// Copyright 2017 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. // Parts of the implementation below: // Copyright (c) 2014 the Dart project authors. Please see the AUTHORS file [1] // for details. All rights reserved. Use of this source code is governed by a // BSD-style license that can be found in the LICENSE file [2]. // // [1] https://github.com/dart-lang/sdk/blob/master/AUTHORS // [2] https://github.com/dart-lang/sdk/blob/master/LICENSE // Copyright 2009 The Go Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file [3]. // // [3] https://golang.org/LICENSE #include "src/objects/bigint.h" #include "src/objects-inl.h" namespace v8 { namespace internal { Handle BigInt::UnaryMinus(Handle x) { // Special case: There is no -0n. if (x->is_zero()) { return x; } Handle result = BigInt::Copy(x); result->set_sign(!x->sign()); return result; } Handle BigInt::BitwiseNot(Handle x) { UNIMPLEMENTED(); // TODO(jkummerow): Implement. } MaybeHandle BigInt::Exponentiate(Handle base, Handle exponent) { UNIMPLEMENTED(); // TODO(jkummerow): Implement. } Handle BigInt::Multiply(Handle x, Handle y) { if (x->is_zero()) return x; if (y->is_zero()) return y; Handle result = x->GetIsolate()->factory()->NewBigInt(x->length() + y->length()); for (int i = 0; i < x->length(); i++) { MultiplyAccumulate(y, x->digit(i), result, i); } result->set_sign(x->sign() != y->sign()); result->RightTrim(); return result; } MaybeHandle BigInt::Divide(Handle x, Handle y) { // 1. If y is 0n, throw a RangeError exception. if (y->is_zero()) { THROW_NEW_ERROR(y->GetIsolate(), NewRangeError(MessageTemplate::kBigIntDivZero), BigInt); } // 2. Let quotient be the mathematical value of x divided by y. // 3. Return a BigInt representing quotient rounded towards 0 to the next // integral value. if (AbsoluteCompare(x, y) < 0) { // TODO(jkummerow): Consider caching a canonical zero-BigInt. return x->GetIsolate()->factory()->NewBigIntFromInt(0); } Handle quotient; if (y->length() == 1) { digit_t remainder; AbsoluteDivSmall(x, y->digit(0), "ient, &remainder); } else { AbsoluteDivLarge(x, y, "ient, nullptr); } quotient->set_sign(x->sign() != y->sign()); quotient->RightTrim(); return quotient; } MaybeHandle BigInt::Remainder(Handle x, Handle y) { // 1. If y is 0n, throw a RangeError exception. if (y->is_zero()) { THROW_NEW_ERROR(y->GetIsolate(), NewRangeError(MessageTemplate::kBigIntDivZero), BigInt); } // 2. Return the BigInt representing x modulo y. // See https://github.com/tc39/proposal-bigint/issues/84 though. if (AbsoluteCompare(x, y) < 0) return x; Handle remainder; if (y->length() == 1) { digit_t remainder_digit; AbsoluteDivSmall(x, y->digit(0), nullptr, &remainder_digit); if (remainder_digit == 0) { return x->GetIsolate()->factory()->NewBigIntFromInt(0); } remainder = x->GetIsolate()->factory()->NewBigIntRaw(1); remainder->set_digit(0, remainder_digit); } else { AbsoluteDivLarge(x, y, nullptr, &remainder); } remainder->set_sign(x->sign()); return remainder; } Handle BigInt::Add(Handle x, Handle y) { bool xsign = x->sign(); if (xsign == y->sign()) { // x + y == x + y // -x + -y == -(x + y) return AbsoluteAdd(x, y, xsign); } // x + -y == x - y == -(y - x) // -x + y == y - x == -(x - y) if (AbsoluteCompare(x, y) >= 0) { return AbsoluteSub(x, y, xsign); } return AbsoluteSub(y, x, !xsign); } Handle BigInt::Subtract(Handle x, Handle y) { bool xsign = x->sign(); if (xsign != y->sign()) { // x - (-y) == x + y // (-x) - y == -(x + y) return AbsoluteAdd(x, y, xsign); } // x - y == -(y - x) // (-x) - (-y) == y - x == -(x - y) if (AbsoluteCompare(x, y) >= 0) { return AbsoluteSub(x, y, xsign); } return AbsoluteSub(y, x, !xsign); } MaybeHandle BigInt::LeftShift(Handle x, Handle y) { if (y->is_zero() || x->is_zero()) return x; if (y->sign()) return RightShiftByAbsolute(x, y); return LeftShiftByAbsolute(x, y); } MaybeHandle BigInt::SignedRightShift(Handle x, Handle y) { if (y->is_zero() || x->is_zero()) return x; if (y->sign()) return LeftShiftByAbsolute(x, y); return RightShiftByAbsolute(x, y); } MaybeHandle BigInt::UnsignedRightShift(Handle x, Handle y) { THROW_NEW_ERROR(x->GetIsolate(), NewTypeError(MessageTemplate::kBigIntShr), BigInt); } bool BigInt::LessThan(Handle x, Handle y) { UNIMPLEMENTED(); // TODO(jkummerow): Implement. } bool BigInt::Equal(BigInt* x, BigInt* y) { if (x->sign() != y->sign()) return false; if (x->length() != y->length()) return false; for (int i = 0; i < x->length(); i++) { if (x->digit(i) != y->digit(i)) return false; } return true; } Handle BigInt::BitwiseAnd(Handle x, Handle y) { Handle result; if (!x->sign() && !y->sign()) { result = AbsoluteAnd(x, y); } else if (x->sign() && y->sign()) { int result_length = Max(x->length(), y->length()) + 1; // (-x) & (-y) == ~(x-1) & ~(y-1) == ~((x-1) | (y-1)) // == -(((x-1) | (y-1)) + 1) result = AbsoluteSubOne(x, result_length); result = AbsoluteOr(result, AbsoluteSubOne(y, y->length()), *result); result = AbsoluteAddOne(result, true, *result); } else { DCHECK(x->sign() != y->sign()); // Assume that x is the positive BigInt. if (x->sign()) std::swap(x, y); // x & (-y) == x & ~(y-1) == x &~ (y-1) result = AbsoluteAndNot(x, AbsoluteSubOne(y, y->length())); } result->RightTrim(); return result; } Handle BigInt::BitwiseXor(Handle x, Handle y) { Handle result; if (!x->sign() && !y->sign()) { result = AbsoluteXor(x, y); } else if (x->sign() && y->sign()) { int result_length = Max(x->length(), y->length()); // (-x) ^ (-y) == ~(x-1) ^ ~(y-1) == (x-1) ^ (y-1) result = AbsoluteSubOne(x, result_length); result = AbsoluteXor(result, AbsoluteSubOne(y, y->length()), *result); } else { DCHECK(x->sign() != y->sign()); int result_length = Max(x->length(), y->length()) + 1; // Assume that x is the positive BigInt. if (x->sign()) std::swap(x, y); // x ^ (-y) == x ^ ~(y-1) == ~(x ^ (y-1)) == -((x ^ (y-1)) + 1) result = AbsoluteSubOne(y, result_length); result = AbsoluteXor(result, x, *result); result = AbsoluteAddOne(result, true, *result); } result->RightTrim(); return result; } Handle BigInt::BitwiseOr(Handle x, Handle y) { Handle result; int result_length = Max(x->length(), y->length()); if (!x->sign() && !y->sign()) { result = AbsoluteOr(x, y); } else if (x->sign() && y->sign()) { // (-x) | (-y) == ~(x-1) | ~(y-1) == ~((x-1) & (y-1)) // == -(((x-1) & (y-1)) + 1) result = AbsoluteSubOne(x, result_length); result = AbsoluteAnd(result, AbsoluteSubOne(y, y->length()), *result); result = AbsoluteAddOne(result, true, *result); } else { DCHECK(x->sign() != y->sign()); // Assume that x is the positive BigInt. if (x->sign()) std::swap(x, y); // x | (-y) == x | ~(y-1) == ~((y-1) &~ x) == -(((y-1) &~ x) + 1) result = AbsoluteSubOne(y, result_length); result = AbsoluteAndNot(result, x, *result); result = AbsoluteAddOne(result, true, *result); } result->RightTrim(); return result; } MaybeHandle BigInt::ToString(Handle bigint, int radix) { Isolate* isolate = bigint->GetIsolate(); if (bigint->is_zero()) { return isolate->factory()->NewStringFromStaticChars("0"); } if (base::bits::IsPowerOfTwo(radix)) { return ToStringBasePowerOfTwo(bigint, radix); } return ToStringGeneric(bigint, radix); } void BigInt::Initialize(int length, bool zero_initialize) { set_length(length); set_sign(false); if (zero_initialize) { memset(reinterpret_cast(reinterpret_cast
(this) + kDigitsOffset - kHeapObjectTag), 0, length * kDigitSize); #if DEBUG } else { memset(reinterpret_cast(reinterpret_cast
(this) + kDigitsOffset - kHeapObjectTag), 0xbf, length * kDigitSize); #endif } } void BigInt::BigIntShortPrint(std::ostream& os) { if (sign()) os << "-"; int len = length(); if (len == 0) { os << "0"; return; } if (len > 1) os << "..."; os << digit(0); } // Private helpers for public methods. Handle BigInt::AbsoluteAdd(Handle x, Handle y, bool result_sign) { if (x->length() < y->length()) return AbsoluteAdd(y, x, result_sign); if (x->is_zero()) { DCHECK(y->is_zero()); return x; } if (y->is_zero()) { return result_sign == x->sign() ? x : UnaryMinus(x); } Handle result = x->GetIsolate()->factory()->NewBigIntRaw(x->length() + 1); digit_t carry = 0; int i = 0; for (; i < y->length(); i++) { digit_t new_carry = 0; digit_t sum = digit_add(x->digit(i), y->digit(i), &new_carry); sum = digit_add(sum, carry, &new_carry); result->set_digit(i, sum); carry = new_carry; } for (; i < x->length(); i++) { digit_t new_carry = 0; digit_t sum = digit_add(x->digit(i), carry, &new_carry); result->set_digit(i, sum); carry = new_carry; } result->set_digit(i, carry); result->set_sign(result_sign); result->RightTrim(); return result; } Handle BigInt::AbsoluteSub(Handle x, Handle y, bool result_sign) { DCHECK(x->length() >= y->length()); SLOW_DCHECK(AbsoluteCompare(x, y) >= 0); if (x->is_zero()) { DCHECK(y->is_zero()); return x; } if (y->is_zero()) { return result_sign == x->sign() ? x : UnaryMinus(x); } Handle result = x->GetIsolate()->factory()->NewBigIntRaw(x->length()); digit_t borrow = 0; int i = 0; for (; i < y->length(); i++) { digit_t new_borrow = 0; digit_t difference = digit_sub(x->digit(i), y->digit(i), &new_borrow); difference = digit_sub(difference, borrow, &new_borrow); result->set_digit(i, difference); borrow = new_borrow; } for (; i < x->length(); i++) { digit_t new_borrow = 0; digit_t difference = digit_sub(x->digit(i), borrow, &new_borrow); result->set_digit(i, difference); borrow = new_borrow; } DCHECK_EQ(0, borrow); result->set_sign(result_sign); result->RightTrim(); return result; } // Adds 1 to the absolute value of {x}, stores the result in {result_storage} // and sets its sign to {sign}. // {result_storage} and {x} may refer to the same BigInt for in-place // modification. Handle BigInt::AbsoluteAddOne(Handle x, bool sign, BigInt* result_storage) { DCHECK(result_storage != nullptr); int input_length = x->length(); int result_length = result_storage->length(); Isolate* isolate = x->GetIsolate(); Handle result(result_storage, isolate); digit_t carry = 1; for (int i = 0; i < input_length; i++) { digit_t new_carry = 0; result->set_digit(i, digit_add(x->digit(i), carry, &new_carry)); carry = new_carry; } if (result_length > input_length) { result->set_digit(input_length, carry); } else { DCHECK(carry == 0); } result->set_sign(sign); return result; } // Subtracts 1 from the absolute value of {x}. {x} must not be zero. // Allocates a new BigInt of length {result_length} for the result; // {result_length} must be at least as large as {x->length()}. Handle BigInt::AbsoluteSubOne(Handle x, int result_length) { DCHECK(!x->is_zero()); DCHECK(result_length >= x->length()); Handle result = x->GetIsolate()->factory()->NewBigIntRaw(result_length); int length = x->length(); digit_t borrow = 1; for (int i = 0; i < length; i++) { digit_t new_borrow = 0; result->set_digit(i, digit_sub(x->digit(i), borrow, &new_borrow)); borrow = new_borrow; } DCHECK(borrow == 0); for (int i = length; i < result_length; i++) { result->set_digit(i, borrow); } return result; } // Helper for Absolute{And,AndNot,Or,Xor}. // Performs the given binary {op} on digit pairs of {x} and {y}; when the // end of the shorter of the two is reached, {extra_digits} configures how // remaining digits in the longer input are handled: copied to the result // or ignored. // If {result_storage} is non-nullptr, it will be used for the result and // any extra digits in it will be zeroed out, otherwise a new BigInt (with // the same length as the longer input) will be allocated. // {result_storage} may alias {x} or {y} for in-place modification. // Example: // y: [ y2 ][ y1 ][ y0 ] // x: [ x3 ][ x2 ][ x1 ][ x0 ] // | | | | // (kCopy) (op) (op) (op) // | | | | // v v v v // result_storage: [ 0 ][ x3 ][ r2 ][ r1 ][ r0 ] inline Handle BigInt::AbsoluteBitwiseOp( Handle x, Handle y, BigInt* result_storage, ExtraDigitsHandling extra_digits, std::function op) { int x_length = x->length(); int y_length = y->length(); if (x_length < y_length) { return AbsoluteBitwiseOp(y, x, result_storage, extra_digits, op); } Isolate* isolate = x->GetIsolate(); Handle result(result_storage, isolate); int result_length = extra_digits == kCopy ? x_length : y_length; if (result_storage == nullptr) { result = isolate->factory()->NewBigIntRaw(result_length); } else { DCHECK(result_storage->length() >= result_length); result_length = result_storage->length(); } int i = 0; for (; i < y_length; i++) { result->set_digit(i, op(x->digit(i), y->digit(i))); } if (extra_digits == kCopy) { for (; i < x_length; i++) { result->set_digit(i, x->digit(i)); } } for (; i < result_length; i++) { result->set_digit(i, 0); } return result; } // If {result_storage} is non-nullptr, it will be used for the result, // otherwise a new BigInt of appropriate length will be allocated. // {result_storage} may alias {x} or {y} for in-place modification. Handle BigInt::AbsoluteAnd(Handle x, Handle y, BigInt* result_storage) { return AbsoluteBitwiseOp(x, y, result_storage, kSkip, [](digit_t a, digit_t b) { return a & b; }); } // If {result_storage} is non-nullptr, it will be used for the result, // otherwise a new BigInt of appropriate length will be allocated. // {result_storage} may alias {x} or {y} for in-place modification. Handle BigInt::AbsoluteAndNot(Handle x, Handle y, BigInt* result_storage) { return AbsoluteBitwiseOp(x, y, result_storage, kCopy, [](digit_t a, digit_t b) { return a & ~b; }); } // If {result_storage} is non-nullptr, it will be used for the result, // otherwise a new BigInt of appropriate length will be allocated. // {result_storage} may alias {x} or {y} for in-place modification. Handle BigInt::AbsoluteOr(Handle x, Handle y, BigInt* result_storage) { return AbsoluteBitwiseOp(x, y, result_storage, kCopy, [](digit_t a, digit_t b) { return a | b; }); } // If {result_storage} is non-nullptr, it will be used for the result, // otherwise a new BigInt of appropriate length will be allocated. // {result_storage} may alias {x} or {y} for in-place modification. Handle BigInt::AbsoluteXor(Handle x, Handle y, BigInt* result_storage) { return AbsoluteBitwiseOp(x, y, result_storage, kCopy, [](digit_t a, digit_t b) { return a ^ b; }); } // Returns a positive value if abs(x) > abs(y), a negative value if // abs(x) < abs(y), or zero if abs(x) == abs(y). int BigInt::AbsoluteCompare(Handle x, Handle y) { int diff = x->length() - y->length(); if (diff != 0) return diff; int i = x->length() - 1; while (i >= 0 && x->digit(i) == y->digit(i)) i--; if (i < 0) return 0; return x->digit(i) > y->digit(i) ? 1 : -1; } // Multiplies {multiplicand} with {multiplier} and adds the result to // {accumulator}, starting at {accumulator_index} for the least-significant // digit. // Callers must ensure that {accumulator} is big enough to hold the result. void BigInt::MultiplyAccumulate(Handle multiplicand, digit_t multiplier, Handle accumulator, int accumulator_index) { // This is a minimum requirement; the DCHECK in the second loop below // will enforce more as needed. DCHECK(accumulator->length() > multiplicand->length() + accumulator_index); if (multiplier == 0L) return; digit_t carry = 0; digit_t high = 0; for (int i = 0; i < multiplicand->length(); i++, accumulator_index++) { digit_t acc = accumulator->digit(accumulator_index); digit_t new_carry = 0; // Add last round's carryovers. acc = digit_add(acc, high, &new_carry); acc = digit_add(acc, carry, &new_carry); // Compute this round's multiplication. digit_t m_digit = multiplicand->digit(i); digit_t low = digit_mul(multiplier, m_digit, &high); acc = digit_add(acc, low, &new_carry); // Store result and prepare for next round. accumulator->set_digit(accumulator_index, acc); carry = new_carry; } for (; carry != 0 || high != 0; accumulator_index++) { DCHECK(accumulator_index < accumulator->length()); digit_t acc = accumulator->digit(accumulator_index); digit_t new_carry = 0; acc = digit_add(acc, high, &new_carry); high = 0; acc = digit_add(acc, carry, &new_carry); accumulator->set_digit(accumulator_index, acc); carry = new_carry; } } // Multiplies {source} with {factor} and adds {summand} to the result. // {result} and {source} may be the same BigInt for inplace modification. void BigInt::InternalMultiplyAdd(BigInt* source, digit_t factor, digit_t summand, int n, BigInt* result) { DCHECK(source->length() >= n); DCHECK(result->length() >= n); digit_t carry = summand; digit_t high = 0; for (int i = 0; i < n; i++) { digit_t current = source->digit(i); digit_t new_carry = 0; // Compute this round's multiplication. digit_t new_high = 0; current = digit_mul(current, factor, &new_high); // Add last round's carryovers. current = digit_add(current, high, &new_carry); current = digit_add(current, carry, &new_carry); // Store result and prepare for next round. result->set_digit(i, current); carry = new_carry; high = new_high; } if (result->length() > n) { result->set_digit(n++, carry + high); // Current callers don't pass in such large results, but let's be robust. while (n < result->length()) { result->set_digit(n++, 0); } } else { CHECK((carry + high) == 0); } } // Multiplies {this} with {factor} and adds {summand} to the result. void BigInt::InplaceMultiplyAdd(uintptr_t factor, uintptr_t summand) { STATIC_ASSERT(sizeof(factor) == sizeof(digit_t)); STATIC_ASSERT(sizeof(summand) == sizeof(digit_t)); InternalMultiplyAdd(this, factor, summand, length(), this); } // Divides {x} by {divisor}, returning the result in {quotient} and {remainder}. // Mathematically, the contract is: // quotient = (x - remainder) / divisor, with 0 <= remainder < divisor. // If {quotient} is an empty handle, an appropriately sized BigInt will be // allocated for it; otherwise the caller must ensure that it is big enough. // {quotient} can be the same as {x} for an in-place division. {quotient} can // also be nullptr if the caller is only interested in the remainder. void BigInt::AbsoluteDivSmall(Handle x, digit_t divisor, Handle* quotient, digit_t* remainder) { DCHECK(divisor != 0); DCHECK(!x->is_zero()); // Callers check anyway, no need to handle this. *remainder = 0; if (divisor == 1) { if (quotient != nullptr) *quotient = x; return; } int length = x->length(); if (quotient != nullptr) { if ((*quotient).is_null()) { *quotient = x->GetIsolate()->factory()->NewBigIntRaw(length); } for (int i = length - 1; i >= 0; i--) { digit_t q = digit_div(*remainder, x->digit(i), divisor, remainder); (*quotient)->set_digit(i, q); } } else { for (int i = length - 1; i >= 0; i--) { digit_div(*remainder, x->digit(i), divisor, remainder); } } } // Divides {dividend} by {divisor}, returning the result in {quotient} and // {remainder}. Mathematically, the contract is: // quotient = (dividend - remainder) / divisor, with 0 <= remainder < divisor. // Both {quotient} and {remainder} are optional, for callers that are only // interested in one of them. // See Knuth, Volume 2, section 4.3.1, Algorithm D. void BigInt::AbsoluteDivLarge(Handle dividend, Handle divisor, Handle* quotient, Handle* remainder) { DCHECK(divisor->length() >= 2); DCHECK(dividend->length() >= divisor->length()); Factory* factory = dividend->GetIsolate()->factory(); // The unusual variable names inside this function are consistent with // Knuth's book, as well as with Go's implementation of this algorithm. // Maintaining this consistency is probably more useful than trying to // come up with more descriptive names for them. int n = divisor->length(); int m = dividend->length() - n; // The quotient to be computed. Handle q; if (quotient != nullptr) q = factory->NewBigIntRaw(m + 1); // In each iteration, {qhatv} holds {divisor} * {current quotient digit}. // "v" is the book's name for {divisor}, "qhat" the current quotient digit. Handle qhatv = factory->NewBigIntRaw(n + 1); // D1. // Left-shift inputs so that the divisor's MSB is set. This is necessary // to prevent the digit-wise divisions (see digit_div call below) from // overflowing (they take a two digits wide input, and return a one digit // result). int shift = base::bits::CountLeadingZeros(divisor->digit(n - 1)); if (shift > 0) { divisor = SpecialLeftShift(divisor, shift, kSameSizeResult); } // Holds the (continuously updated) remaining part of the dividend, which // eventually becomes the remainder. Handle u = SpecialLeftShift(dividend, shift, kAlwaysAddOneDigit); // D2. // Iterate over the dividend's digit (like the "grad school" algorithm). // {vn1} is the divisor's most significant digit. digit_t vn1 = divisor->digit(n - 1); for (int j = m; j >= 0; j--) { // D3. // Estimate the current iteration's quotient digit (see Knuth for details). // {qhat} is the current quotient digit. digit_t qhat = std::numeric_limits::max(); // {ujn} is the dividend's most significant remaining digit. digit_t ujn = u->digit(j + n); if (ujn != vn1) { // {rhat} is the current iteration's remainder. digit_t rhat = 0; // Estimate the current quotient digit by dividing the most significant // digits of dividend and divisor. The result will not be too small, // but could be a bit too large. qhat = digit_div(ujn, u->digit(j + n - 1), vn1, &rhat); // Decrement the quotient estimate as needed by looking at the next // digit, i.e. by testing whether // qhat * v_{n-2} > (rhat << kDigitBits) + u_{j+n-2}. digit_t vn2 = divisor->digit(n - 2); digit_t ujn2 = u->digit(j + n - 2); while (ProductGreaterThan(qhat, vn2, rhat, ujn2)) { qhat--; digit_t prev_rhat = rhat; rhat += vn1; // v[n-1] >= 0, so this tests for overflow. if (rhat < prev_rhat) break; } } // D4. // Multiply the divisor with the current quotient digit, and subtract // it from the dividend. If there was "borrow", then the quotient digit // was one too high, so we must correct it and undo one subtraction of // the (shifted) divisor. InternalMultiplyAdd(*divisor, qhat, 0, n, *qhatv); digit_t c = u->InplaceSub(*qhatv, j); if (c != 0) { c = u->InplaceAdd(*divisor, j); u->set_digit(j + n, u->digit(j + n) + c); qhat--; } if (quotient != nullptr) q->set_digit(j, qhat); } if (quotient != nullptr) { *quotient = q; // Caller will right-trim. } if (remainder != nullptr) { u->InplaceRightShift(shift); *remainder = u; } } // Returns whether (factor1 * factor2) > (high << kDigitBits) + low. bool BigInt::ProductGreaterThan(digit_t factor1, digit_t factor2, digit_t high, digit_t low) { digit_t result_high; digit_t result_low = digit_mul(factor1, factor2, &result_high); return result_high > high || (result_high == high && result_low > low); } // Adds {summand} onto {this}, starting with {summand}'s 0th digit // at {this}'s {start_index}'th digit. Returns the "carry" (0 or 1). BigInt::digit_t BigInt::InplaceAdd(BigInt* summand, int start_index) { digit_t carry = 0; int n = summand->length(); DCHECK(length() >= start_index + n); for (int i = 0; i < n; i++) { digit_t new_carry = 0; digit_t sum = digit_add(digit(start_index + i), summand->digit(i), &new_carry); sum = digit_add(sum, carry, &new_carry); set_digit(start_index + i, sum); carry = new_carry; } return carry; } // Subtracts {subtrahend} from {this}, starting with {subtrahend}'s 0th digit // at {this}'s {start_index}-th digit. Returns the "borrow" (0 or 1). BigInt::digit_t BigInt::InplaceSub(BigInt* subtrahend, int start_index) { digit_t borrow = 0; int n = subtrahend->length(); DCHECK(length() >= start_index + n); for (int i = 0; i < n; i++) { digit_t new_borrow = 0; digit_t difference = digit_sub(digit(start_index + i), subtrahend->digit(i), &new_borrow); difference = digit_sub(difference, borrow, &new_borrow); set_digit(start_index + i, difference); borrow = new_borrow; } return borrow; } void BigInt::InplaceRightShift(int shift) { DCHECK(shift >= 0); DCHECK(shift < kDigitBits); DCHECK(length() > 0); DCHECK((digit(0) & ((1 << shift) - 1)) == 0); if (shift == 0) return; digit_t carry = digit(0) >> shift; int last = length() - 1; for (int i = 0; i < last; i++) { digit_t d = digit(i + 1); set_digit(i, (d << (kDigitBits - shift)) | carry); carry = d >> shift; } set_digit(last, carry); RightTrim(); } // Always copies the input, even when {shift} == 0. // {shift} must be less than kDigitBits, {x} must be non-zero. Handle BigInt::SpecialLeftShift(Handle x, int shift, SpecialLeftShiftMode mode) { DCHECK(shift >= 0); DCHECK(shift < kDigitBits); DCHECK(x->length() > 0); int n = x->length(); int result_length = mode == kAlwaysAddOneDigit ? n + 1 : n; Handle result = x->GetIsolate()->factory()->NewBigIntRaw(result_length); digit_t carry = 0; for (int i = 0; i < n; i++) { digit_t d = x->digit(i); result->set_digit(i, (d << shift) | carry); carry = d >> (kDigitBits - shift); } if (mode == kAlwaysAddOneDigit) { result->set_digit(n, carry); } else { DCHECK(mode == kSameSizeResult); DCHECK(carry == 0); } return result; } MaybeHandle BigInt::LeftShiftByAbsolute(Handle x, Handle y) { Isolate* isolate = x->GetIsolate(); Maybe maybe_shift = ToShiftAmount(y); if (maybe_shift.IsNothing()) { THROW_NEW_ERROR(isolate, NewRangeError(MessageTemplate::kBigIntTooBig), BigInt); } digit_t shift = maybe_shift.FromJust(); int digit_shift = static_cast(shift / kDigitBits); int bits_shift = static_cast(shift % kDigitBits); int length = x->length(); bool grow = bits_shift != 0 && (x->digit(length - 1) >> (kDigitBits - bits_shift)) != 0; int result_length = length + digit_shift + grow; if (result_length > kMaxLength) { THROW_NEW_ERROR(isolate, NewRangeError(MessageTemplate::kBigIntTooBig), BigInt); } Handle result = isolate->factory()->NewBigIntRaw(result_length); if (bits_shift == 0) { int i = 0; for (; i < digit_shift; i++) result->set_digit(i, 0ul); for (; i < result_length; i++) { result->set_digit(i, x->digit(i - digit_shift)); } } else { digit_t carry = 0; for (int i = 0; i < digit_shift; i++) result->set_digit(i, 0ul); for (int i = 0; i < length; i++) { digit_t d = x->digit(i); result->set_digit(i + digit_shift, (d << bits_shift) | carry); carry = d >> (kDigitBits - bits_shift); } if (grow) { result->set_digit(length + digit_shift, carry); } else { DCHECK(carry == 0); } } result->set_sign(x->sign()); result->RightTrim(); return result; } Handle BigInt::RightShiftByAbsolute(Handle x, Handle y) { Isolate* isolate = x->GetIsolate(); int length = x->length(); bool sign = x->sign(); Maybe maybe_shift = ToShiftAmount(y); if (maybe_shift.IsNothing()) { return RightShiftByMaximum(isolate, sign); } digit_t shift = maybe_shift.FromJust(); int digit_shift = static_cast(shift / kDigitBits); int bits_shift = static_cast(shift % kDigitBits); int result_length = length - digit_shift; if (result_length <= 0) { return RightShiftByMaximum(isolate, sign); } // For negative numbers, round down if any bit was shifted out (so that e.g. // -5n >> 1n == -3n and not -2n). Check now whether this will happen and // whether it can cause overflow into a new digit. If we allocate the result // large enough up front, it avoids having to do a second allocation later. bool must_round_down = false; if (sign) { if ((x->digit(digit_shift) & ((1 << bits_shift) - 1)) != 0) { must_round_down = true; } else { for (int i = 0; i < digit_shift; i++) { if (x->digit(i) != 0) { must_round_down = true; break; } } } } // If bits_shift is non-zero, it frees up bits, preventing overflow. if (must_round_down && bits_shift == 0) { // Overflow cannot happen if the most significant digit has unset bits. digit_t msd = x->digit(length - 1); bool rounding_can_overflow = digit_ismax(msd); if (rounding_can_overflow) result_length++; } Handle result = isolate->factory()->NewBigIntRaw(result_length); if (bits_shift == 0) { for (int i = digit_shift; i < length; i++) { result->set_digit(i - digit_shift, x->digit(i)); } } else { digit_t carry = x->digit(digit_shift) >> bits_shift; int last = length - digit_shift - 1; for (int i = 0; i < last; i++) { digit_t d = x->digit(i + digit_shift + 1); result->set_digit(i, (d << (kDigitBits - bits_shift)) | carry); carry = d >> bits_shift; } result->set_digit(last, carry); } if (sign) { result->set_sign(true); if (must_round_down) { // Since the result is negative, rounding down means adding one to // its absolute value. result = AbsoluteAddOne(result, true, *result); } } result->RightTrim(); return result; } Handle BigInt::RightShiftByMaximum(Isolate* isolate, bool sign) { if (sign) { // TODO(jkummerow): Consider caching a canonical -1n BigInt. return isolate->factory()->NewBigIntFromInt(-1); } else { // TODO(jkummerow): Consider caching a canonical zero BigInt. return isolate->factory()->NewBigIntFromInt(0); } } // Returns the value of {x} if it is less than the maximum bit length of // a BigInt, or Nothing otherwise. Maybe BigInt::ToShiftAmount(Handle x) { if (x->length() > 1) return Nothing(); digit_t value = x->digit(0); STATIC_ASSERT(kMaxLength * kDigitBits < std::numeric_limits::max()); if (value > kMaxLength * kDigitBits) return Nothing(); return Just(value); } Handle BigInt::Copy(Handle source) { int length = source->length(); Handle result = source->GetIsolate()->factory()->NewBigIntRaw(length); memcpy(result->address() + HeapObject::kHeaderSize, source->address() + HeapObject::kHeaderSize, SizeFor(length) - HeapObject::kHeaderSize); return result; } // Lookup table for the maximum number of bits required per character of a // base-N string representation of a number. To increase accuracy, the array // value is the actual value multiplied by 32. To generate this table: // for (var i = 0; i <= 36; i++) { print(Math.ceil(Math.log2(i) * 32) + ","); } constexpr uint8_t kMaxBitsPerChar[] = { 0, 0, 32, 51, 64, 75, 83, 90, 96, // 0..8 102, 107, 111, 115, 119, 122, 126, 128, // 9..16 131, 134, 136, 139, 141, 143, 145, 147, // 17..24 149, 151, 153, 154, 156, 158, 159, 160, // 25..32 162, 163, 165, 166, // 33..36 }; static const int kBitsPerCharTableShift = 5; static const size_t kBitsPerCharTableMultiplier = 1u << kBitsPerCharTableShift; MaybeHandle BigInt::AllocateFor(Isolate* isolate, int radix, int charcount) { DCHECK(2 <= radix && radix <= 36); DCHECK(charcount >= 0); size_t bits_per_char = kMaxBitsPerChar[radix]; size_t chars = static_cast(charcount); const int roundup = kBitsPerCharTableMultiplier - 1; if ((std::numeric_limits::max() - roundup) / bits_per_char < chars) { THROW_NEW_ERROR(isolate, NewRangeError(MessageTemplate::kBigIntTooBig), BigInt); } size_t bits_min = bits_per_char * chars; // Divide by 32 (see table), rounding up. bits_min = (bits_min + roundup) >> kBitsPerCharTableShift; if (bits_min > static_cast(kMaxInt)) { THROW_NEW_ERROR(isolate, NewRangeError(MessageTemplate::kBigIntTooBig), BigInt); } // Divide by kDigitsBits, rounding up. int length = (static_cast(bits_min) + kDigitBits - 1) / kDigitBits; if (length > BigInt::kMaxLength) { THROW_NEW_ERROR(isolate, NewRangeError(MessageTemplate::kBigIntTooBig), BigInt); } return isolate->factory()->NewBigInt(length); } void BigInt::RightTrim() { int old_length = length(); int new_length = old_length; while (new_length > 0 && digit(new_length - 1) == 0) new_length--; int to_trim = old_length - new_length; if (to_trim == 0) return; int size_delta = to_trim * kDigitSize; Address new_end = this->address() + SizeFor(new_length); Heap* heap = GetHeap(); heap->CreateFillerObjectAt(new_end, size_delta, ClearRecordedSlots::kNo); // Canonicalize -0n. if (new_length == 0) set_sign(false); set_length(new_length); } static const char kConversionChars[] = "0123456789abcdefghijklmnopqrstuvwxyz"; MaybeHandle BigInt::ToStringBasePowerOfTwo(Handle x, int radix) { STATIC_ASSERT(base::bits::IsPowerOfTwo(kDigitBits)); DCHECK(base::bits::IsPowerOfTwo(radix)); DCHECK(radix >= 2 && radix <= 32); DCHECK(!x->is_zero()); Isolate* isolate = x->GetIsolate(); const int length = x->length(); const bool sign = x->sign(); const int bits_per_char = base::bits::CountTrailingZeros32(radix); const int char_mask = radix - 1; // Compute the length of the resulting string: divide the bit length of the // BigInt by the number of bits representable per character (rounding up). const digit_t msd = x->digit(length - 1); const int msd_leading_zeros = base::bits::CountLeadingZeros(msd); const size_t bit_length = length * kDigitBits - msd_leading_zeros; const size_t chars_required = (bit_length + bits_per_char - 1) / bits_per_char + sign; if (chars_required > String::kMaxLength) { THROW_NEW_ERROR(isolate, NewInvalidStringLengthError(), String); } Handle result = isolate->factory() ->NewRawOneByteString(static_cast(chars_required)) .ToHandleChecked(); DisallowHeapAllocation no_gc; uint8_t* buffer = result->GetChars(); // Print the number into the string, starting from the last position. int pos = static_cast(chars_required - 1); digit_t digit = 0; // Keeps track of how many unprocessed bits there are in {digit}. int available_bits = 0; for (int i = 0; i < length - 1; i++) { digit_t new_digit = x->digit(i); // Take any leftover bits from the last iteration into account. int current = (digit | (new_digit << available_bits)) & char_mask; buffer[pos--] = kConversionChars[current]; int consumed_bits = bits_per_char - available_bits; digit = new_digit >> consumed_bits; available_bits = kDigitBits - consumed_bits; while (available_bits >= bits_per_char) { buffer[pos--] = kConversionChars[digit & char_mask]; digit >>= bits_per_char; available_bits -= bits_per_char; } } // Take any leftover bits from the last iteration into account. int current = (digit | (msd << available_bits)) & char_mask; buffer[pos--] = kConversionChars[current]; digit = msd >> (bits_per_char - available_bits); while (digit != 0) { buffer[pos--] = kConversionChars[digit & char_mask]; digit >>= bits_per_char; } if (sign) buffer[pos--] = '-'; DCHECK(pos == -1); return result; } MaybeHandle BigInt::ToStringGeneric(Handle x, int radix) { DCHECK(radix >= 2 && radix <= 36); DCHECK(!x->is_zero()); Heap* heap = x->GetHeap(); Isolate* isolate = heap->isolate(); const int length = x->length(); const bool sign = x->sign(); // Compute (an overapproximation of) the length of the resulting string: // Divide bit length of the BigInt by bits representable per character. const size_t bit_length = length * kDigitBits - base::bits::CountLeadingZeros(x->digit(length - 1)); // Maximum number of bits we can represent with one character. We'll use this // to find an appropriate chunk size below. const uint8_t max_bits_per_char = kMaxBitsPerChar[radix]; // For estimating result length, we have to be pessimistic and work with // the minimum number of bits one character can represent. const uint8_t min_bits_per_char = max_bits_per_char - 1; // Perform the following computation with uint64_t to avoid overflows. uint64_t chars_required = bit_length; chars_required *= kBitsPerCharTableMultiplier; chars_required += min_bits_per_char - 1; // Round up. chars_required /= min_bits_per_char; chars_required += sign; if (chars_required > String::kMaxLength) { THROW_NEW_ERROR(isolate, NewInvalidStringLengthError(), String); } Handle result = isolate->factory() ->NewRawOneByteString(static_cast(chars_required)) .ToHandleChecked(); #if DEBUG // Zap the string first. { DisallowHeapAllocation no_gc; uint8_t* chars = result->GetChars(); for (int i = 0; i < static_cast(chars_required); i++) chars[i] = '?'; } #endif // We assemble the result string in reverse order, and then reverse it. // TODO(jkummerow): Consider building the string from the right, and // left-shifting it if the length estimate was too large. int pos = 0; digit_t last_digit; if (length == 1) { last_digit = x->digit(0); } else { int chunk_chars = kDigitBits * kBitsPerCharTableMultiplier / max_bits_per_char; digit_t chunk_divisor = digit_pow(radix, chunk_chars); // By construction of chunk_chars, there can't have been overflow. DCHECK(chunk_divisor != 0); int nonzero_digit = length - 1; DCHECK(x->digit(nonzero_digit) != 0); // {rest} holds the part of the BigInt that we haven't looked at yet. // Not to be confused with "remainder"! Handle rest; // In the first round, divide the input, allocating a new BigInt for // the result == rest; from then on divide the rest in-place. Handle* dividend = &x; do { digit_t chunk; AbsoluteDivSmall(*dividend, chunk_divisor, &rest, &chunk); DCHECK(!rest.is_null()); dividend = &rest; DisallowHeapAllocation no_gc; uint8_t* chars = result->GetChars(); for (int i = 0; i < chunk_chars; i++) { chars[pos++] = kConversionChars[chunk % radix]; chunk /= radix; } DCHECK(chunk == 0); if (rest->digit(nonzero_digit) == 0) nonzero_digit--; // We can never clear more than one digit per iteration, because // chunk_divisor is smaller than max digit value. DCHECK(rest->digit(nonzero_digit) > 0); } while (nonzero_digit > 0); last_digit = rest->digit(0); } DisallowHeapAllocation no_gc; uint8_t* chars = result->GetChars(); do { chars[pos++] = kConversionChars[last_digit % radix]; last_digit /= radix; } while (last_digit > 0); DCHECK(pos >= 1); DCHECK(pos <= static_cast(chars_required)); // Remove leading zeroes. while (pos > 1 && chars[pos - 1] == '0') pos--; if (sign) chars[pos++] = '-'; // Trim any over-allocation (which can happen due to conservative estimates). if (pos < static_cast(chars_required)) { result->synchronized_set_length(pos); int string_size = SeqOneByteString::SizeFor(static_cast(chars_required)); int needed_size = SeqOneByteString::SizeFor(pos); if (needed_size < string_size) { Address new_end = result->address() + needed_size; heap->CreateFillerObjectAt(new_end, (string_size - needed_size), ClearRecordedSlots::kNo); } } // Reverse the string. for (int i = 0, j = pos - 1; i < j; i++, j--) { uint8_t tmp = chars[i]; chars[i] = chars[j]; chars[j] = tmp; } #if DEBUG // Verify that all characters have been written. DCHECK(result->length() == pos); for (int i = 0; i < pos; i++) DCHECK(chars[i] != '?'); #endif return result; } // Digit arithmetic helpers. #if V8_TARGET_ARCH_32_BIT #define HAVE_TWODIGIT_T 1 typedef uint64_t twodigit_t; #elif defined(__SIZEOF_INT128__) // Both Clang and GCC support this on x64. #define HAVE_TWODIGIT_T 1 typedef __uint128_t twodigit_t; #endif // {carry} must point to an initialized digit_t and will either be incremented // by one or left alone. inline BigInt::digit_t BigInt::digit_add(digit_t a, digit_t b, digit_t* carry) { #if HAVE_TWODIGIT_T twodigit_t result = static_cast(a) + static_cast(b); *carry += result >> kDigitBits; return static_cast(result); #else digit_t result = a + b; if (result < a) *carry += 1; return result; #endif } // {borrow} must point to an initialized digit_t and will either be incremented // by one or left alone. inline BigInt::digit_t BigInt::digit_sub(digit_t a, digit_t b, digit_t* borrow) { #if HAVE_TWODIGIT_T twodigit_t result = static_cast(a) - static_cast(b); *borrow += (result >> kDigitBits) & 1; return static_cast(result); #else digit_t result = a - b; if (result > a) *borrow += 1; return static_cast(result); #endif } // Returns the low half of the result. High half is in {high}. inline BigInt::digit_t BigInt::digit_mul(digit_t a, digit_t b, digit_t* high) { #if HAVE_TWODIGIT_T twodigit_t result = static_cast(a) * static_cast(b); *high = result >> kDigitBits; return static_cast(result); #else // Multiply in half-pointer-sized chunks. // For inputs [AH AL]*[BH BL], the result is: // // [AL*BL] // r_low // + [AL*BH] // r_mid1 // + [AH*BL] // r_mid2 // + [AH*BH] // r_high // = [R4 R3 R2 R1] // high = [R4 R3], low = [R2 R1] // // Where of course we must be careful with carries between the columns. digit_t a_low = a & kHalfDigitMask; digit_t a_high = a >> kHalfDigitBits; digit_t b_low = b & kHalfDigitMask; digit_t b_high = b >> kHalfDigitBits; digit_t r_low = a_low * b_low; digit_t r_mid1 = a_low * b_high; digit_t r_mid2 = a_high * b_low; digit_t r_high = a_high * b_high; digit_t carry = 0; digit_t low = digit_add(r_low, r_mid1 << kHalfDigitBits, &carry); low = digit_add(low, r_mid2 << kHalfDigitBits, &carry); *high = (r_mid1 >> kHalfDigitBits) + (r_mid2 >> kHalfDigitBits) + r_high + carry; return low; #endif } // Returns the quotient. // quotient = (high << kDigitBits + low - remainder) / divisor BigInt::digit_t BigInt::digit_div(digit_t high, digit_t low, digit_t divisor, digit_t* remainder) { DCHECK(high < divisor); #if V8_TARGET_ARCH_X64 && (__GNUC__ || __clang__) digit_t quotient; digit_t rem; __asm__("divq %[divisor]" // Outputs: {quotient} will be in rax, {rem} in rdx. : "=a"(quotient), "=d"(rem) // Inputs: put {high} into rdx, {low} into rax, and {divisor} into // any register or stack slot. : "d"(high), "a"(low), [divisor] "rm"(divisor)); *remainder = rem; return quotient; #elif V8_TARGET_ARCH_IA32 && (__GNUC__ || __clang__) digit_t quotient; digit_t rem; __asm__("divl %[divisor]" // Outputs: {quotient} will be in eax, {rem} in edx. : "=a"(quotient), "=d"(rem) // Inputs: put {high} into edx, {low} into eax, and {divisor} into // any register or stack slot. : "d"(high), "a"(low), [divisor] "rm"(divisor)); *remainder = rem; return quotient; #else static const digit_t kHalfDigitBase = 1ull << kHalfDigitBits; // Adapted from Warren, Hacker's Delight, p. 152. int s = base::bits::CountLeadingZeros(divisor); divisor <<= s; digit_t vn1 = divisor >> kHalfDigitBits; digit_t vn0 = divisor & kHalfDigitMask; // {s} can be 0. "low >> kDigitBits == low" on x86, so we "&" it with // {s_zero_mask} which is 0 if s == 0 and all 1-bits otherwise. STATIC_ASSERT(sizeof(intptr_t) == sizeof(digit_t)); digit_t s_zero_mask = static_cast(static_cast(-s) >> (kDigitBits - 1)); digit_t un32 = (high << s) | ((low >> (kDigitBits - s)) & s_zero_mask); digit_t un10 = low << s; digit_t un1 = un10 >> kHalfDigitBits; digit_t un0 = un10 & kHalfDigitMask; digit_t q1 = un32 / vn1; digit_t rhat = un32 - q1 * vn1; while (q1 >= kHalfDigitBase || q1 * vn0 > rhat * kHalfDigitBase + un1) { q1--; rhat += vn1; if (rhat >= kHalfDigitBase) break; } digit_t un21 = un32 * kHalfDigitBase + un1 - q1 * divisor; digit_t q0 = un21 / vn1; rhat = un21 - q0 * vn1; while (q0 >= kHalfDigitBase || q0 * vn0 > rhat * kHalfDigitBase + un0) { q0--; rhat += vn1; if (rhat >= kHalfDigitBase) break; } *remainder = (un21 * kHalfDigitBase + un0 - q0 * divisor) >> s; return q1 * kHalfDigitBase + q0; #endif } // Raises {base} to the power of {exponent}. Does not check for overflow. BigInt::digit_t BigInt::digit_pow(digit_t base, digit_t exponent) { digit_t result = 1ull; while (exponent > 0) { if (exponent & 1) { result *= base; } exponent >>= 1; base *= base; } return result; } #undef HAVE_TWODIGIT_T #ifdef OBJECT_PRINT void BigInt::BigIntPrint(std::ostream& os) { DisallowHeapAllocation no_gc; HeapObject::PrintHeader(os, "BigInt"); int len = length(); os << "- length: " << len << "\n"; os << "- sign: " << sign() << "\n"; if (len > 0) { os << "- digits:"; for (int i = 0; i < len; i++) { os << "\n 0x" << std::hex << digit(i); } os << std::dec << "\n"; } } #endif // OBJECT_PRINT } // namespace internal } // namespace v8