// Copyright 2012 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #ifndef V8_OBJECTS_PROPERTY_DETAILS_H_ #define V8_OBJECTS_PROPERTY_DETAILS_H_ #include "include/v8-object.h" #include "src/base/bit-field.h" #include "src/common/globals.h" #include "src/flags/flags.h" #include "src/utils/allocation.h" namespace v8 { namespace internal { // ES6 6.1.7.1 enum PropertyAttributes { NONE = ::v8::None, READ_ONLY = ::v8::ReadOnly, DONT_ENUM = ::v8::DontEnum, DONT_DELETE = ::v8::DontDelete, ALL_ATTRIBUTES_MASK = READ_ONLY | DONT_ENUM | DONT_DELETE, SEALED = DONT_DELETE, FROZEN = SEALED | READ_ONLY, ABSENT = 64, // Used in runtime to indicate a property is absent. // ABSENT can never be stored in or returned from a descriptor's attributes // bitfield. It is only used as a return value meaning the attributes of // a non-existent property. }; // Number of distinct bits in PropertyAttributes. static const int kPropertyAttributesBitsCount = 3; static const int kPropertyAttributesCombinationsCount = 1 << kPropertyAttributesBitsCount; enum PropertyFilter { ALL_PROPERTIES = 0, ONLY_WRITABLE = 1, ONLY_ENUMERABLE = 2, ONLY_CONFIGURABLE = 4, SKIP_STRINGS = 8, SKIP_SYMBOLS = 16, ONLY_ALL_CAN_READ = 32, PRIVATE_NAMES_ONLY = 64, ENUMERABLE_STRINGS = ONLY_ENUMERABLE | SKIP_SYMBOLS, }; // Enable fast comparisons of PropertyAttributes against PropertyFilters. STATIC_ASSERT(ALL_PROPERTIES == static_cast(NONE)); STATIC_ASSERT(ONLY_WRITABLE == static_cast(READ_ONLY)); STATIC_ASSERT(ONLY_ENUMERABLE == static_cast(DONT_ENUM)); STATIC_ASSERT(ONLY_CONFIGURABLE == static_cast(DONT_DELETE)); STATIC_ASSERT(((SKIP_STRINGS | SKIP_SYMBOLS | ONLY_ALL_CAN_READ) & ALL_ATTRIBUTES_MASK) == 0); STATIC_ASSERT(ALL_PROPERTIES == static_cast(v8::PropertyFilter::ALL_PROPERTIES)); STATIC_ASSERT(ONLY_WRITABLE == static_cast(v8::PropertyFilter::ONLY_WRITABLE)); STATIC_ASSERT(ONLY_ENUMERABLE == static_cast(v8::PropertyFilter::ONLY_ENUMERABLE)); STATIC_ASSERT(ONLY_CONFIGURABLE == static_cast( v8::PropertyFilter::ONLY_CONFIGURABLE)); STATIC_ASSERT(SKIP_STRINGS == static_cast(v8::PropertyFilter::SKIP_STRINGS)); STATIC_ASSERT(SKIP_SYMBOLS == static_cast(v8::PropertyFilter::SKIP_SYMBOLS)); // Assert that kPropertyAttributesBitsCount value matches the definition of // ALL_ATTRIBUTES_MASK. STATIC_ASSERT((ALL_ATTRIBUTES_MASK == (READ_ONLY | DONT_ENUM | DONT_DELETE)) == (kPropertyAttributesBitsCount == 3)); class Smi; class TypeInfo; // Order of kinds is significant. // Must fit in the BitField PropertyDetails::KindField. enum class PropertyKind { kData = 0, kAccessor = 1 }; // Order of modes is significant. // Must fit in the BitField PropertyDetails::LocationField. enum class PropertyLocation { kField = 0, kDescriptor = 1 }; // Order of modes is significant. // Must fit in the BitField PropertyDetails::ConstnessField. enum class PropertyConstness { kMutable = 0, kConst = 1 }; class Representation { public: enum Kind { kNone, kSmi, kDouble, kHeapObject, kTagged, // This representation is used for WasmObject fields and basically means // that the actual field type information must be taken from the Wasm RTT // associated with the map. kWasmValue, kNumRepresentations }; constexpr Representation() : kind_(kNone) {} static constexpr Representation None() { return Representation(kNone); } static constexpr Representation Tagged() { return Representation(kTagged); } static constexpr Representation Smi() { return Representation(kSmi); } static constexpr Representation Double() { return Representation(kDouble); } static constexpr Representation HeapObject() { return Representation(kHeapObject); } static constexpr Representation WasmValue() { return Representation(kWasmValue); } static constexpr Representation FromKind(Kind kind) { return Representation(kind); } bool Equals(const Representation& other) const { return kind_ == other.kind_; } bool IsCompatibleForLoad(const Representation& other) const { return IsDouble() == other.IsDouble(); } bool IsCompatibleForStore(const Representation& other) const { return Equals(other); } // Returns true if a change from this representation to a more general one // might cause a map deprecation. bool MightCauseMapDeprecation() const { // HeapObject to tagged representation change can be done in-place. // Boxed double to tagged transition is always done in-place. // Note that WasmValue is not supposed to be changed at all (the only // representation it fits into is WasmValue), so for the sake of predicate // correctness we treat it as in-place "changeable". if (IsTagged() || IsHeapObject() || IsDouble() || IsWasmValue()) { return false; } // None to double and smi to double representation changes require // deprecation, because doubles might require box allocation, see // CanBeInPlaceChangedTo(). DCHECK(IsNone() || IsSmi()); return true; } bool CanBeInPlaceChangedTo(const Representation& other) const { if (Equals(other)) return true; if (IsWasmValue() || other.IsWasmValue()) return false; // If it's just a representation generalization case (i.e. property kind and // attributes stays unchanged) it's fine to transition from None to anything // but double without any modification to the object, because the default // uninitialized value for representation None can be overwritten by both // smi and tagged values. Doubles, however, would require a box allocation. if (IsNone()) return !other.IsDouble(); if (!other.IsTagged()) return false; DCHECK(IsSmi() || IsDouble() || IsHeapObject()); return true; } // Return the most generic representation that this representation can be // changed to in-place. If an in-place representation change is not allowed, // then this will return the current representation. Representation MostGenericInPlaceChange() const { if (IsWasmValue()) return Representation::WasmValue(); return Representation::Tagged(); } bool is_more_general_than(const Representation& other) const { if (IsWasmValue()) return false; if (IsHeapObject()) return other.IsNone(); return kind_ > other.kind_; } bool fits_into(const Representation& other) const { return other.is_more_general_than(*this) || other.Equals(*this); } Representation generalize(Representation other) { if (other.fits_into(*this)) return *this; if (other.is_more_general_than(*this)) return other; return Representation::Tagged(); } int size() const { DCHECK(!IsNone()); if (IsDouble()) return kDoubleSize; DCHECK(IsTagged() || IsSmi() || IsHeapObject()); return kTaggedSize; } constexpr Kind kind() const { return static_cast(kind_); } constexpr bool IsNone() const { return kind_ == kNone; } constexpr bool IsWasmValue() const { return kind_ == kWasmValue; } constexpr bool IsTagged() const { return kind_ == kTagged; } constexpr bool IsSmi() const { return kind_ == kSmi; } constexpr bool IsSmiOrTagged() const { return IsSmi() || IsTagged(); } constexpr bool IsDouble() const { return kind_ == kDouble; } constexpr bool IsHeapObject() const { return kind_ == kHeapObject; } const char* Mnemonic() const { switch (kind_) { case kNone: return "v"; case kTagged: return "t"; case kSmi: return "s"; case kDouble: return "d"; case kHeapObject: return "h"; case kWasmValue: return "w"; } UNREACHABLE(); } private: explicit constexpr Representation(Kind k) : kind_(k) {} // Make sure kind fits in int8. STATIC_ASSERT(kNumRepresentations <= (1 << kBitsPerByte)); int8_t kind_; }; static const int kDescriptorIndexBitCount = 10; static const int kFirstInobjectPropertyOffsetBitCount = 7; // The maximum number of descriptors we want in a descriptor array. It should // fit in a page and also the following should hold: // kMaxNumberOfDescriptors + kFieldsAdded <= PropertyArray::kMaxLength. static const int kMaxNumberOfDescriptors = (1 << kDescriptorIndexBitCount) - 4; static const int kInvalidEnumCacheSentinel = (1 << kDescriptorIndexBitCount) - 1; // A PropertyCell's property details contains a cell type that is meaningful if // the cell is still valid (does not hold the hole). enum class PropertyCellType { kMutable, // Cell will no longer be tracked as constant. kUndefined, // The PREMONOMORPHIC of property cells. kConstant, // Cell has been assigned only once. kConstantType, // Cell has been assigned only one type. // Temporary value indicating an ongoing property cell state transition. Only // observable by a background thread. kInTransition, // Value for dictionaries not holding cells, must be 0: kNoCell = kMutable, }; // PropertyDetails captures type and attributes for a property. // They are used both in property dictionaries and instance descriptors. class PropertyDetails { public: // Property details for global dictionary properties. constexpr PropertyDetails(PropertyKind kind, PropertyAttributes attributes, PropertyCellType cell_type, int dictionary_index = 0) : value_(KindField::encode(kind) | LocationField::encode(PropertyLocation::kField) | AttributesField::encode(attributes) | // We track PropertyCell constness via PropertyCellTypeField, // so we set ConstnessField to kMutable to simplify DCHECKs // related to non-global property constness tracking. ConstnessField::encode(PropertyConstness::kMutable) | DictionaryStorageField::encode(dictionary_index) | PropertyCellTypeField::encode(cell_type)) {} // Property details for dictionary mode properties/elements. constexpr PropertyDetails(PropertyKind kind, PropertyAttributes attributes, PropertyConstness constness, int dictionary_index = 0) : value_(KindField::encode(kind) | LocationField::encode(PropertyLocation::kField) | AttributesField::encode(attributes) | ConstnessField::encode(constness) | DictionaryStorageField::encode(dictionary_index) | PropertyCellTypeField::encode(PropertyCellType::kNoCell)) {} // Property details for fast mode properties. constexpr PropertyDetails(PropertyKind kind, PropertyAttributes attributes, PropertyLocation location, PropertyConstness constness, Representation representation, int field_index = 0) : value_( KindField::encode(kind) | AttributesField::encode(attributes) | LocationField::encode(location) | ConstnessField::encode(constness) | RepresentationField::encode(EncodeRepresentation(representation)) | FieldIndexField::encode(field_index)) {} static constexpr PropertyDetails Empty( PropertyCellType cell_type = PropertyCellType::kNoCell) { return PropertyDetails(PropertyKind::kData, NONE, cell_type); } bool operator==(PropertyDetails const& other) { return value_ == other.value_; } bool operator!=(PropertyDetails const& other) { return value_ != other.value_; } int pointer() const { return DescriptorPointer::decode(value_); } PropertyDetails set_pointer(int i) const { return PropertyDetails(value_, i); } PropertyDetails set_cell_type(PropertyCellType type) const { PropertyDetails details = *this; details.value_ = PropertyCellTypeField::update(details.value_, type); return details; } PropertyDetails set_index(int index) const { PropertyDetails details = *this; details.value_ = DictionaryStorageField::update(details.value_, index); return details; } PropertyDetails CopyWithRepresentation(Representation representation) const { return PropertyDetails(value_, representation); } PropertyDetails CopyWithConstness(PropertyConstness constness) const { return PropertyDetails(value_, constness); } PropertyDetails CopyAddAttributes(PropertyAttributes new_attributes) const { new_attributes = static_cast(attributes() | new_attributes); return PropertyDetails(value_, new_attributes); } // Conversion for storing details as Object. explicit inline PropertyDetails(Smi smi); inline Smi AsSmi() const; static constexpr uint8_t EncodeRepresentation(Representation representation) { return representation.kind(); } static Representation DecodeRepresentation(uint32_t bits) { return Representation::FromKind(static_cast(bits)); } PropertyKind kind() const { return KindField::decode(value_); } PropertyLocation location() const { return LocationField::decode(value_); } PropertyConstness constness() const { return ConstnessField::decode(value_); } PropertyAttributes attributes() const { return AttributesField::decode(value_); } bool HasKindAndAttributes(PropertyKind kind, PropertyAttributes attributes) { return (value_ & (KindField::kMask | AttributesField::kMask)) == (KindField::encode(kind) | AttributesField::encode(attributes)); } int dictionary_index() const { return DictionaryStorageField::decode(value_); } Representation representation() const { return DecodeRepresentation(RepresentationField::decode(value_)); } int field_index() const { return FieldIndexField::decode(value_); } inline int field_width_in_words() const; static bool IsValidIndex(int index) { return DictionaryStorageField::is_valid(index); } bool IsReadOnly() const { return (attributes() & READ_ONLY) != 0; } bool IsConfigurable() const { return (attributes() & DONT_DELETE) == 0; } bool IsDontEnum() const { return (attributes() & DONT_ENUM) != 0; } bool IsEnumerable() const { return !IsDontEnum(); } PropertyCellType cell_type() const { return PropertyCellTypeField::decode(value_); } bool operator==(const PropertyDetails& b) const { return value_ == b.value_; } // Bit fields in value_ (type, shift, size). Must be public so the // constants can be embedded in generated code. using KindField = base::BitField; using ConstnessField = KindField::Next; using AttributesField = ConstnessField::Next; static const int kAttributesReadOnlyMask = (READ_ONLY << AttributesField::kShift); static const int kAttributesDontDeleteMask = (DONT_DELETE << AttributesField::kShift); static const int kAttributesDontEnumMask = (DONT_ENUM << AttributesField::kShift); // Bit fields for normalized/dictionary mode objects. using PropertyCellTypeField = AttributesField::Next; using DictionaryStorageField = PropertyCellTypeField::Next; // Bit fields for fast objects. using LocationField = AttributesField::Next; using RepresentationField = LocationField::Next; using DescriptorPointer = RepresentationField::Next; using FieldIndexField = DescriptorPointer::Next; // All bits for both fast and slow objects must fit in a smi. STATIC_ASSERT(DictionaryStorageField::kLastUsedBit < 31); STATIC_ASSERT(FieldIndexField::kLastUsedBit < 31); // DictionaryStorageField must be the last field, so that overflowing it // doesn't overwrite other fields. STATIC_ASSERT(DictionaryStorageField::kLastUsedBit == 30); // All bits for non-global dictionary mode objects except enumeration index // must fit in a byte. STATIC_ASSERT(KindField::kLastUsedBit < 8); STATIC_ASSERT(ConstnessField::kLastUsedBit < 8); STATIC_ASSERT(AttributesField::kLastUsedBit < 8); static const int kInitialIndex = 1; static constexpr PropertyConstness kConstIfDictConstnessTracking = V8_DICT_PROPERTY_CONST_TRACKING_BOOL ? PropertyConstness::kConst : PropertyConstness::kMutable; #ifdef OBJECT_PRINT // For our gdb macros, we should perhaps change these in the future. void Print(bool dictionary_mode); #endif enum PrintMode { kPrintAttributes = 1 << 0, kPrintFieldIndex = 1 << 1, kPrintRepresentation = 1 << 2, kPrintPointer = 1 << 3, kForProperties = kPrintFieldIndex, kForTransitions = kPrintAttributes, kPrintFull = -1, }; void PrintAsSlowTo(std::ostream& out, bool print_dict_index); void PrintAsFastTo(std::ostream& out, PrintMode mode = kPrintFull); // Encodes those property details for non-global dictionary properties // with an enumeration index of 0 as a single byte. uint8_t ToByte() { // We only care about the value of KindField, ConstnessField, and // AttributesField. We've statically asserted earlier that these fields fit // into a byte together. DCHECK_EQ(PropertyLocation::kField, location()); STATIC_ASSERT(static_cast(PropertyLocation::kField) == 0); DCHECK_EQ(PropertyCellType::kNoCell, cell_type()); STATIC_ASSERT(static_cast(PropertyCellType::kNoCell) == 0); // Only to be used when the enum index isn't actually maintained // by the PropertyDetails: DCHECK_EQ(0, dictionary_index()); return value_; } // Only to be used for bytes obtained by ToByte. In particular, only used for // non-global dictionary properties. static PropertyDetails FromByte(uint8_t encoded_details) { // The 0-extension to 32bit sets PropertyLocation to kField, // PropertyCellType to kNoCell, and enumeration index to 0, as intended. // Everything else is obtained from |encoded_details|. PropertyDetails details(encoded_details); DCHECK_EQ(PropertyLocation::kField, details.location()); DCHECK_EQ(PropertyCellType::kNoCell, details.cell_type()); DCHECK_EQ(0, details.dictionary_index()); return details; } private: PropertyDetails(int value, int pointer) { value_ = DescriptorPointer::update(value, pointer); } PropertyDetails(int value, Representation representation) { value_ = RepresentationField::update(value, EncodeRepresentation(representation)); } PropertyDetails(int value, PropertyConstness constness) { value_ = ConstnessField::update(value, constness); } PropertyDetails(int value, PropertyAttributes attributes) { value_ = AttributesField::update(value, attributes); } explicit PropertyDetails(uint32_t value) : value_{value} {} uint32_t value_; }; // kField location is more general than kDescriptor, kDescriptor generalizes // only to itself. inline bool IsGeneralizableTo(PropertyLocation a, PropertyLocation b) { return b == PropertyLocation::kField || a == PropertyLocation::kDescriptor; } // PropertyConstness::kMutable constness is more general than // VariableMode::kConst, VariableMode::kConst generalizes only to itself. inline bool IsGeneralizableTo(PropertyConstness a, PropertyConstness b) { return b == PropertyConstness::kMutable || a == PropertyConstness::kConst; } inline PropertyConstness GeneralizeConstness(PropertyConstness a, PropertyConstness b) { return a == PropertyConstness::kMutable ? PropertyConstness::kMutable : b; } V8_EXPORT_PRIVATE std::ostream& operator<<( std::ostream& os, const Representation& representation); V8_EXPORT_PRIVATE std::ostream& operator<<( std::ostream& os, const PropertyAttributes& attributes); V8_EXPORT_PRIVATE std::ostream& operator<<(std::ostream& os, PropertyConstness constness); V8_EXPORT_PRIVATE std::ostream& operator<<(std::ostream& os, PropertyCellType type); } // namespace internal } // namespace v8 #endif // V8_OBJECTS_PROPERTY_DETAILS_H_