// Copyright 2014 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include #include "src/api/api.h" #include "src/ast/ast-traversal-visitor.h" #include "src/ast/prettyprinter.h" #include "src/builtins/builtins.h" #include "src/common/message-template.h" #include "src/debug/debug.h" #include "src/execution/arguments-inl.h" #include "src/execution/frames-inl.h" #include "src/execution/isolate-inl.h" #include "src/init/bootstrapper.h" #include "src/logging/counters.h" #include "src/numbers/conversions.h" #include "src/objects/feedback-vector-inl.h" #include "src/objects/js-array-inl.h" #include "src/objects/template-objects-inl.h" #include "src/parsing/parse-info.h" #include "src/parsing/parsing.h" #include "src/runtime/runtime-utils.h" #include "src/snapshot/snapshot.h" #include "src/strings/string-builder-inl.h" #include "src/utils/ostreams.h" namespace v8 { namespace internal { RUNTIME_FUNCTION(Runtime_AccessCheck) { HandleScope scope(isolate); DCHECK_EQ(1, args.length()); CONVERT_ARG_HANDLE_CHECKED(JSObject, object, 0); if (!isolate->MayAccess(handle(isolate->context(), isolate), object)) { isolate->ReportFailedAccessCheck(object); RETURN_FAILURE_IF_SCHEDULED_EXCEPTION(isolate); } return ReadOnlyRoots(isolate).undefined_value(); } RUNTIME_FUNCTION(Runtime_FatalProcessOutOfMemoryInAllocateRaw) { HandleScope scope(isolate); DCHECK_EQ(0, args.length()); isolate->heap()->FatalProcessOutOfMemory("CodeStubAssembler::AllocateRaw"); UNREACHABLE(); } RUNTIME_FUNCTION(Runtime_FatalProcessOutOfMemoryInvalidArrayLength) { HandleScope scope(isolate); DCHECK_EQ(0, args.length()); isolate->heap()->FatalProcessOutOfMemory("invalid array length"); UNREACHABLE(); } RUNTIME_FUNCTION(Runtime_Throw) { HandleScope scope(isolate); DCHECK_EQ(1, args.length()); return isolate->Throw(args[0]); } RUNTIME_FUNCTION(Runtime_ReThrow) { HandleScope scope(isolate); DCHECK_EQ(1, args.length()); return isolate->ReThrow(args[0]); } RUNTIME_FUNCTION(Runtime_ThrowStackOverflow) { SealHandleScope shs(isolate); DCHECK_LE(0, args.length()); return isolate->StackOverflow(); } RUNTIME_FUNCTION(Runtime_ThrowSymbolAsyncIteratorInvalid) { HandleScope scope(isolate); DCHECK_EQ(0, args.length()); THROW_NEW_ERROR_RETURN_FAILURE( isolate, NewTypeError(MessageTemplate::kSymbolAsyncIteratorInvalid)); } #define THROW_ERROR(isolate, args, call) \ HandleScope scope(isolate); \ DCHECK_LE(1, args.length()); \ CONVERT_SMI_ARG_CHECKED(message_id_smi, 0); \ \ Handle undefined = isolate->factory()->undefined_value(); \ Handle arg0 = (args.length() > 1) ? args.at(1) : undefined; \ Handle arg1 = (args.length() > 2) ? args.at(2) : undefined; \ Handle arg2 = (args.length() > 3) ? args.at(3) : undefined; \ \ MessageTemplate message_id = MessageTemplateFromInt(message_id_smi); \ \ THROW_NEW_ERROR_RETURN_FAILURE(isolate, call(message_id, arg0, arg1, arg2)); RUNTIME_FUNCTION(Runtime_ThrowRangeError) { if (FLAG_correctness_fuzzer_suppressions) { DCHECK_LE(1, args.length()); CONVERT_SMI_ARG_CHECKED(message_id_smi, 0); // If the result of a BigInt computation is truncated to 64 bit, Turbofan // can sometimes truncate intermediate results already, which can prevent // those from exceeding the maximum length, effectively preventing a // RangeError from being thrown. As this is a performance optimization, this // behavior is accepted. To prevent the correctness fuzzer from detecting // this difference, we crash the program. if (MessageTemplateFromInt(message_id_smi) == MessageTemplate::kBigIntTooBig) { FATAL("Aborting on invalid BigInt length"); } } THROW_ERROR(isolate, args, NewRangeError); } RUNTIME_FUNCTION(Runtime_ThrowTypeError) { THROW_ERROR(isolate, args, NewTypeError); } RUNTIME_FUNCTION(Runtime_ThrowTypeErrorIfStrict) { if (GetShouldThrow(isolate, Nothing()) == ShouldThrow::kDontThrow) return ReadOnlyRoots(isolate).undefined_value(); THROW_ERROR(isolate, args, NewTypeError); } #undef THROW_ERROR namespace { const char* ElementsKindToType(ElementsKind fixed_elements_kind) { switch (fixed_elements_kind) { #define ELEMENTS_KIND_CASE(Type, type, TYPE, ctype) \ case TYPE##_ELEMENTS: \ return #Type "Array"; TYPED_ARRAYS(ELEMENTS_KIND_CASE) #undef ELEMENTS_KIND_CASE default: UNREACHABLE(); } } } // namespace RUNTIME_FUNCTION(Runtime_ThrowInvalidTypedArrayAlignment) { HandleScope scope(isolate); DCHECK_EQ(2, args.length()); CONVERT_ARG_HANDLE_CHECKED(Map, map, 0); CONVERT_ARG_HANDLE_CHECKED(String, problem_string, 1); ElementsKind kind = map->elements_kind(); Handle type = isolate->factory()->NewStringFromAsciiChecked(ElementsKindToType(kind)); ExternalArrayType external_type; size_t size; Factory::TypeAndSizeForElementsKind(kind, &external_type, &size); Handle element_size = handle(Smi::FromInt(static_cast(size)), isolate); THROW_NEW_ERROR_RETURN_FAILURE( isolate, NewRangeError(MessageTemplate::kInvalidTypedArrayAlignment, problem_string, type, element_size)); } RUNTIME_FUNCTION(Runtime_UnwindAndFindExceptionHandler) { SealHandleScope shs(isolate); DCHECK_EQ(0, args.length()); return isolate->UnwindAndFindHandler(); } RUNTIME_FUNCTION(Runtime_PromoteScheduledException) { SealHandleScope shs(isolate); DCHECK_EQ(0, args.length()); return isolate->PromoteScheduledException(); } RUNTIME_FUNCTION(Runtime_ThrowReferenceError) { HandleScope scope(isolate); DCHECK_EQ(1, args.length()); CONVERT_ARG_HANDLE_CHECKED(Object, name, 0); THROW_NEW_ERROR_RETURN_FAILURE( isolate, NewReferenceError(MessageTemplate::kNotDefined, name)); } RUNTIME_FUNCTION(Runtime_ThrowAccessedUninitializedVariable) { HandleScope scope(isolate); DCHECK_EQ(1, args.length()); CONVERT_ARG_HANDLE_CHECKED(Object, name, 0); THROW_NEW_ERROR_RETURN_FAILURE( isolate, NewReferenceError(MessageTemplate::kAccessedUninitializedVariable, name)); } RUNTIME_FUNCTION(Runtime_NewTypeError) { HandleScope scope(isolate); DCHECK_EQ(2, args.length()); CONVERT_INT32_ARG_CHECKED(template_index, 0); CONVERT_ARG_HANDLE_CHECKED(Object, arg0, 1); MessageTemplate message_template = MessageTemplateFromInt(template_index); return *isolate->factory()->NewTypeError(message_template, arg0); } RUNTIME_FUNCTION(Runtime_NewReferenceError) { HandleScope scope(isolate); DCHECK_EQ(2, args.length()); CONVERT_INT32_ARG_CHECKED(template_index, 0); CONVERT_ARG_HANDLE_CHECKED(Object, arg0, 1); MessageTemplate message_template = MessageTemplateFromInt(template_index); return *isolate->factory()->NewReferenceError(message_template, arg0); } RUNTIME_FUNCTION(Runtime_NewSyntaxError) { HandleScope scope(isolate); DCHECK_EQ(2, args.length()); CONVERT_INT32_ARG_CHECKED(template_index, 0); CONVERT_ARG_HANDLE_CHECKED(Object, arg0, 1); MessageTemplate message_template = MessageTemplateFromInt(template_index); return *isolate->factory()->NewSyntaxError(message_template, arg0); } RUNTIME_FUNCTION(Runtime_ThrowInvalidStringLength) { HandleScope scope(isolate); THROW_NEW_ERROR_RETURN_FAILURE(isolate, NewInvalidStringLengthError()); } RUNTIME_FUNCTION(Runtime_ThrowIteratorResultNotAnObject) { HandleScope scope(isolate); DCHECK_EQ(1, args.length()); CONVERT_ARG_HANDLE_CHECKED(Object, value, 0); THROW_NEW_ERROR_RETURN_FAILURE( isolate, NewTypeError(MessageTemplate::kIteratorResultNotAnObject, value)); } RUNTIME_FUNCTION(Runtime_ThrowThrowMethodMissing) { HandleScope scope(isolate); DCHECK_EQ(0, args.length()); THROW_NEW_ERROR_RETURN_FAILURE( isolate, NewTypeError(MessageTemplate::kThrowMethodMissing)); } RUNTIME_FUNCTION(Runtime_ThrowSymbolIteratorInvalid) { HandleScope scope(isolate); DCHECK_EQ(0, args.length()); THROW_NEW_ERROR_RETURN_FAILURE( isolate, NewTypeError(MessageTemplate::kSymbolIteratorInvalid)); } RUNTIME_FUNCTION(Runtime_ThrowNotConstructor) { HandleScope scope(isolate); DCHECK_EQ(1, args.length()); CONVERT_ARG_HANDLE_CHECKED(Object, object, 0); THROW_NEW_ERROR_RETURN_FAILURE( isolate, NewTypeError(MessageTemplate::kNotConstructor, object)); } RUNTIME_FUNCTION(Runtime_ThrowApplyNonFunction) { HandleScope scope(isolate); DCHECK_EQ(1, args.length()); CONVERT_ARG_HANDLE_CHECKED(Object, object, 0); Handle type = Object::TypeOf(isolate, object); THROW_NEW_ERROR_RETURN_FAILURE( isolate, NewTypeError(MessageTemplate::kApplyNonFunction, object, type)); } RUNTIME_FUNCTION(Runtime_StackGuard) { SealHandleScope shs(isolate); DCHECK_EQ(0, args.length()); TRACE_EVENT0("v8.execute", "V8.StackGuard"); // First check if this is a real stack overflow. StackLimitCheck check(isolate); if (check.JsHasOverflowed()) { return isolate->StackOverflow(); } return isolate->stack_guard()->HandleInterrupts(); } RUNTIME_FUNCTION(Runtime_BytecodeBudgetInterrupt) { HandleScope scope(isolate); DCHECK_EQ(1, args.length()); CONVERT_ARG_HANDLE_CHECKED(JSFunction, function, 0); function->raw_feedback_cell().set_interrupt_budget(FLAG_interrupt_budget); if (!function->has_feedback_vector()) { JSFunction::EnsureFeedbackVector(function); // Also initialize the invocation count here. This is only really needed for // OSR. When we OSR functions with lazy feedback allocation we want to have // a non zero invocation count so we can inline functions. function->feedback_vector().set_invocation_count(1); return ReadOnlyRoots(isolate).undefined_value(); } // Handle interrupts. { SealHandleScope shs(isolate); return isolate->stack_guard()->HandleInterrupts(); } } RUNTIME_FUNCTION(Runtime_AllocateInYoungGeneration) { HandleScope scope(isolate); DCHECK_EQ(2, args.length()); CONVERT_SMI_ARG_CHECKED(size, 0); CONVERT_SMI_ARG_CHECKED(flags, 1); bool double_align = AllocateDoubleAlignFlag::decode(flags); bool allow_large_object_allocation = AllowLargeObjectAllocationFlag::decode(flags); CHECK(IsAligned(size, kTaggedSize)); CHECK_GT(size, 0); CHECK(FLAG_young_generation_large_objects || size <= kMaxRegularHeapObjectSize); if (!allow_large_object_allocation) { CHECK(size <= kMaxRegularHeapObjectSize); } // TODO(v8:9472): Until double-aligned allocation is fixed for new-space // allocations, don't request it. double_align = false; return *isolate->factory()->NewFillerObject(size, double_align, AllocationType::kYoung); } RUNTIME_FUNCTION(Runtime_AllocateInOldGeneration) { HandleScope scope(isolate); DCHECK_EQ(2, args.length()); CONVERT_SMI_ARG_CHECKED(size, 0); CONVERT_SMI_ARG_CHECKED(flags, 1); bool double_align = AllocateDoubleAlignFlag::decode(flags); bool allow_large_object_allocation = AllowLargeObjectAllocationFlag::decode(flags); CHECK(IsAligned(size, kTaggedSize)); CHECK_GT(size, 0); if (!allow_large_object_allocation) { CHECK(size <= kMaxRegularHeapObjectSize); } return *isolate->factory()->NewFillerObject(size, double_align, AllocationType::kOld); } RUNTIME_FUNCTION(Runtime_AllocateByteArray) { HandleScope scope(isolate); DCHECK_EQ(1, args.length()); CONVERT_SMI_ARG_CHECKED(length, 0); DCHECK_LT(0, length); return *isolate->factory()->NewByteArray(length); } RUNTIME_FUNCTION(Runtime_AllocateSeqOneByteString) { HandleScope scope(isolate); DCHECK_EQ(1, args.length()); CONVERT_SMI_ARG_CHECKED(length, 0); if (length == 0) return ReadOnlyRoots(isolate).empty_string(); Handle result; ASSIGN_RETURN_FAILURE_ON_EXCEPTION( isolate, result, isolate->factory()->NewRawOneByteString(length)); return *result; } RUNTIME_FUNCTION(Runtime_AllocateSeqTwoByteString) { HandleScope scope(isolate); DCHECK_EQ(1, args.length()); CONVERT_SMI_ARG_CHECKED(length, 0); if (length == 0) return ReadOnlyRoots(isolate).empty_string(); Handle result; ASSIGN_RETURN_FAILURE_ON_EXCEPTION( isolate, result, isolate->factory()->NewRawTwoByteString(length)); return *result; } namespace { bool ComputeLocation(Isolate* isolate, MessageLocation* target) { JavaScriptFrameIterator it(isolate); if (!it.done()) { // Compute the location from the function and the relocation info of the // baseline code. For optimized code this will use the deoptimization // information to get canonical location information. std::vector frames; it.frame()->Summarize(&frames); auto& summary = frames.back().AsJavaScript(); Handle shared(summary.function()->shared(), isolate); Handle script(shared->script(), isolate); SharedFunctionInfo::EnsureSourcePositionsAvailable(isolate, shared); int pos = summary.abstract_code()->SourcePosition(summary.code_offset()); if (script->IsScript() && !(Handle