// Copyright 2014 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include #include #include #if V8_TARGET_ARCH_PPC #include "src/assembler.h" #include "src/base/bits.h" #include "src/codegen.h" #include "src/disasm.h" #include "src/ppc/constants-ppc.h" #include "src/ppc/frames-ppc.h" #include "src/ppc/simulator-ppc.h" #include "src/runtime/runtime-utils.h" #if defined(USE_SIMULATOR) // Only build the simulator if not compiling for real PPC hardware. namespace v8 { namespace internal { const auto GetRegConfig = RegisterConfiguration::Crankshaft; // static base::LazyInstance::type Simulator::global_monitor_ = LAZY_INSTANCE_INITIALIZER; // This macro provides a platform independent use of sscanf. The reason for // SScanF not being implemented in a platform independent way through // ::v8::internal::OS in the same way as SNPrintF is that the // Windows C Run-Time Library does not provide vsscanf. #define SScanF sscanf // NOLINT // The PPCDebugger class is used by the simulator while debugging simulated // PowerPC code. class PPCDebugger { public: explicit PPCDebugger(Simulator* sim) : sim_(sim) {} void Stop(Instruction* instr); void Debug(); private: static const Instr kBreakpointInstr = (TWI | 0x1f * B21); static const Instr kNopInstr = (ORI); // ori, 0,0,0 Simulator* sim_; intptr_t GetRegisterValue(int regnum); double GetRegisterPairDoubleValue(int regnum); double GetFPDoubleRegisterValue(int regnum); bool GetValue(const char* desc, intptr_t* value); bool GetFPDoubleValue(const char* desc, double* value); // Set or delete a breakpoint. Returns true if successful. bool SetBreakpoint(Instruction* break_pc); bool DeleteBreakpoint(Instruction* break_pc); // Undo and redo all breakpoints. This is needed to bracket disassembly and // execution to skip past breakpoints when run from the debugger. void UndoBreakpoints(); void RedoBreakpoints(); }; void PPCDebugger::Stop(Instruction* instr) { // Get the stop code. // use of kStopCodeMask not right on PowerPC uint32_t code = instr->SvcValue() & kStopCodeMask; // Retrieve the encoded address, which comes just after this stop. char* msg = *reinterpret_cast(sim_->get_pc() + Instruction::kInstrSize); // Update this stop description. if (sim_->isWatchedStop(code) && !sim_->watched_stops_[code].desc) { sim_->watched_stops_[code].desc = msg; } // Print the stop message and code if it is not the default code. if (code != kMaxStopCode) { PrintF("Simulator hit stop %u: %s\n", code, msg); } else { PrintF("Simulator hit %s\n", msg); } sim_->set_pc(sim_->get_pc() + Instruction::kInstrSize + kPointerSize); Debug(); } intptr_t PPCDebugger::GetRegisterValue(int regnum) { return sim_->get_register(regnum); } double PPCDebugger::GetRegisterPairDoubleValue(int regnum) { return sim_->get_double_from_register_pair(regnum); } double PPCDebugger::GetFPDoubleRegisterValue(int regnum) { return sim_->get_double_from_d_register(regnum); } bool PPCDebugger::GetValue(const char* desc, intptr_t* value) { int regnum = Registers::Number(desc); if (regnum != kNoRegister) { *value = GetRegisterValue(regnum); return true; } else { if (strncmp(desc, "0x", 2) == 0) { return SScanF(desc + 2, "%" V8PRIxPTR, reinterpret_cast(value)) == 1; } else { return SScanF(desc, "%" V8PRIuPTR, reinterpret_cast(value)) == 1; } } return false; } bool PPCDebugger::GetFPDoubleValue(const char* desc, double* value) { int regnum = DoubleRegisters::Number(desc); if (regnum != kNoRegister) { *value = sim_->get_double_from_d_register(regnum); return true; } return false; } bool PPCDebugger::SetBreakpoint(Instruction* break_pc) { // Check if a breakpoint can be set. If not return without any side-effects. if (sim_->break_pc_ != NULL) { return false; } // Set the breakpoint. sim_->break_pc_ = break_pc; sim_->break_instr_ = break_pc->InstructionBits(); // Not setting the breakpoint instruction in the code itself. It will be set // when the debugger shell continues. return true; } bool PPCDebugger::DeleteBreakpoint(Instruction* break_pc) { if (sim_->break_pc_ != NULL) { sim_->break_pc_->SetInstructionBits(sim_->break_instr_); } sim_->break_pc_ = NULL; sim_->break_instr_ = 0; return true; } void PPCDebugger::UndoBreakpoints() { if (sim_->break_pc_ != NULL) { sim_->break_pc_->SetInstructionBits(sim_->break_instr_); } } void PPCDebugger::RedoBreakpoints() { if (sim_->break_pc_ != NULL) { sim_->break_pc_->SetInstructionBits(kBreakpointInstr); } } void PPCDebugger::Debug() { intptr_t last_pc = -1; bool done = false; #define COMMAND_SIZE 63 #define ARG_SIZE 255 #define STR(a) #a #define XSTR(a) STR(a) char cmd[COMMAND_SIZE + 1]; char arg1[ARG_SIZE + 1]; char arg2[ARG_SIZE + 1]; char* argv[3] = {cmd, arg1, arg2}; // make sure to have a proper terminating character if reaching the limit cmd[COMMAND_SIZE] = 0; arg1[ARG_SIZE] = 0; arg2[ARG_SIZE] = 0; // Undo all set breakpoints while running in the debugger shell. This will // make them invisible to all commands. UndoBreakpoints(); // Disable tracing while simulating bool trace = ::v8::internal::FLAG_trace_sim; ::v8::internal::FLAG_trace_sim = false; while (!done && !sim_->has_bad_pc()) { if (last_pc != sim_->get_pc()) { disasm::NameConverter converter; disasm::Disassembler dasm(converter); // use a reasonably large buffer v8::internal::EmbeddedVector buffer; dasm.InstructionDecode(buffer, reinterpret_cast(sim_->get_pc())); PrintF(" 0x%08" V8PRIxPTR " %s\n", sim_->get_pc(), buffer.start()); last_pc = sim_->get_pc(); } char* line = ReadLine("sim> "); if (line == NULL) { break; } else { char* last_input = sim_->last_debugger_input(); if (strcmp(line, "\n") == 0 && last_input != NULL) { line = last_input; } else { // Ownership is transferred to sim_; sim_->set_last_debugger_input(line); } // Use sscanf to parse the individual parts of the command line. At the // moment no command expects more than two parameters. int argc = SScanF(line, "%" XSTR(COMMAND_SIZE) "s " "%" XSTR(ARG_SIZE) "s " "%" XSTR(ARG_SIZE) "s", cmd, arg1, arg2); if ((strcmp(cmd, "si") == 0) || (strcmp(cmd, "stepi") == 0)) { intptr_t value; // If at a breakpoint, proceed past it. if ((reinterpret_cast(sim_->get_pc())) ->InstructionBits() == 0x7d821008) { sim_->set_pc(sim_->get_pc() + Instruction::kInstrSize); } else { sim_->ExecuteInstruction( reinterpret_cast(sim_->get_pc())); } if (argc == 2 && last_pc != sim_->get_pc() && GetValue(arg1, &value)) { for (int i = 1; i < value; i++) { disasm::NameConverter converter; disasm::Disassembler dasm(converter); // use a reasonably large buffer v8::internal::EmbeddedVector buffer; dasm.InstructionDecode(buffer, reinterpret_cast(sim_->get_pc())); PrintF(" 0x%08" V8PRIxPTR " %s\n", sim_->get_pc(), buffer.start()); sim_->ExecuteInstruction( reinterpret_cast(sim_->get_pc())); } } } else if ((strcmp(cmd, "c") == 0) || (strcmp(cmd, "cont") == 0)) { // If at a breakpoint, proceed past it. if ((reinterpret_cast(sim_->get_pc())) ->InstructionBits() == 0x7d821008) { sim_->set_pc(sim_->get_pc() + Instruction::kInstrSize); } else { // Execute the one instruction we broke at with breakpoints disabled. sim_->ExecuteInstruction( reinterpret_cast(sim_->get_pc())); } // Leave the debugger shell. done = true; } else if ((strcmp(cmd, "p") == 0) || (strcmp(cmd, "print") == 0)) { if (argc == 2 || (argc == 3 && strcmp(arg2, "fp") == 0)) { intptr_t value; double dvalue; if (strcmp(arg1, "all") == 0) { for (int i = 0; i < kNumRegisters; i++) { value = GetRegisterValue(i); PrintF(" %3s: %08" V8PRIxPTR, GetRegConfig()->GetGeneralRegisterName(i), value); if ((argc == 3 && strcmp(arg2, "fp") == 0) && i < 8 && (i % 2) == 0) { dvalue = GetRegisterPairDoubleValue(i); PrintF(" (%f)\n", dvalue); } else if (i != 0 && !((i + 1) & 3)) { PrintF("\n"); } } PrintF(" pc: %08" V8PRIxPTR " lr: %08" V8PRIxPTR " " "ctr: %08" V8PRIxPTR " xer: %08x cr: %08x\n", sim_->special_reg_pc_, sim_->special_reg_lr_, sim_->special_reg_ctr_, sim_->special_reg_xer_, sim_->condition_reg_); } else if (strcmp(arg1, "alld") == 0) { for (int i = 0; i < kNumRegisters; i++) { value = GetRegisterValue(i); PrintF(" %3s: %08" V8PRIxPTR " %11" V8PRIdPTR, GetRegConfig()->GetGeneralRegisterName(i), value, value); if ((argc == 3 && strcmp(arg2, "fp") == 0) && i < 8 && (i % 2) == 0) { dvalue = GetRegisterPairDoubleValue(i); PrintF(" (%f)\n", dvalue); } else if (!((i + 1) % 2)) { PrintF("\n"); } } PrintF(" pc: %08" V8PRIxPTR " lr: %08" V8PRIxPTR " " "ctr: %08" V8PRIxPTR " xer: %08x cr: %08x\n", sim_->special_reg_pc_, sim_->special_reg_lr_, sim_->special_reg_ctr_, sim_->special_reg_xer_, sim_->condition_reg_); } else if (strcmp(arg1, "allf") == 0) { for (int i = 0; i < DoubleRegister::kNumRegisters; i++) { dvalue = GetFPDoubleRegisterValue(i); uint64_t as_words = bit_cast(dvalue); PrintF("%3s: %f 0x%08x %08x\n", GetRegConfig()->GetDoubleRegisterName(i), dvalue, static_cast(as_words >> 32), static_cast(as_words & 0xffffffff)); } } else if (arg1[0] == 'r' && (arg1[1] >= '0' && arg1[1] <= '9' && (arg1[2] == '\0' || (arg1[2] >= '0' && arg1[2] <= '9' && arg1[3] == '\0')))) { int regnum = strtoul(&arg1[1], 0, 10); if (regnum != kNoRegister) { value = GetRegisterValue(regnum); PrintF("%s: 0x%08" V8PRIxPTR " %" V8PRIdPTR "\n", arg1, value, value); } else { PrintF("%s unrecognized\n", arg1); } } else { if (GetValue(arg1, &value)) { PrintF("%s: 0x%08" V8PRIxPTR " %" V8PRIdPTR "\n", arg1, value, value); } else if (GetFPDoubleValue(arg1, &dvalue)) { uint64_t as_words = bit_cast(dvalue); PrintF("%s: %f 0x%08x %08x\n", arg1, dvalue, static_cast(as_words >> 32), static_cast(as_words & 0xffffffff)); } else { PrintF("%s unrecognized\n", arg1); } } } else { PrintF("print \n"); } } else if ((strcmp(cmd, "po") == 0) || (strcmp(cmd, "printobject") == 0)) { if (argc == 2) { intptr_t value; OFStream os(stdout); if (GetValue(arg1, &value)) { Object* obj = reinterpret_cast(value); os << arg1 << ": \n"; #ifdef DEBUG obj->Print(os); os << "\n"; #else os << Brief(obj) << "\n"; #endif } else { os << arg1 << " unrecognized\n"; } } else { PrintF("printobject \n"); } } else if (strcmp(cmd, "setpc") == 0) { intptr_t value; if (!GetValue(arg1, &value)) { PrintF("%s unrecognized\n", arg1); continue; } sim_->set_pc(value); } else if (strcmp(cmd, "stack") == 0 || strcmp(cmd, "mem") == 0) { intptr_t* cur = NULL; intptr_t* end = NULL; int next_arg = 1; if (strcmp(cmd, "stack") == 0) { cur = reinterpret_cast(sim_->get_register(Simulator::sp)); } else { // "mem" intptr_t value; if (!GetValue(arg1, &value)) { PrintF("%s unrecognized\n", arg1); continue; } cur = reinterpret_cast(value); next_arg++; } intptr_t words; // likely inaccurate variable name for 64bit if (argc == next_arg) { words = 10; } else { if (!GetValue(argv[next_arg], &words)) { words = 10; } } end = cur + words; while (cur < end) { PrintF(" 0x%08" V8PRIxPTR ": 0x%08" V8PRIxPTR " %10" V8PRIdPTR, reinterpret_cast(cur), *cur, *cur); HeapObject* obj = reinterpret_cast(*cur); intptr_t value = *cur; Heap* current_heap = sim_->isolate_->heap(); if (((value & 1) == 0) || current_heap->ContainsSlow(obj->address())) { PrintF(" ("); if ((value & 1) == 0) { PrintF("smi %d", PlatformSmiTagging::SmiToInt(obj)); } else { obj->ShortPrint(); } PrintF(")"); } PrintF("\n"); cur++; } } else if (strcmp(cmd, "disasm") == 0 || strcmp(cmd, "di") == 0) { disasm::NameConverter converter; disasm::Disassembler dasm(converter); // use a reasonably large buffer v8::internal::EmbeddedVector buffer; byte* prev = NULL; byte* cur = NULL; byte* end = NULL; if (argc == 1) { cur = reinterpret_cast(sim_->get_pc()); end = cur + (10 * Instruction::kInstrSize); } else if (argc == 2) { int regnum = Registers::Number(arg1); if (regnum != kNoRegister || strncmp(arg1, "0x", 2) == 0) { // The argument is an address or a register name. intptr_t value; if (GetValue(arg1, &value)) { cur = reinterpret_cast(value); // Disassemble 10 instructions at . end = cur + (10 * Instruction::kInstrSize); } } else { // The argument is the number of instructions. intptr_t value; if (GetValue(arg1, &value)) { cur = reinterpret_cast(sim_->get_pc()); // Disassemble instructions. end = cur + (value * Instruction::kInstrSize); } } } else { intptr_t value1; intptr_t value2; if (GetValue(arg1, &value1) && GetValue(arg2, &value2)) { cur = reinterpret_cast(value1); end = cur + (value2 * Instruction::kInstrSize); } } while (cur < end) { prev = cur; cur += dasm.InstructionDecode(buffer, cur); PrintF(" 0x%08" V8PRIxPTR " %s\n", reinterpret_cast(prev), buffer.start()); } } else if (strcmp(cmd, "gdb") == 0) { PrintF("relinquishing control to gdb\n"); v8::base::OS::DebugBreak(); PrintF("regaining control from gdb\n"); } else if (strcmp(cmd, "break") == 0) { if (argc == 2) { intptr_t value; if (GetValue(arg1, &value)) { if (!SetBreakpoint(reinterpret_cast(value))) { PrintF("setting breakpoint failed\n"); } } else { PrintF("%s unrecognized\n", arg1); } } else { PrintF("break
\n"); } } else if (strcmp(cmd, "del") == 0) { if (!DeleteBreakpoint(NULL)) { PrintF("deleting breakpoint failed\n"); } } else if (strcmp(cmd, "cr") == 0) { PrintF("Condition reg: %08x\n", sim_->condition_reg_); } else if (strcmp(cmd, "lr") == 0) { PrintF("Link reg: %08" V8PRIxPTR "\n", sim_->special_reg_lr_); } else if (strcmp(cmd, "ctr") == 0) { PrintF("Ctr reg: %08" V8PRIxPTR "\n", sim_->special_reg_ctr_); } else if (strcmp(cmd, "xer") == 0) { PrintF("XER: %08x\n", sim_->special_reg_xer_); } else if (strcmp(cmd, "fpscr") == 0) { PrintF("FPSCR: %08x\n", sim_->fp_condition_reg_); } else if (strcmp(cmd, "stop") == 0) { intptr_t value; intptr_t stop_pc = sim_->get_pc() - (Instruction::kInstrSize + kPointerSize); Instruction* stop_instr = reinterpret_cast(stop_pc); Instruction* msg_address = reinterpret_cast(stop_pc + Instruction::kInstrSize); if ((argc == 2) && (strcmp(arg1, "unstop") == 0)) { // Remove the current stop. if (sim_->isStopInstruction(stop_instr)) { stop_instr->SetInstructionBits(kNopInstr); msg_address->SetInstructionBits(kNopInstr); } else { PrintF("Not at debugger stop.\n"); } } else if (argc == 3) { // Print information about all/the specified breakpoint(s). if (strcmp(arg1, "info") == 0) { if (strcmp(arg2, "all") == 0) { PrintF("Stop information:\n"); for (uint32_t i = 0; i < sim_->kNumOfWatchedStops; i++) { sim_->PrintStopInfo(i); } } else if (GetValue(arg2, &value)) { sim_->PrintStopInfo(value); } else { PrintF("Unrecognized argument.\n"); } } else if (strcmp(arg1, "enable") == 0) { // Enable all/the specified breakpoint(s). if (strcmp(arg2, "all") == 0) { for (uint32_t i = 0; i < sim_->kNumOfWatchedStops; i++) { sim_->EnableStop(i); } } else if (GetValue(arg2, &value)) { sim_->EnableStop(value); } else { PrintF("Unrecognized argument.\n"); } } else if (strcmp(arg1, "disable") == 0) { // Disable all/the specified breakpoint(s). if (strcmp(arg2, "all") == 0) { for (uint32_t i = 0; i < sim_->kNumOfWatchedStops; i++) { sim_->DisableStop(i); } } else if (GetValue(arg2, &value)) { sim_->DisableStop(value); } else { PrintF("Unrecognized argument.\n"); } } } else { PrintF("Wrong usage. Use help command for more information.\n"); } } else if ((strcmp(cmd, "t") == 0) || strcmp(cmd, "trace") == 0) { ::v8::internal::FLAG_trace_sim = !::v8::internal::FLAG_trace_sim; PrintF("Trace of executed instructions is %s\n", ::v8::internal::FLAG_trace_sim ? "on" : "off"); } else if ((strcmp(cmd, "h") == 0) || (strcmp(cmd, "help") == 0)) { PrintF("cont\n"); PrintF(" continue execution (alias 'c')\n"); PrintF("stepi [num instructions]\n"); PrintF(" step one/num instruction(s) (alias 'si')\n"); PrintF("print \n"); PrintF(" print register content (alias 'p')\n"); PrintF(" use register name 'all' to display all integer registers\n"); PrintF( " use register name 'alld' to display integer registers " "with decimal values\n"); PrintF(" use register name 'rN' to display register number 'N'\n"); PrintF(" add argument 'fp' to print register pair double values\n"); PrintF( " use register name 'allf' to display floating-point " "registers\n"); PrintF("printobject \n"); PrintF(" print an object from a register (alias 'po')\n"); PrintF("cr\n"); PrintF(" print condition register\n"); PrintF("lr\n"); PrintF(" print link register\n"); PrintF("ctr\n"); PrintF(" print ctr register\n"); PrintF("xer\n"); PrintF(" print XER\n"); PrintF("fpscr\n"); PrintF(" print FPSCR\n"); PrintF("stack []\n"); PrintF(" dump stack content, default dump 10 words)\n"); PrintF("mem
[]\n"); PrintF(" dump memory content, default dump 10 words)\n"); PrintF("disasm []\n"); PrintF("disasm [
]\n"); PrintF("disasm [[
] ]\n"); PrintF(" disassemble code, default is 10 instructions\n"); PrintF(" from pc (alias 'di')\n"); PrintF("gdb\n"); PrintF(" enter gdb\n"); PrintF("break
\n"); PrintF(" set a break point on the address\n"); PrintF("del\n"); PrintF(" delete the breakpoint\n"); PrintF("trace (alias 't')\n"); PrintF(" toogle the tracing of all executed statements\n"); PrintF("stop feature:\n"); PrintF(" Description:\n"); PrintF(" Stops are debug instructions inserted by\n"); PrintF(" the Assembler::stop() function.\n"); PrintF(" When hitting a stop, the Simulator will\n"); PrintF(" stop and and give control to the PPCDebugger.\n"); PrintF(" The first %d stop codes are watched:\n", Simulator::kNumOfWatchedStops); PrintF(" - They can be enabled / disabled: the Simulator\n"); PrintF(" will / won't stop when hitting them.\n"); PrintF(" - The Simulator keeps track of how many times they \n"); PrintF(" are met. (See the info command.) Going over a\n"); PrintF(" disabled stop still increases its counter. \n"); PrintF(" Commands:\n"); PrintF(" stop info all/ : print infos about number \n"); PrintF(" or all stop(s).\n"); PrintF(" stop enable/disable all/ : enables / disables\n"); PrintF(" all or number stop(s)\n"); PrintF(" stop unstop\n"); PrintF(" ignore the stop instruction at the current location\n"); PrintF(" from now on\n"); } else { PrintF("Unknown command: %s\n", cmd); } } } // Add all the breakpoints back to stop execution and enter the debugger // shell when hit. RedoBreakpoints(); // Restore tracing ::v8::internal::FLAG_trace_sim = trace; #undef COMMAND_SIZE #undef ARG_SIZE #undef STR #undef XSTR } static bool ICacheMatch(void* one, void* two) { DCHECK((reinterpret_cast(one) & CachePage::kPageMask) == 0); DCHECK((reinterpret_cast(two) & CachePage::kPageMask) == 0); return one == two; } static uint32_t ICacheHash(void* key) { return static_cast(reinterpret_cast(key)) >> 2; } static bool AllOnOnePage(uintptr_t start, int size) { intptr_t start_page = (start & ~CachePage::kPageMask); intptr_t end_page = ((start + size) & ~CachePage::kPageMask); return start_page == end_page; } void Simulator::set_last_debugger_input(char* input) { DeleteArray(last_debugger_input_); last_debugger_input_ = input; } void Simulator::FlushICache(base::CustomMatcherHashMap* i_cache, void* start_addr, size_t size) { intptr_t start = reinterpret_cast(start_addr); int intra_line = (start & CachePage::kLineMask); start -= intra_line; size += intra_line; size = ((size - 1) | CachePage::kLineMask) + 1; int offset = (start & CachePage::kPageMask); while (!AllOnOnePage(start, size - 1)) { int bytes_to_flush = CachePage::kPageSize - offset; FlushOnePage(i_cache, start, bytes_to_flush); start += bytes_to_flush; size -= bytes_to_flush; DCHECK_EQ(0, static_cast(start & CachePage::kPageMask)); offset = 0; } if (size != 0) { FlushOnePage(i_cache, start, size); } } CachePage* Simulator::GetCachePage(base::CustomMatcherHashMap* i_cache, void* page) { base::HashMap::Entry* entry = i_cache->LookupOrInsert(page, ICacheHash(page)); if (entry->value == NULL) { CachePage* new_page = new CachePage(); entry->value = new_page; } return reinterpret_cast(entry->value); } // Flush from start up to and not including start + size. void Simulator::FlushOnePage(base::CustomMatcherHashMap* i_cache, intptr_t start, int size) { DCHECK(size <= CachePage::kPageSize); DCHECK(AllOnOnePage(start, size - 1)); DCHECK((start & CachePage::kLineMask) == 0); DCHECK((size & CachePage::kLineMask) == 0); void* page = reinterpret_cast(start & (~CachePage::kPageMask)); int offset = (start & CachePage::kPageMask); CachePage* cache_page = GetCachePage(i_cache, page); char* valid_bytemap = cache_page->ValidityByte(offset); memset(valid_bytemap, CachePage::LINE_INVALID, size >> CachePage::kLineShift); } void Simulator::CheckICache(base::CustomMatcherHashMap* i_cache, Instruction* instr) { intptr_t address = reinterpret_cast(instr); void* page = reinterpret_cast(address & (~CachePage::kPageMask)); void* line = reinterpret_cast(address & (~CachePage::kLineMask)); int offset = (address & CachePage::kPageMask); CachePage* cache_page = GetCachePage(i_cache, page); char* cache_valid_byte = cache_page->ValidityByte(offset); bool cache_hit = (*cache_valid_byte == CachePage::LINE_VALID); char* cached_line = cache_page->CachedData(offset & ~CachePage::kLineMask); if (cache_hit) { // Check that the data in memory matches the contents of the I-cache. CHECK_EQ(0, memcmp(reinterpret_cast(instr), cache_page->CachedData(offset), Instruction::kInstrSize)); } else { // Cache miss. Load memory into the cache. memcpy(cached_line, line, CachePage::kLineLength); *cache_valid_byte = CachePage::LINE_VALID; } } void Simulator::Initialize(Isolate* isolate) { if (isolate->simulator_initialized()) return; isolate->set_simulator_initialized(true); ::v8::internal::ExternalReference::set_redirector(isolate, &RedirectExternalReference); } Simulator::Simulator(Isolate* isolate) : isolate_(isolate) { i_cache_ = isolate_->simulator_i_cache(); if (i_cache_ == NULL) { i_cache_ = new base::CustomMatcherHashMap(&ICacheMatch); isolate_->set_simulator_i_cache(i_cache_); } Initialize(isolate); // Set up simulator support first. Some of this information is needed to // setup the architecture state. #if V8_TARGET_ARCH_PPC64 size_t stack_size = FLAG_sim_stack_size * KB; #else size_t stack_size = MB; // allocate 1MB for stack #endif stack_size += 2 * stack_protection_size_; stack_ = reinterpret_cast(malloc(stack_size)); pc_modified_ = false; icount_ = 0; break_pc_ = NULL; break_instr_ = 0; // Set up architecture state. // All registers are initialized to zero to start with. for (int i = 0; i < kNumGPRs; i++) { registers_[i] = 0; } condition_reg_ = 0; fp_condition_reg_ = 0; special_reg_pc_ = 0; special_reg_lr_ = 0; special_reg_ctr_ = 0; // Initializing FP registers. for (int i = 0; i < kNumFPRs; i++) { fp_registers_[i] = 0.0; } // The sp is initialized to point to the bottom (high address) of the // allocated stack area. To be safe in potential stack underflows we leave // some buffer below. registers_[sp] = reinterpret_cast(stack_) + stack_size - stack_protection_size_; last_debugger_input_ = NULL; } Simulator::~Simulator() { global_monitor_.Pointer()->RemoveProcessor(&global_monitor_processor_); free(stack_); } // When the generated code calls an external reference we need to catch that in // the simulator. The external reference will be a function compiled for the // host architecture. We need to call that function instead of trying to // execute it with the simulator. We do that by redirecting the external // reference to a svc (Supervisor Call) instruction that is handled by // the simulator. We write the original destination of the jump just at a known // offset from the svc instruction so the simulator knows what to call. class Redirection { public: Redirection(Isolate* isolate, void* external_function, ExternalReference::Type type) : external_function_(external_function), swi_instruction_(rtCallRedirInstr | kCallRtRedirected), type_(type), next_(NULL) { next_ = isolate->simulator_redirection(); Simulator::current(isolate)->FlushICache( isolate->simulator_i_cache(), reinterpret_cast(&swi_instruction_), Instruction::kInstrSize); isolate->set_simulator_redirection(this); if (ABI_USES_FUNCTION_DESCRIPTORS) { function_descriptor_[0] = reinterpret_cast(&swi_instruction_); function_descriptor_[1] = 0; function_descriptor_[2] = 0; } } void* address() { if (ABI_USES_FUNCTION_DESCRIPTORS) { return reinterpret_cast(function_descriptor_); } else { return reinterpret_cast(&swi_instruction_); } } void* external_function() { return external_function_; } ExternalReference::Type type() { return type_; } static Redirection* Get(Isolate* isolate, void* external_function, ExternalReference::Type type) { Redirection* current = isolate->simulator_redirection(); for (; current != NULL; current = current->next_) { if (current->external_function_ == external_function) { DCHECK_EQ(current->type(), type); return current; } } return new Redirection(isolate, external_function, type); } static Redirection* FromSwiInstruction(Instruction* swi_instruction) { char* addr_of_swi = reinterpret_cast(swi_instruction); char* addr_of_redirection = addr_of_swi - offsetof(Redirection, swi_instruction_); return reinterpret_cast(addr_of_redirection); } static Redirection* FromAddress(void* address) { int delta = ABI_USES_FUNCTION_DESCRIPTORS ? offsetof(Redirection, function_descriptor_) : offsetof(Redirection, swi_instruction_); char* addr_of_redirection = reinterpret_cast(address) - delta; return reinterpret_cast(addr_of_redirection); } static void* ReverseRedirection(intptr_t reg) { Redirection* redirection = FromAddress(reinterpret_cast(reg)); return redirection->external_function(); } static void DeleteChain(Redirection* redirection) { while (redirection != nullptr) { Redirection* next = redirection->next_; delete redirection; redirection = next; } } private: void* external_function_; uint32_t swi_instruction_; ExternalReference::Type type_; Redirection* next_; intptr_t function_descriptor_[3]; }; // static void Simulator::TearDown(base::CustomMatcherHashMap* i_cache, Redirection* first) { Redirection::DeleteChain(first); if (i_cache != nullptr) { for (base::HashMap::Entry* entry = i_cache->Start(); entry != nullptr; entry = i_cache->Next(entry)) { delete static_cast(entry->value); } delete i_cache; } } void* Simulator::RedirectExternalReference(Isolate* isolate, void* external_function, ExternalReference::Type type) { base::LockGuard lock_guard( isolate->simulator_redirection_mutex()); Redirection* redirection = Redirection::Get(isolate, external_function, type); return redirection->address(); } // Get the active Simulator for the current thread. Simulator* Simulator::current(Isolate* isolate) { v8::internal::Isolate::PerIsolateThreadData* isolate_data = isolate->FindOrAllocatePerThreadDataForThisThread(); DCHECK(isolate_data != NULL); Simulator* sim = isolate_data->simulator(); if (sim == NULL) { // TODO(146): delete the simulator object when a thread/isolate goes away. sim = new Simulator(isolate); isolate_data->set_simulator(sim); } return sim; } // Sets the register in the architecture state. void Simulator::set_register(int reg, intptr_t value) { DCHECK((reg >= 0) && (reg < kNumGPRs)); registers_[reg] = value; } // Get the register from the architecture state. intptr_t Simulator::get_register(int reg) const { DCHECK((reg >= 0) && (reg < kNumGPRs)); // Stupid code added to avoid bug in GCC. // See: http://gcc.gnu.org/bugzilla/show_bug.cgi?id=43949 if (reg >= kNumGPRs) return 0; // End stupid code. return registers_[reg]; } double Simulator::get_double_from_register_pair(int reg) { DCHECK((reg >= 0) && (reg < kNumGPRs) && ((reg % 2) == 0)); double dm_val = 0.0; #if !V8_TARGET_ARCH_PPC64 // doesn't make sense in 64bit mode // Read the bits from the unsigned integer register_[] array // into the double precision floating point value and return it. char buffer[sizeof(fp_registers_[0])]; memcpy(buffer, ®isters_[reg], 2 * sizeof(registers_[0])); memcpy(&dm_val, buffer, 2 * sizeof(registers_[0])); #endif return (dm_val); } // Raw access to the PC register. void Simulator::set_pc(intptr_t value) { pc_modified_ = true; special_reg_pc_ = value; } bool Simulator::has_bad_pc() const { return ((special_reg_pc_ == bad_lr) || (special_reg_pc_ == end_sim_pc)); } // Raw access to the PC register without the special adjustment when reading. intptr_t Simulator::get_pc() const { return special_reg_pc_; } // Runtime FP routines take: // - two double arguments // - one double argument and zero or one integer arguments. // All are consructed here from d1, d2 and r3. void Simulator::GetFpArgs(double* x, double* y, intptr_t* z) { *x = get_double_from_d_register(1); *y = get_double_from_d_register(2); *z = get_register(3); } // The return value is in d1. void Simulator::SetFpResult(const double& result) { set_d_register_from_double(1, result); } void Simulator::TrashCallerSaveRegisters() { // We don't trash the registers with the return value. #if 0 // A good idea to trash volatile registers, needs to be done registers_[2] = 0x50Bad4U; registers_[3] = 0x50Bad4U; registers_[12] = 0x50Bad4U; #endif } uint32_t Simulator::ReadWU(intptr_t addr, Instruction* instr) { // All supported PPC targets allow unaligned accesses, so we don't need to // check the alignment here. base::LockGuard lock_guard(&global_monitor_.Pointer()->mutex); local_monitor_.NotifyLoad(addr); uint32_t* ptr = reinterpret_cast(addr); return *ptr; } uint32_t Simulator::ReadExWU(intptr_t addr, Instruction* instr) { base::LockGuard lock_guard(&global_monitor_.Pointer()->mutex); local_monitor_.NotifyLoadExcl(addr, TransactionSize::Word); global_monitor_.Pointer()->NotifyLoadExcl_Locked(addr, &global_monitor_processor_); uint32_t* ptr = reinterpret_cast(addr); return *ptr; } int32_t Simulator::ReadW(intptr_t addr, Instruction* instr) { // All supported PPC targets allow unaligned accesses, so we don't need to // check the alignment here. base::LockGuard lock_guard(&global_monitor_.Pointer()->mutex); local_monitor_.NotifyLoad(addr); int32_t* ptr = reinterpret_cast(addr); return *ptr; } void Simulator::WriteW(intptr_t addr, uint32_t value, Instruction* instr) { // All supported PPC targets allow unaligned accesses, so we don't need to // check the alignment here. base::LockGuard lock_guard(&global_monitor_.Pointer()->mutex); local_monitor_.NotifyStore(addr); global_monitor_.Pointer()->NotifyStore_Locked(addr, &global_monitor_processor_); uint32_t* ptr = reinterpret_cast(addr); *ptr = value; return; } int Simulator::WriteExW(intptr_t addr, uint32_t value, Instruction* instr) { base::LockGuard lock_guard(&global_monitor_.Pointer()->mutex); if (local_monitor_.NotifyStoreExcl(addr, TransactionSize::Word) && global_monitor_.Pointer()->NotifyStoreExcl_Locked( addr, &global_monitor_processor_)) { uint32_t* ptr = reinterpret_cast(addr); *ptr = value; return 0; } else { return 1; } } void Simulator::WriteW(intptr_t addr, int32_t value, Instruction* instr) { // All supported PPC targets allow unaligned accesses, so we don't need to // check the alignment here. base::LockGuard lock_guard(&global_monitor_.Pointer()->mutex); local_monitor_.NotifyStore(addr); global_monitor_.Pointer()->NotifyStore_Locked(addr, &global_monitor_processor_); int32_t* ptr = reinterpret_cast(addr); *ptr = value; return; } uint16_t Simulator::ReadHU(intptr_t addr, Instruction* instr) { // All supported PPC targets allow unaligned accesses, so we don't need to // check the alignment here. base::LockGuard lock_guard(&global_monitor_.Pointer()->mutex); local_monitor_.NotifyLoad(addr); uint16_t* ptr = reinterpret_cast(addr); return *ptr; } uint16_t Simulator::ReadExHU(intptr_t addr, Instruction* instr) { base::LockGuard lock_guard(&global_monitor_.Pointer()->mutex); local_monitor_.NotifyLoadExcl(addr, TransactionSize::HalfWord); global_monitor_.Pointer()->NotifyLoadExcl_Locked(addr, &global_monitor_processor_); uint16_t* ptr = reinterpret_cast(addr); return *ptr; } int16_t Simulator::ReadH(intptr_t addr, Instruction* instr) { // All supported PPC targets allow unaligned accesses, so we don't need to // check the alignment here. base::LockGuard lock_guard(&global_monitor_.Pointer()->mutex); local_monitor_.NotifyLoad(addr); int16_t* ptr = reinterpret_cast(addr); return *ptr; } void Simulator::WriteH(intptr_t addr, uint16_t value, Instruction* instr) { // All supported PPC targets allow unaligned accesses, so we don't need to // check the alignment here. base::LockGuard lock_guard(&global_monitor_.Pointer()->mutex); local_monitor_.NotifyStore(addr); global_monitor_.Pointer()->NotifyStore_Locked(addr, &global_monitor_processor_); uint16_t* ptr = reinterpret_cast(addr); *ptr = value; return; } void Simulator::WriteH(intptr_t addr, int16_t value, Instruction* instr) { // All supported PPC targets allow unaligned accesses, so we don't need to // check the alignment here. base::LockGuard lock_guard(&global_monitor_.Pointer()->mutex); local_monitor_.NotifyStore(addr); global_monitor_.Pointer()->NotifyStore_Locked(addr, &global_monitor_processor_); int16_t* ptr = reinterpret_cast(addr); *ptr = value; return; } int Simulator::WriteExH(intptr_t addr, uint16_t value, Instruction* instr) { base::LockGuard lock_guard(&global_monitor_.Pointer()->mutex); if (local_monitor_.NotifyStoreExcl(addr, TransactionSize::HalfWord) && global_monitor_.Pointer()->NotifyStoreExcl_Locked( addr, &global_monitor_processor_)) { uint16_t* ptr = reinterpret_cast(addr); *ptr = value; return 0; } else { return 1; } } uint8_t Simulator::ReadBU(intptr_t addr) { // All supported PPC targets allow unaligned accesses, so we don't need to // check the alignment here. base::LockGuard lock_guard(&global_monitor_.Pointer()->mutex); local_monitor_.NotifyLoad(addr); uint8_t* ptr = reinterpret_cast(addr); return *ptr; } int8_t Simulator::ReadB(intptr_t addr) { // All supported PPC targets allow unaligned accesses, so we don't need to // check the alignment here. base::LockGuard lock_guard(&global_monitor_.Pointer()->mutex); local_monitor_.NotifyLoad(addr); int8_t* ptr = reinterpret_cast(addr); return *ptr; } uint8_t Simulator::ReadExBU(intptr_t addr) { base::LockGuard lock_guard(&global_monitor_.Pointer()->mutex); local_monitor_.NotifyLoadExcl(addr, TransactionSize::Byte); global_monitor_.Pointer()->NotifyLoadExcl_Locked(addr, &global_monitor_processor_); uint8_t* ptr = reinterpret_cast(addr); return *ptr; } void Simulator::WriteB(intptr_t addr, uint8_t value) { // All supported PPC targets allow unaligned accesses, so we don't need to // check the alignment here. base::LockGuard lock_guard(&global_monitor_.Pointer()->mutex); local_monitor_.NotifyStore(addr); global_monitor_.Pointer()->NotifyStore_Locked(addr, &global_monitor_processor_); uint8_t* ptr = reinterpret_cast(addr); *ptr = value; } void Simulator::WriteB(intptr_t addr, int8_t value) { // All supported PPC targets allow unaligned accesses, so we don't need to // check the alignment here. base::LockGuard lock_guard(&global_monitor_.Pointer()->mutex); local_monitor_.NotifyStore(addr); global_monitor_.Pointer()->NotifyStore_Locked(addr, &global_monitor_processor_); int8_t* ptr = reinterpret_cast(addr); *ptr = value; } int Simulator::WriteExB(intptr_t addr, uint8_t value) { base::LockGuard lock_guard(&global_monitor_.Pointer()->mutex); if (local_monitor_.NotifyStoreExcl(addr, TransactionSize::Byte) && global_monitor_.Pointer()->NotifyStoreExcl_Locked( addr, &global_monitor_processor_)) { uint8_t* ptr = reinterpret_cast(addr); *ptr = value; return 0; } else { return 1; } } intptr_t* Simulator::ReadDW(intptr_t addr) { // All supported PPC targets allow unaligned accesses, so we don't need to // check the alignment here. base::LockGuard lock_guard(&global_monitor_.Pointer()->mutex); local_monitor_.NotifyLoad(addr); intptr_t* ptr = reinterpret_cast(addr); return ptr; } void Simulator::WriteDW(intptr_t addr, int64_t value) { // All supported PPC targets allow unaligned accesses, so we don't need to // check the alignment here. base::LockGuard lock_guard(&global_monitor_.Pointer()->mutex); local_monitor_.NotifyStore(addr); global_monitor_.Pointer()->NotifyStore_Locked(addr, &global_monitor_processor_); int64_t* ptr = reinterpret_cast(addr); *ptr = value; return; } // Returns the limit of the stack area to enable checking for stack overflows. uintptr_t Simulator::StackLimit(uintptr_t c_limit) const { // The simulator uses a separate JS stack. If we have exhausted the C stack, // we also drop down the JS limit to reflect the exhaustion on the JS stack. if (GetCurrentStackPosition() < c_limit) { return reinterpret_cast(get_sp()); } // Otherwise the limit is the JS stack. Leave a safety margin to prevent // overrunning the stack when pushing values. return reinterpret_cast(stack_) + stack_protection_size_; } // Unsupported instructions use Format to print an error and stop execution. void Simulator::Format(Instruction* instr, const char* format) { PrintF("Simulator found unsupported instruction:\n 0x%08" V8PRIxPTR ": %s\n", reinterpret_cast(instr), format); UNIMPLEMENTED(); } // Calculate C flag value for additions. bool Simulator::CarryFrom(int32_t left, int32_t right, int32_t carry) { uint32_t uleft = static_cast(left); uint32_t uright = static_cast(right); uint32_t urest = 0xffffffffU - uleft; return (uright > urest) || (carry && (((uright + 1) > urest) || (uright > (urest - 1)))); } // Calculate C flag value for subtractions. bool Simulator::BorrowFrom(int32_t left, int32_t right) { uint32_t uleft = static_cast(left); uint32_t uright = static_cast(right); return (uright > uleft); } // Calculate V flag value for additions and subtractions. bool Simulator::OverflowFrom(int32_t alu_out, int32_t left, int32_t right, bool addition) { bool overflow; if (addition) { // operands have the same sign overflow = ((left >= 0 && right >= 0) || (left < 0 && right < 0)) // and operands and result have different sign && ((left < 0 && alu_out >= 0) || (left >= 0 && alu_out < 0)); } else { // operands have different signs overflow = ((left < 0 && right >= 0) || (left >= 0 && right < 0)) // and first operand and result have different signs && ((left < 0 && alu_out >= 0) || (left >= 0 && alu_out < 0)); } return overflow; } #if V8_TARGET_ARCH_PPC64 static void decodeObjectPair(ObjectPair* pair, intptr_t* x, intptr_t* y) { *x = reinterpret_cast(pair->x); *y = reinterpret_cast(pair->y); } #else static void decodeObjectPair(ObjectPair* pair, intptr_t* x, intptr_t* y) { #if V8_TARGET_BIG_ENDIAN *x = static_cast(*pair >> 32); *y = static_cast(*pair); #else *x = static_cast(*pair); *y = static_cast(*pair >> 32); #endif } #endif // Calls into the V8 runtime. typedef intptr_t (*SimulatorRuntimeCall)(intptr_t arg0, intptr_t arg1, intptr_t arg2, intptr_t arg3, intptr_t arg4, intptr_t arg5, intptr_t arg6, intptr_t arg7, intptr_t arg8); typedef ObjectPair (*SimulatorRuntimePairCall)(intptr_t arg0, intptr_t arg1, intptr_t arg2, intptr_t arg3, intptr_t arg4, intptr_t arg5); typedef ObjectTriple (*SimulatorRuntimeTripleCall)(intptr_t arg0, intptr_t arg1, intptr_t arg2, intptr_t arg3, intptr_t arg4, intptr_t arg5); // These prototypes handle the four types of FP calls. typedef int (*SimulatorRuntimeCompareCall)(double darg0, double darg1); typedef double (*SimulatorRuntimeFPFPCall)(double darg0, double darg1); typedef double (*SimulatorRuntimeFPCall)(double darg0); typedef double (*SimulatorRuntimeFPIntCall)(double darg0, intptr_t arg0); // This signature supports direct call in to API function native callback // (refer to InvocationCallback in v8.h). typedef void (*SimulatorRuntimeDirectApiCall)(intptr_t arg0); typedef void (*SimulatorRuntimeProfilingApiCall)(intptr_t arg0, void* arg1); // This signature supports direct call to accessor getter callback. typedef void (*SimulatorRuntimeDirectGetterCall)(intptr_t arg0, intptr_t arg1); typedef void (*SimulatorRuntimeProfilingGetterCall)(intptr_t arg0, intptr_t arg1, void* arg2); // Software interrupt instructions are used by the simulator to call into the // C-based V8 runtime. void Simulator::SoftwareInterrupt(Instruction* instr) { int svc = instr->SvcValue(); switch (svc) { case kCallRtRedirected: { // Check if stack is aligned. Error if not aligned is reported below to // include information on the function called. bool stack_aligned = (get_register(sp) & (::v8::internal::FLAG_sim_stack_alignment - 1)) == 0; Redirection* redirection = Redirection::FromSwiInstruction(instr); const int kArgCount = 9; const int kRegisterArgCount = 8; int arg0_regnum = 3; intptr_t result_buffer = 0; bool uses_result_buffer = redirection->type() == ExternalReference::BUILTIN_CALL_TRIPLE || (redirection->type() == ExternalReference::BUILTIN_CALL_PAIR && !ABI_RETURNS_OBJECT_PAIRS_IN_REGS); if (uses_result_buffer) { result_buffer = get_register(r3); arg0_regnum++; } intptr_t arg[kArgCount]; // First eight arguments in registers r3-r10. for (int i = 0; i < kRegisterArgCount; i++) { arg[i] = get_register(arg0_regnum + i); } intptr_t* stack_pointer = reinterpret_cast(get_register(sp)); // Remaining argument on stack arg[kRegisterArgCount] = stack_pointer[kStackFrameExtraParamSlot]; STATIC_ASSERT(kArgCount == kRegisterArgCount + 1); STATIC_ASSERT(kMaxCParameters == 9); bool fp_call = (redirection->type() == ExternalReference::BUILTIN_FP_FP_CALL) || (redirection->type() == ExternalReference::BUILTIN_COMPARE_CALL) || (redirection->type() == ExternalReference::BUILTIN_FP_CALL) || (redirection->type() == ExternalReference::BUILTIN_FP_INT_CALL); // This is dodgy but it works because the C entry stubs are never moved. // See comment in codegen-arm.cc and bug 1242173. intptr_t saved_lr = special_reg_lr_; intptr_t external = reinterpret_cast(redirection->external_function()); if (fp_call) { double dval0, dval1; // one or two double parameters intptr_t ival; // zero or one integer parameters int iresult = 0; // integer return value double dresult = 0; // double return value GetFpArgs(&dval0, &dval1, &ival); if (::v8::internal::FLAG_trace_sim || !stack_aligned) { SimulatorRuntimeCall generic_target = reinterpret_cast(external); switch (redirection->type()) { case ExternalReference::BUILTIN_FP_FP_CALL: case ExternalReference::BUILTIN_COMPARE_CALL: PrintF("Call to host function at %p with args %f, %f", static_cast(FUNCTION_ADDR(generic_target)), dval0, dval1); break; case ExternalReference::BUILTIN_FP_CALL: PrintF("Call to host function at %p with arg %f", static_cast(FUNCTION_ADDR(generic_target)), dval0); break; case ExternalReference::BUILTIN_FP_INT_CALL: PrintF("Call to host function at %p with args %f, %" V8PRIdPTR, static_cast(FUNCTION_ADDR(generic_target)), dval0, ival); break; default: UNREACHABLE(); break; } if (!stack_aligned) { PrintF(" with unaligned stack %08" V8PRIxPTR "\n", get_register(sp)); } PrintF("\n"); } CHECK(stack_aligned); switch (redirection->type()) { case ExternalReference::BUILTIN_COMPARE_CALL: { SimulatorRuntimeCompareCall target = reinterpret_cast(external); iresult = target(dval0, dval1); set_register(r3, iresult); break; } case ExternalReference::BUILTIN_FP_FP_CALL: { SimulatorRuntimeFPFPCall target = reinterpret_cast(external); dresult = target(dval0, dval1); SetFpResult(dresult); break; } case ExternalReference::BUILTIN_FP_CALL: { SimulatorRuntimeFPCall target = reinterpret_cast(external); dresult = target(dval0); SetFpResult(dresult); break; } case ExternalReference::BUILTIN_FP_INT_CALL: { SimulatorRuntimeFPIntCall target = reinterpret_cast(external); dresult = target(dval0, ival); SetFpResult(dresult); break; } default: UNREACHABLE(); break; } if (::v8::internal::FLAG_trace_sim || !stack_aligned) { switch (redirection->type()) { case ExternalReference::BUILTIN_COMPARE_CALL: PrintF("Returned %08x\n", iresult); break; case ExternalReference::BUILTIN_FP_FP_CALL: case ExternalReference::BUILTIN_FP_CALL: case ExternalReference::BUILTIN_FP_INT_CALL: PrintF("Returned %f\n", dresult); break; default: UNREACHABLE(); break; } } } else if (redirection->type() == ExternalReference::DIRECT_API_CALL) { // See callers of MacroAssembler::CallApiFunctionAndReturn for // explanation of register usage. if (::v8::internal::FLAG_trace_sim || !stack_aligned) { PrintF("Call to host function at %p args %08" V8PRIxPTR, reinterpret_cast(external), arg[0]); if (!stack_aligned) { PrintF(" with unaligned stack %08" V8PRIxPTR "\n", get_register(sp)); } PrintF("\n"); } CHECK(stack_aligned); SimulatorRuntimeDirectApiCall target = reinterpret_cast(external); target(arg[0]); } else if (redirection->type() == ExternalReference::PROFILING_API_CALL) { // See callers of MacroAssembler::CallApiFunctionAndReturn for // explanation of register usage. if (::v8::internal::FLAG_trace_sim || !stack_aligned) { PrintF("Call to host function at %p args %08" V8PRIxPTR " %08" V8PRIxPTR, reinterpret_cast(external), arg[0], arg[1]); if (!stack_aligned) { PrintF(" with unaligned stack %08" V8PRIxPTR "\n", get_register(sp)); } PrintF("\n"); } CHECK(stack_aligned); SimulatorRuntimeProfilingApiCall target = reinterpret_cast(external); target(arg[0], Redirection::ReverseRedirection(arg[1])); } else if (redirection->type() == ExternalReference::DIRECT_GETTER_CALL) { // See callers of MacroAssembler::CallApiFunctionAndReturn for // explanation of register usage. if (::v8::internal::FLAG_trace_sim || !stack_aligned) { PrintF("Call to host function at %p args %08" V8PRIxPTR " %08" V8PRIxPTR, reinterpret_cast(external), arg[0], arg[1]); if (!stack_aligned) { PrintF(" with unaligned stack %08" V8PRIxPTR "\n", get_register(sp)); } PrintF("\n"); } CHECK(stack_aligned); SimulatorRuntimeDirectGetterCall target = reinterpret_cast(external); if (!ABI_PASSES_HANDLES_IN_REGS) { arg[0] = *(reinterpret_cast(arg[0])); } target(arg[0], arg[1]); } else if (redirection->type() == ExternalReference::PROFILING_GETTER_CALL) { if (::v8::internal::FLAG_trace_sim || !stack_aligned) { PrintF("Call to host function at %p args %08" V8PRIxPTR " %08" V8PRIxPTR " %08" V8PRIxPTR, reinterpret_cast(external), arg[0], arg[1], arg[2]); if (!stack_aligned) { PrintF(" with unaligned stack %08" V8PRIxPTR "\n", get_register(sp)); } PrintF("\n"); } CHECK(stack_aligned); SimulatorRuntimeProfilingGetterCall target = reinterpret_cast(external); if (!ABI_PASSES_HANDLES_IN_REGS) { arg[0] = *(reinterpret_cast(arg[0])); } target(arg[0], arg[1], Redirection::ReverseRedirection(arg[2])); } else { // builtin call. if (::v8::internal::FLAG_trace_sim || !stack_aligned) { SimulatorRuntimeCall target = reinterpret_cast(external); PrintF( "Call to host function at %p,\n" "\t\t\t\targs %08" V8PRIxPTR ", %08" V8PRIxPTR ", %08" V8PRIxPTR ", %08" V8PRIxPTR ", %08" V8PRIxPTR ", %08" V8PRIxPTR ", %08" V8PRIxPTR ", %08" V8PRIxPTR ", %08" V8PRIxPTR, static_cast(FUNCTION_ADDR(target)), arg[0], arg[1], arg[2], arg[3], arg[4], arg[5], arg[6], arg[7], arg[8]); if (!stack_aligned) { PrintF(" with unaligned stack %08" V8PRIxPTR "\n", get_register(sp)); } PrintF("\n"); } CHECK(stack_aligned); if (redirection->type() == ExternalReference::BUILTIN_CALL_TRIPLE) { SimulatorRuntimeTripleCall target = reinterpret_cast(external); ObjectTriple result = target(arg[0], arg[1], arg[2], arg[3], arg[4], arg[5]); if (::v8::internal::FLAG_trace_sim) { PrintF("Returned {%08" V8PRIxPTR ", %08" V8PRIxPTR ", %08" V8PRIxPTR "}\n", reinterpret_cast(result.x), reinterpret_cast(result.y), reinterpret_cast(result.z)); } memcpy(reinterpret_cast(result_buffer), &result, sizeof(ObjectTriple)); set_register(r3, result_buffer); } else { if (redirection->type() == ExternalReference::BUILTIN_CALL_PAIR) { SimulatorRuntimePairCall target = reinterpret_cast(external); ObjectPair result = target(arg[0], arg[1], arg[2], arg[3], arg[4], arg[5]); intptr_t x; intptr_t y; decodeObjectPair(&result, &x, &y); if (::v8::internal::FLAG_trace_sim) { PrintF("Returned {%08" V8PRIxPTR ", %08" V8PRIxPTR "}\n", x, y); } if (ABI_RETURNS_OBJECT_PAIRS_IN_REGS) { set_register(r3, x); set_register(r4, y); } else { memcpy(reinterpret_cast(result_buffer), &result, sizeof(ObjectPair)); set_register(r3, result_buffer); } } else { DCHECK(redirection->type() == ExternalReference::BUILTIN_CALL); SimulatorRuntimeCall target = reinterpret_cast(external); intptr_t result = target(arg[0], arg[1], arg[2], arg[3], arg[4], arg[5], arg[6], arg[7], arg[8]); if (::v8::internal::FLAG_trace_sim) { PrintF("Returned %08" V8PRIxPTR "\n", result); } set_register(r3, result); } } } set_pc(saved_lr); break; } case kBreakpoint: { PPCDebugger dbg(this); dbg.Debug(); break; } // stop uses all codes greater than 1 << 23. default: { if (svc >= (1 << 23)) { uint32_t code = svc & kStopCodeMask; if (isWatchedStop(code)) { IncreaseStopCounter(code); } // Stop if it is enabled, otherwise go on jumping over the stop // and the message address. if (isEnabledStop(code)) { PPCDebugger dbg(this); dbg.Stop(instr); } else { set_pc(get_pc() + Instruction::kInstrSize + kPointerSize); } } else { // This is not a valid svc code. UNREACHABLE(); break; } } } } // Stop helper functions. bool Simulator::isStopInstruction(Instruction* instr) { return (instr->Bits(27, 24) == 0xF) && (instr->SvcValue() >= kStopCode); } bool Simulator::isWatchedStop(uint32_t code) { DCHECK(code <= kMaxStopCode); return code < kNumOfWatchedStops; } bool Simulator::isEnabledStop(uint32_t code) { DCHECK(code <= kMaxStopCode); // Unwatched stops are always enabled. return !isWatchedStop(code) || !(watched_stops_[code].count & kStopDisabledBit); } void Simulator::EnableStop(uint32_t code) { DCHECK(isWatchedStop(code)); if (!isEnabledStop(code)) { watched_stops_[code].count &= ~kStopDisabledBit; } } void Simulator::DisableStop(uint32_t code) { DCHECK(isWatchedStop(code)); if (isEnabledStop(code)) { watched_stops_[code].count |= kStopDisabledBit; } } void Simulator::IncreaseStopCounter(uint32_t code) { DCHECK(code <= kMaxStopCode); DCHECK(isWatchedStop(code)); if ((watched_stops_[code].count & ~(1 << 31)) == 0x7fffffff) { PrintF( "Stop counter for code %i has overflowed.\n" "Enabling this code and reseting the counter to 0.\n", code); watched_stops_[code].count = 0; EnableStop(code); } else { watched_stops_[code].count++; } } // Print a stop status. void Simulator::PrintStopInfo(uint32_t code) { DCHECK(code <= kMaxStopCode); if (!isWatchedStop(code)) { PrintF("Stop not watched."); } else { const char* state = isEnabledStop(code) ? "Enabled" : "Disabled"; int32_t count = watched_stops_[code].count & ~kStopDisabledBit; // Don't print the state of unused breakpoints. if (count != 0) { if (watched_stops_[code].desc) { PrintF("stop %i - 0x%x: \t%s, \tcounter = %i, \t%s\n", code, code, state, count, watched_stops_[code].desc); } else { PrintF("stop %i - 0x%x: \t%s, \tcounter = %i\n", code, code, state, count); } } } } void Simulator::SetCR0(intptr_t result, bool setSO) { int bf = 0; if (result < 0) { bf |= 0x80000000; } if (result > 0) { bf |= 0x40000000; } if (result == 0) { bf |= 0x20000000; } if (setSO) { bf |= 0x10000000; } condition_reg_ = (condition_reg_ & ~0xF0000000) | bf; } void Simulator::ExecuteBranchConditional(Instruction* instr, BCType type) { int bo = instr->Bits(25, 21) << 21; int condition_bit = instr->Bits(20, 16); int condition_mask = 0x80000000 >> condition_bit; switch (bo) { case DCBNZF: // Decrement CTR; branch if CTR != 0 and condition false case DCBEZF: // Decrement CTR; branch if CTR == 0 and condition false UNIMPLEMENTED(); case BF: { // Branch if condition false if (condition_reg_ & condition_mask) return; break; } case DCBNZT: // Decrement CTR; branch if CTR != 0 and condition true case DCBEZT: // Decrement CTR; branch if CTR == 0 and condition true UNIMPLEMENTED(); case BT: { // Branch if condition true if (!(condition_reg_ & condition_mask)) return; break; } case DCBNZ: // Decrement CTR; branch if CTR != 0 case DCBEZ: // Decrement CTR; branch if CTR == 0 special_reg_ctr_ -= 1; if ((special_reg_ctr_ == 0) != (bo == DCBEZ)) return; break; case BA: { // Branch always break; } default: UNIMPLEMENTED(); // Invalid encoding } intptr_t old_pc = get_pc(); switch (type) { case BC_OFFSET: { int offset = (instr->Bits(15, 2) << 18) >> 16; set_pc(old_pc + offset); break; } case BC_LINK_REG: set_pc(special_reg_lr_); break; case BC_CTR_REG: set_pc(special_reg_ctr_); break; } if (instr->Bit(0) == 1) { // LK flag set special_reg_lr_ = old_pc + 4; } } void Simulator::ExecuteGeneric(Instruction* instr) { uint32_t opcode = instr->OpcodeBase(); switch (opcode) { case SUBFIC: { int rt = instr->RTValue(); int ra = instr->RAValue(); intptr_t ra_val = get_register(ra); int32_t im_val = instr->Bits(15, 0); im_val = SIGN_EXT_IMM16(im_val); intptr_t alu_out = im_val - ra_val; set_register(rt, alu_out); // todo - handle RC bit break; } case CMPLI: { int ra = instr->RAValue(); uint32_t im_val = instr->Bits(15, 0); int cr = instr->Bits(25, 23); uint32_t bf = 0; #if V8_TARGET_ARCH_PPC64 int L = instr->Bit(21); if (L) { #endif uintptr_t ra_val = get_register(ra); if (ra_val < im_val) { bf |= 0x80000000; } if (ra_val > im_val) { bf |= 0x40000000; } if (ra_val == im_val) { bf |= 0x20000000; } #if V8_TARGET_ARCH_PPC64 } else { uint32_t ra_val = get_register(ra); if (ra_val < im_val) { bf |= 0x80000000; } if (ra_val > im_val) { bf |= 0x40000000; } if (ra_val == im_val) { bf |= 0x20000000; } } #endif uint32_t condition_mask = 0xF0000000U >> (cr * 4); uint32_t condition = bf >> (cr * 4); condition_reg_ = (condition_reg_ & ~condition_mask) | condition; break; } case CMPI: { int ra = instr->RAValue(); int32_t im_val = instr->Bits(15, 0); im_val = SIGN_EXT_IMM16(im_val); int cr = instr->Bits(25, 23); uint32_t bf = 0; #if V8_TARGET_ARCH_PPC64 int L = instr->Bit(21); if (L) { #endif intptr_t ra_val = get_register(ra); if (ra_val < im_val) { bf |= 0x80000000; } if (ra_val > im_val) { bf |= 0x40000000; } if (ra_val == im_val) { bf |= 0x20000000; } #if V8_TARGET_ARCH_PPC64 } else { int32_t ra_val = get_register(ra); if (ra_val < im_val) { bf |= 0x80000000; } if (ra_val > im_val) { bf |= 0x40000000; } if (ra_val == im_val) { bf |= 0x20000000; } } #endif uint32_t condition_mask = 0xF0000000U >> (cr * 4); uint32_t condition = bf >> (cr * 4); condition_reg_ = (condition_reg_ & ~condition_mask) | condition; break; } case ADDIC: { int rt = instr->RTValue(); int ra = instr->RAValue(); uintptr_t ra_val = get_register(ra); uintptr_t im_val = SIGN_EXT_IMM16(instr->Bits(15, 0)); uintptr_t alu_out = ra_val + im_val; // Check overflow if (~ra_val < im_val) { special_reg_xer_ = (special_reg_xer_ & ~0xF0000000) | 0x20000000; } else { special_reg_xer_ &= ~0xF0000000; } set_register(rt, alu_out); break; } case ADDI: { int rt = instr->RTValue(); int ra = instr->RAValue(); int32_t im_val = SIGN_EXT_IMM16(instr->Bits(15, 0)); intptr_t alu_out; if (ra == 0) { alu_out = im_val; } else { intptr_t ra_val = get_register(ra); alu_out = ra_val + im_val; } set_register(rt, alu_out); // todo - handle RC bit break; } case ADDIS: { int rt = instr->RTValue(); int ra = instr->RAValue(); int32_t im_val = (instr->Bits(15, 0) << 16); intptr_t alu_out; if (ra == 0) { // treat r0 as zero alu_out = im_val; } else { intptr_t ra_val = get_register(ra); alu_out = ra_val + im_val; } set_register(rt, alu_out); break; } case BCX: { ExecuteBranchConditional(instr, BC_OFFSET); break; } case BX: { int offset = (instr->Bits(25, 2) << 8) >> 6; if (instr->Bit(0) == 1) { // LK flag set special_reg_lr_ = get_pc() + 4; } set_pc(get_pc() + offset); // todo - AA flag break; } case MCRF: UNIMPLEMENTED(); // Not used by V8. case BCLRX: ExecuteBranchConditional(instr, BC_LINK_REG); break; case BCCTRX: ExecuteBranchConditional(instr, BC_CTR_REG); break; case CRNOR: case RFI: case CRANDC: UNIMPLEMENTED(); case ISYNC: { // todo - simulate isync break; } case CRXOR: { int bt = instr->Bits(25, 21); int ba = instr->Bits(20, 16); int bb = instr->Bits(15, 11); int ba_val = ((0x80000000 >> ba) & condition_reg_) == 0 ? 0 : 1; int bb_val = ((0x80000000 >> bb) & condition_reg_) == 0 ? 0 : 1; int bt_val = ba_val ^ bb_val; bt_val = bt_val << (31 - bt); // shift bit to correct destination condition_reg_ &= ~(0x80000000 >> bt); condition_reg_ |= bt_val; break; } case CREQV: { int bt = instr->Bits(25, 21); int ba = instr->Bits(20, 16); int bb = instr->Bits(15, 11); int ba_val = ((0x80000000 >> ba) & condition_reg_) == 0 ? 0 : 1; int bb_val = ((0x80000000 >> bb) & condition_reg_) == 0 ? 0 : 1; int bt_val = 1 - (ba_val ^ bb_val); bt_val = bt_val << (31 - bt); // shift bit to correct destination condition_reg_ &= ~(0x80000000 >> bt); condition_reg_ |= bt_val; break; } case CRNAND: case CRAND: case CRORC: case CROR: { UNIMPLEMENTED(); // Not used by V8. break; } case RLWIMIX: { int ra = instr->RAValue(); int rs = instr->RSValue(); uint32_t rs_val = get_register(rs); int32_t ra_val = get_register(ra); int sh = instr->Bits(15, 11); int mb = instr->Bits(10, 6); int me = instr->Bits(5, 1); uint32_t result = base::bits::RotateLeft32(rs_val, sh); int mask = 0; if (mb < me + 1) { int bit = 0x80000000 >> mb; for (; mb <= me; mb++) { mask |= bit; bit >>= 1; } } else if (mb == me + 1) { mask = 0xffffffff; } else { // mb > me+1 int bit = 0x80000000 >> (me + 1); // needs to be tested mask = 0xffffffff; for (; me < mb; me++) { mask ^= bit; bit >>= 1; } } result &= mask; ra_val &= ~mask; result |= ra_val; set_register(ra, result); if (instr->Bit(0)) { // RC bit set SetCR0(result); } break; } case RLWINMX: case RLWNMX: { int ra = instr->RAValue(); int rs = instr->RSValue(); uint32_t rs_val = get_register(rs); int sh = 0; if (opcode == RLWINMX) { sh = instr->Bits(15, 11); } else { int rb = instr->RBValue(); uint32_t rb_val = get_register(rb); sh = (rb_val & 0x1f); } int mb = instr->Bits(10, 6); int me = instr->Bits(5, 1); uint32_t result = base::bits::RotateLeft32(rs_val, sh); int mask = 0; if (mb < me + 1) { int bit = 0x80000000 >> mb; for (; mb <= me; mb++) { mask |= bit; bit >>= 1; } } else if (mb == me + 1) { mask = 0xffffffff; } else { // mb > me+1 int bit = 0x80000000 >> (me + 1); // needs to be tested mask = 0xffffffff; for (; me < mb; me++) { mask ^= bit; bit >>= 1; } } result &= mask; set_register(ra, result); if (instr->Bit(0)) { // RC bit set SetCR0(result); } break; } case ORI: { int rs = instr->RSValue(); int ra = instr->RAValue(); intptr_t rs_val = get_register(rs); uint32_t im_val = instr->Bits(15, 0); intptr_t alu_out = rs_val | im_val; set_register(ra, alu_out); break; } case ORIS: { int rs = instr->RSValue(); int ra = instr->RAValue(); intptr_t rs_val = get_register(rs); uint32_t im_val = instr->Bits(15, 0); intptr_t alu_out = rs_val | (im_val << 16); set_register(ra, alu_out); break; } case XORI: { int rs = instr->RSValue(); int ra = instr->RAValue(); intptr_t rs_val = get_register(rs); uint32_t im_val = instr->Bits(15, 0); intptr_t alu_out = rs_val ^ im_val; set_register(ra, alu_out); // todo - set condition based SO bit break; } case XORIS: { int rs = instr->RSValue(); int ra = instr->RAValue(); intptr_t rs_val = get_register(rs); uint32_t im_val = instr->Bits(15, 0); intptr_t alu_out = rs_val ^ (im_val << 16); set_register(ra, alu_out); break; } case ANDIx: { int rs = instr->RSValue(); int ra = instr->RAValue(); intptr_t rs_val = get_register(rs); uint32_t im_val = instr->Bits(15, 0); intptr_t alu_out = rs_val & im_val; set_register(ra, alu_out); SetCR0(alu_out); break; } case ANDISx: { int rs = instr->RSValue(); int ra = instr->RAValue(); intptr_t rs_val = get_register(rs); uint32_t im_val = instr->Bits(15, 0); intptr_t alu_out = rs_val & (im_val << 16); set_register(ra, alu_out); SetCR0(alu_out); break; } case SRWX: { int rs = instr->RSValue(); int ra = instr->RAValue(); int rb = instr->RBValue(); uint32_t rs_val = get_register(rs); uintptr_t rb_val = get_register(rb) & 0x3f; intptr_t result = (rb_val > 31) ? 0 : rs_val >> rb_val; set_register(ra, result); if (instr->Bit(0)) { // RC bit set SetCR0(result); } break; } #if V8_TARGET_ARCH_PPC64 case SRDX: { int rs = instr->RSValue(); int ra = instr->RAValue(); int rb = instr->RBValue(); uintptr_t rs_val = get_register(rs); uintptr_t rb_val = get_register(rb) & 0x7f; intptr_t result = (rb_val > 63) ? 0 : rs_val >> rb_val; set_register(ra, result); if (instr->Bit(0)) { // RC bit set SetCR0(result); } break; } #endif case MODUW: { int rt = instr->RTValue(); int ra = instr->RAValue(); int rb = instr->RBValue(); uint32_t ra_val = get_register(ra); uint32_t rb_val = get_register(rb); uint32_t alu_out = (rb_val == 0) ? -1 : ra_val % rb_val; set_register(rt, alu_out); break; } #if V8_TARGET_ARCH_PPC64 case MODUD: { int rt = instr->RTValue(); int ra = instr->RAValue(); int rb = instr->RBValue(); uint64_t ra_val = get_register(ra); uint64_t rb_val = get_register(rb); uint64_t alu_out = (rb_val == 0) ? -1 : ra_val % rb_val; set_register(rt, alu_out); break; } #endif case MODSW: { int rt = instr->RTValue(); int ra = instr->RAValue(); int rb = instr->RBValue(); int32_t ra_val = get_register(ra); int32_t rb_val = get_register(rb); bool overflow = (ra_val == kMinInt && rb_val == -1); // result is undefined if divisor is zero or if operation // is 0x80000000 / -1. int32_t alu_out = (rb_val == 0 || overflow) ? -1 : ra_val % rb_val; set_register(rt, alu_out); break; } #if V8_TARGET_ARCH_PPC64 case MODSD: { int rt = instr->RTValue(); int ra = instr->RAValue(); int rb = instr->RBValue(); int64_t ra_val = get_register(ra); int64_t rb_val = get_register(rb); int64_t one = 1; // work-around gcc int64_t kMinLongLong = (one << 63); // result is undefined if divisor is zero or if operation // is 0x80000000_00000000 / -1. int64_t alu_out = (rb_val == 0 || (ra_val == kMinLongLong && rb_val == -1)) ? -1 : ra_val % rb_val; set_register(rt, alu_out); break; } #endif case SRAW: { int rs = instr->RSValue(); int ra = instr->RAValue(); int rb = instr->RBValue(); int32_t rs_val = get_register(rs); intptr_t rb_val = get_register(rb) & 0x3f; intptr_t result = (rb_val > 31) ? rs_val >> 31 : rs_val >> rb_val; set_register(ra, result); if (instr->Bit(0)) { // RC bit set SetCR0(result); } break; } #if V8_TARGET_ARCH_PPC64 case SRAD: { int rs = instr->RSValue(); int ra = instr->RAValue(); int rb = instr->RBValue(); intptr_t rs_val = get_register(rs); intptr_t rb_val = get_register(rb) & 0x7f; intptr_t result = (rb_val > 63) ? rs_val >> 63 : rs_val >> rb_val; set_register(ra, result); if (instr->Bit(0)) { // RC bit set SetCR0(result); } break; } #endif case SRAWIX: { int ra = instr->RAValue(); int rs = instr->RSValue(); int sh = instr->Bits(15, 11); int32_t rs_val = get_register(rs); intptr_t result = rs_val >> sh; set_register(ra, result); if (instr->Bit(0)) { // RC bit set SetCR0(result); } break; } #if V8_TARGET_ARCH_PPC64 case EXTSW: { const int shift = kBitsPerPointer - 32; int ra = instr->RAValue(); int rs = instr->RSValue(); intptr_t rs_val = get_register(rs); intptr_t ra_val = (rs_val << shift) >> shift; set_register(ra, ra_val); if (instr->Bit(0)) { // RC bit set SetCR0(ra_val); } break; } #endif case EXTSH: { const int shift = kBitsPerPointer - 16; int ra = instr->RAValue(); int rs = instr->RSValue(); intptr_t rs_val = get_register(rs); intptr_t ra_val = (rs_val << shift) >> shift; set_register(ra, ra_val); if (instr->Bit(0)) { // RC bit set SetCR0(ra_val); } break; } case EXTSB: { const int shift = kBitsPerPointer - 8; int ra = instr->RAValue(); int rs = instr->RSValue(); intptr_t rs_val = get_register(rs); intptr_t ra_val = (rs_val << shift) >> shift; set_register(ra, ra_val); if (instr->Bit(0)) { // RC bit set SetCR0(ra_val); } break; } case LFSUX: case LFSX: { int frt = instr->RTValue(); int ra = instr->RAValue(); int rb = instr->RBValue(); intptr_t ra_val = ra == 0 ? 0 : get_register(ra); intptr_t rb_val = get_register(rb); int32_t val = ReadW(ra_val + rb_val, instr); float* fptr = reinterpret_cast(&val); set_d_register_from_double(frt, static_cast(*fptr)); if (opcode == LFSUX) { DCHECK(ra != 0); set_register(ra, ra_val + rb_val); } break; } case LFDUX: case LFDX: { int frt = instr->RTValue(); int ra = instr->RAValue(); int rb = instr->RBValue(); intptr_t ra_val = ra == 0 ? 0 : get_register(ra); intptr_t rb_val = get_register(rb); int64_t* dptr = reinterpret_cast(ReadDW(ra_val + rb_val)); set_d_register(frt, *dptr); if (opcode == LFDUX) { DCHECK(ra != 0); set_register(ra, ra_val + rb_val); } break; } case STFSUX: { case STFSX: int frs = instr->RSValue(); int ra = instr->RAValue(); int rb = instr->RBValue(); intptr_t ra_val = ra == 0 ? 0 : get_register(ra); intptr_t rb_val = get_register(rb); float frs_val = static_cast(get_double_from_d_register(frs)); int32_t* p = reinterpret_cast(&frs_val); WriteW(ra_val + rb_val, *p, instr); if (opcode == STFSUX) { DCHECK(ra != 0); set_register(ra, ra_val + rb_val); } break; } case STFDUX: { case STFDX: int frs = instr->RSValue(); int ra = instr->RAValue(); int rb = instr->RBValue(); intptr_t ra_val = ra == 0 ? 0 : get_register(ra); intptr_t rb_val = get_register(rb); int64_t frs_val = get_d_register(frs); WriteDW(ra_val + rb_val, frs_val); if (opcode == STFDUX) { DCHECK(ra != 0); set_register(ra, ra_val + rb_val); } break; } case POPCNTW: { int rs = instr->RSValue(); int ra = instr->RAValue(); uintptr_t rs_val = get_register(rs); uintptr_t count = 0; int n = 0; uintptr_t bit = 0x80000000; for (; n < 32; n++) { if (bit & rs_val) count++; bit >>= 1; } set_register(ra, count); break; } #if V8_TARGET_ARCH_PPC64 case POPCNTD: { int rs = instr->RSValue(); int ra = instr->RAValue(); uintptr_t rs_val = get_register(rs); uintptr_t count = 0; int n = 0; uintptr_t bit = 0x8000000000000000UL; for (; n < 64; n++) { if (bit & rs_val) count++; bit >>= 1; } set_register(ra, count); break; } #endif case SYNC: { // todo - simulate sync break; } case ICBI: { // todo - simulate icbi break; } case LWZU: case LWZ: { int ra = instr->RAValue(); int rt = instr->RTValue(); intptr_t ra_val = ra == 0 ? 0 : get_register(ra); int offset = SIGN_EXT_IMM16(instr->Bits(15, 0)); set_register(rt, ReadWU(ra_val + offset, instr)); if (opcode == LWZU) { DCHECK(ra != 0); set_register(ra, ra_val + offset); } break; } case LBZU: case LBZ: { int ra = instr->RAValue(); int rt = instr->RTValue(); intptr_t ra_val = ra == 0 ? 0 : get_register(ra); int offset = SIGN_EXT_IMM16(instr->Bits(15, 0)); set_register(rt, ReadB(ra_val + offset) & 0xFF); if (opcode == LBZU) { DCHECK(ra != 0); set_register(ra, ra_val + offset); } break; } case STWU: case STW: { int ra = instr->RAValue(); int rs = instr->RSValue(); intptr_t ra_val = ra == 0 ? 0 : get_register(ra); int32_t rs_val = get_register(rs); int offset = SIGN_EXT_IMM16(instr->Bits(15, 0)); WriteW(ra_val + offset, rs_val, instr); if (opcode == STWU) { DCHECK(ra != 0); set_register(ra, ra_val + offset); } break; } case SRADIX: { int ra = instr->RAValue(); int rs = instr->RSValue(); int sh = (instr->Bits(15, 11) | (instr->Bit(1) << 5)); intptr_t rs_val = get_register(rs); intptr_t result = rs_val >> sh; set_register(ra, result); if (instr->Bit(0)) { // RC bit set SetCR0(result); } break; } case STBCX: { int rs = instr->RSValue(); int ra = instr->RAValue(); int rb = instr->RBValue(); intptr_t ra_val = ra == 0 ? 0 : get_register(ra); int8_t rs_val = get_register(rs); intptr_t rb_val = get_register(rb); SetCR0(WriteExB(ra_val + rb_val, rs_val)); break; } case STHCX: { int rs = instr->RSValue(); int ra = instr->RAValue(); int rb = instr->RBValue(); intptr_t ra_val = ra == 0 ? 0 : get_register(ra); int16_t rs_val = get_register(rs); intptr_t rb_val = get_register(rb); SetCR0(WriteExH(ra_val + rb_val, rs_val, instr)); break; } case STWCX: { int rs = instr->RSValue(); int ra = instr->RAValue(); int rb = instr->RBValue(); intptr_t ra_val = ra == 0 ? 0 : get_register(ra); int32_t rs_val = get_register(rs); intptr_t rb_val = get_register(rb); SetCR0(WriteExW(ra_val + rb_val, rs_val, instr)); break; } case TW: { // used for call redirection in simulation mode SoftwareInterrupt(instr); break; } case CMP: { int ra = instr->RAValue(); int rb = instr->RBValue(); int cr = instr->Bits(25, 23); uint32_t bf = 0; #if V8_TARGET_ARCH_PPC64 int L = instr->Bit(21); if (L) { #endif intptr_t ra_val = get_register(ra); intptr_t rb_val = get_register(rb); if (ra_val < rb_val) { bf |= 0x80000000; } if (ra_val > rb_val) { bf |= 0x40000000; } if (ra_val == rb_val) { bf |= 0x20000000; } #if V8_TARGET_ARCH_PPC64 } else { int32_t ra_val = get_register(ra); int32_t rb_val = get_register(rb); if (ra_val < rb_val) { bf |= 0x80000000; } if (ra_val > rb_val) { bf |= 0x40000000; } if (ra_val == rb_val) { bf |= 0x20000000; } } #endif uint32_t condition_mask = 0xF0000000U >> (cr * 4); uint32_t condition = bf >> (cr * 4); condition_reg_ = (condition_reg_ & ~condition_mask) | condition; break; } case SUBFCX: { int rt = instr->RTValue(); int ra = instr->RAValue(); int rb = instr->RBValue(); // int oe = instr->Bit(10); uintptr_t ra_val = get_register(ra); uintptr_t rb_val = get_register(rb); uintptr_t alu_out = ~ra_val + rb_val + 1; // Set carry if (ra_val <= rb_val) { special_reg_xer_ = (special_reg_xer_ & ~0xF0000000) | 0x20000000; } else { special_reg_xer_ &= ~0xF0000000; } set_register(rt, alu_out); if (instr->Bit(0)) { // RC bit set SetCR0(alu_out); } // todo - handle OE bit break; } case SUBFEX: { int rt = instr->RTValue(); int ra = instr->RAValue(); int rb = instr->RBValue(); // int oe = instr->Bit(10); uintptr_t ra_val = get_register(ra); uintptr_t rb_val = get_register(rb); uintptr_t alu_out = ~ra_val + rb_val; if (special_reg_xer_ & 0x20000000) { alu_out += 1; } set_register(rt, alu_out); if (instr->Bit(0)) { // RC bit set SetCR0(static_cast(alu_out)); } // todo - handle OE bit break; } case ADDCX: { int rt = instr->RTValue(); int ra = instr->RAValue(); int rb = instr->RBValue(); // int oe = instr->Bit(10); uintptr_t ra_val = get_register(ra); uintptr_t rb_val = get_register(rb); uintptr_t alu_out = ra_val + rb_val; // Set carry if (~ra_val < rb_val) { special_reg_xer_ = (special_reg_xer_ & ~0xF0000000) | 0x20000000; } else { special_reg_xer_ &= ~0xF0000000; } set_register(rt, alu_out); if (instr->Bit(0)) { // RC bit set SetCR0(static_cast(alu_out)); } // todo - handle OE bit break; } case ADDEX: { int rt = instr->RTValue(); int ra = instr->RAValue(); int rb = instr->RBValue(); // int oe = instr->Bit(10); uintptr_t ra_val = get_register(ra); uintptr_t rb_val = get_register(rb); uintptr_t alu_out = ra_val + rb_val; if (special_reg_xer_ & 0x20000000) { alu_out += 1; } set_register(rt, alu_out); if (instr->Bit(0)) { // RC bit set SetCR0(static_cast(alu_out)); } // todo - handle OE bit break; } case MULHWX: { int rt = instr->RTValue(); int ra = instr->RAValue(); int rb = instr->RBValue(); int32_t ra_val = (get_register(ra) & 0xFFFFFFFF); int32_t rb_val = (get_register(rb) & 0xFFFFFFFF); int64_t alu_out = (int64_t)ra_val * (int64_t)rb_val; alu_out >>= 32; set_register(rt, alu_out); if (instr->Bit(0)) { // RC bit set SetCR0(static_cast(alu_out)); } break; } case MULHWUX: { int rt = instr->RTValue(); int ra = instr->RAValue(); int rb = instr->RBValue(); uint32_t ra_val = (get_register(ra) & 0xFFFFFFFF); uint32_t rb_val = (get_register(rb) & 0xFFFFFFFF); uint64_t alu_out = (uint64_t)ra_val * (uint64_t)rb_val; alu_out >>= 32; set_register(rt, alu_out); if (instr->Bit(0)) { // RC bit set SetCR0(static_cast(alu_out)); } break; } case NEGX: { int rt = instr->RTValue(); int ra = instr->RAValue(); intptr_t ra_val = get_register(ra); intptr_t alu_out = 1 + ~ra_val; #if V8_TARGET_ARCH_PPC64 intptr_t one = 1; // work-around gcc intptr_t kOverflowVal = (one << 63); #else intptr_t kOverflowVal = kMinInt; #endif set_register(rt, alu_out); if (instr->Bit(10)) { // OE bit set if (ra_val == kOverflowVal) { special_reg_xer_ |= 0xC0000000; // set SO,OV } else { special_reg_xer_ &= ~0x40000000; // clear OV } } if (instr->Bit(0)) { // RC bit set bool setSO = (special_reg_xer_ & 0x80000000); SetCR0(alu_out, setSO); } break; } case SLWX: { int rs = instr->RSValue(); int ra = instr->RAValue(); int rb = instr->RBValue(); uint32_t rs_val = get_register(rs); uintptr_t rb_val = get_register(rb) & 0x3f; uint32_t result = (rb_val > 31) ? 0 : rs_val << rb_val; set_register(ra, result); if (instr->Bit(0)) { // RC bit set SetCR0(result); } break; } #if V8_TARGET_ARCH_PPC64 case SLDX: { int rs = instr->RSValue(); int ra = instr->RAValue(); int rb = instr->RBValue(); uintptr_t rs_val = get_register(rs); uintptr_t rb_val = get_register(rb) & 0x7f; uintptr_t result = (rb_val > 63) ? 0 : rs_val << rb_val; set_register(ra, result); if (instr->Bit(0)) { // RC bit set SetCR0(result); } break; } case MFVSRD: { DCHECK(!instr->Bit(0)); int frt = instr->RTValue(); int ra = instr->RAValue(); int64_t frt_val = get_d_register(frt); set_register(ra, frt_val); break; } case MFVSRWZ: { DCHECK(!instr->Bit(0)); int frt = instr->RTValue(); int ra = instr->RAValue(); int64_t frt_val = get_d_register(frt); set_register(ra, static_cast(frt_val)); break; } case MTVSRD: { DCHECK(!instr->Bit(0)); int frt = instr->RTValue(); int ra = instr->RAValue(); int64_t ra_val = get_register(ra); set_d_register(frt, ra_val); break; } case MTVSRWA: { DCHECK(!instr->Bit(0)); int frt = instr->RTValue(); int ra = instr->RAValue(); int64_t ra_val = static_cast(get_register(ra)); set_d_register(frt, ra_val); break; } case MTVSRWZ: { DCHECK(!instr->Bit(0)); int frt = instr->RTValue(); int ra = instr->RAValue(); uint64_t ra_val = static_cast(get_register(ra)); set_d_register(frt, ra_val); break; } #endif case CNTLZWX: { int rs = instr->RSValue(); int ra = instr->RAValue(); uintptr_t rs_val = get_register(rs); uintptr_t count = 0; int n = 0; uintptr_t bit = 0x80000000; for (; n < 32; n++) { if (bit & rs_val) break; count++; bit >>= 1; } set_register(ra, count); if (instr->Bit(0)) { // RC Bit set int bf = 0; if (count > 0) { bf |= 0x40000000; } if (count == 0) { bf |= 0x20000000; } condition_reg_ = (condition_reg_ & ~0xF0000000) | bf; } break; } #if V8_TARGET_ARCH_PPC64 case CNTLZDX: { int rs = instr->RSValue(); int ra = instr->RAValue(); uintptr_t rs_val = get_register(rs); uintptr_t count = 0; int n = 0; uintptr_t bit = 0x8000000000000000UL; for (; n < 64; n++) { if (bit & rs_val) break; count++; bit >>= 1; } set_register(ra, count); if (instr->Bit(0)) { // RC Bit set int bf = 0; if (count > 0) { bf |= 0x40000000; } if (count == 0) { bf |= 0x20000000; } condition_reg_ = (condition_reg_ & ~0xF0000000) | bf; } break; } #endif case ANDX: { int rs = instr->RSValue(); int ra = instr->RAValue(); int rb = instr->RBValue(); intptr_t rs_val = get_register(rs); intptr_t rb_val = get_register(rb); intptr_t alu_out = rs_val & rb_val; set_register(ra, alu_out); if (instr->Bit(0)) { // RC Bit set SetCR0(alu_out); } break; } case ANDCX: { int rs = instr->RSValue(); int ra = instr->RAValue(); int rb = instr->RBValue(); intptr_t rs_val = get_register(rs); intptr_t rb_val = get_register(rb); intptr_t alu_out = rs_val & ~rb_val; set_register(ra, alu_out); if (instr->Bit(0)) { // RC Bit set SetCR0(alu_out); } break; } case CMPL: { int ra = instr->RAValue(); int rb = instr->RBValue(); int cr = instr->Bits(25, 23); uint32_t bf = 0; #if V8_TARGET_ARCH_PPC64 int L = instr->Bit(21); if (L) { #endif uintptr_t ra_val = get_register(ra); uintptr_t rb_val = get_register(rb); if (ra_val < rb_val) { bf |= 0x80000000; } if (ra_val > rb_val) { bf |= 0x40000000; } if (ra_val == rb_val) { bf |= 0x20000000; } #if V8_TARGET_ARCH_PPC64 } else { uint32_t ra_val = get_register(ra); uint32_t rb_val = get_register(rb); if (ra_val < rb_val) { bf |= 0x80000000; } if (ra_val > rb_val) { bf |= 0x40000000; } if (ra_val == rb_val) { bf |= 0x20000000; } } #endif uint32_t condition_mask = 0xF0000000U >> (cr * 4); uint32_t condition = bf >> (cr * 4); condition_reg_ = (condition_reg_ & ~condition_mask) | condition; break; } case SUBFX: { int rt = instr->RTValue(); int ra = instr->RAValue(); int rb = instr->RBValue(); // int oe = instr->Bit(10); intptr_t ra_val = get_register(ra); intptr_t rb_val = get_register(rb); intptr_t alu_out = rb_val - ra_val; // todo - figure out underflow set_register(rt, alu_out); if (instr->Bit(0)) { // RC Bit set SetCR0(alu_out); } // todo - handle OE bit break; } case ADDZEX: { int rt = instr->RTValue(); int ra = instr->RAValue(); intptr_t ra_val = get_register(ra); if (special_reg_xer_ & 0x20000000) { ra_val += 1; } set_register(rt, ra_val); if (instr->Bit(0)) { // RC bit set SetCR0(ra_val); } // todo - handle OE bit break; } case NORX: { int rs = instr->RSValue(); int ra = instr->RAValue(); int rb = instr->RBValue(); intptr_t rs_val = get_register(rs); intptr_t rb_val = get_register(rb); intptr_t alu_out = ~(rs_val | rb_val); set_register(ra, alu_out); if (instr->Bit(0)) { // RC bit set SetCR0(alu_out); } break; } case MULLW: { int rt = instr->RTValue(); int ra = instr->RAValue(); int rb = instr->RBValue(); int32_t ra_val = (get_register(ra) & 0xFFFFFFFF); int32_t rb_val = (get_register(rb) & 0xFFFFFFFF); int32_t alu_out = ra_val * rb_val; set_register(rt, alu_out); if (instr->Bit(0)) { // RC bit set SetCR0(alu_out); } // todo - handle OE bit break; } #if V8_TARGET_ARCH_PPC64 case MULLD: { int rt = instr->RTValue(); int ra = instr->RAValue(); int rb = instr->RBValue(); int64_t ra_val = get_register(ra); int64_t rb_val = get_register(rb); int64_t alu_out = ra_val * rb_val; set_register(rt, alu_out); if (instr->Bit(0)) { // RC bit set SetCR0(alu_out); } // todo - handle OE bit break; } #endif case DIVW: { int rt = instr->RTValue(); int ra = instr->RAValue(); int rb = instr->RBValue(); int32_t ra_val = get_register(ra); int32_t rb_val = get_register(rb); bool overflow = (ra_val == kMinInt && rb_val == -1); // result is undefined if divisor is zero or if operation // is 0x80000000 / -1. int32_t alu_out = (rb_val == 0 || overflow) ? -1 : ra_val / rb_val; set_register(rt, alu_out); if (instr->Bit(10)) { // OE bit set if (overflow) { special_reg_xer_ |= 0xC0000000; // set SO,OV } else { special_reg_xer_ &= ~0x40000000; // clear OV } } if (instr->Bit(0)) { // RC bit set bool setSO = (special_reg_xer_ & 0x80000000); SetCR0(alu_out, setSO); } break; } case DIVWU: { int rt = instr->RTValue(); int ra = instr->RAValue(); int rb = instr->RBValue(); uint32_t ra_val = get_register(ra); uint32_t rb_val = get_register(rb); bool overflow = (rb_val == 0); // result is undefined if divisor is zero uint32_t alu_out = (overflow) ? -1 : ra_val / rb_val; set_register(rt, alu_out); if (instr->Bit(10)) { // OE bit set if (overflow) { special_reg_xer_ |= 0xC0000000; // set SO,OV } else { special_reg_xer_ &= ~0x40000000; // clear OV } } if (instr->Bit(0)) { // RC bit set bool setSO = (special_reg_xer_ & 0x80000000); SetCR0(alu_out, setSO); } break; } #if V8_TARGET_ARCH_PPC64 case DIVD: { int rt = instr->RTValue(); int ra = instr->RAValue(); int rb = instr->RBValue(); int64_t ra_val = get_register(ra); int64_t rb_val = get_register(rb); int64_t one = 1; // work-around gcc int64_t kMinLongLong = (one << 63); // result is undefined if divisor is zero or if operation // is 0x80000000_00000000 / -1. int64_t alu_out = (rb_val == 0 || (ra_val == kMinLongLong && rb_val == -1)) ? -1 : ra_val / rb_val; set_register(rt, alu_out); if (instr->Bit(0)) { // RC bit set SetCR0(alu_out); } // todo - handle OE bit break; } case DIVDU: { int rt = instr->RTValue(); int ra = instr->RAValue(); int rb = instr->RBValue(); uint64_t ra_val = get_register(ra); uint64_t rb_val = get_register(rb); // result is undefined if divisor is zero uint64_t alu_out = (rb_val == 0) ? -1 : ra_val / rb_val; set_register(rt, alu_out); if (instr->Bit(0)) { // RC bit set SetCR0(alu_out); } // todo - handle OE bit break; } #endif case ADDX: { int rt = instr->RTValue(); int ra = instr->RAValue(); int rb = instr->RBValue(); // int oe = instr->Bit(10); intptr_t ra_val = get_register(ra); intptr_t rb_val = get_register(rb); intptr_t alu_out = ra_val + rb_val; set_register(rt, alu_out); if (instr->Bit(0)) { // RC bit set SetCR0(alu_out); } // todo - handle OE bit break; } case XORX: { int rs = instr->RSValue(); int ra = instr->RAValue(); int rb = instr->RBValue(); intptr_t rs_val = get_register(rs); intptr_t rb_val = get_register(rb); intptr_t alu_out = rs_val ^ rb_val; set_register(ra, alu_out); if (instr->Bit(0)) { // RC bit set SetCR0(alu_out); } break; } case ORX: { int rs = instr->RSValue(); int ra = instr->RAValue(); int rb = instr->RBValue(); intptr_t rs_val = get_register(rs); intptr_t rb_val = get_register(rb); intptr_t alu_out = rs_val | rb_val; set_register(ra, alu_out); if (instr->Bit(0)) { // RC bit set SetCR0(alu_out); } break; } case ORC: { int rs = instr->RSValue(); int ra = instr->RAValue(); int rb = instr->RBValue(); intptr_t rs_val = get_register(rs); intptr_t rb_val = get_register(rb); intptr_t alu_out = rs_val | ~rb_val; set_register(ra, alu_out); if (instr->Bit(0)) { // RC bit set SetCR0(alu_out); } break; } case MFSPR: { int rt = instr->RTValue(); int spr = instr->Bits(20, 11); if (spr != 256) { UNIMPLEMENTED(); // Only LRLR supported } set_register(rt, special_reg_lr_); break; } case MTSPR: { int rt = instr->RTValue(); intptr_t rt_val = get_register(rt); int spr = instr->Bits(20, 11); if (spr == 256) { special_reg_lr_ = rt_val; } else if (spr == 288) { special_reg_ctr_ = rt_val; } else if (spr == 32) { special_reg_xer_ = rt_val; } else { UNIMPLEMENTED(); // Only LR supported } break; } case MFCR: { int rt = instr->RTValue(); set_register(rt, condition_reg_); break; } case STWUX: case STWX: { int rs = instr->RSValue(); int ra = instr->RAValue(); int rb = instr->RBValue(); intptr_t ra_val = ra == 0 ? 0 : get_register(ra); int32_t rs_val = get_register(rs); intptr_t rb_val = get_register(rb); WriteW(ra_val + rb_val, rs_val, instr); if (opcode == STWUX) { DCHECK(ra != 0); set_register(ra, ra_val + rb_val); } break; } case STBUX: case STBX: { int rs = instr->RSValue(); int ra = instr->RAValue(); int rb = instr->RBValue(); intptr_t ra_val = ra == 0 ? 0 : get_register(ra); int8_t rs_val = get_register(rs); intptr_t rb_val = get_register(rb); WriteB(ra_val + rb_val, rs_val); if (opcode == STBUX) { DCHECK(ra != 0); set_register(ra, ra_val + rb_val); } break; } case STHUX: case STHX: { int rs = instr->RSValue(); int ra = instr->RAValue(); int rb = instr->RBValue(); intptr_t ra_val = ra == 0 ? 0 : get_register(ra); int16_t rs_val = get_register(rs); intptr_t rb_val = get_register(rb); WriteH(ra_val + rb_val, rs_val, instr); if (opcode == STHUX) { DCHECK(ra != 0); set_register(ra, ra_val + rb_val); } break; } case LWZX: case LWZUX: { int rt = instr->RTValue(); int ra = instr->RAValue(); int rb = instr->RBValue(); intptr_t ra_val = ra == 0 ? 0 : get_register(ra); intptr_t rb_val = get_register(rb); set_register(rt, ReadWU(ra_val + rb_val, instr)); if (opcode == LWZUX) { DCHECK(ra != 0 && ra != rt); set_register(ra, ra_val + rb_val); } break; } #if V8_TARGET_ARCH_PPC64 case LWAX: { int rt = instr->RTValue(); int ra = instr->RAValue(); int rb = instr->RBValue(); intptr_t ra_val = ra == 0 ? 0 : get_register(ra); intptr_t rb_val = get_register(rb); set_register(rt, ReadW(ra_val + rb_val, instr)); break; } case LDX: case LDUX: { int rt = instr->RTValue(); int ra = instr->RAValue(); int rb = instr->RBValue(); intptr_t ra_val = ra == 0 ? 0 : get_register(ra); intptr_t rb_val = get_register(rb); intptr_t* result = ReadDW(ra_val + rb_val); set_register(rt, *result); if (opcode == LDUX) { DCHECK(ra != 0 && ra != rt); set_register(ra, ra_val + rb_val); } break; } case STDX: case STDUX: { int rs = instr->RSValue(); int ra = instr->RAValue(); int rb = instr->RBValue(); intptr_t ra_val = ra == 0 ? 0 : get_register(ra); intptr_t rs_val = get_register(rs); intptr_t rb_val = get_register(rb); WriteDW(ra_val + rb_val, rs_val); if (opcode == STDUX) { DCHECK(ra != 0); set_register(ra, ra_val + rb_val); } break; } #endif case LBZX: case LBZUX: { int rt = instr->RTValue(); int ra = instr->RAValue(); int rb = instr->RBValue(); intptr_t ra_val = ra == 0 ? 0 : get_register(ra); intptr_t rb_val = get_register(rb); set_register(rt, ReadBU(ra_val + rb_val) & 0xFF); if (opcode == LBZUX) { DCHECK(ra != 0 && ra != rt); set_register(ra, ra_val + rb_val); } break; } case LHZX: case LHZUX: { int rt = instr->RTValue(); int ra = instr->RAValue(); int rb = instr->RBValue(); intptr_t ra_val = ra == 0 ? 0 : get_register(ra); intptr_t rb_val = get_register(rb); set_register(rt, ReadHU(ra_val + rb_val, instr) & 0xFFFF); if (opcode == LHZUX) { DCHECK(ra != 0 && ra != rt); set_register(ra, ra_val + rb_val); } break; } case LHAX: { int rt = instr->RTValue(); int ra = instr->RAValue(); int rb = instr->RBValue(); intptr_t ra_val = ra == 0 ? 0 : get_register(ra); intptr_t rb_val = get_register(rb); set_register(rt, ReadH(ra_val + rb_val, instr)); break; } case LBARX: { int rt = instr->RTValue(); int ra = instr->RAValue(); int rb = instr->RBValue(); intptr_t ra_val = ra == 0 ? 0 : get_register(ra); intptr_t rb_val = get_register(rb); set_register(rt, ReadExBU(ra_val + rb_val) & 0xFF); break; } case LHARX: { int rt = instr->RTValue(); int ra = instr->RAValue(); int rb = instr->RBValue(); intptr_t ra_val = ra == 0 ? 0 : get_register(ra); intptr_t rb_val = get_register(rb); set_register(rt, ReadExHU(ra_val + rb_val, instr)); break; } case LWARX: { int rt = instr->RTValue(); int ra = instr->RAValue(); int rb = instr->RBValue(); intptr_t ra_val = ra == 0 ? 0 : get_register(ra); intptr_t rb_val = get_register(rb); set_register(rt, ReadExWU(ra_val + rb_val, instr)); break; } case DCBF: { // todo - simulate dcbf break; } case ISEL: { int rt = instr->RTValue(); int ra = instr->RAValue(); int rb = instr->RBValue(); int condition_bit = instr->RCValue(); int condition_mask = 0x80000000 >> condition_bit; intptr_t ra_val = (ra == 0) ? 0 : get_register(ra); intptr_t rb_val = get_register(rb); intptr_t value = (condition_reg_ & condition_mask) ? ra_val : rb_val; set_register(rt, value); break; } case STBU: case STB: { int ra = instr->RAValue(); int rs = instr->RSValue(); intptr_t ra_val = ra == 0 ? 0 : get_register(ra); int8_t rs_val = get_register(rs); int offset = SIGN_EXT_IMM16(instr->Bits(15, 0)); WriteB(ra_val + offset, rs_val); if (opcode == STBU) { DCHECK(ra != 0); set_register(ra, ra_val + offset); } break; } case LHZU: case LHZ: { int ra = instr->RAValue(); int rt = instr->RTValue(); intptr_t ra_val = ra == 0 ? 0 : get_register(ra); int offset = SIGN_EXT_IMM16(instr->Bits(15, 0)); uintptr_t result = ReadHU(ra_val + offset, instr) & 0xffff; set_register(rt, result); if (opcode == LHZU) { set_register(ra, ra_val + offset); } break; } case LHA: case LHAU: { int ra = instr->RAValue(); int rt = instr->RTValue(); intptr_t ra_val = ra == 0 ? 0 : get_register(ra); int offset = SIGN_EXT_IMM16(instr->Bits(15, 0)); intptr_t result = ReadH(ra_val + offset, instr); set_register(rt, result); if (opcode == LHAU) { set_register(ra, ra_val + offset); } break; } case STHU: case STH: { int ra = instr->RAValue(); int rs = instr->RSValue(); intptr_t ra_val = ra == 0 ? 0 : get_register(ra); int16_t rs_val = get_register(rs); int offset = SIGN_EXT_IMM16(instr->Bits(15, 0)); WriteH(ra_val + offset, rs_val, instr); if (opcode == STHU) { DCHECK(ra != 0); set_register(ra, ra_val + offset); } break; } case LMW: case STMW: { UNIMPLEMENTED(); break; } case LFSU: case LFS: { int frt = instr->RTValue(); int ra = instr->RAValue(); int32_t offset = SIGN_EXT_IMM16(instr->Bits(15, 0)); intptr_t ra_val = ra == 0 ? 0 : get_register(ra); int32_t val = ReadW(ra_val + offset, instr); float* fptr = reinterpret_cast(&val); #if V8_HOST_ARCH_IA32 || V8_HOST_ARCH_X64 // Conversion using double changes sNan to qNan on ia32/x64 if ((val & 0x7f800000) == 0x7f800000) { int64_t dval = static_cast(val); dval = ((dval & 0xc0000000) << 32) | ((dval & 0x40000000) << 31) | ((dval & 0x40000000) << 30) | ((dval & 0x7fffffff) << 29) | 0x0; set_d_register(frt, dval); } else { set_d_register_from_double(frt, static_cast(*fptr)); } #else set_d_register_from_double(frt, static_cast(*fptr)); #endif if (opcode == LFSU) { DCHECK(ra != 0); set_register(ra, ra_val + offset); } break; } case LFDU: case LFD: { int frt = instr->RTValue(); int ra = instr->RAValue(); int32_t offset = SIGN_EXT_IMM16(instr->Bits(15, 0)); intptr_t ra_val = ra == 0 ? 0 : get_register(ra); int64_t* dptr = reinterpret_cast(ReadDW(ra_val + offset)); set_d_register(frt, *dptr); if (opcode == LFDU) { DCHECK(ra != 0); set_register(ra, ra_val + offset); } break; } case STFSU: { case STFS: int frs = instr->RSValue(); int ra = instr->RAValue(); int32_t offset = SIGN_EXT_IMM16(instr->Bits(15, 0)); intptr_t ra_val = ra == 0 ? 0 : get_register(ra); float frs_val = static_cast(get_double_from_d_register(frs)); int32_t* p; #if V8_HOST_ARCH_IA32 || V8_HOST_ARCH_X64 // Conversion using double changes sNan to qNan on ia32/x64 int32_t sval = 0; int64_t dval = get_d_register(frs); if ((dval & 0x7ff0000000000000) == 0x7ff0000000000000) { sval = ((dval & 0xc000000000000000) >> 32) | ((dval & 0x07ffffffe0000000) >> 29); p = &sval; } else { p = reinterpret_cast(&frs_val); } #else p = reinterpret_cast(&frs_val); #endif WriteW(ra_val + offset, *p, instr); if (opcode == STFSU) { DCHECK(ra != 0); set_register(ra, ra_val + offset); } break; } case STFDU: case STFD: { int frs = instr->RSValue(); int ra = instr->RAValue(); int32_t offset = SIGN_EXT_IMM16(instr->Bits(15, 0)); intptr_t ra_val = ra == 0 ? 0 : get_register(ra); int64_t frs_val = get_d_register(frs); WriteDW(ra_val + offset, frs_val); if (opcode == STFDU) { DCHECK(ra != 0); set_register(ra, ra_val + offset); } break; } case FCFIDS: { // fcfids int frt = instr->RTValue(); int frb = instr->RBValue(); int64_t frb_val = get_d_register(frb); double frt_val = static_cast(frb_val); set_d_register_from_double(frt, frt_val); return; } case FCFIDUS: { // fcfidus int frt = instr->RTValue(); int frb = instr->RBValue(); uint64_t frb_val = get_d_register(frb); double frt_val = static_cast(frb_val); set_d_register_from_double(frt, frt_val); return; } case FDIV: { int frt = instr->RTValue(); int fra = instr->RAValue(); int frb = instr->RBValue(); double fra_val = get_double_from_d_register(fra); double frb_val = get_double_from_d_register(frb); double frt_val = fra_val / frb_val; set_d_register_from_double(frt, frt_val); return; } case FSUB: { int frt = instr->RTValue(); int fra = instr->RAValue(); int frb = instr->RBValue(); double fra_val = get_double_from_d_register(fra); double frb_val = get_double_from_d_register(frb); double frt_val = fra_val - frb_val; set_d_register_from_double(frt, frt_val); return; } case FADD: { int frt = instr->RTValue(); int fra = instr->RAValue(); int frb = instr->RBValue(); double fra_val = get_double_from_d_register(fra); double frb_val = get_double_from_d_register(frb); double frt_val = fra_val + frb_val; set_d_register_from_double(frt, frt_val); return; } case FSQRT: { lazily_initialize_fast_sqrt(isolate_); int frt = instr->RTValue(); int frb = instr->RBValue(); double frb_val = get_double_from_d_register(frb); double frt_val = fast_sqrt(frb_val, isolate_); set_d_register_from_double(frt, frt_val); return; } case FSEL: { int frt = instr->RTValue(); int fra = instr->RAValue(); int frb = instr->RBValue(); int frc = instr->RCValue(); double fra_val = get_double_from_d_register(fra); double frb_val = get_double_from_d_register(frb); double frc_val = get_double_from_d_register(frc); double frt_val = ((fra_val >= 0.0) ? frc_val : frb_val); set_d_register_from_double(frt, frt_val); return; } case FMUL: { int frt = instr->RTValue(); int fra = instr->RAValue(); int frc = instr->RCValue(); double fra_val = get_double_from_d_register(fra); double frc_val = get_double_from_d_register(frc); double frt_val = fra_val * frc_val; set_d_register_from_double(frt, frt_val); return; } case FMSUB: { int frt = instr->RTValue(); int fra = instr->RAValue(); int frb = instr->RBValue(); int frc = instr->RCValue(); double fra_val = get_double_from_d_register(fra); double frb_val = get_double_from_d_register(frb); double frc_val = get_double_from_d_register(frc); double frt_val = (fra_val * frc_val) - frb_val; set_d_register_from_double(frt, frt_val); return; } case FMADD: { int frt = instr->RTValue(); int fra = instr->RAValue(); int frb = instr->RBValue(); int frc = instr->RCValue(); double fra_val = get_double_from_d_register(fra); double frb_val = get_double_from_d_register(frb); double frc_val = get_double_from_d_register(frc); double frt_val = (fra_val * frc_val) + frb_val; set_d_register_from_double(frt, frt_val); return; } case FCMPU: { int fra = instr->RAValue(); int frb = instr->RBValue(); double fra_val = get_double_from_d_register(fra); double frb_val = get_double_from_d_register(frb); int cr = instr->Bits(25, 23); int bf = 0; if (fra_val < frb_val) { bf |= 0x80000000; } if (fra_val > frb_val) { bf |= 0x40000000; } if (fra_val == frb_val) { bf |= 0x20000000; } if (std::isunordered(fra_val, frb_val)) { bf |= 0x10000000; } int condition_mask = 0xF0000000 >> (cr * 4); int condition = bf >> (cr * 4); condition_reg_ = (condition_reg_ & ~condition_mask) | condition; return; } case FRIN: { int frt = instr->RTValue(); int frb = instr->RBValue(); double frb_val = get_double_from_d_register(frb); double frt_val = std::round(frb_val); set_d_register_from_double(frt, frt_val); if (instr->Bit(0)) { // RC bit set // UNIMPLEMENTED(); } return; } case FRIZ: { int frt = instr->RTValue(); int frb = instr->RBValue(); double frb_val = get_double_from_d_register(frb); double frt_val = std::trunc(frb_val); set_d_register_from_double(frt, frt_val); if (instr->Bit(0)) { // RC bit set // UNIMPLEMENTED(); } return; } case FRIP: { int frt = instr->RTValue(); int frb = instr->RBValue(); double frb_val = get_double_from_d_register(frb); double frt_val = std::ceil(frb_val); set_d_register_from_double(frt, frt_val); if (instr->Bit(0)) { // RC bit set // UNIMPLEMENTED(); } return; } case FRIM: { int frt = instr->RTValue(); int frb = instr->RBValue(); double frb_val = get_double_from_d_register(frb); double frt_val = std::floor(frb_val); set_d_register_from_double(frt, frt_val); if (instr->Bit(0)) { // RC bit set // UNIMPLEMENTED(); } return; } case FRSP: { int frt = instr->RTValue(); int frb = instr->RBValue(); // frsp round 8-byte double-precision value to // single-precision value double frb_val = get_double_from_d_register(frb); double frt_val = static_cast(frb_val); set_d_register_from_double(frt, frt_val); if (instr->Bit(0)) { // RC bit set // UNIMPLEMENTED(); } return; } case FCFID: { int frt = instr->RTValue(); int frb = instr->RBValue(); int64_t frb_val = get_d_register(frb); double frt_val = static_cast(frb_val); set_d_register_from_double(frt, frt_val); return; } case FCFIDU: { int frt = instr->RTValue(); int frb = instr->RBValue(); uint64_t frb_val = get_d_register(frb); double frt_val = static_cast(frb_val); set_d_register_from_double(frt, frt_val); return; } case FCTID: case FCTIDZ: { int frt = instr->RTValue(); int frb = instr->RBValue(); double frb_val = get_double_from_d_register(frb); int mode = (opcode == FCTIDZ) ? kRoundToZero : (fp_condition_reg_ & kFPRoundingModeMask); int64_t frt_val; int64_t one = 1; // work-around gcc int64_t kMinVal = (one << 63); int64_t kMaxVal = kMinVal - 1; bool invalid_convert = false; if (std::isnan(frb_val)) { frt_val = kMinVal; invalid_convert = true; } else { switch (mode) { case kRoundToZero: frb_val = std::trunc(frb_val); break; case kRoundToPlusInf: frb_val = std::ceil(frb_val); break; case kRoundToMinusInf: frb_val = std::floor(frb_val); break; default: UNIMPLEMENTED(); // Not used by V8. break; } if (frb_val < static_cast(kMinVal)) { frt_val = kMinVal; invalid_convert = true; } else if (frb_val >= static_cast(kMaxVal)) { frt_val = kMaxVal; invalid_convert = true; } else { frt_val = (int64_t)frb_val; } } set_d_register(frt, frt_val); if (invalid_convert) SetFPSCR(VXCVI); return; } case FCTIDU: case FCTIDUZ: { int frt = instr->RTValue(); int frb = instr->RBValue(); double frb_val = get_double_from_d_register(frb); int mode = (opcode == FCTIDUZ) ? kRoundToZero : (fp_condition_reg_ & kFPRoundingModeMask); uint64_t frt_val; uint64_t kMinVal = 0; uint64_t kMaxVal = kMinVal - 1; bool invalid_convert = false; if (std::isnan(frb_val)) { frt_val = kMinVal; invalid_convert = true; } else { switch (mode) { case kRoundToZero: frb_val = std::trunc(frb_val); break; case kRoundToPlusInf: frb_val = std::ceil(frb_val); break; case kRoundToMinusInf: frb_val = std::floor(frb_val); break; default: UNIMPLEMENTED(); // Not used by V8. break; } if (frb_val < static_cast(kMinVal)) { frt_val = kMinVal; invalid_convert = true; } else if (frb_val >= static_cast(kMaxVal)) { frt_val = kMaxVal; invalid_convert = true; } else { frt_val = (uint64_t)frb_val; } } set_d_register(frt, frt_val); if (invalid_convert) SetFPSCR(VXCVI); return; } case FCTIW: case FCTIWZ: { int frt = instr->RTValue(); int frb = instr->RBValue(); double frb_val = get_double_from_d_register(frb); int mode = (opcode == FCTIWZ) ? kRoundToZero : (fp_condition_reg_ & kFPRoundingModeMask); int64_t frt_val; int64_t kMinVal = kMinInt; int64_t kMaxVal = kMaxInt; if (std::isnan(frb_val)) { frt_val = kMinVal; } else { switch (mode) { case kRoundToZero: frb_val = std::trunc(frb_val); break; case kRoundToPlusInf: frb_val = std::ceil(frb_val); break; case kRoundToMinusInf: frb_val = std::floor(frb_val); break; case kRoundToNearest: { double orig = frb_val; frb_val = lround(frb_val); // Round to even if exactly halfway. (lround rounds up) if (std::fabs(frb_val - orig) == 0.5 && ((int64_t)frb_val % 2)) { frb_val += ((frb_val > 0) ? -1.0 : 1.0); } break; } default: UNIMPLEMENTED(); // Not used by V8. break; } if (frb_val < kMinVal) { frt_val = kMinVal; } else if (frb_val > kMaxVal) { frt_val = kMaxVal; } else { frt_val = (int64_t)frb_val; } } set_d_register(frt, frt_val); return; } case FNEG: { int frt = instr->RTValue(); int frb = instr->RBValue(); double frb_val = get_double_from_d_register(frb); double frt_val = -frb_val; set_d_register_from_double(frt, frt_val); return; } case FMR: { int frt = instr->RTValue(); int frb = instr->RBValue(); int64_t frb_val = get_d_register(frb); set_d_register(frt, frb_val); return; } case MTFSFI: { int bf = instr->Bits(25, 23); int imm = instr->Bits(15, 12); int fp_condition_mask = 0xF0000000 >> (bf * 4); fp_condition_reg_ &= ~fp_condition_mask; fp_condition_reg_ |= (imm << (28 - (bf * 4))); if (instr->Bit(0)) { // RC bit set condition_reg_ &= 0xF0FFFFFF; condition_reg_ |= (imm << 23); } return; } case MTFSF: { int frb = instr->RBValue(); int64_t frb_dval = get_d_register(frb); int32_t frb_ival = static_cast((frb_dval)&0xffffffff); int l = instr->Bits(25, 25); if (l == 1) { fp_condition_reg_ = frb_ival; } else { UNIMPLEMENTED(); } if (instr->Bit(0)) { // RC bit set UNIMPLEMENTED(); // int w = instr->Bits(16, 16); // int flm = instr->Bits(24, 17); } return; } case MFFS: { int frt = instr->RTValue(); int64_t lval = static_cast(fp_condition_reg_); set_d_register(frt, lval); return; } case MCRFS: { int bf = instr->Bits(25, 23); int bfa = instr->Bits(20, 18); int cr_shift = (7 - bf) * CRWIDTH; int fp_shift = (7 - bfa) * CRWIDTH; int field_val = (fp_condition_reg_ >> fp_shift) & 0xf; condition_reg_ &= ~(0x0f << cr_shift); condition_reg_ |= (field_val << cr_shift); // Clear copied exception bits switch (bfa) { case 5: ClearFPSCR(VXSOFT); ClearFPSCR(VXSQRT); ClearFPSCR(VXCVI); break; default: UNIMPLEMENTED(); break; } return; } case MTFSB0: { int bt = instr->Bits(25, 21); ClearFPSCR(bt); if (instr->Bit(0)) { // RC bit set UNIMPLEMENTED(); } return; } case MTFSB1: { int bt = instr->Bits(25, 21); SetFPSCR(bt); if (instr->Bit(0)) { // RC bit set UNIMPLEMENTED(); } return; } case FABS: { int frt = instr->RTValue(); int frb = instr->RBValue(); double frb_val = get_double_from_d_register(frb); double frt_val = std::fabs(frb_val); set_d_register_from_double(frt, frt_val); return; } #if V8_TARGET_ARCH_PPC64 case RLDICL: { int ra = instr->RAValue(); int rs = instr->RSValue(); uintptr_t rs_val = get_register(rs); int sh = (instr->Bits(15, 11) | (instr->Bit(1) << 5)); int mb = (instr->Bits(10, 6) | (instr->Bit(5) << 5)); DCHECK(sh >= 0 && sh <= 63); DCHECK(mb >= 0 && mb <= 63); uintptr_t result = base::bits::RotateLeft64(rs_val, sh); uintptr_t mask = 0xffffffffffffffff >> mb; result &= mask; set_register(ra, result); if (instr->Bit(0)) { // RC bit set SetCR0(result); } return; } case RLDICR: { int ra = instr->RAValue(); int rs = instr->RSValue(); uintptr_t rs_val = get_register(rs); int sh = (instr->Bits(15, 11) | (instr->Bit(1) << 5)); int me = (instr->Bits(10, 6) | (instr->Bit(5) << 5)); DCHECK(sh >= 0 && sh <= 63); DCHECK(me >= 0 && me <= 63); uintptr_t result = base::bits::RotateLeft64(rs_val, sh); uintptr_t mask = 0xffffffffffffffff << (63 - me); result &= mask; set_register(ra, result); if (instr->Bit(0)) { // RC bit set SetCR0(result); } return; } case RLDIC: { int ra = instr->RAValue(); int rs = instr->RSValue(); uintptr_t rs_val = get_register(rs); int sh = (instr->Bits(15, 11) | (instr->Bit(1) << 5)); int mb = (instr->Bits(10, 6) | (instr->Bit(5) << 5)); DCHECK(sh >= 0 && sh <= 63); DCHECK(mb >= 0 && mb <= 63); uintptr_t result = base::bits::RotateLeft64(rs_val, sh); uintptr_t mask = (0xffffffffffffffff >> mb) & (0xffffffffffffffff << sh); result &= mask; set_register(ra, result); if (instr->Bit(0)) { // RC bit set SetCR0(result); } return; } case RLDIMI: { int ra = instr->RAValue(); int rs = instr->RSValue(); uintptr_t rs_val = get_register(rs); intptr_t ra_val = get_register(ra); int sh = (instr->Bits(15, 11) | (instr->Bit(1) << 5)); int mb = (instr->Bits(10, 6) | (instr->Bit(5) << 5)); int me = 63 - sh; uintptr_t result = base::bits::RotateLeft64(rs_val, sh); uintptr_t mask = 0; if (mb < me + 1) { uintptr_t bit = 0x8000000000000000 >> mb; for (; mb <= me; mb++) { mask |= bit; bit >>= 1; } } else if (mb == me + 1) { mask = 0xffffffffffffffff; } else { // mb > me+1 uintptr_t bit = 0x8000000000000000 >> (me + 1); // needs to be tested mask = 0xffffffffffffffff; for (; me < mb; me++) { mask ^= bit; bit >>= 1; } } result &= mask; ra_val &= ~mask; result |= ra_val; set_register(ra, result); if (instr->Bit(0)) { // RC bit set SetCR0(result); } return; } case RLDCL: { int ra = instr->RAValue(); int rs = instr->RSValue(); int rb = instr->RBValue(); uintptr_t rs_val = get_register(rs); uintptr_t rb_val = get_register(rb); int sh = (rb_val & 0x3f); int mb = (instr->Bits(10, 6) | (instr->Bit(5) << 5)); DCHECK(sh >= 0 && sh <= 63); DCHECK(mb >= 0 && mb <= 63); uintptr_t result = base::bits::RotateLeft64(rs_val, sh); uintptr_t mask = 0xffffffffffffffff >> mb; result &= mask; set_register(ra, result); if (instr->Bit(0)) { // RC bit set SetCR0(result); } return; } case LD: case LDU: case LWA: { int ra = instr->RAValue(); int rt = instr->RTValue(); int64_t ra_val = ra == 0 ? 0 : get_register(ra); int offset = SIGN_EXT_IMM16(instr->Bits(15, 0) & ~3); switch (instr->Bits(1, 0)) { case 0: { // ld intptr_t* result = ReadDW(ra_val + offset); set_register(rt, *result); break; } case 1: { // ldu intptr_t* result = ReadDW(ra_val + offset); set_register(rt, *result); DCHECK(ra != 0); set_register(ra, ra_val + offset); break; } case 2: { // lwa intptr_t result = ReadW(ra_val + offset, instr); set_register(rt, result); break; } } break; } case STD: case STDU: { int ra = instr->RAValue(); int rs = instr->RSValue(); int64_t ra_val = ra == 0 ? 0 : get_register(ra); int64_t rs_val = get_register(rs); int offset = SIGN_EXT_IMM16(instr->Bits(15, 0) & ~3); WriteDW(ra_val + offset, rs_val); if (opcode == STDU) { DCHECK(ra != 0); set_register(ra, ra_val + offset); } break; } #endif case XSADDDP: { int frt = instr->RTValue(); int fra = instr->RAValue(); int frb = instr->RBValue(); double fra_val = get_double_from_d_register(fra); double frb_val = get_double_from_d_register(frb); double frt_val = fra_val + frb_val; set_d_register_from_double(frt, frt_val); return; } case XSSUBDP: { int frt = instr->RTValue(); int fra = instr->RAValue(); int frb = instr->RBValue(); double fra_val = get_double_from_d_register(fra); double frb_val = get_double_from_d_register(frb); double frt_val = fra_val - frb_val; set_d_register_from_double(frt, frt_val); return; } case XSMULDP: { int frt = instr->RTValue(); int fra = instr->RAValue(); int frb = instr->RBValue(); double fra_val = get_double_from_d_register(fra); double frb_val = get_double_from_d_register(frb); double frt_val = fra_val * frb_val; set_d_register_from_double(frt, frt_val); return; } case XSDIVDP: { int frt = instr->RTValue(); int fra = instr->RAValue(); int frb = instr->RBValue(); double fra_val = get_double_from_d_register(fra); double frb_val = get_double_from_d_register(frb); double frt_val = fra_val / frb_val; set_d_register_from_double(frt, frt_val); return; } default: { UNIMPLEMENTED(); break; } } } // NOLINT void Simulator::Trace(Instruction* instr) { disasm::NameConverter converter; disasm::Disassembler dasm(converter); // use a reasonably large buffer v8::internal::EmbeddedVector buffer; dasm.InstructionDecode(buffer, reinterpret_cast(instr)); PrintF("%05d %08" V8PRIxPTR " %s\n", icount_, reinterpret_cast(instr), buffer.start()); } // Executes the current instruction. void Simulator::ExecuteInstruction(Instruction* instr) { if (v8::internal::FLAG_check_icache) { CheckICache(isolate_->simulator_i_cache(), instr); } pc_modified_ = false; if (::v8::internal::FLAG_trace_sim) { Trace(instr); } uint32_t opcode = instr->OpcodeField(); if (opcode == TWI) { SoftwareInterrupt(instr); } else { ExecuteGeneric(instr); } if (!pc_modified_) { set_pc(reinterpret_cast(instr) + Instruction::kInstrSize); } } void Simulator::Execute() { // Get the PC to simulate. Cannot use the accessor here as we need the // raw PC value and not the one used as input to arithmetic instructions. intptr_t program_counter = get_pc(); if (::v8::internal::FLAG_stop_sim_at == 0) { // Fast version of the dispatch loop without checking whether the simulator // should be stopping at a particular executed instruction. while (program_counter != end_sim_pc) { Instruction* instr = reinterpret_cast(program_counter); icount_++; ExecuteInstruction(instr); program_counter = get_pc(); } } else { // FLAG_stop_sim_at is at the non-default value. Stop in the debugger when // we reach the particular instuction count. while (program_counter != end_sim_pc) { Instruction* instr = reinterpret_cast(program_counter); icount_++; if (icount_ == ::v8::internal::FLAG_stop_sim_at) { PPCDebugger dbg(this); dbg.Debug(); } else { ExecuteInstruction(instr); } program_counter = get_pc(); } } } void Simulator::CallInternal(byte* entry) { // Adjust JS-based stack limit to C-based stack limit. isolate_->stack_guard()->AdjustStackLimitForSimulator(); // Prepare to execute the code at entry if (ABI_USES_FUNCTION_DESCRIPTORS) { // entry is the function descriptor set_pc(*(reinterpret_cast(entry))); } else { // entry is the instruction address set_pc(reinterpret_cast(entry)); } if (ABI_CALL_VIA_IP) { // Put target address in ip (for JS prologue). set_register(r12, get_pc()); } // Put down marker for end of simulation. The simulator will stop simulation // when the PC reaches this value. By saving the "end simulation" value into // the LR the simulation stops when returning to this call point. special_reg_lr_ = end_sim_pc; // Remember the values of non-volatile registers. intptr_t r2_val = get_register(r2); intptr_t r13_val = get_register(r13); intptr_t r14_val = get_register(r14); intptr_t r15_val = get_register(r15); intptr_t r16_val = get_register(r16); intptr_t r17_val = get_register(r17); intptr_t r18_val = get_register(r18); intptr_t r19_val = get_register(r19); intptr_t r20_val = get_register(r20); intptr_t r21_val = get_register(r21); intptr_t r22_val = get_register(r22); intptr_t r23_val = get_register(r23); intptr_t r24_val = get_register(r24); intptr_t r25_val = get_register(r25); intptr_t r26_val = get_register(r26); intptr_t r27_val = get_register(r27); intptr_t r28_val = get_register(r28); intptr_t r29_val = get_register(r29); intptr_t r30_val = get_register(r30); intptr_t r31_val = get_register(fp); // Set up the non-volatile registers with a known value. To be able to check // that they are preserved properly across JS execution. intptr_t callee_saved_value = icount_; set_register(r2, callee_saved_value); set_register(r13, callee_saved_value); set_register(r14, callee_saved_value); set_register(r15, callee_saved_value); set_register(r16, callee_saved_value); set_register(r17, callee_saved_value); set_register(r18, callee_saved_value); set_register(r19, callee_saved_value); set_register(r20, callee_saved_value); set_register(r21, callee_saved_value); set_register(r22, callee_saved_value); set_register(r23, callee_saved_value); set_register(r24, callee_saved_value); set_register(r25, callee_saved_value); set_register(r26, callee_saved_value); set_register(r27, callee_saved_value); set_register(r28, callee_saved_value); set_register(r29, callee_saved_value); set_register(r30, callee_saved_value); set_register(fp, callee_saved_value); // Start the simulation Execute(); // Check that the non-volatile registers have been preserved. if (ABI_TOC_REGISTER != 2) { CHECK_EQ(callee_saved_value, get_register(r2)); } if (ABI_TOC_REGISTER != 13) { CHECK_EQ(callee_saved_value, get_register(r13)); } CHECK_EQ(callee_saved_value, get_register(r14)); CHECK_EQ(callee_saved_value, get_register(r15)); CHECK_EQ(callee_saved_value, get_register(r16)); CHECK_EQ(callee_saved_value, get_register(r17)); CHECK_EQ(callee_saved_value, get_register(r18)); CHECK_EQ(callee_saved_value, get_register(r19)); CHECK_EQ(callee_saved_value, get_register(r20)); CHECK_EQ(callee_saved_value, get_register(r21)); CHECK_EQ(callee_saved_value, get_register(r22)); CHECK_EQ(callee_saved_value, get_register(r23)); CHECK_EQ(callee_saved_value, get_register(r24)); CHECK_EQ(callee_saved_value, get_register(r25)); CHECK_EQ(callee_saved_value, get_register(r26)); CHECK_EQ(callee_saved_value, get_register(r27)); CHECK_EQ(callee_saved_value, get_register(r28)); CHECK_EQ(callee_saved_value, get_register(r29)); CHECK_EQ(callee_saved_value, get_register(r30)); CHECK_EQ(callee_saved_value, get_register(fp)); // Restore non-volatile registers with the original value. set_register(r2, r2_val); set_register(r13, r13_val); set_register(r14, r14_val); set_register(r15, r15_val); set_register(r16, r16_val); set_register(r17, r17_val); set_register(r18, r18_val); set_register(r19, r19_val); set_register(r20, r20_val); set_register(r21, r21_val); set_register(r22, r22_val); set_register(r23, r23_val); set_register(r24, r24_val); set_register(r25, r25_val); set_register(r26, r26_val); set_register(r27, r27_val); set_register(r28, r28_val); set_register(r29, r29_val); set_register(r30, r30_val); set_register(fp, r31_val); } intptr_t Simulator::Call(byte* entry, int argument_count, ...) { va_list parameters; va_start(parameters, argument_count); // Set up arguments // First eight arguments passed in registers r3-r10. int reg_arg_count = (argument_count > 8) ? 8 : argument_count; int stack_arg_count = argument_count - reg_arg_count; for (int i = 0; i < reg_arg_count; i++) { set_register(i + 3, va_arg(parameters, intptr_t)); } // Remaining arguments passed on stack. intptr_t original_stack = get_register(sp); // Compute position of stack on entry to generated code. intptr_t entry_stack = (original_stack - (kNumRequiredStackFrameSlots + stack_arg_count) * sizeof(intptr_t)); if (base::OS::ActivationFrameAlignment() != 0) { entry_stack &= -base::OS::ActivationFrameAlignment(); } // Store remaining arguments on stack, from low to high memory. // +2 is a hack for the LR slot + old SP on PPC intptr_t* stack_argument = reinterpret_cast(entry_stack) + kStackFrameExtraParamSlot; for (int i = 0; i < stack_arg_count; i++) { stack_argument[i] = va_arg(parameters, intptr_t); } va_end(parameters); set_register(sp, entry_stack); CallInternal(entry); // Pop stack passed arguments. CHECK_EQ(entry_stack, get_register(sp)); set_register(sp, original_stack); intptr_t result = get_register(r3); return result; } void Simulator::CallFP(byte* entry, double d0, double d1) { set_d_register_from_double(1, d0); set_d_register_from_double(2, d1); CallInternal(entry); } int32_t Simulator::CallFPReturnsInt(byte* entry, double d0, double d1) { CallFP(entry, d0, d1); int32_t result = get_register(r3); return result; } double Simulator::CallFPReturnsDouble(byte* entry, double d0, double d1) { CallFP(entry, d0, d1); return get_double_from_d_register(1); } uintptr_t Simulator::PushAddress(uintptr_t address) { uintptr_t new_sp = get_register(sp) - sizeof(uintptr_t); uintptr_t* stack_slot = reinterpret_cast(new_sp); *stack_slot = address; set_register(sp, new_sp); return new_sp; } uintptr_t Simulator::PopAddress() { uintptr_t current_sp = get_register(sp); uintptr_t* stack_slot = reinterpret_cast(current_sp); uintptr_t address = *stack_slot; set_register(sp, current_sp + sizeof(uintptr_t)); return address; } Simulator::LocalMonitor::LocalMonitor() : access_state_(MonitorAccess::Open), tagged_addr_(0), size_(TransactionSize::None) {} void Simulator::LocalMonitor::Clear() { access_state_ = MonitorAccess::Open; tagged_addr_ = 0; size_ = TransactionSize::None; } void Simulator::LocalMonitor::NotifyLoad(int32_t addr) { if (access_state_ == MonitorAccess::Exclusive) { // A load could cause a cache eviction which will affect the monitor. As a // result, it's most strict to unconditionally clear the local monitor on // load. Clear(); } } void Simulator::LocalMonitor::NotifyLoadExcl(int32_t addr, TransactionSize size) { access_state_ = MonitorAccess::Exclusive; tagged_addr_ = addr; size_ = size; } void Simulator::LocalMonitor::NotifyStore(int32_t addr) { if (access_state_ == MonitorAccess::Exclusive) { // A store could cause a cache eviction which will affect the // monitor. As a result, it's most strict to unconditionally clear the // local monitor on store. Clear(); } } bool Simulator::LocalMonitor::NotifyStoreExcl(int32_t addr, TransactionSize size) { if (access_state_ == MonitorAccess::Exclusive) { if (addr == tagged_addr_ && size_ == size) { Clear(); return true; } else { Clear(); return false; } } else { DCHECK(access_state_ == MonitorAccess::Open); return false; } } Simulator::GlobalMonitor::Processor::Processor() : access_state_(MonitorAccess::Open), tagged_addr_(0), next_(nullptr), prev_(nullptr) {} void Simulator::GlobalMonitor::Processor::Clear_Locked() { access_state_ = MonitorAccess::Open; tagged_addr_ = 0; } void Simulator::GlobalMonitor::Processor::NotifyLoadExcl_Locked(int32_t addr) { access_state_ = MonitorAccess::Exclusive; tagged_addr_ = addr; } void Simulator::GlobalMonitor::Processor::NotifyStore_Locked( int32_t addr, bool is_requesting_processor) { if (access_state_ == MonitorAccess::Exclusive) { // It is possible that a store caused a cache eviction, // which can affect the montior, so conservatively, // we always clear the monitor. Clear_Locked(); } } bool Simulator::GlobalMonitor::Processor::NotifyStoreExcl_Locked( int32_t addr, bool is_requesting_processor) { if (access_state_ == MonitorAccess::Exclusive) { if (is_requesting_processor) { if (addr == tagged_addr_) { Clear_Locked(); return true; } } else if (addr == tagged_addr_) { Clear_Locked(); return false; } } return false; } Simulator::GlobalMonitor::GlobalMonitor() : head_(nullptr) {} void Simulator::GlobalMonitor::NotifyLoadExcl_Locked(int32_t addr, Processor* processor) { processor->NotifyLoadExcl_Locked(addr); PrependProcessor_Locked(processor); } void Simulator::GlobalMonitor::NotifyStore_Locked(int32_t addr, Processor* processor) { // Notify each processor of the store operation. for (Processor* iter = head_; iter; iter = iter->next_) { bool is_requesting_processor = iter == processor; iter->NotifyStore_Locked(addr, is_requesting_processor); } } bool Simulator::GlobalMonitor::NotifyStoreExcl_Locked(int32_t addr, Processor* processor) { DCHECK(IsProcessorInLinkedList_Locked(processor)); if (processor->NotifyStoreExcl_Locked(addr, true)) { // Notify the other processors that this StoreExcl succeeded. for (Processor* iter = head_; iter; iter = iter->next_) { if (iter != processor) { iter->NotifyStoreExcl_Locked(addr, false); } } return true; } else { return false; } } bool Simulator::GlobalMonitor::IsProcessorInLinkedList_Locked( Processor* processor) const { return head_ == processor || processor->next_ || processor->prev_; } void Simulator::GlobalMonitor::PrependProcessor_Locked(Processor* processor) { if (IsProcessorInLinkedList_Locked(processor)) { return; } if (head_) { head_->prev_ = processor; } processor->prev_ = nullptr; processor->next_ = head_; head_ = processor; } void Simulator::GlobalMonitor::RemoveProcessor(Processor* processor) { base::LockGuard lock_guard(&mutex); if (!IsProcessorInLinkedList_Locked(processor)) { return; } if (processor->prev_) { processor->prev_->next_ = processor->next_; } else { head_ = processor->next_; } if (processor->next_) { processor->next_->prev_ = processor->prev_; } processor->prev_ = nullptr; processor->next_ = nullptr; } } // namespace internal } // namespace v8 #endif // USE_SIMULATOR #endif // V8_TARGET_ARCH_PPC