { histogram_->Start(); } ~AggregatingHistogramTimerScope() { histogram_->Stop(); } private: AggregatableHistogramTimer* histogram_; }; // A helper class for use with AggregatableHistogramTimer, the "inner" scope // // which defines the events to be timed. class V8_NODISCARD AggregatedHistogramTimerScope { public: explicit AggregatedHistogramTimerScope(AggregatableHistogramTimer* histogram) : histogram_(histogram) { timer_.Start(); } ~AggregatedHistogramTimerScope() { histogram_->Add(timer_.Elapsed()); } private: base::ElapsedTimer timer_; AggregatableHistogramTimer* histogram_; }; // AggretatedMemoryHistogram collects (time, value) sample pairs and turns // them into time-uniform samples for the backing historgram, such that the // backing histogram receives one sample every T ms, where the T is controlled // by the FLAG_histogram_interval. // // More formally: let F be a real-valued function that maps time to sample // values. We define F as a linear interpolation between adjacent samples. For // each time interval [x; x + T) the backing histogram gets one sample value // that is the average of F(t) in the interval. template class AggregatedMemoryHistogram { public: // Note: public for testing purposes only. explicit AggregatedMemoryHistogram(Histogram* backing_histogram) : AggregatedMemoryHistogram() { backing_histogram_ = backing_histogram; } // Invariants that hold before and after AddSample if // is_initialized_ is true: // // 1) For we processed samples that came in before start_ms_ and sent the // corresponding aggregated samples to backing histogram. // 2) (last_ms_, last_value_) is the last received sample. // 3) last_ms_ < start_ms_ + FLAG_histogram_interval. // 4) aggregate_value_ is the average of the function that is constructed by // linearly interpolating samples received between start_ms_ and last_ms_. void AddSample(double current_ms, double current_value); private: friend class Counters; AggregatedMemoryHistogram() : is_initialized_(false), start_ms_(0.0), last_ms_(0.0), aggregate_value_(0.0), last_value_(0.0), backing_histogram_(nullptr) {} double Aggregate(double current_ms, double current_value); bool is_initialized_; double start_ms_; double last_ms_; double aggregate_value_; double last_value_; Histogram* backing_histogram_; }; template void AggregatedMemoryHistogram::AddSample(double current_ms, double current_value) { if (!is_initialized_) { aggregate_value_ = current_value; start_ms_ = current_ms; last_value_ = current_value; last_ms_ = current_ms; is_initialized_ = true; } else { const double kEpsilon = 1e-6; const int kMaxSamples = 1000; if (current_ms < last_ms_ + kEpsilon) { // Two samples have the same time, remember the last one. last_value_ = current_value; } else { double sample_interval_ms = FLAG_histogram_interval; double end_ms = start_ms_ + sample_interval_ms; if (end_ms <= current_ms + kEpsilon) { // Linearly interpolate between the last_ms_ and the current_ms. double slope = (current_value - last_value_) / (current_ms - last_ms_); int i; // Send aggregated samples to the backing histogram from the start_ms // to the current_ms. for (i = 0; i < kMaxSamples && end_ms <= current_ms + kEpsilon; i++) { double end_value = last_value_ + (end_ms - last_ms_) * slope; double sample_value; if (i == 0) { // Take aggregate_value_ into account. sample_value = Aggregate(end_ms, end_value); } else { // There is no aggregate_value_ for i > 0. sample_value = (last_value_ + end_value) / 2; } backing_histogram_->AddSample(static_cast(sample_value + 0.5)); last_value_ = end_value; last_ms_ = end_ms; end_ms += sample_interval_ms; } if (i == kMaxSamples) { // We hit the sample limit, ignore the remaining samples. aggregate_value_ = current_value; start_ms_ = current_ms; } else { aggregate_value_ = last_value_; start_ms_ = last_ms_; } } aggregate_value_ = current_ms > start_ms_ + kEpsilon ? Aggregate(current_ms, current_value) : aggregate_value_; last_value_ = current_value; last_ms_ = current_ms; } } } template double AggregatedMemoryHistogram::Aggregate(double current_ms, double current_value) { double interval_ms = current_ms - start_ms_; double value = (current_value + last_value_) / 2; // The aggregate_value_ is the average for [start_ms_; last_ms_]. // The value is the average for [last_ms_; current_ms]. // Return the weighted average of the aggregate_value_ and the value. return aggregate_value_ * ((last_ms_ - start_ms_) / interval_ms) + value * ((current_ms - last_ms_) / interval_ms); } // This file contains all the v8 counters that are in use. class Counters : public std::enable_shared_from_this { public: explicit Counters(Isolate* isolate); // Register an application-defined function for recording // subsequent counter statistics. Note: Must be called on the main // thread. void ResetCounterFunction(CounterLookupCallback f); // Register an application-defined function to create histograms for // recording subsequent histogram samples. Note: Must be called on // the main thread. void ResetCreateHistogramFunction(CreateHistogramCallback f); // Register an application-defined function to add a sample // to a histogram. Will be used in all subsequent sample additions. // Note: Must be called on the main thread. void SetAddHistogramSampleFunction(AddHistogramSampleCallback f) { stats_table_.SetAddHistogramSampleFunction(f); } #define HR(name, caption, min, max, num_buckets) \ Histogram* name() { \ name##_.EnsureCreated(); \ return &name##_; \ } HISTOGRAM_RANGE_LIST(HR) #undef HR #define HT(name, caption, max, res) \ NestedTimedHistogram* name() { \ name##_.EnsureCreated(); \ return &name##_; \ } NESTED_TIMED_HISTOGRAM_LIST(HT) #undef HT #define HT(name, caption, max, res) \ NestedTimedHistogram* name() { \ name##_.EnsureCreated(FLAG_slow_histograms); \ return &name##_; \ } NESTED_TIMED_HISTOGRAM_LIST_SLOW(HT) #undef HT #define HT(name, caption, max, res) \ TimedHistogram* name() { \ name##_.EnsureCreated(); \ return &name##_; \ } TIMED_HISTOGRAM_LIST(HT) #undef HT #define AHT(name, caption) \ AggregatableHistogramTimer* name() { \ name##_.EnsureCreated(); \ return &name##_; \ } AGGREGATABLE_HISTOGRAM_TIMER_LIST(AHT) #undef AHT #define HP(name, caption) \ Histogram* name() { \ name##_.EnsureCreated(); \ return &name##_; \ } HISTOGRAM_PERCENTAGE_LIST(HP) #undef HP #define HM(name, caption) \ Histogram* name() { \ name##_.EnsureCreated(); \ return &name##_; \ } HISTOGRAM_LEGACY_MEMORY_LIST(HM) #undef HM #define SC(name, caption) \ StatsCounter* name() { return &name##_; } STATS_COUNTER_LIST_1(SC) STATS_COUNTER_LIST_2(SC) STATS_COUNTER_NATIVE_CODE_LIST(SC) #undef SC // clang-format off enum Id { #define RATE_ID(name, caption, max, res) k_##name, NESTED_TIMED_HISTOGRAM_LIST(RATE_ID) NESTED_TIMED_HISTOGRAM_LIST_SLOW(RATE_ID) TIMED_HISTOGRAM_LIST(RATE_ID) #undef RATE_ID #define AGGREGATABLE_ID(name, caption) k_##name, AGGREGATABLE_HISTOGRAM_TIMER_LIST(AGGREGATABLE_ID) #undef AGGREGATABLE_ID #define PERCENTAGE_ID(name, caption) k_##name, HISTOGRAM_PERCENTAGE_LIST(PERCENTAGE_ID) #undef PERCENTAGE_ID #define MEMORY_ID(name, caption) k_##name, HISTOGRAM_LEGACY_MEMORY_LIST(MEMORY_ID) #undef MEMORY_ID #define COUNTER_ID(name, caption) k_##name, STATS_COUNTER_LIST_1(COUNTER_ID) STATS_COUNTER_LIST_2(COUNTER_ID) STATS_COUNTER_NATIVE_CODE_LIST(COUNTER_ID) #undef COUNTER_ID #define COUNTER_ID(name) kCountOf##name, kSizeOf##name, INSTANCE_TYPE_LIST(COUNTER_ID) #undef COUNTER_ID #define COUNTER_ID(name) kCountOfCODE_TYPE_##name, \ kSizeOfCODE_TYPE_##name, CODE_KIND_LIST(COUNTER_ID) #undef COUNTER_ID #define COUNTER_ID(name) kCountOfFIXED_ARRAY__##name, \ kSizeOfFIXED_ARRAY__##name, FIXED_ARRAY_SUB_INSTANCE_TYPE_LIST(COUNTER_ID) #undef COUNTER_ID stats_counter_count }; // clang-format on #ifdef V8_RUNTIME_CALL_STATS RuntimeCallStats* runtime_call_stats() { return &runtime_call_stats_; } WorkerThreadRuntimeCallStats* worker_thread_runtime_call_stats() { return &worker_thread_runtime_call_stats_; } #else // V8_RUNTIME_CALL_STATS RuntimeCallStats* runtime_call_stats() { return nullptr; } WorkerThreadRuntimeCallStats* worker_thread_runtime_call_stats() { return nullptr; } #endif // V8_RUNTIME_CALL_STATS private: friend class StatsTable; friend class StatsCounter; friend class Histogram; friend class NestedTimedHistogramScope; int* FindLocation(const char* name) { return stats_table_.FindLocation(name); } void* CreateHistogram(const char* name, int min, int max, size_t buckets) { return stats_table_.CreateHistogram(name, min, max, buckets); } void AddHistogramSample(void* histogram, int sample) { stats_table_.AddHistogramSample(histogram, sample); } Isolate* isolate() { return isolate_; } #define HR(name, caption, min, max, num_buckets) Histogram name##_; HISTOGRAM_RANGE_LIST(HR) #undef HR #define HT(name, caption, max, res) NestedTimedHistogram name##_; NESTED_TIMED_HISTOGRAM_LIST(HT) NESTED_TIMED_HISTOGRAM_LIST_SLOW(HT) #undef HT #define HT(name, caption, max, res) TimedHistogram name##_; TIMED_HISTOGRAM_LIST(HT) #undef HT #define AHT(name, caption) AggregatableHistogramTimer name##_; AGGREGATABLE_HISTOGRAM_TIMER_LIST(AHT) #undef AHT #define HP(name, caption) Histogram name##_; HISTOGRAM_PERCENTAGE_LIST(HP) #undef HP #define HM(name, caption) Histogram name##_; HISTOGRAM_LEGACY_MEMORY_LIST(HM) #undef HM #define SC(name, caption) StatsCounter name##_; STATS_COUNTER_LIST_1(SC) STATS_COUNTER_LIST_2(SC) STATS_COUNTER_NATIVE_CODE_LIST(SC) #undef SC #define SC(name) \ StatsCounter size_of_##name##_; \ StatsCounter count_of_##name##_; INSTANCE_TYPE_LIST(SC) #undef SC #define SC(name) \ StatsCounter size_of_CODE_TYPE_##name##_; \ StatsCounter count_of_CODE_TYPE_##name##_; CODE_KIND_LIST(SC) #undef SC #define SC(name) \ StatsCounter size_of_FIXED_ARRAY_##name##_; \ StatsCounter count_of_FIXED_ARRAY_##name##_; FIXED_ARRAY_SUB_INSTANCE_TYPE_LIST(SC) #undef SC #ifdef V8_RUNTIME_CALL_STATS RuntimeCallStats runtime_call_stats_; WorkerThreadRuntimeCallStats worker_thread_runtime_call_stats_; #endif Isolate* isolate_; StatsTable stats_table_; DISALLOW_IMPLICIT_CONSTRUCTORS(Counters); }; } // namespace internal } // namespace v8 #endif // V8_LOGGING_COUNTERS_H_