// Copyright 2017 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #ifndef V8_OBJECTS_FIXED_ARRAY_INL_H_ #define V8_OBJECTS_FIXED_ARRAY_INL_H_ #include "src/objects/fixed-array.h" #include "src/handles/handles-inl.h" #include "src/heap/heap-write-barrier-inl.h" #include "src/numbers/conversions.h" #include "src/objects/bigint.h" #include "src/objects/compressed-slots.h" #include "src/objects/heap-number-inl.h" #include "src/objects/map.h" #include "src/objects/maybe-object-inl.h" #include "src/objects/objects-inl.h" #include "src/objects/oddball.h" #include "src/objects/slots.h" #include "src/roots/roots-inl.h" // Has to be the last include (doesn't have include guards): #include "src/objects/object-macros.h" namespace v8 { namespace internal { #include "torque-generated/src/objects/fixed-array-tq-inl.inc" TQ_OBJECT_CONSTRUCTORS_IMPL(FixedArrayBase) FixedArrayBase::FixedArrayBase(Address ptr, HeapObject::AllowInlineSmiStorage allow_smi) : TorqueGeneratedFixedArrayBase(ptr, allow_smi) {} TQ_OBJECT_CONSTRUCTORS_IMPL(FixedArray) TQ_OBJECT_CONSTRUCTORS_IMPL(FixedDoubleArray) TQ_OBJECT_CONSTRUCTORS_IMPL(ArrayList) TQ_OBJECT_CONSTRUCTORS_IMPL(ByteArray) ByteArray::ByteArray(Address ptr, HeapObject::AllowInlineSmiStorage allow_smi) : TorqueGeneratedByteArray(ptr, allow_smi) {} TQ_OBJECT_CONSTRUCTORS_IMPL(TemplateList) TQ_OBJECT_CONSTRUCTORS_IMPL(WeakFixedArray) TQ_OBJECT_CONSTRUCTORS_IMPL(WeakArrayList) NEVER_READ_ONLY_SPACE_IMPL(WeakArrayList) RELEASE_ACQUIRE_SMI_ACCESSORS(FixedArrayBase, length, kLengthOffset) RELEASE_ACQUIRE_SMI_ACCESSORS(WeakFixedArray, length, kLengthOffset) Object FixedArrayBase::unchecked_length(AcquireLoadTag) const { return ACQUIRE_READ_FIELD(*this, kLengthOffset); } ObjectSlot FixedArray::GetFirstElementAddress() { return RawField(OffsetOfElementAt(0)); } bool FixedArray::ContainsOnlySmisOrHoles() { Object the_hole = GetReadOnlyRoots().the_hole_value(); ObjectSlot current = GetFirstElementAddress(); for (int i = 0; i < length(); ++i, ++current) { Object candidate = *current; if (!candidate.IsSmi() && candidate != the_hole) return false; } return true; } Object FixedArray::get(int index) const { PtrComprCageBase cage_base = GetPtrComprCageBase(*this); return get(cage_base, index); } Object FixedArray::get(PtrComprCageBase cage_base, int index) const { DCHECK_LT(static_cast(index), static_cast(length())); return TaggedField::Relaxed_Load(cage_base, *this, OffsetOfElementAt(index)); } Handle FixedArray::get(FixedArray array, int index, Isolate* isolate) { return handle(array.get(isolate, index), isolate); } bool FixedArray::is_the_hole(Isolate* isolate, int index) { return get(isolate, index).IsTheHole(isolate); } void FixedArray::set(int index, Smi value) { DCHECK_NE(map(), GetReadOnlyRoots().fixed_cow_array_map()); DCHECK_LT(static_cast(index), static_cast(length())); DCHECK(Object(value).IsSmi()); int offset = OffsetOfElementAt(index); RELAXED_WRITE_FIELD(*this, offset, value); } void FixedArray::set(int index, Object value) { DCHECK_NE(GetReadOnlyRoots().fixed_cow_array_map(), map()); DCHECK(IsFixedArray()); DCHECK_LT(static_cast(index), static_cast(length())); int offset = OffsetOfElementAt(index); RELAXED_WRITE_FIELD(*this, offset, value); WRITE_BARRIER(*this, offset, value); } void FixedArray::set(int index, Object value, WriteBarrierMode mode) { DCHECK_NE(map(), GetReadOnlyRoots().fixed_cow_array_map()); DCHECK_LT(static_cast(index), static_cast(length())); int offset = OffsetOfElementAt(index); RELAXED_WRITE_FIELD(*this, offset, value); CONDITIONAL_WRITE_BARRIER(*this, offset, value, mode); } // static void FixedArray::NoWriteBarrierSet(FixedArray array, int index, Object value) { DCHECK_NE(array.map(), array.GetReadOnlyRoots().fixed_cow_array_map()); DCHECK_LT(static_cast(index), static_cast(array.length())); DCHECK(!ObjectInYoungGeneration(value)); int offset = OffsetOfElementAt(index); RELAXED_WRITE_FIELD(array, offset, value); } Object FixedArray::get(int index, RelaxedLoadTag) const { PtrComprCageBase cage_base = GetPtrComprCageBase(*this); return get(cage_base, index); } Object FixedArray::get(PtrComprCageBase cage_base, int index, RelaxedLoadTag) const { DCHECK_LT(static_cast(index), static_cast(length())); return RELAXED_READ_FIELD(*this, OffsetOfElementAt(index)); } void FixedArray::set(int index, Object value, RelaxedStoreTag, WriteBarrierMode mode) { DCHECK_NE(map(), GetReadOnlyRoots().fixed_cow_array_map()); DCHECK_LT(static_cast(index), static_cast(length())); RELAXED_WRITE_FIELD(*this, OffsetOfElementAt(index), value); CONDITIONAL_WRITE_BARRIER(*this, OffsetOfElementAt(index), value, mode); } void FixedArray::set(int index, Smi value, RelaxedStoreTag tag) { DCHECK(Object(value).IsSmi()); set(index, value, tag, SKIP_WRITE_BARRIER); } Object FixedArray::get(int index, AcquireLoadTag) const { PtrComprCageBase cage_base = GetPtrComprCageBase(*this); return get(cage_base, index); } Object FixedArray::get(PtrComprCageBase cage_base, int index, AcquireLoadTag) const { DCHECK_LT(static_cast(index), static_cast(length())); return ACQUIRE_READ_FIELD(*this, OffsetOfElementAt(index)); } void FixedArray::set(int index, Object value, ReleaseStoreTag, WriteBarrierMode mode) { DCHECK_NE(map(), GetReadOnlyRoots().fixed_cow_array_map()); DCHECK_LT(static_cast(index), static_cast(length())); RELEASE_WRITE_FIELD(*this, OffsetOfElementAt(index), value); CONDITIONAL_WRITE_BARRIER(*this, OffsetOfElementAt(index), value, mode); } void FixedArray::set(int index, Smi value, ReleaseStoreTag tag) { DCHECK(Object(value).IsSmi()); set(index, value, tag, SKIP_WRITE_BARRIER); } void FixedArray::set_undefined(int index) { set_undefined(GetReadOnlyRoots(), index); } void FixedArray::set_undefined(Isolate* isolate, int index) { set_undefined(ReadOnlyRoots(isolate), index); } void FixedArray::set_undefined(ReadOnlyRoots ro_roots, int index) { FixedArray::NoWriteBarrierSet(*this, index, ro_roots.undefined_value()); } void FixedArray::set_null(int index) { set_null(GetReadOnlyRoots(), index); } void FixedArray::set_null(Isolate* isolate, int index) { set_null(ReadOnlyRoots(isolate), index); } void FixedArray::set_null(ReadOnlyRoots ro_roots, int index) { FixedArray::NoWriteBarrierSet(*this, index, ro_roots.null_value()); } void FixedArray::set_the_hole(int index) { set_the_hole(GetReadOnlyRoots(), index); } void FixedArray::set_the_hole(Isolate* isolate, int index) { set_the_hole(ReadOnlyRoots(isolate), index); } void FixedArray::set_the_hole(ReadOnlyRoots ro_roots, int index) { FixedArray::NoWriteBarrierSet(*this, index, ro_roots.the_hole_value()); } void FixedArray::FillWithHoles(int from, int to) { for (int i = from; i < to; i++) { set_the_hole(i); } } ObjectSlot FixedArray::data_start() { return RawField(OffsetOfElementAt(0)); } ObjectSlot FixedArray::RawFieldOfElementAt(int index) { return RawField(OffsetOfElementAt(index)); } void FixedArray::MoveElements(Isolate* isolate, int dst_index, int src_index, int len, WriteBarrierMode mode) { if (len == 0) return; DCHECK_LE(dst_index + len, length()); DCHECK_LE(src_index + len, length()); DisallowGarbageCollection no_gc; ObjectSlot dst_slot(RawFieldOfElementAt(dst_index)); ObjectSlot src_slot(RawFieldOfElementAt(src_index)); isolate->heap()->MoveRange(*this, dst_slot, src_slot, len, mode); } void FixedArray::CopyElements(Isolate* isolate, int dst_index, FixedArray src, int src_index, int len, WriteBarrierMode mode) { if (len == 0) return; DCHECK_LE(dst_index + len, length()); DCHECK_LE(src_index + len, src.length()); DisallowGarbageCollection no_gc; ObjectSlot dst_slot(RawFieldOfElementAt(dst_index)); ObjectSlot src_slot(src.RawFieldOfElementAt(src_index)); isolate->heap()->CopyRange(*this, dst_slot, src_slot, len, mode); } // Due to left- and right-trimming, concurrent visitors need to read the length // with acquire semantics. // TODO(ulan): Acquire should not be needed anymore. inline int FixedArray::AllocatedSize() { return SizeFor(length(kAcquireLoad)); } inline int WeakFixedArray::AllocatedSize() { return SizeFor(length(kAcquireLoad)); } inline int WeakArrayList::AllocatedSize() { return SizeFor(capacity()); } // Perform a binary search in a fixed array. template int BinarySearch(T* array, Name name, int valid_entries, int* out_insertion_index) { DCHECK_IMPLIES(search_mode == VALID_ENTRIES, out_insertion_index == nullptr); int low = 0; // We have to search on all entries, even when search_mode == VALID_ENTRIES. // This is because the InternalIndex might be different from the SortedIndex // (i.e the first added item in {array} could be the last in the sorted // index). After doing the binary search and getting the correct internal // index we check to have the index lower than valid_entries, if needed. int high = array->number_of_entries() - 1; uint32_t hash = name.hash(); int limit = high; DCHECK(low <= high); while (low != high) { int mid = low + (high - low) / 2; Name mid_name = array->GetSortedKey(mid); uint32_t mid_hash = mid_name.hash(); if (mid_hash >= hash) { high = mid; } else { low = mid + 1; } } for (; low <= limit; ++low) { int sort_index = array->GetSortedKeyIndex(low); Name entry = array->GetKey(InternalIndex(sort_index)); uint32_t current_hash = entry.hash(); if (current_hash != hash) { // 'search_mode == ALL_ENTRIES' here and below is not needed since // 'out_insertion_index != nullptr' implies 'search_mode == ALL_ENTRIES'. // Having said that, when creating the template for these // ifs can be elided by the C++ compiler if we add 'search_mode == // ALL_ENTRIES'. if (search_mode == ALL_ENTRIES && out_insertion_index != nullptr) { *out_insertion_index = sort_index + (current_hash > hash ? 0 : 1); } return T::kNotFound; } if (entry == name) { if (search_mode == ALL_ENTRIES || sort_index < valid_entries) { return sort_index; } return T::kNotFound; } } if (search_mode == ALL_ENTRIES && out_insertion_index != nullptr) { *out_insertion_index = limit + 1; } return T::kNotFound; } // Perform a linear search in this fixed array. len is the number of entry // indices that are valid. template int LinearSearch(T* array, Name name, int valid_entries, int* out_insertion_index) { if (search_mode == ALL_ENTRIES && out_insertion_index != nullptr) { uint32_t hash = name.hash(); int len = array->number_of_entries(); for (int number = 0; number < len; number++) { int sorted_index = array->GetSortedKeyIndex(number); Name entry = array->GetKey(InternalIndex(sorted_index)); uint32_t current_hash = entry.hash(); if (current_hash > hash) { *out_insertion_index = sorted_index; return T::kNotFound; } if (entry == name) return sorted_index; } *out_insertion_index = len; return T::kNotFound; } else { DCHECK_LE(valid_entries, array->number_of_entries()); DCHECK_NULL(out_insertion_index); // Not supported here. for (int number = 0; number < valid_entries; number++) { if (array->GetKey(InternalIndex(number)) == name) return number; } return T::kNotFound; } } template int Search(T* array, Name name, int valid_entries, int* out_insertion_index, bool concurrent_search) { SLOW_DCHECK_IMPLIES(!concurrent_search, array->IsSortedNoDuplicates()); if (valid_entries == 0) { if (search_mode == ALL_ENTRIES && out_insertion_index != nullptr) { *out_insertion_index = 0; } return T::kNotFound; } // Do linear search for small arrays, and for searches in the background // thread. const int kMaxElementsForLinearSearch = 8; if (valid_entries <= kMaxElementsForLinearSearch || concurrent_search) { return LinearSearch(array, name, valid_entries, out_insertion_index); } return BinarySearch(array, name, valid_entries, out_insertion_index); } double FixedDoubleArray::get_scalar(int index) { DCHECK(map() != GetReadOnlyRoots().fixed_cow_array_map() && map() != GetReadOnlyRoots().fixed_array_map()); DCHECK_LT(static_cast(index), static_cast(length())); DCHECK(!is_the_hole(index)); return ReadField(kHeaderSize + index * kDoubleSize); } uint64_t FixedDoubleArray::get_representation(int index) { DCHECK(map() != GetReadOnlyRoots().fixed_cow_array_map() && map() != GetReadOnlyRoots().fixed_array_map()); DCHECK_LT(static_cast(index), static_cast(length())); int offset = kHeaderSize + index * kDoubleSize; // Bug(v8:8875): Doubles may be unaligned. return base::ReadUnalignedValue(field_address(offset)); } Handle FixedDoubleArray::get(FixedDoubleArray array, int index, Isolate* isolate) { if (array.is_the_hole(index)) { return ReadOnlyRoots(isolate).the_hole_value_handle(); } else { return isolate->factory()->NewNumber(array.get_scalar(index)); } } void FixedDoubleArray::set(int index, double value) { DCHECK(map() != GetReadOnlyRoots().fixed_cow_array_map() && map() != GetReadOnlyRoots().fixed_array_map()); DCHECK_LT(static_cast(index), static_cast(length())); int offset = kHeaderSize + index * kDoubleSize; if (std::isnan(value)) { WriteField(offset, std::numeric_limits::quiet_NaN()); } else { WriteField(offset, value); } DCHECK(!is_the_hole(index)); } void FixedDoubleArray::set_the_hole(Isolate* isolate, int index) { set_the_hole(index); } void FixedDoubleArray::set_the_hole(int index) { DCHECK(map() != GetReadOnlyRoots().fixed_cow_array_map() && map() != GetReadOnlyRoots().fixed_array_map()); DCHECK_LT(static_cast(index), static_cast(length())); int offset = kHeaderSize + index * kDoubleSize; base::WriteUnalignedValue(field_address(offset), kHoleNanInt64); } bool FixedDoubleArray::is_the_hole(Isolate* isolate, int index) { return is_the_hole(index); } bool FixedDoubleArray::is_the_hole(int index) { return get_representation(index) == kHoleNanInt64; } void FixedDoubleArray::MoveElements(Isolate* isolate, int dst_index, int src_index, int len, WriteBarrierMode mode) { DCHECK_EQ(SKIP_WRITE_BARRIER, mode); double* data_start = reinterpret_cast(field_address(kHeaderSize)); MemMove(data_start + dst_index, data_start + src_index, len * kDoubleSize); } void FixedDoubleArray::FillWithHoles(int from, int to) { for (int i = from; i < to; i++) { set_the_hole(i); } } MaybeObject WeakFixedArray::Get(int index) const { PtrComprCageBase cage_base = GetPtrComprCageBase(*this); return Get(cage_base, index); } MaybeObject WeakFixedArray::Get(PtrComprCageBase cage_base, int index) const { DCHECK_LT(static_cast(index), static_cast(length())); return objects(cage_base, index, kRelaxedLoad); } void WeakFixedArray::Set(int index, MaybeObject value, WriteBarrierMode mode) { set_objects(index, value, mode); } MaybeObjectSlot WeakFixedArray::data_start() { return RawMaybeWeakField(kObjectsOffset); } MaybeObjectSlot WeakFixedArray::RawFieldOfElementAt(int index) { return RawMaybeWeakField(OffsetOfElementAt(index)); } void WeakFixedArray::CopyElements(Isolate* isolate, int dst_index, WeakFixedArray src, int src_index, int len, WriteBarrierMode mode) { if (len == 0) return; DCHECK_LE(dst_index + len, length()); DCHECK_LE(src_index + len, src.length()); DisallowGarbageCollection no_gc; MaybeObjectSlot dst_slot(data_start() + dst_index); MaybeObjectSlot src_slot(src.data_start() + src_index); isolate->heap()->CopyRange(*this, dst_slot, src_slot, len, mode); } MaybeObject WeakArrayList::Get(int index) const { PtrComprCageBase cage_base = GetPtrComprCageBase(*this); return Get(cage_base, index); } MaybeObject WeakArrayList::Get(PtrComprCageBase cage_base, int index) const { DCHECK_LT(static_cast(index), static_cast(capacity())); return objects(cage_base, index, kRelaxedLoad); } void WeakArrayList::Set(int index, MaybeObject value, WriteBarrierMode mode) { set_objects(index, value, mode); } MaybeObjectSlot WeakArrayList::data_start() { return RawMaybeWeakField(kObjectsOffset); } void WeakArrayList::CopyElements(Isolate* isolate, int dst_index, WeakArrayList src, int src_index, int len, WriteBarrierMode mode) { if (len == 0) return; DCHECK_LE(dst_index + len, capacity()); DCHECK_LE(src_index + len, src.capacity()); DisallowGarbageCollection no_gc; MaybeObjectSlot dst_slot(data_start() + dst_index); MaybeObjectSlot src_slot(src.data_start() + src_index); isolate->heap()->CopyRange(*this, dst_slot, src_slot, len, mode); } HeapObject WeakArrayList::Iterator::Next() { if (!array_.is_null()) { while (index_ < array_.length()) { MaybeObject item = array_.Get(index_++); DCHECK(item->IsWeakOrCleared()); if (!item->IsCleared()) return item->GetHeapObjectAssumeWeak(); } array_ = WeakArrayList(); } return HeapObject(); } int ArrayList::Length() const { if (FixedArray::cast(*this).length() == 0) return 0; return Smi::ToInt(FixedArray::cast(*this).get(kLengthIndex)); } void ArrayList::SetLength(int length) { return FixedArray::cast(*this).set(kLengthIndex, Smi::FromInt(length)); } Object ArrayList::Get(int index) const { return FixedArray::cast(*this).get(kFirstIndex + index); } Object ArrayList::Get(PtrComprCageBase cage_base, int index) const { return FixedArray::cast(*this).get(cage_base, kFirstIndex + index); } ObjectSlot ArrayList::Slot(int index) { return RawField(OffsetOfElementAt(kFirstIndex + index)); } void ArrayList::Set(int index, Object obj, WriteBarrierMode mode) { FixedArray::cast(*this).set(kFirstIndex + index, obj, mode); } void ArrayList::Clear(int index, Object undefined) { DCHECK(undefined.IsUndefined()); FixedArray::cast(*this).set(kFirstIndex + index, undefined, SKIP_WRITE_BARRIER); } int ByteArray::Size() { return RoundUp(length() + kHeaderSize, kTaggedSize); } byte ByteArray::get(int index) const { DCHECK(index >= 0 && index < this->length()); return ReadField(kHeaderSize + index * kCharSize); } void ByteArray::set(int index, byte value) { DCHECK(index >= 0 && index < this->length()); WriteField(kHeaderSize + index * kCharSize, value); } void ByteArray::copy_in(int index, const byte* buffer, int length) { DCHECK(index >= 0 && length >= 0 && length <= kMaxInt - index && index + length <= this->length()); Address dst_addr = field_address(kHeaderSize + index * kCharSize); base::Memcpy(reinterpret_cast(dst_addr), buffer, length); } void ByteArray::copy_out(int index, byte* buffer, int length) { DCHECK(index >= 0 && length >= 0 && length <= kMaxInt - index && index + length <= this->length()); Address src_addr = field_address(kHeaderSize + index * kCharSize); base::Memcpy(buffer, reinterpret_cast(src_addr), length); } int ByteArray::get_int(int index) const { DCHECK(index >= 0 && index < this->length() / kIntSize); return ReadField(kHeaderSize + index * kIntSize); } void ByteArray::set_int(int index, int value) { DCHECK(index >= 0 && index < this->length() / kIntSize); WriteField(kHeaderSize + index * kIntSize, value); } uint32_t ByteArray::get_uint32(int index) const { DCHECK(index >= 0 && index < this->length() / kUInt32Size); return ReadField(kHeaderSize + index * kUInt32Size); } void ByteArray::set_uint32(int index, uint32_t value) { DCHECK(index >= 0 && index < this->length() / kUInt32Size); WriteField(kHeaderSize + index * kUInt32Size, value); } uint32_t ByteArray::get_uint32_relaxed(int index) const { DCHECK(index >= 0 && index < this->length() / kUInt32Size); return RELAXED_READ_UINT32_FIELD(*this, kHeaderSize + index * kUInt32Size); } void ByteArray::set_uint32_relaxed(int index, uint32_t value) { DCHECK(index >= 0 && index < this->length() / kUInt32Size); RELAXED_WRITE_UINT32_FIELD(*this, kHeaderSize + index * kUInt32Size, value); } void ByteArray::clear_padding() { int data_size = length() + kHeaderSize; memset(reinterpret_cast(address() + data_size), 0, Size() - data_size); } ByteArray ByteArray::FromDataStartAddress(Address address) { DCHECK_TAG_ALIGNED(address); return ByteArray::cast(Object(address - kHeaderSize + kHeapObjectTag)); } int ByteArray::DataSize() const { return RoundUp(length(), kTaggedSize); } int ByteArray::ByteArraySize() { return SizeFor(this->length()); } byte* ByteArray::GetDataStartAddress() { return reinterpret_cast(address() + kHeaderSize); } byte* ByteArray::GetDataEndAddress() { return GetDataStartAddress() + length(); } template PodArray::PodArray(Address ptr) : ByteArray(ptr) {} template PodArray PodArray::cast(Object object) { return PodArray(object.ptr()); } // static template Handle> PodArray::New(Isolate* isolate, int length, AllocationType allocation) { return Handle>::cast( isolate->factory()->NewByteArray(length * sizeof(T), allocation)); } template int PodArray::length() const { return ByteArray::length() / sizeof(T); } int TemplateList::length() const { return Smi::ToInt(FixedArray::cast(*this).get(kLengthIndex)); } Object TemplateList::get(int index) const { return FixedArray::cast(*this).get(kFirstElementIndex + index); } Object TemplateList::get(PtrComprCageBase cage_base, int index) const { return FixedArray::cast(*this).get(cage_base, kFirstElementIndex + index); } void TemplateList::set(int index, Object value) { FixedArray::cast(*this).set(kFirstElementIndex + index, value); } } // namespace internal } // namespace v8 #include "src/base/platform/wrappers.h" #include "src/objects/object-macros-undef.h" #endif // V8_OBJECTS_FIXED_ARRAY_INL_H_