// Copyright 2014 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include #include "src/api/api.h" #include "src/ast/ast-traversal-visitor.h" #include "src/ast/prettyprinter.h" #include "src/baseline/baseline-batch-compiler.h" #include "src/baseline/baseline.h" #include "src/builtins/builtins.h" #include "src/common/message-template.h" #include "src/debug/debug.h" #include "src/execution/arguments-inl.h" #include "src/execution/frames-inl.h" #include "src/execution/isolate-inl.h" #include "src/execution/messages.h" #include "src/execution/runtime-profiler.h" #include "src/handles/maybe-handles.h" #include "src/init/bootstrapper.h" #include "src/logging/counters.h" #include "src/numbers/conversions.h" #include "src/objects/feedback-vector-inl.h" #include "src/objects/js-array-inl.h" #include "src/objects/template-objects-inl.h" #include "src/parsing/parse-info.h" #include "src/parsing/parsing.h" #include "src/runtime/runtime-utils.h" #include "src/snapshot/snapshot.h" #include "src/strings/string-builder-inl.h" #include "src/utils/ostreams.h" namespace v8 { namespace internal { RUNTIME_FUNCTION(Runtime_AccessCheck) { HandleScope scope(isolate); DCHECK_EQ(1, args.length()); CONVERT_ARG_HANDLE_CHECKED(JSObject, object, 0); if (!isolate->MayAccess(handle(isolate->context(), isolate), object)) { isolate->ReportFailedAccessCheck(object); RETURN_FAILURE_IF_SCHEDULED_EXCEPTION(isolate); } return ReadOnlyRoots(isolate).undefined_value(); } RUNTIME_FUNCTION(Runtime_FatalProcessOutOfMemoryInAllocateRaw) { HandleScope scope(isolate); DCHECK_EQ(0, args.length()); isolate->heap()->FatalProcessOutOfMemory("CodeStubAssembler::AllocateRaw"); UNREACHABLE(); } RUNTIME_FUNCTION(Runtime_FatalProcessOutOfMemoryInvalidArrayLength) { HandleScope scope(isolate); DCHECK_EQ(0, args.length()); isolate->heap()->FatalProcessOutOfMemory("invalid array length"); UNREACHABLE(); } RUNTIME_FUNCTION(Runtime_Throw) { HandleScope scope(isolate); DCHECK_EQ(1, args.length()); return isolate->Throw(args[0]); } RUNTIME_FUNCTION(Runtime_ReThrow) { HandleScope scope(isolate); DCHECK_EQ(1, args.length()); return isolate->ReThrow(args[0]); } RUNTIME_FUNCTION(Runtime_ThrowStackOverflow) { SealHandleScope shs(isolate); DCHECK_LE(0, args.length()); return isolate->StackOverflow(); } RUNTIME_FUNCTION(Runtime_ThrowSymbolAsyncIteratorInvalid) { HandleScope scope(isolate); DCHECK_EQ(0, args.length()); THROW_NEW_ERROR_RETURN_FAILURE( isolate, NewTypeError(MessageTemplate::kSymbolAsyncIteratorInvalid)); } #define THROW_ERROR(isolate, args, call) \ HandleScope scope(isolate); \ DCHECK_LE(1, args.length()); \ CONVERT_SMI_ARG_CHECKED(message_id_smi, 0); \ \ Handle undefined = isolate->factory()->undefined_value(); \ Handle arg0 = (args.length() > 1) ? args.at(1) : undefined; \ Handle arg1 = (args.length() > 2) ? args.at(2) : undefined; \ Handle arg2 = (args.length() > 3) ? args.at(3) : undefined; \ \ MessageTemplate message_id = MessageTemplateFromInt(message_id_smi); \ \ THROW_NEW_ERROR_RETURN_FAILURE(isolate, call(message_id, arg0, arg1, arg2)); RUNTIME_FUNCTION(Runtime_ThrowRangeError) { if (FLAG_correctness_fuzzer_suppressions) { DCHECK_LE(1, args.length()); CONVERT_SMI_ARG_CHECKED(message_id_smi, 0); // If the result of a BigInt computation is truncated to 64 bit, Turbofan // can sometimes truncate intermediate results already, which can prevent // those from exceeding the maximum length, effectively preventing a // RangeError from being thrown. As this is a performance optimization, this // behavior is accepted. To prevent the correctness fuzzer from detecting // this difference, we crash the program. if (MessageTemplateFromInt(message_id_smi) == MessageTemplate::kBigIntTooBig) { FATAL("Aborting on invalid BigInt length"); } } THROW_ERROR(isolate, args, NewRangeError); } RUNTIME_FUNCTION(Runtime_ThrowTypeError) { THROW_ERROR(isolate, args, NewTypeError); } RUNTIME_FUNCTION(Runtime_ThrowTypeErrorIfStrict) { if (GetShouldThrow(isolate, Nothing()) == ShouldThrow::kDontThrow) return ReadOnlyRoots(isolate).undefined_value(); THROW_ERROR(isolate, args, NewTypeError); } #undef THROW_ERROR namespace { const char* ElementsKindToType(ElementsKind fixed_elements_kind) { switch (fixed_elements_kind) { #define ELEMENTS_KIND_CASE(Type, type, TYPE, ctype) \ case TYPE##_ELEMENTS: \ return #Type "Array"; TYPED_ARRAYS(ELEMENTS_KIND_CASE) RAB_GSAB_TYPED_ARRAYS_WITH_TYPED_ARRAY_TYPE(ELEMENTS_KIND_CASE) #undef ELEMENTS_KIND_CASE default: UNREACHABLE(); } } } // namespace RUNTIME_FUNCTION(Runtime_ThrowInvalidTypedArrayAlignment) { HandleScope scope(isolate); DCHECK_EQ(2, args.length()); CONVERT_ARG_HANDLE_CHECKED(Map, map, 0); CONVERT_ARG_HANDLE_CHECKED(String, problem_string, 1); ElementsKind kind = map->elements_kind(); Handle type = isolate->factory()->NewStringFromAsciiChecked(ElementsKindToType(kind)); ExternalArrayType external_type; size_t size; Factory::TypeAndSizeForElementsKind(kind, &external_type, &size); Handle element_size = handle(Smi::FromInt(static_cast(size)), isolate); THROW_NEW_ERROR_RETURN_FAILURE( isolate, NewRangeError(MessageTemplate::kInvalidTypedArrayAlignment, problem_string, type, element_size)); } RUNTIME_FUNCTION(Runtime_UnwindAndFindExceptionHandler) { SealHandleScope shs(isolate); DCHECK_EQ(0, args.length()); return isolate->UnwindAndFindHandler(); } RUNTIME_FUNCTION(Runtime_PromoteScheduledException) { SealHandleScope shs(isolate); DCHECK_EQ(0, args.length()); return isolate->PromoteScheduledException(); } RUNTIME_FUNCTION(Runtime_ThrowReferenceError) { HandleScope scope(isolate); DCHECK_EQ(1, args.length()); CONVERT_ARG_HANDLE_CHECKED(Object, name, 0); THROW_NEW_ERROR_RETURN_FAILURE( isolate, NewReferenceError(MessageTemplate::kNotDefined, name)); } RUNTIME_FUNCTION(Runtime_ThrowAccessedUninitializedVariable) { HandleScope scope(isolate); DCHECK_EQ(1, args.length()); CONVERT_ARG_HANDLE_CHECKED(Object, name, 0); THROW_NEW_ERROR_RETURN_FAILURE( isolate, NewReferenceError(MessageTemplate::kAccessedUninitializedVariable, name)); } RUNTIME_FUNCTION(Runtime_NewError) { HandleScope scope(isolate); DCHECK_EQ(2, args.length()); CONVERT_INT32_ARG_CHECKED(template_index, 0); CONVERT_ARG_HANDLE_CHECKED(Object, arg0, 1); MessageTemplate message_template = MessageTemplateFromInt(template_index); return *isolate->factory()->NewError(message_template, arg0); } RUNTIME_FUNCTION(Runtime_NewTypeError) { HandleScope scope(isolate); DCHECK_LE(args.length(), 4); DCHECK_GE(args.length(), 1); CONVERT_INT32_ARG_CHECKED(template_index, 0); MessageTemplate message_template = MessageTemplateFromInt(template_index); Handle arg0; if (args.length() >= 2) { CHECK(args[1].IsObject()); arg0 = args.at(1); } Handle arg1; if (args.length() >= 3) { CHECK(args[2].IsObject()); arg1 = args.at(2); } Handle arg2; if (args.length() >= 4) { CHECK(args[3].IsObject()); arg2 = args.at(3); } return *isolate->factory()->NewTypeError(message_template, arg0, arg1, arg2); } RUNTIME_FUNCTION(Runtime_NewReferenceError) { HandleScope scope(isolate); DCHECK_EQ(2, args.length()); CONVERT_INT32_ARG_CHECKED(template_index, 0); CONVERT_ARG_HANDLE_CHECKED(Object, arg0, 1); MessageTemplate message_template = MessageTemplateFromInt(template_index); return *isolate->factory()->NewReferenceError(message_template, arg0); } RUNTIME_FUNCTION(Runtime_NewSyntaxError) { HandleScope scope(isolate); DCHECK_EQ(2, args.length()); CONVERT_INT32_ARG_CHECKED(template_index, 0); CONVERT_ARG_HANDLE_CHECKED(Object, arg0, 1); MessageTemplate message_template = MessageTemplateFromInt(template_index); return *isolate->factory()->NewSyntaxError(message_template, arg0); } RUNTIME_FUNCTION(Runtime_ThrowInvalidStringLength) { HandleScope scope(isolate); THROW_NEW_ERROR_RETURN_FAILURE(isolate, NewInvalidStringLengthError()); } RUNTIME_FUNCTION(Runtime_ThrowIteratorResultNotAnObject) { HandleScope scope(isolate); DCHECK_EQ(1, args.length()); CONVERT_ARG_HANDLE_CHECKED(Object, value, 0); THROW_NEW_ERROR_RETURN_FAILURE( isolate, NewTypeError(MessageTemplate::kIteratorResultNotAnObject, value)); } RUNTIME_FUNCTION(Runtime_ThrowThrowMethodMissing) { HandleScope scope(isolate); DCHECK_EQ(0, args.length()); THROW_NEW_ERROR_RETURN_FAILURE( isolate, NewTypeError(MessageTemplate::kThrowMethodMissing)); } RUNTIME_FUNCTION(Runtime_ThrowSymbolIteratorInvalid) { HandleScope scope(isolate); DCHECK_EQ(0, args.length()); THROW_NEW_ERROR_RETURN_FAILURE( isolate, NewTypeError(MessageTemplate::kSymbolIteratorInvalid)); } RUNTIME_FUNCTION(Runtime_ThrowNotConstructor) { HandleScope scope(isolate); DCHECK_EQ(1, args.length()); CONVERT_ARG_HANDLE_CHECKED(Object, object, 0); THROW_NEW_ERROR_RETURN_FAILURE( isolate, NewTypeError(MessageTemplate::kNotConstructor, object)); } RUNTIME_FUNCTION(Runtime_ThrowApplyNonFunction) { HandleScope scope(isolate); DCHECK_EQ(1, args.length()); CONVERT_ARG_HANDLE_CHECKED(Object, object, 0); Handle type = Object::TypeOf(isolate, object); THROW_NEW_ERROR_RETURN_FAILURE( isolate, NewTypeError(MessageTemplate::kApplyNonFunction, object, type)); } RUNTIME_FUNCTION(Runtime_StackGuard) { SealHandleScope shs(isolate); DCHECK_EQ(0, args.length()); TRACE_EVENT0("v8.execute", "V8.StackGuard"); // First check if this is a real stack overflow. StackLimitCheck check(isolate); if (check.JsHasOverflowed()) { return isolate->StackOverflow(); } return isolate->stack_guard()->HandleInterrupts(); } RUNTIME_FUNCTION(Runtime_StackGuardWithGap) { SealHandleScope shs(isolate); DCHECK_EQ(args.length(), 1); CONVERT_UINT32_ARG_CHECKED(gap, 0); TRACE_EVENT0("v8.execute", "V8.StackGuard"); // First check if this is a real stack overflow. StackLimitCheck check(isolate); if (check.JsHasOverflowed(gap)) { return isolate->StackOverflow(); } return isolate->stack_guard()->HandleInterrupts(); } RUNTIME_FUNCTION(Runtime_BytecodeBudgetInterruptFromBytecode) { HandleScope scope(isolate); DCHECK_EQ(1, args.length()); CONVERT_ARG_HANDLE_CHECKED(JSFunction, function, 0); function->SetInterruptBudget(); bool should_mark_for_optimization = function->has_feedback_vector(); if (!function->has_feedback_vector()) { IsCompiledScope is_compiled_scope( function->shared().is_compiled_scope(isolate)); JSFunction::EnsureFeedbackVector(function, &is_compiled_scope); DCHECK(is_compiled_scope.is_compiled()); // Also initialize the invocation count here. This is only really needed for // OSR. When we OSR functions with lazy feedback allocation we want to have // a non zero invocation count so we can inline functions. function->feedback_vector().set_invocation_count(1); } if (CanCompileWithBaseline(isolate, function->shared()) && !function->ActiveTierIsBaseline()) { if (FLAG_baseline_batch_compilation) { isolate->baseline_batch_compiler()->EnqueueFunction(function); } else { IsCompiledScope is_compiled_scope( function->shared().is_compiled_scope(isolate)); Compiler::CompileBaseline(isolate, function, Compiler::CLEAR_EXCEPTION, &is_compiled_scope); } } if (should_mark_for_optimization) { SealHandleScope shs(isolate); isolate->counters()->runtime_profiler_ticks()->Increment(); isolate->runtime_profiler()->MarkCandidatesForOptimizationFromBytecode(); } return ReadOnlyRoots(isolate).undefined_value(); } RUNTIME_FUNCTION(Runtime_BytecodeBudgetInterruptFromCode) { HandleScope scope(isolate); DCHECK_EQ(1, args.length()); CONVERT_ARG_HANDLE_CHECKED(FeedbackCell, feedback_cell, 0); DCHECK(feedback_cell->value().IsFeedbackVector()); FeedbackVector::SetInterruptBudget(*feedback_cell); SealHandleScope shs(isolate); isolate->counters()->runtime_profiler_ticks()->Increment(); isolate->runtime_profiler()->MarkCandidatesForOptimizationFromCode(); return ReadOnlyRoots(isolate).undefined_value(); } RUNTIME_FUNCTION(Runtime_AllocateInYoungGeneration) { HandleScope scope(isolate); DCHECK_EQ(2, args.length()); CONVERT_SMI_ARG_CHECKED(size, 0); CONVERT_SMI_ARG_CHECKED(flags, 1); bool double_align = AllocateDoubleAlignFlag::decode(flags); bool allow_large_object_allocation = AllowLargeObjectAllocationFlag::decode(flags); CHECK(IsAligned(size, kTaggedSize)); CHECK_GT(size, 0); CHECK(FLAG_young_generation_large_objects || size <= kMaxRegularHeapObjectSize); if (!allow_large_object_allocation) { CHECK(size <= kMaxRegularHeapObjectSize); } // TODO(v8:9472): Until double-aligned allocation is fixed for new-space // allocations, don't request it. double_align = false; return *isolate->factory()->NewFillerObject(size, double_align, AllocationType::kYoung, AllocationOrigin::kGeneratedCode); } RUNTIME_FUNCTION(Runtime_AllocateInOldGeneration) { HandleScope scope(isolate); DCHECK_EQ(2, args.length()); CONVERT_SMI_ARG_CHECKED(size, 0); CONVERT_SMI_ARG_CHECKED(flags, 1); bool double_align = AllocateDoubleAlignFlag::decode(flags); bool allow_large_object_allocation = AllowLargeObjectAllocationFlag::decode(flags); CHECK(IsAligned(size, kTaggedSize)); CHECK_GT(size, 0); if (!allow_large_object_allocation) { CHECK(size <= kMaxRegularHeapObjectSize); } return *isolate->factory()->NewFillerObject(size, double_align, AllocationType::kOld, AllocationOrigin::kGeneratedCode); } RUNTIME_FUNCTION(Runtime_AllocateByteArray) { HandleScope scope(isolate); DCHECK_EQ(1, args.length()); CONVERT_SMI_ARG_CHECKED(length, 0); DCHECK_LT(0, length); return *isolate->factory()->NewByteArray(length); } RUNTIME_FUNCTION(Runtime_AllocateSeqOneByteString) { HandleScope scope(isolate); DCHECK_EQ(1, args.length()); CONVERT_SMI_ARG_CHECKED(length, 0); if (length == 0) return ReadOnlyRoots(isolate).empty_string(); Handle result; ASSIGN_RETURN_FAILURE_ON_EXCEPTION( isolate, result, isolate->factory()->NewRawOneByteString(length)); return *result; } RUNTIME_FUNCTION(Runtime_AllocateSeqTwoByteString) { HandleScope scope(isolate); DCHECK_EQ(1, args.length()); CONVERT_SMI_ARG_CHECKED(length, 0); if (length == 0) return ReadOnlyRoots(isolate).empty_string(); Handle result; ASSIGN_RETURN_FAILURE_ON_EXCEPTION( isolate, result, isolate->factory()->NewRawTwoByteString(length)); return *result; } RUNTIME_FUNCTION(Runtime_ThrowIteratorError) { HandleScope scope(isolate); DCHECK_EQ(1, args.length()); CONVERT_ARG_HANDLE_CHECKED(Object, object, 0); return isolate->Throw(*ErrorUtils::NewIteratorError(isolate, object)); } RUNTIME_FUNCTION(Runtime_ThrowSpreadArgError) { HandleScope scope(isolate); DCHECK_EQ(2, args.length()); CONVERT_SMI_ARG_CHECKED(message_id_smi, 0); MessageTemplate message_id = MessageTemplateFromInt(message_id_smi); CONVERT_ARG_HANDLE_CHECKED(Object, object, 1); return ErrorUtils::ThrowSpreadArgError(isolate, message_id, object); } RUNTIME_FUNCTION(Runtime_ThrowCalledNonCallable) { HandleScope scope(isolate); DCHECK_EQ(1, args.length()); CONVERT_ARG_HANDLE_CHECKED(Object, object, 0); return isolate->Throw( *ErrorUtils::NewCalledNonCallableError(isolate, object)); } RUNTIME_FUNCTION(Runtime_ThrowConstructedNonConstructable) { HandleScope scope(isolate); DCHECK_EQ(1, args.length()); CONVERT_ARG_HANDLE_CHECKED(Object, object, 0); return isolate->Throw( *ErrorUtils::NewConstructedNonConstructable(isolate, object)); } RUNTIME_FUNCTION(Runtime_ThrowPatternAssignmentNonCoercible) { HandleScope scope(isolate); DCHECK_EQ(1, args.length()); CONVERT_ARG_HANDLE_CHECKED(Object, object, 0); return ErrorUtils::ThrowLoadFromNullOrUndefined(isolate, object, MaybeHandle()); } RUNTIME_FUNCTION(Runtime_ThrowConstructorReturnedNonObject) { HandleScope scope(isolate); DCHECK_EQ(0, args.length()); THROW_NEW_ERROR_RETURN_FAILURE( isolate, NewTypeError(MessageTemplate::kDerivedConstructorReturnedNonObject)); } // ES6 section 7.3.17 CreateListFromArrayLike (obj) RUNTIME_FUNCTION(Runtime_CreateListFromArrayLike) { HandleScope scope(isolate); DCHECK_EQ(1, args.length()); CONVERT_ARG_HANDLE_CHECKED(Object, object, 0); RETURN_RESULT_OR_FAILURE(isolate, Object::CreateListFromArrayLike( isolate, object, ElementTypes::kAll)); } RUNTIME_FUNCTION(Runtime_IncrementUseCounter) { HandleScope scope(isolate); DCHECK_EQ(1, args.length()); CONVERT_SMI_ARG_CHECKED(counter, 0); isolate->CountUsage(static_cast(counter)); return ReadOnlyRoots(isolate).undefined_value(); } RUNTIME_FUNCTION(Runtime_GetAndResetRuntimeCallStats) { HandleScope scope(isolate); DCHECK_LE(args.length(), 2); #ifdef V8_RUNTIME_CALL_STATS // Append any worker thread runtime call stats to the main table before // printing. isolate->counters()->worker_thread_runtime_call_stats()->AddToMainTable( isolate->counters()->runtime_call_stats()); if (args.length() == 0) { // Without arguments, the result is returned as a string. std::stringstream stats_stream; isolate->counters()->runtime_call_stats()->Print(stats_stream); Handle result = isolate->factory()->NewStringFromAsciiChecked( stats_stream.str().c_str()); isolate->counters()->runtime_call_stats()->Reset(); return *result; } std::FILE* f; if (args[0].IsString()) { // With a string argument, the results are appended to that file. CONVERT_ARG_HANDLE_CHECKED(String, filename, 0); f = std::fopen(filename->ToCString().get(), "a"); DCHECK_NOT_NULL(f); } else { // With an integer argument, the results are written to stdout/stderr. CONVERT_SMI_ARG_CHECKED(fd, 0); DCHECK(fd == 1 || fd == 2); f = fd == 1 ? stdout : stderr; } // The second argument (if any) is a message header to be printed. if (args.length() >= 2) { CONVERT_ARG_HANDLE_CHECKED(String, message, 1); message->PrintOn(f); std::fputc('\n', f); std::fflush(f); } OFStream stats_stream(f); isolate->counters()->runtime_call_stats()->Print(stats_stream); isolate->counters()->runtime_call_stats()->Reset(); if (args[0].IsString()) { std::fclose(f); } else { std::fflush(f); } #endif // V8_RUNTIME_CALL_STATS return ReadOnlyRoots(isolate).undefined_value(); } RUNTIME_FUNCTION(Runtime_OrdinaryHasInstance) { HandleScope scope(isolate); DCHECK_EQ(2, args.length()); CONVERT_ARG_HANDLE_CHECKED(Object, callable, 0); CONVERT_ARG_HANDLE_CHECKED(Object, object, 1); RETURN_RESULT_OR_FAILURE( isolate, Object::OrdinaryHasInstance(isolate, callable, object)); } RUNTIME_FUNCTION(Runtime_Typeof) { HandleScope scope(isolate); DCHECK_EQ(1, args.length()); CONVERT_ARG_HANDLE_CHECKED(Object, object, 0); return *Object::TypeOf(isolate, object); } RUNTIME_FUNCTION(Runtime_AllowDynamicFunction) { HandleScope scope(isolate); DCHECK_EQ(1, args.length()); CONVERT_ARG_HANDLE_CHECKED(JSFunction, target, 0); Handle global_proxy(target->global_proxy(), isolate); return *isolate->factory()->ToBoolean( Builtins::AllowDynamicFunction(isolate, target, global_proxy)); } RUNTIME_FUNCTION(Runtime_CreateAsyncFromSyncIterator) { HandleScope scope(isolate); DCHECK_EQ(1, args.length()); CONVERT_ARG_HANDLE_CHECKED(Object, sync_iterator, 0); if (!sync_iterator->IsJSReceiver()) { THROW_NEW_ERROR_RETURN_FAILURE( isolate, NewTypeError(MessageTemplate::kSymbolIteratorInvalid)); } Handle next; ASSIGN_RETURN_FAILURE_ON_EXCEPTION( isolate, next, Object::GetProperty(isolate, sync_iterator, isolate->factory()->next_string())); return *isolate->factory()->NewJSAsyncFromSyncIterator( Handle::cast(sync_iterator), next); } RUNTIME_FUNCTION(Runtime_GetTemplateObject) { HandleScope scope(isolate); DCHECK_EQ(3, args.length()); CONVERT_ARG_HANDLE_CHECKED(TemplateObjectDescription, description, 0); CONVERT_ARG_HANDLE_CHECKED(SharedFunctionInfo, shared_info, 1); CONVERT_SMI_ARG_CHECKED(slot_id, 2); Handle native_context(isolate->context().native_context(), isolate); return *TemplateObjectDescription::GetTemplateObject( isolate, native_context, description, shared_info, slot_id); } RUNTIME_FUNCTION(Runtime_ReportMessageFromMicrotask) { // Helper to report messages and continue JS execution. This is intended to // behave similarly to reporting exceptions which reach the top-level, but // allow the JS code to continue. HandleScope scope(isolate); DCHECK_EQ(1, args.length()); CONVERT_ARG_HANDLE_CHECKED(Object, exception, 0); DCHECK(!isolate->has_pending_exception()); isolate->set_pending_exception(*exception); MessageLocation* no_location = nullptr; Handle message = isolate->CreateMessageOrAbort(exception, no_location); MessageHandler::ReportMessage(isolate, no_location, message); isolate->clear_pending_exception(); return ReadOnlyRoots(isolate).undefined_value(); } RUNTIME_FUNCTION(Runtime_GetInitializerFunction) { HandleScope scope(isolate); DCHECK_EQ(1, args.length()); CONVERT_ARG_HANDLE_CHECKED(JSReceiver, constructor, 0); Handle key = isolate->factory()->class_fields_symbol(); Handle initializer = JSReceiver::GetDataProperty(constructor, key); return *initializer; } RUNTIME_FUNCTION(Runtime_DoubleToStringWithRadix) { HandleScope scope(isolate); DCHECK_EQ(2, args.length()); CONVERT_DOUBLE_ARG_CHECKED(number, 0); CONVERT_INT32_ARG_CHECKED(radix, 1); char* const str = DoubleToRadixCString(number, radix); Handle result = isolate->factory()->NewStringFromAsciiChecked(str); DeleteArray(str); return *result; } } // namespace internal } // namespace v8