// Copyright 2014 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #if V8_TARGET_ARCH_PPC #include "src/codegen.h" #include "src/debug/debug.h" #include "src/deoptimizer.h" #include "src/full-codegen/full-codegen.h" #include "src/runtime/runtime.h" namespace v8 { namespace internal { #define __ ACCESS_MASM(masm) void Builtins::Generate_Adaptor(MacroAssembler* masm, CFunctionId id, BuiltinExtraArguments extra_args) { // ----------- S t a t e ------------- // -- r3 : number of arguments excluding receiver // -- r4 : called function (only guaranteed when // extra_args requires it) // -- sp[0] : last argument // -- ... // -- sp[4 * (argc - 1)] : first argument (argc == r0) // -- sp[4 * argc] : receiver // ----------------------------------- __ AssertFunction(r4); // Make sure we operate in the context of the called function (for example // ConstructStubs implemented in C++ will be run in the context of the caller // instead of the callee, due to the way that [[Construct]] is defined for // ordinary functions). // TODO(bmeurer): Can we make this more robust? __ LoadP(cp, FieldMemOperand(r4, JSFunction::kContextOffset)); // Insert extra arguments. int num_extra_args = 0; if (extra_args == NEEDS_CALLED_FUNCTION) { num_extra_args = 1; __ push(r4); } else { DCHECK(extra_args == NO_EXTRA_ARGUMENTS); } // JumpToExternalReference expects r0 to contain the number of arguments // including the receiver and the extra arguments. __ addi(r3, r3, Operand(num_extra_args + 1)); __ JumpToExternalReference(ExternalReference(id, masm->isolate())); } // Load the built-in InternalArray function from the current context. static void GenerateLoadInternalArrayFunction(MacroAssembler* masm, Register result) { // Load the native context. __ LoadP(result, MemOperand(cp, Context::SlotOffset(Context::GLOBAL_OBJECT_INDEX))); __ LoadP(result, FieldMemOperand(result, GlobalObject::kNativeContextOffset)); // Load the InternalArray function from the native context. __ LoadP(result, MemOperand(result, Context::SlotOffset( Context::INTERNAL_ARRAY_FUNCTION_INDEX))); } // Load the built-in Array function from the current context. static void GenerateLoadArrayFunction(MacroAssembler* masm, Register result) { // Load the native context. __ LoadP(result, MemOperand(cp, Context::SlotOffset(Context::GLOBAL_OBJECT_INDEX))); __ LoadP(result, FieldMemOperand(result, GlobalObject::kNativeContextOffset)); // Load the Array function from the native context. __ LoadP( result, MemOperand(result, Context::SlotOffset(Context::ARRAY_FUNCTION_INDEX))); } void Builtins::Generate_InternalArrayCode(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- r3 : number of arguments // -- lr : return address // -- sp[...]: constructor arguments // ----------------------------------- Label generic_array_code, one_or_more_arguments, two_or_more_arguments; // Get the InternalArray function. GenerateLoadInternalArrayFunction(masm, r4); if (FLAG_debug_code) { // Initial map for the builtin InternalArray functions should be maps. __ LoadP(r5, FieldMemOperand(r4, JSFunction::kPrototypeOrInitialMapOffset)); __ TestIfSmi(r5, r0); __ Assert(ne, kUnexpectedInitialMapForInternalArrayFunction, cr0); __ CompareObjectType(r5, r6, r7, MAP_TYPE); __ Assert(eq, kUnexpectedInitialMapForInternalArrayFunction); } // Run the native code for the InternalArray function called as a normal // function. // tail call a stub InternalArrayConstructorStub stub(masm->isolate()); __ TailCallStub(&stub); } void Builtins::Generate_ArrayCode(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- r3 : number of arguments // -- lr : return address // -- sp[...]: constructor arguments // ----------------------------------- Label generic_array_code, one_or_more_arguments, two_or_more_arguments; // Get the Array function. GenerateLoadArrayFunction(masm, r4); if (FLAG_debug_code) { // Initial map for the builtin Array functions should be maps. __ LoadP(r5, FieldMemOperand(r4, JSFunction::kPrototypeOrInitialMapOffset)); __ TestIfSmi(r5, r0); __ Assert(ne, kUnexpectedInitialMapForArrayFunction, cr0); __ CompareObjectType(r5, r6, r7, MAP_TYPE); __ Assert(eq, kUnexpectedInitialMapForArrayFunction); } __ mr(r6, r4); // Run the native code for the Array function called as a normal function. // tail call a stub __ LoadRoot(r5, Heap::kUndefinedValueRootIndex); ArrayConstructorStub stub(masm->isolate()); __ TailCallStub(&stub); } // static void Builtins::Generate_StringConstructor(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- r3 : number of arguments // -- r4 : constructor function // -- lr : return address // -- sp[(argc - n - 1) * 4] : arg[n] (zero based) // -- sp[argc * 4] : receiver // ----------------------------------- // 1. Load the first argument into r3 and get rid of the rest (including the // receiver). Label no_arguments; { __ cmpi(r3, Operand::Zero()); __ beq(&no_arguments); __ subi(r3, r3, Operand(1)); __ ShiftLeftImm(r3, r3, Operand(kPointerSizeLog2)); __ LoadPUX(r3, MemOperand(sp, r3)); __ Drop(2); } // 2a. At least one argument, return r3 if it's a string, otherwise // dispatch to appropriate conversion. Label to_string, symbol_descriptive_string; { __ JumpIfSmi(r3, &to_string); STATIC_ASSERT(FIRST_NONSTRING_TYPE == SYMBOL_TYPE); __ CompareObjectType(r3, r4, r4, FIRST_NONSTRING_TYPE); __ bgt(&to_string); __ beq(&symbol_descriptive_string); __ Ret(); } // 2b. No arguments, return the empty string (and pop the receiver). __ bind(&no_arguments); { __ LoadRoot(r3, Heap::kempty_stringRootIndex); __ Ret(1); } // 3a. Convert r3 to a string. __ bind(&to_string); { ToStringStub stub(masm->isolate()); __ TailCallStub(&stub); } // 3b. Convert symbol in r3 to a string. __ bind(&symbol_descriptive_string); { __ Push(r3); __ TailCallRuntime(Runtime::kSymbolDescriptiveString, 1, 1); } } // static void Builtins::Generate_StringConstructor_ConstructStub(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- r3 : number of arguments // -- r4 : constructor function // -- lr : return address // -- sp[(argc - n - 1) * 4] : arg[n] (zero based) // -- sp[argc * 4] : receiver // ----------------------------------- // 1. Load the first argument into r3 and get rid of the rest (including the // receiver). { Label no_arguments, done; __ cmpi(r3, Operand::Zero()); __ beq(&no_arguments); __ subi(r3, r3, Operand(1)); __ ShiftLeftImm(r3, r3, Operand(kPointerSizeLog2)); __ LoadPUX(r3, MemOperand(sp, r3)); __ Drop(2); __ b(&done); __ bind(&no_arguments); __ LoadRoot(r3, Heap::kempty_stringRootIndex); __ Drop(1); __ bind(&done); } // 2. Make sure r3 is a string. { Label convert, done_convert; __ JumpIfSmi(r3, &convert); __ CompareObjectType(r3, r5, r5, FIRST_NONSTRING_TYPE); __ blt(&done_convert); __ bind(&convert); { FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL); ToStringStub stub(masm->isolate()); __ push(r4); __ CallStub(&stub); __ pop(r4); } __ bind(&done_convert); } // 3. Allocate a JSValue wrapper for the string. { // ----------- S t a t e ------------- // -- r3 : the first argument // -- r4 : constructor function // -- lr : return address // ----------------------------------- Label allocate, done_allocate; __ mr(r5, r3); __ Allocate(JSValue::kSize, r3, r6, r7, &allocate, TAG_OBJECT); __ bind(&done_allocate); // Initialize the JSValue in r3. __ LoadGlobalFunctionInitialMap(r4, r6, r7); __ StoreP(r6, FieldMemOperand(r3, HeapObject::kMapOffset), r0); __ LoadRoot(r6, Heap::kEmptyFixedArrayRootIndex); __ StoreP(r6, FieldMemOperand(r3, JSObject::kPropertiesOffset), r0); __ StoreP(r6, FieldMemOperand(r3, JSObject::kElementsOffset), r0); __ StoreP(r5, FieldMemOperand(r3, JSValue::kValueOffset), r0); STATIC_ASSERT(JSValue::kSize == 4 * kPointerSize); __ Ret(); // Fallback to the runtime to allocate in new space. __ bind(&allocate); { FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL); __ LoadSmiLiteral(r6, Smi::FromInt(JSValue::kSize)); __ Push(r4, r5, r6); __ CallRuntime(Runtime::kAllocateInNewSpace, 1); __ Pop(r4, r5); } __ b(&done_allocate); } } static void CallRuntimePassFunction(MacroAssembler* masm, Runtime::FunctionId function_id) { FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL); // Push a copy of the function onto the stack. // Push function as parameter to the runtime call. __ Push(r4, r4); __ CallRuntime(function_id, 1); // Restore reciever. __ Pop(r4); } static void GenerateTailCallToSharedCode(MacroAssembler* masm) { __ LoadP(ip, FieldMemOperand(r4, JSFunction::kSharedFunctionInfoOffset)); __ LoadP(ip, FieldMemOperand(ip, SharedFunctionInfo::kCodeOffset)); __ addi(ip, ip, Operand(Code::kHeaderSize - kHeapObjectTag)); __ JumpToJSEntry(ip); } static void GenerateTailCallToReturnedCode(MacroAssembler* masm) { __ addi(ip, r3, Operand(Code::kHeaderSize - kHeapObjectTag)); __ JumpToJSEntry(ip); } void Builtins::Generate_InOptimizationQueue(MacroAssembler* masm) { // Checking whether the queued function is ready for install is optional, // since we come across interrupts and stack checks elsewhere. However, // not checking may delay installing ready functions, and always checking // would be quite expensive. A good compromise is to first check against // stack limit as a cue for an interrupt signal. Label ok; __ LoadRoot(ip, Heap::kStackLimitRootIndex); __ cmpl(sp, ip); __ bge(&ok); CallRuntimePassFunction(masm, Runtime::kTryInstallOptimizedCode); GenerateTailCallToReturnedCode(masm); __ bind(&ok); GenerateTailCallToSharedCode(masm); } static void Generate_JSConstructStubHelper(MacroAssembler* masm, bool is_api_function) { // ----------- S t a t e ------------- // -- r3 : number of arguments // -- r4 : constructor function // -- r5 : allocation site or undefined // -- r6 : original constructor // -- lr : return address // -- sp[...]: constructor arguments // ----------------------------------- Isolate* isolate = masm->isolate(); // Enter a construct frame. { FrameAndConstantPoolScope scope(masm, StackFrame::CONSTRUCT); // Preserve the incoming parameters on the stack. __ AssertUndefinedOrAllocationSite(r5, r7); __ SmiTag(r3); __ Push(r5, r3, r4, r6); // Try to allocate the object without transitioning into C code. If any of // the preconditions is not met, the code bails out to the runtime call. Label rt_call, allocated; if (FLAG_inline_new) { ExternalReference debug_step_in_fp = ExternalReference::debug_step_in_fp_address(isolate); __ mov(r5, Operand(debug_step_in_fp)); __ LoadP(r5, MemOperand(r5)); __ cmpi(r5, Operand::Zero()); __ bne(&rt_call); // Fall back to runtime if the original constructor and function differ. __ cmp(r4, r6); __ bne(&rt_call); // Load the initial map and verify that it is in fact a map. // r4: constructor function __ LoadP(r5, FieldMemOperand(r4, JSFunction::kPrototypeOrInitialMapOffset)); __ JumpIfSmi(r5, &rt_call); __ CompareObjectType(r5, r8, r7, MAP_TYPE); __ bne(&rt_call); // Check that the constructor is not constructing a JSFunction (see // comments in Runtime_NewObject in runtime.cc). In which case the // initial map's instance type would be JS_FUNCTION_TYPE. // r4: constructor function // r5: initial map __ CompareInstanceType(r5, r8, JS_FUNCTION_TYPE); __ beq(&rt_call); if (!is_api_function) { Label allocate; MemOperand bit_field3 = FieldMemOperand(r5, Map::kBitField3Offset); // Check if slack tracking is enabled. __ lwz(r7, bit_field3); __ DecodeField(r11, r7); __ cmpi(r11, Operand(Map::kSlackTrackingCounterEnd)); __ blt(&allocate); // Decrease generous allocation count. __ Add(r7, r7, -(1 << Map::Counter::kShift), r0); __ stw(r7, bit_field3); __ cmpi(r11, Operand(Map::kSlackTrackingCounterEnd)); __ bne(&allocate); __ push(r4); __ Push(r5, r4); // r4 = constructor __ CallRuntime(Runtime::kFinalizeInstanceSize, 1); __ Pop(r4, r5); __ bind(&allocate); } // Now allocate the JSObject on the heap. // r4: constructor function // r5: initial map Label rt_call_reload_new_target; __ lbz(r6, FieldMemOperand(r5, Map::kInstanceSizeOffset)); __ Allocate(r6, r7, r8, r9, &rt_call_reload_new_target, SIZE_IN_WORDS); // Allocated the JSObject, now initialize the fields. Map is set to // initial map and properties and elements are set to empty fixed array. // r4: constructor function // r5: initial map // r6: object size // r7: JSObject (not tagged) __ LoadRoot(r9, Heap::kEmptyFixedArrayRootIndex); __ mr(r8, r7); __ StoreP(r5, MemOperand(r8, JSObject::kMapOffset)); __ StoreP(r9, MemOperand(r8, JSObject::kPropertiesOffset)); __ StoreP(r9, MemOperand(r8, JSObject::kElementsOffset)); __ addi(r8, r8, Operand(JSObject::kElementsOffset + kPointerSize)); __ ShiftLeftImm(r9, r6, Operand(kPointerSizeLog2)); __ add(r9, r7, r9); // End of object. // Fill all the in-object properties with the appropriate filler. // r4: constructor function // r5: initial map // r6: object size // r7: JSObject (not tagged) // r8: First in-object property of JSObject (not tagged) // r9: End of object DCHECK_EQ(3 * kPointerSize, JSObject::kHeaderSize); __ LoadRoot(r10, Heap::kUndefinedValueRootIndex); if (!is_api_function) { Label no_inobject_slack_tracking; // Check if slack tracking is enabled. __ cmpi(r11, Operand(Map::kSlackTrackingCounterEnd)); __ blt(&no_inobject_slack_tracking); // Allocate object with a slack. __ lbz( r3, FieldMemOperand( r5, Map::kInObjectPropertiesOrConstructorFunctionIndexOffset)); __ lbz(r5, FieldMemOperand(r5, Map::kUnusedPropertyFieldsOffset)); __ sub(r3, r3, r5); if (FLAG_debug_code) { __ ShiftLeftImm(r0, r3, Operand(kPointerSizeLog2)); __ add(r0, r8, r0); // r0: offset of first field after pre-allocated fields __ cmp(r0, r9); __ Assert(le, kUnexpectedNumberOfPreAllocatedPropertyFields); } { Label done; __ cmpi(r3, Operand::Zero()); __ beq(&done); __ InitializeNFieldsWithFiller(r8, r3, r10); __ bind(&done); } // To allow for truncation. __ LoadRoot(r10, Heap::kOnePointerFillerMapRootIndex); // Fill the remaining fields with one pointer filler map. __ bind(&no_inobject_slack_tracking); } __ InitializeFieldsWithFiller(r8, r9, r10); // Add the object tag to make the JSObject real, so that we can continue // and jump into the continuation code at any time from now on. __ addi(r7, r7, Operand(kHeapObjectTag)); // Continue with JSObject being successfully allocated // r7: JSObject __ b(&allocated); // Reload the original constructor and fall-through. __ bind(&rt_call_reload_new_target); __ LoadP(r6, MemOperand(sp, 0 * kPointerSize)); } // Allocate the new receiver object using the runtime call. // r4: constructor function // r6: original constructor __ bind(&rt_call); __ Push(r4, r6); __ CallRuntime(Runtime::kNewObject, 2); __ mr(r7, r3); // Receiver for constructor call allocated. // r7: JSObject __ bind(&allocated); // Restore the parameters. __ Pop(r4, ip); // Retrieve smi-tagged arguments count from the stack. __ LoadP(r6, MemOperand(sp)); // Push new.target onto the construct frame. This is stored just below the // receiver on the stack. __ Push(ip, r7, r7); // Set up pointer to last argument. __ addi(r5, fp, Operand(StandardFrameConstants::kCallerSPOffset)); // Copy arguments and receiver to the expression stack. // r4: constructor function // r5: address of last argument (caller sp) // r6: number of arguments (smi-tagged) // sp[0]: receiver // sp[1]: receiver // sp[2]: new.target // sp[3]: number of arguments (smi-tagged) Label loop, no_args; __ SmiUntag(r3, r6, SetRC); __ beq(&no_args, cr0); __ ShiftLeftImm(ip, r3, Operand(kPointerSizeLog2)); __ sub(sp, sp, ip); __ mtctr(r3); __ bind(&loop); __ subi(ip, ip, Operand(kPointerSize)); __ LoadPX(r0, MemOperand(r5, ip)); __ StorePX(r0, MemOperand(sp, ip)); __ bdnz(&loop); __ bind(&no_args); // Call the function. // r3: number of arguments // r4: constructor function if (is_api_function) { __ LoadP(cp, FieldMemOperand(r4, JSFunction::kContextOffset)); Handle code = masm->isolate()->builtins()->HandleApiCallConstruct(); __ Call(code, RelocInfo::CODE_TARGET); } else { ParameterCount actual(r3); __ InvokeFunction(r4, actual, CALL_FUNCTION, NullCallWrapper()); } // Store offset of return address for deoptimizer. if (!is_api_function) { masm->isolate()->heap()->SetConstructStubDeoptPCOffset(masm->pc_offset()); } // Restore context from the frame. // r3: result // sp[0]: receiver // sp[1]: new.target // sp[2]: number of arguments (smi-tagged) __ LoadP(cp, MemOperand(fp, StandardFrameConstants::kContextOffset)); // If the result is an object (in the ECMA sense), we should get rid // of the receiver and use the result; see ECMA-262 section 13.2.2-7 // on page 74. Label use_receiver, exit; // If the result is a smi, it is *not* an object in the ECMA sense. // r3: result // sp[0]: receiver // sp[1]: new.target // sp[2]: number of arguments (smi-tagged) __ JumpIfSmi(r3, &use_receiver); // If the type of the result (stored in its map) is less than // FIRST_SPEC_OBJECT_TYPE, it is not an object in the ECMA sense. __ CompareObjectType(r3, r4, r6, FIRST_SPEC_OBJECT_TYPE); __ bge(&exit); // Throw away the result of the constructor invocation and use the // on-stack receiver as the result. __ bind(&use_receiver); __ LoadP(r3, MemOperand(sp)); // Remove receiver from the stack, remove caller arguments, and // return. __ bind(&exit); // r3: result // sp[0]: receiver (newly allocated object) // sp[1]: new.target (original constructor) // sp[2]: number of arguments (smi-tagged) __ LoadP(r4, MemOperand(sp, 2 * kPointerSize)); // Leave construct frame. } __ SmiToPtrArrayOffset(r4, r4); __ add(sp, sp, r4); __ addi(sp, sp, Operand(kPointerSize)); __ IncrementCounter(isolate->counters()->constructed_objects(), 1, r4, r5); __ blr(); } void Builtins::Generate_JSConstructStubGeneric(MacroAssembler* masm) { Generate_JSConstructStubHelper(masm, false); } void Builtins::Generate_JSConstructStubApi(MacroAssembler* masm) { Generate_JSConstructStubHelper(masm, true); } void Builtins::Generate_JSConstructStubForDerived(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- r3 : number of arguments // -- r4 : constructor function // -- r5 : allocation site or undefined // -- r6 : original constructor // -- lr : return address // -- sp[...]: constructor arguments // ----------------------------------- { FrameAndConstantPoolScope scope(masm, StackFrame::CONSTRUCT); __ AssertUndefinedOrAllocationSite(r5, r7); // Smi-tagged arguments count. __ mr(r7, r3); __ SmiTag(r7, SetRC); // receiver is the hole. __ LoadRoot(ip, Heap::kTheHoleValueRootIndex); // allocation site, smi arguments count, new.target, receiver __ Push(r5, r7, r6, ip); // Set up pointer to last argument. __ addi(r5, fp, Operand(StandardFrameConstants::kCallerSPOffset)); // Copy arguments and receiver to the expression stack. // r3: number of arguments // r4: constructor function // r5: address of last argument (caller sp) // r7: number of arguments (smi-tagged) // cr0: compare against zero of arguments // sp[0]: receiver // sp[1]: new.target // sp[2]: number of arguments (smi-tagged) Label loop, no_args; __ beq(&no_args, cr0); __ ShiftLeftImm(ip, r3, Operand(kPointerSizeLog2)); __ mtctr(r3); __ bind(&loop); __ subi(ip, ip, Operand(kPointerSize)); __ LoadPX(r0, MemOperand(r5, ip)); __ push(r0); __ bdnz(&loop); __ bind(&no_args); // Handle step in. Label skip_step_in; ExternalReference debug_step_in_fp = ExternalReference::debug_step_in_fp_address(masm->isolate()); __ mov(r5, Operand(debug_step_in_fp)); __ LoadP(r5, MemOperand(r5)); __ and_(r0, r5, r5, SetRC); __ beq(&skip_step_in, cr0); __ Push(r3, r4, r4); __ CallRuntime(Runtime::kHandleStepInForDerivedConstructors, 1); __ Pop(r3, r4); __ bind(&skip_step_in); // Call the function. // r3: number of arguments // r4: constructor function ParameterCount actual(r3); __ InvokeFunction(r4, actual, CALL_FUNCTION, NullCallWrapper()); // Restore context from the frame. // r3: result // sp[0]: number of arguments (smi-tagged) __ LoadP(cp, MemOperand(fp, StandardFrameConstants::kContextOffset)); // Get arguments count, skipping over new.target. __ LoadP(r4, MemOperand(sp, kPointerSize)); // Leave construct frame. } __ SmiToPtrArrayOffset(r4, r4); __ add(sp, sp, r4); __ addi(sp, sp, Operand(kPointerSize)); __ blr(); } enum IsTagged { kArgcIsSmiTagged, kArgcIsUntaggedInt }; // Clobbers r5; preserves all other registers. static void Generate_CheckStackOverflow(MacroAssembler* masm, Register argc, IsTagged argc_is_tagged) { // Check the stack for overflow. We are not trying to catch // interruptions (e.g. debug break and preemption) here, so the "real stack // limit" is checked. Label okay; __ LoadRoot(r5, Heap::kRealStackLimitRootIndex); // Make r5 the space we have left. The stack might already be overflowed // here which will cause r5 to become negative. __ sub(r5, sp, r5); // Check if the arguments will overflow the stack. if (argc_is_tagged == kArgcIsSmiTagged) { __ SmiToPtrArrayOffset(r0, argc); } else { DCHECK(argc_is_tagged == kArgcIsUntaggedInt); __ ShiftLeftImm(r0, argc, Operand(kPointerSizeLog2)); } __ cmp(r5, r0); __ bgt(&okay); // Signed comparison. // Out of stack space. __ CallRuntime(Runtime::kThrowStackOverflow, 0); __ bind(&okay); } static void Generate_JSEntryTrampolineHelper(MacroAssembler* masm, bool is_construct) { // Called from Generate_JS_Entry // r3: new.target // r4: function // r5: receiver // r6: argc // r7: argv // r0,r8-r9, cp may be clobbered ProfileEntryHookStub::MaybeCallEntryHook(masm); // Clear the context before we push it when entering the internal frame. __ li(cp, Operand::Zero()); // Enter an internal frame. { FrameScope scope(masm, StackFrame::INTERNAL); // Setup the context (we need to use the caller context from the isolate). ExternalReference context_address(Isolate::kContextAddress, masm->isolate()); __ mov(cp, Operand(context_address)); __ LoadP(cp, MemOperand(cp)); __ InitializeRootRegister(); // Push the function and the receiver onto the stack. __ Push(r4, r5); // Check if we have enough stack space to push all arguments. // Clobbers r5. Generate_CheckStackOverflow(masm, r6, kArgcIsUntaggedInt); // Copy arguments to the stack in a loop. // r4: function // r6: argc // r7: argv, i.e. points to first arg Label loop, entry; __ ShiftLeftImm(r0, r6, Operand(kPointerSizeLog2)); __ add(r5, r7, r0); // r5 points past last arg. __ b(&entry); __ bind(&loop); __ LoadP(r8, MemOperand(r7)); // read next parameter __ addi(r7, r7, Operand(kPointerSize)); __ LoadP(r0, MemOperand(r8)); // dereference handle __ push(r0); // push parameter __ bind(&entry); __ cmp(r7, r5); __ bne(&loop); // Setup new.target and argc. __ mr(r7, r3); __ mr(r3, r6); __ mr(r6, r7); // Initialize all JavaScript callee-saved registers, since they will be seen // by the garbage collector as part of handlers. __ LoadRoot(r7, Heap::kUndefinedValueRootIndex); __ mr(r14, r7); __ mr(r15, r7); __ mr(r16, r7); __ mr(r17, r7); // Invoke the code. Handle builtin = is_construct ? masm->isolate()->builtins()->Construct() : masm->isolate()->builtins()->Call(); __ Call(builtin, RelocInfo::CODE_TARGET); // Exit the JS frame and remove the parameters (except function), and // return. } __ blr(); // r3: result } void Builtins::Generate_JSEntryTrampoline(MacroAssembler* masm) { Generate_JSEntryTrampolineHelper(masm, false); } void Builtins::Generate_JSConstructEntryTrampoline(MacroAssembler* masm) { Generate_JSEntryTrampolineHelper(masm, true); } // Generate code for entering a JS function with the interpreter. // On entry to the function the receiver and arguments have been pushed on the // stack left to right. The actual argument count matches the formal parameter // count expected by the function. // // The live registers are: // o r4: the JS function object being called. // o cp: our context // o pp: the caller's constant pool pointer (if enabled) // o fp: the caller's frame pointer // o sp: stack pointer // o lr: return address // // The function builds a JS frame. Please see JavaScriptFrameConstants in // frames-ppc.h for its layout. // TODO(rmcilroy): We will need to include the current bytecode pointer in the // frame. void Builtins::Generate_InterpreterEntryTrampoline(MacroAssembler* masm) { // Open a frame scope to indicate that there is a frame on the stack. The // MANUAL indicates that the scope shouldn't actually generate code to set up // the frame (that is done below). FrameScope frame_scope(masm, StackFrame::MANUAL); __ PushFixedFrame(r4); __ addi(fp, sp, Operand(StandardFrameConstants::kFixedFrameSizeFromFp)); // Get the bytecode array from the function object and load the pointer to the // first entry into kInterpreterBytecodeRegister. __ LoadP(r3, FieldMemOperand(r4, JSFunction::kSharedFunctionInfoOffset)); __ LoadP(kInterpreterBytecodeArrayRegister, FieldMemOperand(r3, SharedFunctionInfo::kFunctionDataOffset)); if (FLAG_debug_code) { // Check function data field is actually a BytecodeArray object. __ TestIfSmi(kInterpreterBytecodeArrayRegister, r0); __ Assert(ne, kFunctionDataShouldBeBytecodeArrayOnInterpreterEntry); __ CompareObjectType(kInterpreterBytecodeArrayRegister, r3, no_reg, BYTECODE_ARRAY_TYPE); __ Assert(eq, kFunctionDataShouldBeBytecodeArrayOnInterpreterEntry); } // Allocate the local and temporary register file on the stack. { // Load frame size (word) from the BytecodeArray object. __ lwz(r5, FieldMemOperand(kInterpreterBytecodeArrayRegister, BytecodeArray::kFrameSizeOffset)); // Do a stack check to ensure we don't go over the limit. Label ok; __ sub(r6, sp, r5); __ LoadRoot(r0, Heap::kRealStackLimitRootIndex); __ cmpl(r6, r0); __ bge(&ok); __ CallRuntime(Runtime::kThrowStackOverflow, 0); __ bind(&ok); // If ok, push undefined as the initial value for all register file entries. // TODO(rmcilroy): Consider doing more than one push per loop iteration. Label loop, no_args; __ LoadRoot(r6, Heap::kUndefinedValueRootIndex); __ ShiftRightImm(r5, r5, Operand(kPointerSizeLog2), SetRC); __ beq(&no_args, cr0); __ mtctr(r5); __ bind(&loop); __ push(r6); __ bdnz(&loop); __ bind(&no_args); } // TODO(rmcilroy): List of things not currently dealt with here but done in // fullcodegen's prologue: // - Support profiler (specifically profiling_counter). // - Call ProfileEntryHookStub when isolate has a function_entry_hook. // - Allow simulator stop operations if FLAG_stop_at is set. // - Deal with sloppy mode functions which need to replace the // receiver with the global proxy when called as functions (without an // explicit receiver object). // - Code aging of the BytecodeArray object. // - Supporting FLAG_trace. // // The following items are also not done here, and will probably be done using // explicit bytecodes instead: // - Allocating a new local context if applicable. // - Setting up a local binding to the this function, which is used in // derived constructors with super calls. // - Setting new.target if required. // - Dealing with REST parameters (only if // https://codereview.chromium.org/1235153006 doesn't land by then). // - Dealing with argument objects. // Perform stack guard check. { Label ok; __ LoadRoot(r0, Heap::kStackLimitRootIndex); __ cmp(sp, r0); __ bge(&ok); __ CallRuntime(Runtime::kStackGuard, 0); __ bind(&ok); } // Load accumulator, register file, bytecode offset, dispatch table into // registers. __ LoadRoot(kInterpreterAccumulatorRegister, Heap::kUndefinedValueRootIndex); __ subi( kInterpreterRegisterFileRegister, fp, Operand(kPointerSize + StandardFrameConstants::kFixedFrameSizeFromFp)); __ mov(kInterpreterBytecodeOffsetRegister, Operand(BytecodeArray::kHeaderSize - kHeapObjectTag)); __ LoadRoot(kInterpreterDispatchTableRegister, Heap::kInterpreterTableRootIndex); __ addi(kInterpreterDispatchTableRegister, kInterpreterDispatchTableRegister, Operand(FixedArray::kHeaderSize - kHeapObjectTag)); // Dispatch to the first bytecode handler for the function. __ lbzx(r4, MemOperand(kInterpreterBytecodeArrayRegister, kInterpreterBytecodeOffsetRegister)); __ ShiftLeftImm(ip, r4, Operand(kPointerSizeLog2)); __ LoadPX(ip, MemOperand(kInterpreterDispatchTableRegister, ip)); // TODO(rmcilroy): Make dispatch table point to code entrys to avoid untagging // and header removal. __ addi(ip, ip, Operand(Code::kHeaderSize - kHeapObjectTag)); __ Call(ip); } void Builtins::Generate_InterpreterExitTrampoline(MacroAssembler* masm) { // TODO(rmcilroy): List of things not currently dealt with here but done in // fullcodegen's EmitReturnSequence. // - Supporting FLAG_trace for Runtime::TraceExit. // - Support profiler (specifically decrementing profiling_counter // appropriately and calling out to HandleInterrupts if necessary). // The return value is in accumulator, which is already in r3. // Leave the frame (also dropping the register file). __ LeaveFrame(StackFrame::JAVA_SCRIPT); // Drop receiver + arguments and return. __ lwz(r0, FieldMemOperand(kInterpreterBytecodeArrayRegister, BytecodeArray::kParameterSizeOffset)); __ add(sp, sp, r0); __ blr(); } void Builtins::Generate_CompileLazy(MacroAssembler* masm) { CallRuntimePassFunction(masm, Runtime::kCompileLazy); GenerateTailCallToReturnedCode(masm); } static void CallCompileOptimized(MacroAssembler* masm, bool concurrent) { FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL); // Push a copy of the function onto the stack. // Push function as parameter to the runtime call. __ Push(r4, r4); // Whether to compile in a background thread. __ LoadRoot( r0, concurrent ? Heap::kTrueValueRootIndex : Heap::kFalseValueRootIndex); __ push(r0); __ CallRuntime(Runtime::kCompileOptimized, 2); // Restore receiver. __ pop(r4); } void Builtins::Generate_CompileOptimized(MacroAssembler* masm) { CallCompileOptimized(masm, false); GenerateTailCallToReturnedCode(masm); } void Builtins::Generate_CompileOptimizedConcurrent(MacroAssembler* masm) { CallCompileOptimized(masm, true); GenerateTailCallToReturnedCode(masm); } static void GenerateMakeCodeYoungAgainCommon(MacroAssembler* masm) { // For now, we are relying on the fact that make_code_young doesn't do any // garbage collection which allows us to save/restore the registers without // worrying about which of them contain pointers. We also don't build an // internal frame to make the code faster, since we shouldn't have to do stack // crawls in MakeCodeYoung. This seems a bit fragile. // Point r3 at the start of the PlatformCodeAge sequence. __ mr(r3, ip); // The following registers must be saved and restored when calling through to // the runtime: // r3 - contains return address (beginning of patch sequence) // r4 - isolate // lr - return address FrameScope scope(masm, StackFrame::MANUAL); __ mflr(r0); __ MultiPush(r0.bit() | r3.bit() | r4.bit() | fp.bit()); __ PrepareCallCFunction(2, 0, r5); __ mov(r4, Operand(ExternalReference::isolate_address(masm->isolate()))); __ CallCFunction( ExternalReference::get_make_code_young_function(masm->isolate()), 2); __ MultiPop(r0.bit() | r3.bit() | r4.bit() | fp.bit()); __ mtlr(r0); __ mr(ip, r3); __ Jump(ip); } #define DEFINE_CODE_AGE_BUILTIN_GENERATOR(C) \ void Builtins::Generate_Make##C##CodeYoungAgainEvenMarking( \ MacroAssembler* masm) { \ GenerateMakeCodeYoungAgainCommon(masm); \ } \ void Builtins::Generate_Make##C##CodeYoungAgainOddMarking( \ MacroAssembler* masm) { \ GenerateMakeCodeYoungAgainCommon(masm); \ } CODE_AGE_LIST(DEFINE_CODE_AGE_BUILTIN_GENERATOR) #undef DEFINE_CODE_AGE_BUILTIN_GENERATOR void Builtins::Generate_MarkCodeAsExecutedOnce(MacroAssembler* masm) { // For now, we are relying on the fact that make_code_young doesn't do any // garbage collection which allows us to save/restore the registers without // worrying about which of them contain pointers. We also don't build an // internal frame to make the code faster, since we shouldn't have to do stack // crawls in MakeCodeYoung. This seems a bit fragile. // Point r3 at the start of the PlatformCodeAge sequence. __ mr(r3, ip); // The following registers must be saved and restored when calling through to // the runtime: // r3 - contains return address (beginning of patch sequence) // r4 - isolate // lr - return address FrameScope scope(masm, StackFrame::MANUAL); __ mflr(r0); __ MultiPush(r0.bit() | r3.bit() | r4.bit() | fp.bit()); __ PrepareCallCFunction(2, 0, r5); __ mov(r4, Operand(ExternalReference::isolate_address(masm->isolate()))); __ CallCFunction( ExternalReference::get_mark_code_as_executed_function(masm->isolate()), 2); __ MultiPop(r0.bit() | r3.bit() | r4.bit() | fp.bit()); __ mtlr(r0); __ mr(ip, r3); // Perform prologue operations usually performed by the young code stub. __ PushFixedFrame(r4); __ addi(fp, sp, Operand(StandardFrameConstants::kFixedFrameSizeFromFp)); // Jump to point after the code-age stub. __ addi(r3, ip, Operand(kNoCodeAgeSequenceLength)); __ Jump(r3); } void Builtins::Generate_MarkCodeAsExecutedTwice(MacroAssembler* masm) { GenerateMakeCodeYoungAgainCommon(masm); } void Builtins::Generate_MarkCodeAsToBeExecutedOnce(MacroAssembler* masm) { Generate_MarkCodeAsExecutedOnce(masm); } static void Generate_NotifyStubFailureHelper(MacroAssembler* masm, SaveFPRegsMode save_doubles) { { FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL); // Preserve registers across notification, this is important for compiled // stubs that tail call the runtime on deopts passing their parameters in // registers. __ MultiPush(kJSCallerSaved | kCalleeSaved); // Pass the function and deoptimization type to the runtime system. __ CallRuntime(Runtime::kNotifyStubFailure, 0, save_doubles); __ MultiPop(kJSCallerSaved | kCalleeSaved); } __ addi(sp, sp, Operand(kPointerSize)); // Ignore state __ blr(); // Jump to miss handler } void Builtins::Generate_NotifyStubFailure(MacroAssembler* masm) { Generate_NotifyStubFailureHelper(masm, kDontSaveFPRegs); } void Builtins::Generate_NotifyStubFailureSaveDoubles(MacroAssembler* masm) { Generate_NotifyStubFailureHelper(masm, kSaveFPRegs); } static void Generate_NotifyDeoptimizedHelper(MacroAssembler* masm, Deoptimizer::BailoutType type) { { FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL); // Pass the function and deoptimization type to the runtime system. __ LoadSmiLiteral(r3, Smi::FromInt(static_cast(type))); __ push(r3); __ CallRuntime(Runtime::kNotifyDeoptimized, 1); } // Get the full codegen state from the stack and untag it -> r9. __ LoadP(r9, MemOperand(sp, 0 * kPointerSize)); __ SmiUntag(r9); // Switch on the state. Label with_tos_register, unknown_state; __ cmpi(r9, Operand(FullCodeGenerator::NO_REGISTERS)); __ bne(&with_tos_register); __ addi(sp, sp, Operand(1 * kPointerSize)); // Remove state. __ Ret(); __ bind(&with_tos_register); __ LoadP(r3, MemOperand(sp, 1 * kPointerSize)); __ cmpi(r9, Operand(FullCodeGenerator::TOS_REG)); __ bne(&unknown_state); __ addi(sp, sp, Operand(2 * kPointerSize)); // Remove state. __ Ret(); __ bind(&unknown_state); __ stop("no cases left"); } void Builtins::Generate_NotifyDeoptimized(MacroAssembler* masm) { Generate_NotifyDeoptimizedHelper(masm, Deoptimizer::EAGER); } void Builtins::Generate_NotifySoftDeoptimized(MacroAssembler* masm) { Generate_NotifyDeoptimizedHelper(masm, Deoptimizer::SOFT); } void Builtins::Generate_NotifyLazyDeoptimized(MacroAssembler* masm) { Generate_NotifyDeoptimizedHelper(masm, Deoptimizer::LAZY); } void Builtins::Generate_OnStackReplacement(MacroAssembler* masm) { // Lookup the function in the JavaScript frame. __ LoadP(r3, MemOperand(fp, JavaScriptFrameConstants::kFunctionOffset)); { FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL); // Pass function as argument. __ push(r3); __ CallRuntime(Runtime::kCompileForOnStackReplacement, 1); } // If the code object is null, just return to the unoptimized code. Label skip; __ CmpSmiLiteral(r3, Smi::FromInt(0), r0); __ bne(&skip); __ Ret(); __ bind(&skip); // Load deoptimization data from the code object. // = [#deoptimization_data_offset] __ LoadP(r4, FieldMemOperand(r3, Code::kDeoptimizationDataOffset)); { ConstantPoolUnavailableScope constant_pool_unavailable(masm); __ addi(r3, r3, Operand(Code::kHeaderSize - kHeapObjectTag)); // Code start if (FLAG_enable_embedded_constant_pool) { __ LoadConstantPoolPointerRegisterFromCodeTargetAddress(r3); } // Load the OSR entrypoint offset from the deoptimization data. // = [#header_size + #osr_pc_offset] __ LoadP(r4, FieldMemOperand( r4, FixedArray::OffsetOfElementAt( DeoptimizationInputData::kOsrPcOffsetIndex))); __ SmiUntag(r4); // Compute the target address = code start + osr_offset __ add(r0, r3, r4); // And "return" to the OSR entry point of the function. __ mtlr(r0); __ blr(); } } void Builtins::Generate_OsrAfterStackCheck(MacroAssembler* masm) { // We check the stack limit as indicator that recompilation might be done. Label ok; __ LoadRoot(ip, Heap::kStackLimitRootIndex); __ cmpl(sp, ip); __ bge(&ok); { FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL); __ CallRuntime(Runtime::kStackGuard, 0); } __ Jump(masm->isolate()->builtins()->OnStackReplacement(), RelocInfo::CODE_TARGET); __ bind(&ok); __ Ret(); } // static void Builtins::Generate_FunctionCall(MacroAssembler* masm) { // 1. Make sure we have at least one argument. // r3: actual number of arguments { Label done; __ cmpi(r3, Operand::Zero()); __ bne(&done); __ PushRoot(Heap::kUndefinedValueRootIndex); __ addi(r3, r3, Operand(1)); __ bind(&done); } // 2. Get the callable to call (passed as receiver) from the stack. // r3: actual number of arguments __ ShiftLeftImm(r5, r3, Operand(kPointerSizeLog2)); __ LoadPX(r4, MemOperand(sp, r5)); // 3. Shift arguments and return address one slot down on the stack // (overwriting the original receiver). Adjust argument count to make // the original first argument the new receiver. // r3: actual number of arguments // r4: callable { Label loop; // Calculate the copy start address (destination). Copy end address is sp. __ add(r5, sp, r5); __ mtctr(r3); __ bind(&loop); __ LoadP(ip, MemOperand(r5, -kPointerSize)); __ StoreP(ip, MemOperand(r5)); __ subi(r5, r5, Operand(kPointerSize)); __ bdnz(&loop); // Adjust the actual number of arguments and remove the top element // (which is a copy of the last argument). __ subi(r3, r3, Operand(1)); __ pop(); } // 4. Call the callable. __ Jump(masm->isolate()->builtins()->Call(), RelocInfo::CODE_TARGET); } static void Generate_PushAppliedArguments(MacroAssembler* masm, const int vectorOffset, const int argumentsOffset, const int indexOffset, const int limitOffset) { Register receiver = LoadDescriptor::ReceiverRegister(); Register key = LoadDescriptor::NameRegister(); Register slot = LoadDescriptor::SlotRegister(); Register vector = LoadWithVectorDescriptor::VectorRegister(); // Copy all arguments from the array to the stack. Label entry, loop; __ LoadP(key, MemOperand(fp, indexOffset)); __ b(&entry); __ bind(&loop); __ LoadP(receiver, MemOperand(fp, argumentsOffset)); // Use inline caching to speed up access to arguments. int slot_index = TypeFeedbackVector::PushAppliedArgumentsIndex(); __ LoadSmiLiteral(slot, Smi::FromInt(slot_index)); __ LoadP(vector, MemOperand(fp, vectorOffset)); Handle ic = KeyedLoadICStub(masm->isolate(), LoadICState(kNoExtraICState)).GetCode(); __ Call(ic, RelocInfo::CODE_TARGET); // Push the nth argument. __ push(r3); // Update the index on the stack and in register key. __ LoadP(key, MemOperand(fp, indexOffset)); __ AddSmiLiteral(key, key, Smi::FromInt(1), r0); __ StoreP(key, MemOperand(fp, indexOffset)); // Test if the copy loop has finished copying all the elements from the // arguments object. __ bind(&entry); __ LoadP(r0, MemOperand(fp, limitOffset)); __ cmp(key, r0); __ bne(&loop); // On exit, the pushed arguments count is in r3, untagged __ SmiUntag(r3, key); } // Used by FunctionApply and ReflectApply static void Generate_ApplyHelper(MacroAssembler* masm, bool targetIsArgument) { const int kFormalParameters = targetIsArgument ? 3 : 2; const int kStackSize = kFormalParameters + 1; { FrameAndConstantPoolScope frame_scope(masm, StackFrame::INTERNAL); const int kArgumentsOffset = kFPOnStackSize + kPCOnStackSize; const int kReceiverOffset = kArgumentsOffset + kPointerSize; const int kFunctionOffset = kReceiverOffset + kPointerSize; const int kVectorOffset = InternalFrameConstants::kCodeOffset - 1 * kPointerSize; // Push the vector. __ LoadP(r4, FieldMemOperand(r4, JSFunction::kSharedFunctionInfoOffset)); __ LoadP(r4, FieldMemOperand(r4, SharedFunctionInfo::kFeedbackVectorOffset)); __ push(r4); __ LoadP(r3, MemOperand(fp, kFunctionOffset)); // get the function __ LoadP(r4, MemOperand(fp, kArgumentsOffset)); // get the args array __ Push(r3, r4); if (targetIsArgument) { __ InvokeBuiltin(Context::REFLECT_APPLY_PREPARE_BUILTIN_INDEX, CALL_FUNCTION); } else { __ InvokeBuiltin(Context::APPLY_PREPARE_BUILTIN_INDEX, CALL_FUNCTION); } Generate_CheckStackOverflow(masm, r3, kArgcIsSmiTagged); // Push current limit and index. const int kIndexOffset = kVectorOffset - (2 * kPointerSize); const int kLimitOffset = kVectorOffset - (1 * kPointerSize); __ li(r4, Operand::Zero()); __ LoadP(r5, MemOperand(fp, kReceiverOffset)); __ Push(r3, r4, r5); // limit, initial index and receiver. // Copy all arguments from the array to the stack. Generate_PushAppliedArguments(masm, kVectorOffset, kArgumentsOffset, kIndexOffset, kLimitOffset); // Call the callable. // TODO(bmeurer): This should be a tail call according to ES6. __ LoadP(r4, MemOperand(fp, kFunctionOffset)); __ Call(masm->isolate()->builtins()->Call(), RelocInfo::CODE_TARGET); // Tear down the internal frame and remove function, receiver and args. } __ addi(sp, sp, Operand(kStackSize * kPointerSize)); __ blr(); } static void Generate_ConstructHelper(MacroAssembler* masm) { const int kFormalParameters = 3; const int kStackSize = kFormalParameters + 1; { FrameAndConstantPoolScope frame_scope(masm, StackFrame::INTERNAL); const int kNewTargetOffset = kFPOnStackSize + kPCOnStackSize; const int kArgumentsOffset = kNewTargetOffset + kPointerSize; const int kFunctionOffset = kArgumentsOffset + kPointerSize; static const int kVectorOffset = InternalFrameConstants::kCodeOffset - 1 * kPointerSize; // Push the vector. __ LoadP(r4, FieldMemOperand(r4, JSFunction::kSharedFunctionInfoOffset)); __ LoadP(r4, FieldMemOperand(r4, SharedFunctionInfo::kFeedbackVectorOffset)); __ push(r4); // If newTarget is not supplied, set it to constructor Label validate_arguments; __ LoadP(r3, MemOperand(fp, kNewTargetOffset)); __ CompareRoot(r3, Heap::kUndefinedValueRootIndex); __ bne(&validate_arguments); __ LoadP(r3, MemOperand(fp, kFunctionOffset)); __ StoreP(r3, MemOperand(fp, kNewTargetOffset)); // Validate arguments __ bind(&validate_arguments); __ LoadP(r3, MemOperand(fp, kFunctionOffset)); // get the function __ push(r3); __ LoadP(r3, MemOperand(fp, kArgumentsOffset)); // get the args array __ push(r3); __ LoadP(r3, MemOperand(fp, kNewTargetOffset)); // get the new.target __ push(r3); __ InvokeBuiltin(Context::REFLECT_CONSTRUCT_PREPARE_BUILTIN_INDEX, CALL_FUNCTION); Generate_CheckStackOverflow(masm, r3, kArgcIsSmiTagged); // Push current limit and index. const int kIndexOffset = kVectorOffset - (2 * kPointerSize); const int kLimitOffset = kVectorOffset - (1 * kPointerSize); __ li(r4, Operand::Zero()); __ Push(r3, r4); // limit and initial index. // Push the constructor function as callee __ LoadP(r3, MemOperand(fp, kFunctionOffset)); __ push(r3); // Copy all arguments from the array to the stack. Generate_PushAppliedArguments(masm, kVectorOffset, kArgumentsOffset, kIndexOffset, kLimitOffset); // Use undefined feedback vector __ LoadRoot(r5, Heap::kUndefinedValueRootIndex); __ LoadP(r4, MemOperand(fp, kFunctionOffset)); __ LoadP(r7, MemOperand(fp, kNewTargetOffset)); // Call the function. CallConstructStub stub(masm->isolate(), SUPER_CONSTRUCTOR_CALL); __ Call(stub.GetCode(), RelocInfo::CONSTRUCT_CALL); // Leave internal frame. } __ addi(sp, sp, Operand(kStackSize * kPointerSize)); __ blr(); } void Builtins::Generate_FunctionApply(MacroAssembler* masm) { Generate_ApplyHelper(masm, false); } void Builtins::Generate_ReflectApply(MacroAssembler* masm) { Generate_ApplyHelper(masm, true); } void Builtins::Generate_ReflectConstruct(MacroAssembler* masm) { Generate_ConstructHelper(masm); } static void ArgumentAdaptorStackCheck(MacroAssembler* masm, Label* stack_overflow) { // ----------- S t a t e ------------- // -- r3 : actual number of arguments // -- r4 : function (passed through to callee) // -- r5 : expected number of arguments // ----------------------------------- // Check the stack for overflow. We are not trying to catch // interruptions (e.g. debug break and preemption) here, so the "real stack // limit" is checked. __ LoadRoot(r8, Heap::kRealStackLimitRootIndex); // Make r8 the space we have left. The stack might already be overflowed // here which will cause r8 to become negative. __ sub(r8, sp, r8); // Check if the arguments will overflow the stack. __ ShiftLeftImm(r0, r5, Operand(kPointerSizeLog2)); __ cmp(r8, r0); __ ble(stack_overflow); // Signed comparison. } static void EnterArgumentsAdaptorFrame(MacroAssembler* masm) { __ SmiTag(r3); __ LoadSmiLiteral(r7, Smi::FromInt(StackFrame::ARGUMENTS_ADAPTOR)); __ mflr(r0); __ push(r0); if (FLAG_enable_embedded_constant_pool) { __ Push(fp, kConstantPoolRegister, r7, r4, r3); } else { __ Push(fp, r7, r4, r3); } __ addi(fp, sp, Operand(StandardFrameConstants::kFixedFrameSizeFromFp + kPointerSize)); } static void LeaveArgumentsAdaptorFrame(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- r3 : result being passed through // ----------------------------------- // Get the number of arguments passed (as a smi), tear down the frame and // then tear down the parameters. __ LoadP(r4, MemOperand(fp, -(StandardFrameConstants::kFixedFrameSizeFromFp + kPointerSize))); int stack_adjustment = kPointerSize; // adjust for receiver __ LeaveFrame(StackFrame::ARGUMENTS_ADAPTOR, stack_adjustment); __ SmiToPtrArrayOffset(r0, r4); __ add(sp, sp, r0); } // static void Builtins::Generate_CallFunction(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- r3 : the number of arguments (not including the receiver) // -- r4 : the function to call (checked to be a JSFunction) // ----------------------------------- Label convert, convert_global_proxy, convert_to_object, done_convert; __ AssertFunction(r4); // TODO(bmeurer): Throw a TypeError if function's [[FunctionKind]] internal // slot is "classConstructor". // Enter the context of the function; ToObject has to run in the function // context, and we also need to take the global proxy from the function // context in case of conversion. // See ES6 section 9.2.1 [[Call]] ( thisArgument, argumentsList) STATIC_ASSERT(SharedFunctionInfo::kNativeByteOffset == SharedFunctionInfo::kStrictModeByteOffset); __ LoadP(cp, FieldMemOperand(r4, JSFunction::kContextOffset)); __ LoadP(r5, FieldMemOperand(r4, JSFunction::kSharedFunctionInfoOffset)); // We need to convert the receiver for non-native sloppy mode functions. __ lbz(r6, FieldMemOperand(r5, SharedFunctionInfo::kNativeByteOffset)); __ andi(r0, r6, Operand((1 << SharedFunctionInfo::kNativeBitWithinByte) | (1 << SharedFunctionInfo::kStrictModeBitWithinByte))); __ bne(&done_convert, cr0); { __ ShiftLeftImm(r6, r3, Operand(kPointerSizeLog2)); __ LoadPX(r6, MemOperand(sp, r6)); // ----------- S t a t e ------------- // -- r3 : the number of arguments (not including the receiver) // -- r4 : the function to call (checked to be a JSFunction) // -- r5 : the shared function info. // -- r6 : the receiver // -- cp : the function context. // ----------------------------------- Label convert_receiver; __ JumpIfSmi(r6, &convert_to_object); STATIC_ASSERT(LAST_JS_RECEIVER_TYPE == LAST_TYPE); __ CompareObjectType(r6, r7, r7, FIRST_JS_RECEIVER_TYPE); __ bge(&done_convert); __ JumpIfRoot(r6, Heap::kUndefinedValueRootIndex, &convert_global_proxy); __ JumpIfNotRoot(r6, Heap::kNullValueRootIndex, &convert_to_object); __ bind(&convert_global_proxy); { // Patch receiver to global proxy. __ LoadGlobalProxy(r6); } __ b(&convert_receiver); __ bind(&convert_to_object); { // Convert receiver using ToObject. // TODO(bmeurer): Inline the allocation here to avoid building the frame // in the fast case? (fall back to AllocateInNewSpace?) FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL); __ SmiTag(r3); __ Push(r3, r4); __ mr(r3, r6); ToObjectStub stub(masm->isolate()); __ CallStub(&stub); __ mr(r6, r3); __ Pop(r3, r4); __ SmiUntag(r3); } __ LoadP(r5, FieldMemOperand(r4, JSFunction::kSharedFunctionInfoOffset)); __ bind(&convert_receiver); __ ShiftLeftImm(r7, r3, Operand(kPointerSizeLog2)); __ StorePX(r6, MemOperand(sp, r7)); } __ bind(&done_convert); // ----------- S t a t e ------------- // -- r3 : the number of arguments (not including the receiver) // -- r4 : the function to call (checked to be a JSFunction) // -- r5 : the shared function info. // -- cp : the function context. // ----------------------------------- __ LoadWordArith( r5, FieldMemOperand(r5, SharedFunctionInfo::kFormalParameterCountOffset)); #if !V8_TARGET_ARCH_PPC64 __ SmiUntag(r5); #endif __ LoadP(r6, FieldMemOperand(r4, JSFunction::kCodeEntryOffset)); ParameterCount actual(r3); ParameterCount expected(r5); __ InvokeCode(r6, expected, actual, JUMP_FUNCTION, NullCallWrapper()); } // static void Builtins::Generate_Call(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- r3 : the number of arguments (not including the receiver) // -- r4 : the target to call (can be any Object). // ----------------------------------- Label non_callable, non_function, non_smi; __ JumpIfSmi(r4, &non_callable); __ bind(&non_smi); __ CompareObjectType(r4, r7, r8, JS_FUNCTION_TYPE); __ Jump(masm->isolate()->builtins()->CallFunction(), RelocInfo::CODE_TARGET, eq); __ cmpi(r8, Operand(JS_FUNCTION_PROXY_TYPE)); __ bne(&non_function); // 1. Call to function proxy. // TODO(neis): This doesn't match the ES6 spec for [[Call]] on proxies. __ LoadP(r4, FieldMemOperand(r4, JSFunctionProxy::kCallTrapOffset)); __ AssertNotSmi(r4); __ b(&non_smi); // 2. Call to something else, which might have a [[Call]] internal method (if // not we raise an exception). __ bind(&non_function); // Check if target has a [[Call]] internal method. __ lbz(r7, FieldMemOperand(r7, Map::kBitFieldOffset)); __ TestBit(r7, Map::kIsCallable, r0); __ beq(&non_callable, cr0); // Overwrite the original receiver the (original) target. __ ShiftLeftImm(r8, r3, Operand(kPointerSizeLog2)); __ StorePX(r4, MemOperand(sp, r8)); // Let the "call_as_function_delegate" take care of the rest. __ LoadGlobalFunction(Context::CALL_AS_FUNCTION_DELEGATE_INDEX, r4); __ Jump(masm->isolate()->builtins()->CallFunction(), RelocInfo::CODE_TARGET); // 3. Call to something that is not callable. __ bind(&non_callable); { FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL); __ Push(r4); __ CallRuntime(Runtime::kThrowCalledNonCallable, 1); } } // static void Builtins::Generate_ConstructFunction(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- r3 : the number of arguments (not including the receiver) // -- r4 : the constructor to call (checked to be a JSFunction) // -- r6 : the original constructor (checked to be a JSFunction) // ----------------------------------- __ AssertFunction(r4); __ AssertFunction(r6); // Calling convention for function specific ConstructStubs require // r5 to contain either an AllocationSite or undefined. __ LoadRoot(r5, Heap::kUndefinedValueRootIndex); // Tail call to the function-specific construct stub (still in the caller // context at this point). __ LoadP(r7, FieldMemOperand(r4, JSFunction::kSharedFunctionInfoOffset)); __ LoadP(r7, FieldMemOperand(r7, SharedFunctionInfo::kConstructStubOffset)); __ addi(ip, r7, Operand(Code::kHeaderSize - kHeapObjectTag)); __ JumpToJSEntry(ip); } // static void Builtins::Generate_ConstructProxy(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- r3 : the number of arguments (not including the receiver) // -- r4 : the constructor to call (checked to be a JSFunctionProxy) // -- r6 : the original constructor (either the same as the constructor or // the JSFunction on which new was invoked initially) // ----------------------------------- // TODO(neis): This doesn't match the ES6 spec for [[Construct]] on proxies. __ LoadP(r4, FieldMemOperand(r4, JSFunctionProxy::kConstructTrapOffset)); __ Jump(masm->isolate()->builtins()->Call(), RelocInfo::CODE_TARGET); } // static void Builtins::Generate_Construct(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- r3 : the number of arguments (not including the receiver) // -- r4 : the constructor to call (can be any Object) // -- r6 : the original constructor (either the same as the constructor or // the JSFunction on which new was invoked initially) // ----------------------------------- // Check if target has a [[Construct]] internal method. Label non_constructor; __ JumpIfSmi(r4, &non_constructor); __ LoadP(r7, FieldMemOperand(r4, HeapObject::kMapOffset)); __ lbz(r5, FieldMemOperand(r7, Map::kBitFieldOffset)); __ TestBit(r5, Map::kIsConstructor, r0); __ beq(&non_constructor, cr0); // Dispatch based on instance type. __ CompareInstanceType(r7, r8, JS_FUNCTION_TYPE); __ Jump(masm->isolate()->builtins()->ConstructFunction(), RelocInfo::CODE_TARGET, eq); __ cmpi(r8, Operand(JS_FUNCTION_PROXY_TYPE)); __ Jump(masm->isolate()->builtins()->ConstructProxy(), RelocInfo::CODE_TARGET, eq); // Called Construct on an exotic Object with a [[Construct]] internal method. { // Overwrite the original receiver with the (original) target. __ ShiftLeftImm(r8, r3, Operand(kPointerSizeLog2)); __ StorePX(r4, MemOperand(sp, r8)); // Let the "call_as_constructor_delegate" take care of the rest. __ LoadGlobalFunction(Context::CALL_AS_CONSTRUCTOR_DELEGATE_INDEX, r4); __ Jump(masm->isolate()->builtins()->CallFunction(), RelocInfo::CODE_TARGET); } // Called Construct on an Object that doesn't have a [[Construct]] internal // method. __ bind(&non_constructor); { FrameAndConstantPoolScope scope(masm, StackFrame::INTERNAL); __ Push(r4); __ CallRuntime(Runtime::kThrowCalledNonCallable, 1); } } // static void Builtins::Generate_PushArgsAndCall(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- r3 : the number of arguments (not including the receiver) // -- r5 : the address of the first argument to be pushed. Subsequent // arguments should be consecutive above this, in the same order as // they are to be pushed onto the stack. // -- r4 : the target to call (can be any Object). // Calculate number of arguments (add one for receiver). __ addi(r6, r3, Operand(1)); // Push the arguments. Label loop; __ addi(r5, r5, Operand(kPointerSize)); // Bias up for LoadPU __ mtctr(r6); __ bind(&loop); __ LoadPU(r6, MemOperand(r5, -kPointerSize)); __ push(r6); __ bdnz(&loop); // Call the target. __ Jump(masm->isolate()->builtins()->Call(), RelocInfo::CODE_TARGET); } void Builtins::Generate_ArgumentsAdaptorTrampoline(MacroAssembler* masm) { // ----------- S t a t e ------------- // -- r3 : actual number of arguments // -- r4 : function (passed through to callee) // -- r5 : expected number of arguments // ----------------------------------- Label stack_overflow; ArgumentAdaptorStackCheck(masm, &stack_overflow); Label invoke, dont_adapt_arguments; Label enough, too_few; __ LoadP(ip, FieldMemOperand(r4, JSFunction::kCodeEntryOffset)); __ cmp(r3, r5); __ blt(&too_few); __ cmpi(r5, Operand(SharedFunctionInfo::kDontAdaptArgumentsSentinel)); __ beq(&dont_adapt_arguments); { // Enough parameters: actual >= expected __ bind(&enough); EnterArgumentsAdaptorFrame(masm); // Calculate copy start address into r3 and copy end address into r6. // r3: actual number of arguments as a smi // r4: function // r5: expected number of arguments // ip: code entry to call __ SmiToPtrArrayOffset(r3, r3); __ add(r3, r3, fp); // adjust for return address and receiver __ addi(r3, r3, Operand(2 * kPointerSize)); __ ShiftLeftImm(r6, r5, Operand(kPointerSizeLog2)); __ sub(r6, r3, r6); // Copy the arguments (including the receiver) to the new stack frame. // r3: copy start address // r4: function // r5: expected number of arguments // r6: copy end address // ip: code entry to call Label copy; __ bind(©); __ LoadP(r0, MemOperand(r3, 0)); __ push(r0); __ cmp(r3, r6); // Compare before moving to next argument. __ subi(r3, r3, Operand(kPointerSize)); __ bne(©); __ b(&invoke); } { // Too few parameters: Actual < expected __ bind(&too_few); // If the function is strong we need to throw an error. Label no_strong_error; __ LoadP(r7, FieldMemOperand(r4, JSFunction::kSharedFunctionInfoOffset)); __ lwz(r8, FieldMemOperand(r7, SharedFunctionInfo::kCompilerHintsOffset)); __ TestBit(r8, #if V8_TARGET_ARCH_PPC64 SharedFunctionInfo::kStrongModeFunction, #else SharedFunctionInfo::kStrongModeFunction + kSmiTagSize, #endif r0); __ beq(&no_strong_error, cr0); // What we really care about is the required number of arguments. __ lwz(r7, FieldMemOperand(r7, SharedFunctionInfo::kLengthOffset)); #if V8_TARGET_ARCH_PPC64 // See commment near kLenghtOffset in src/objects.h __ srawi(r7, r7, kSmiTagSize); #else __ SmiUntag(r7); #endif __ cmp(r3, r7); __ bge(&no_strong_error); { FrameScope frame(masm, StackFrame::MANUAL); EnterArgumentsAdaptorFrame(masm); __ CallRuntime(Runtime::kThrowStrongModeTooFewArguments, 0); } __ bind(&no_strong_error); EnterArgumentsAdaptorFrame(masm); // Calculate copy start address into r0 and copy end address is fp. // r3: actual number of arguments as a smi // r4: function // r5: expected number of arguments // ip: code entry to call __ SmiToPtrArrayOffset(r3, r3); __ add(r3, r3, fp); // Copy the arguments (including the receiver) to the new stack frame. // r3: copy start address // r4: function // r5: expected number of arguments // ip: code entry to call Label copy; __ bind(©); // Adjust load for return address and receiver. __ LoadP(r0, MemOperand(r3, 2 * kPointerSize)); __ push(r0); __ cmp(r3, fp); // Compare before moving to next argument. __ subi(r3, r3, Operand(kPointerSize)); __ bne(©); // Fill the remaining expected arguments with undefined. // r4: function // r5: expected number of arguments // ip: code entry to call __ LoadRoot(r0, Heap::kUndefinedValueRootIndex); __ ShiftLeftImm(r6, r5, Operand(kPointerSizeLog2)); __ sub(r6, fp, r6); // Adjust for frame. __ subi(r6, r6, Operand(StandardFrameConstants::kFixedFrameSizeFromFp + 2 * kPointerSize)); Label fill; __ bind(&fill); __ push(r0); __ cmp(sp, r6); __ bne(&fill); } // Call the entry point. __ bind(&invoke); __ mr(r3, r5); // r3 : expected number of arguments // r4 : function (passed through to callee) __ CallJSEntry(ip); // Store offset of return address for deoptimizer. masm->isolate()->heap()->SetArgumentsAdaptorDeoptPCOffset(masm->pc_offset()); // Exit frame and return. LeaveArgumentsAdaptorFrame(masm); __ blr(); // ------------------------------------------- // Dont adapt arguments. // ------------------------------------------- __ bind(&dont_adapt_arguments); __ JumpToJSEntry(ip); __ bind(&stack_overflow); { FrameScope frame(masm, StackFrame::MANUAL); EnterArgumentsAdaptorFrame(masm); __ CallRuntime(Runtime::kThrowStackOverflow, 0); __ bkpt(0); } } #undef __ } // namespace internal } // namespace v8 #endif // V8_TARGET_ARCH_PPC