// Copyright 2012 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #ifndef V8_SERIALIZE_H_ #define V8_SERIALIZE_H_ #include "src/compiler.h" #include "src/hashmap.h" #include "src/heap-profiler.h" #include "src/isolate.h" #include "src/snapshot-source-sink.h" namespace v8 { namespace internal { // A TypeCode is used to distinguish different kinds of external reference. // It is a single bit to make testing for types easy. enum TypeCode { UNCLASSIFIED, // One-of-a-kind references. C_BUILTIN, BUILTIN, RUNTIME_FUNCTION, IC_UTILITY, STATS_COUNTER, TOP_ADDRESS, ACCESSOR, STUB_CACHE_TABLE, RUNTIME_ENTRY, LAZY_DEOPTIMIZATION }; const int kTypeCodeCount = LAZY_DEOPTIMIZATION + 1; const int kFirstTypeCode = UNCLASSIFIED; const int kReferenceIdBits = 16; const int kReferenceIdMask = (1 << kReferenceIdBits) - 1; const int kReferenceTypeShift = kReferenceIdBits; const int kDeoptTableSerializeEntryCount = 64; // ExternalReferenceTable is a helper class that defines the relationship // between external references and their encodings. It is used to build // hashmaps in ExternalReferenceEncoder and ExternalReferenceDecoder. class ExternalReferenceTable { public: static ExternalReferenceTable* instance(Isolate* isolate); ~ExternalReferenceTable() { } int size() const { return refs_.length(); } Address address(int i) { return refs_[i].address; } uint32_t code(int i) { return refs_[i].code; } const char* name(int i) { return refs_[i].name; } int max_id(int code) { return max_id_[code]; } private: explicit ExternalReferenceTable(Isolate* isolate) : refs_(64) { PopulateTable(isolate); } struct ExternalReferenceEntry { Address address; uint32_t code; const char* name; }; void PopulateTable(Isolate* isolate); // For a few types of references, we can get their address from their id. void AddFromId(TypeCode type, uint16_t id, const char* name, Isolate* isolate); // For other types of references, the caller will figure out the address. void Add(Address address, TypeCode type, uint16_t id, const char* name); void Add(Address address, const char* name) { Add(address, UNCLASSIFIED, ++max_id_[UNCLASSIFIED], name); } List refs_; uint16_t max_id_[kTypeCodeCount]; }; class ExternalReferenceEncoder { public: explicit ExternalReferenceEncoder(Isolate* isolate); uint32_t Encode(Address key) const; const char* NameOfAddress(Address key) const; private: HashMap encodings_; static uint32_t Hash(Address key) { return static_cast(reinterpret_cast(key) >> 2); } int IndexOf(Address key) const; void Put(Address key, int index); Isolate* isolate_; }; class ExternalReferenceDecoder { public: explicit ExternalReferenceDecoder(Isolate* isolate); ~ExternalReferenceDecoder(); Address Decode(uint32_t key) const { if (key == 0) return NULL; return *Lookup(key); } private: Address** encodings_; Address* Lookup(uint32_t key) const { int type = key >> kReferenceTypeShift; DCHECK(kFirstTypeCode <= type && type < kTypeCodeCount); int id = key & kReferenceIdMask; return &encodings_[type][id]; } void Put(uint32_t key, Address value) { *Lookup(key) = value; } Isolate* isolate_; }; class AddressMapBase { protected: static void SetValue(HashMap::Entry* entry, uint32_t v) { entry->value = reinterpret_cast(v); } static uint32_t GetValue(HashMap::Entry* entry) { return static_cast(reinterpret_cast(entry->value)); } static HashMap::Entry* LookupEntry(HashMap* map, HeapObject* obj, bool insert) { return map->Lookup(Key(obj), Hash(obj), insert); } private: static uint32_t Hash(HeapObject* obj) { return static_cast(reinterpret_cast(obj->address())); } static void* Key(HeapObject* obj) { return reinterpret_cast(obj->address()); } }; class RootIndexMap : public AddressMapBase { public: explicit RootIndexMap(Isolate* isolate); ~RootIndexMap() { delete map_; } static const int kInvalidRootIndex = -1; int Lookup(HeapObject* obj) { HashMap::Entry* entry = LookupEntry(map_, obj, false); if (entry) return GetValue(entry); return kInvalidRootIndex; } private: HashMap* map_; DISALLOW_COPY_AND_ASSIGN(RootIndexMap); }; class BackReference { public: explicit BackReference(uint32_t bitfield) : bitfield_(bitfield) {} BackReference() : bitfield_(kInvalidValue) {} static BackReference SourceReference() { return BackReference(kSourceValue); } static BackReference LargeObjectReference(uint32_t index) { return BackReference(SpaceBits::encode(LO_SPACE) | ChunkOffsetBits::encode(index)); } static BackReference Reference(AllocationSpace space, uint32_t chunk_index, uint32_t chunk_offset) { DCHECK(IsAligned(chunk_offset, kObjectAlignment)); DCHECK_NE(LO_SPACE, space); return BackReference( SpaceBits::encode(space) | ChunkIndexBits::encode(chunk_index) | ChunkOffsetBits::encode(chunk_offset >> kObjectAlignmentBits)); } bool is_valid() const { return bitfield_ != kInvalidValue; } bool is_source() const { return bitfield_ == kSourceValue; } AllocationSpace space() const { DCHECK(is_valid()); return SpaceBits::decode(bitfield_); } uint32_t chunk_offset() const { DCHECK(is_valid()); return ChunkOffsetBits::decode(bitfield_) << kObjectAlignmentBits; } uint32_t chunk_index() const { DCHECK(is_valid()); return ChunkIndexBits::decode(bitfield_); } uint32_t reference() const { DCHECK(is_valid()); return bitfield_ & (ChunkOffsetBits::kMask | ChunkIndexBits::kMask); } uint32_t bitfield() const { return bitfield_; } private: static const uint32_t kInvalidValue = 0xFFFFFFFF; static const uint32_t kSourceValue = 0xFFFFFFFE; static const int kChunkOffsetSize = kPageSizeBits - kObjectAlignmentBits; static const int kChunkIndexSize = 32 - kChunkOffsetSize - kSpaceTagSize; public: static const int kMaxChunkIndex = (1 << kChunkIndexSize) - 1; private: class ChunkOffsetBits : public BitField {}; class ChunkIndexBits : public BitField {}; class SpaceBits : public BitField { }; uint32_t bitfield_; }; // Mapping objects to their location after deserialization. // This is used during building, but not at runtime by V8. class BackReferenceMap : public AddressMapBase { public: BackReferenceMap() : no_allocation_(), map_(new HashMap(HashMap::PointersMatch)) {} ~BackReferenceMap() { delete map_; } BackReference Lookup(HeapObject* obj) { HashMap::Entry* entry = LookupEntry(map_, obj, false); return entry ? BackReference(GetValue(entry)) : BackReference(); } void Add(HeapObject* obj, BackReference b) { DCHECK(b.is_valid()); DCHECK_EQ(NULL, LookupEntry(map_, obj, false)); HashMap::Entry* entry = LookupEntry(map_, obj, true); SetValue(entry, b.bitfield()); } void AddSourceString(String* string) { Add(string, BackReference::SourceReference()); } private: DisallowHeapAllocation no_allocation_; HashMap* map_; DISALLOW_COPY_AND_ASSIGN(BackReferenceMap); }; // The Serializer/Deserializer class is a common superclass for Serializer and // Deserializer which is used to store common constants and methods used by // both. class SerializerDeserializer: public ObjectVisitor { public: static void Iterate(Isolate* isolate, ObjectVisitor* visitor); static int nop() { return kNop; } // No reservation for large object space necessary. static const int kNumberOfPreallocatedSpaces = LO_SPACE; static const int kNumberOfSpaces = LAST_SPACE + 1; protected: // Where the pointed-to object can be found: enum Where { kNewObject = 0, // Object is next in snapshot. // 1-7 One per space. kRootArray = 0x9, // Object is found in root array. kPartialSnapshotCache = 0xa, // Object is in the cache. kExternalReference = 0xb, // Pointer to an external reference. kSkip = 0xc, // Skip n bytes. kBuiltin = 0xd, // Builtin code object. kAttachedReference = 0xe, // Object is described in an attached list. kNop = 0xf, // Does nothing, used to pad. kBackref = 0x10, // Object is described relative to end. // 0x11-0x17 One per space. kBackrefWithSkip = 0x18, // Object is described relative to end. // 0x19-0x1f One per space. // 0x20-0x3f Used by misc. tags below. kPointedToMask = 0x3f }; // How to code the pointer to the object. enum HowToCode { kPlain = 0, // Straight pointer. // What this means depends on the architecture: kFromCode = 0x40, // A pointer inlined in code. kHowToCodeMask = 0x40 }; // For kRootArrayConstants enum WithSkip { kNoSkipDistance = 0, kHasSkipDistance = 0x40, kWithSkipMask = 0x40 }; // Where to point within the object. enum WhereToPoint { kStartOfObject = 0, kInnerPointer = 0x80, // First insn in code object or payload of cell. kWhereToPointMask = 0x80 }; // Misc. // Raw data to be copied from the snapshot. This byte code does not advance // the current pointer, which is used for code objects, where we write the // entire code in one memcpy, then fix up stuff with kSkip and other byte // codes that overwrite data. static const int kRawData = 0x20; // Some common raw lengths: 0x21-0x3f. These autoadvance the current pointer. // A tag emitted at strategic points in the snapshot to delineate sections. // If the deserializer does not find these at the expected moments then it // is an indication that the snapshot and the VM do not fit together. // Examine the build process for architecture, version or configuration // mismatches. static const int kSynchronize = 0x70; // Used for the source code of the natives, which is in the executable, but // is referred to from external strings in the snapshot. static const int kNativesStringResource = 0x71; static const int kRepeat = 0x72; static const int kConstantRepeat = 0x73; // 0x73-0x7f Repeat last word (subtract 0x72 to get the count). static const int kMaxRepeats = 0x7f - 0x72; static int CodeForRepeats(int repeats) { DCHECK(repeats >= 1 && repeats <= kMaxRepeats); return 0x72 + repeats; } static int RepeatsForCode(int byte_code) { DCHECK(byte_code >= kConstantRepeat && byte_code <= 0x7f); return byte_code - 0x72; } static const int kRootArrayConstants = 0xa0; // 0xa0-0xbf Things from the first 32 elements of the root array. static const int kRootArrayNumberOfConstantEncodings = 0x20; static int RootArrayConstantFromByteCode(int byte_code) { return byte_code & 0x1f; } static const int kAnyOldSpace = -1; // A bitmask for getting the space out of an instruction. static const int kSpaceMask = 7; STATIC_ASSERT(kNumberOfSpaces <= kSpaceMask + 1); }; // A Deserializer reads a snapshot and reconstructs the Object graph it defines. class Deserializer: public SerializerDeserializer { public: // Create a deserializer from a snapshot byte source. explicit Deserializer(SnapshotByteSource* source); virtual ~Deserializer(); // Deserialize the snapshot into an empty heap. void Deserialize(Isolate* isolate); enum OnOOM { FATAL_ON_OOM, NULL_ON_OOM }; // Deserialize a single object and the objects reachable from it. // We may want to abort gracefully even if deserialization fails. void DeserializePartial(Isolate* isolate, Object** root, OnOOM on_oom = FATAL_ON_OOM); void AddReservation(int space, uint32_t chunk) { DCHECK(space >= 0); DCHECK(space < kNumberOfSpaces); reservations_[space].Add({chunk, NULL, NULL}); } void FlushICacheForNewCodeObjects(); // Serialized user code reference certain objects that are provided in a list // By calling this method, we assume that we are deserializing user code. void SetAttachedObjects(Vector >* attached_objects) { attached_objects_ = attached_objects; } bool deserializing_user_code() { return attached_objects_ != NULL; } private: virtual void VisitPointers(Object** start, Object** end); virtual void VisitRuntimeEntry(RelocInfo* rinfo) { UNREACHABLE(); } bool ReserveSpace(); // Allocation sites are present in the snapshot, and must be linked into // a list at deserialization time. void RelinkAllocationSite(AllocationSite* site); // Fills in some heap data in an area from start to end (non-inclusive). The // space id is used for the write barrier. The object_address is the address // of the object we are writing into, or NULL if we are not writing into an // object, i.e. if we are writing a series of tagged values that are not on // the heap. void ReadData(Object** start, Object** end, int space, Address object_address); void ReadObject(int space_number, Object** write_back); Address Allocate(int space_index, int size); // Special handling for serialized code like hooking up internalized strings. HeapObject* ProcessNewObjectFromSerializedCode(HeapObject* obj); Object* ProcessBackRefInSerializedCode(Object* obj); // This returns the address of an object that has been described in the // snapshot by chunk index and offset. HeapObject* GetBackReferencedObject(int space) { if (space == LO_SPACE) { uint32_t index = source_->GetInt(); return deserialized_large_objects_[index]; } else { BackReference back_reference(source_->GetInt()); DCHECK(space < kNumberOfPreallocatedSpaces); uint32_t chunk_index = back_reference.chunk_index(); DCHECK_LE(chunk_index, current_chunk_[space]); uint32_t chunk_offset = back_reference.chunk_offset(); return HeapObject::FromAddress(reservations_[space][chunk_index].start + chunk_offset); } } // Cached current isolate. Isolate* isolate_; // Objects from the attached object descriptions in the serialized user code. Vector >* attached_objects_; SnapshotByteSource* source_; // The address of the next object that will be allocated in each space. // Each space has a number of chunks reserved by the GC, with each chunk // fitting into a page. Deserialized objects are allocated into the // current chunk of the target space by bumping up high water mark. Heap::Reservation reservations_[kNumberOfSpaces]; uint32_t current_chunk_[kNumberOfPreallocatedSpaces]; Address high_water_[kNumberOfPreallocatedSpaces]; ExternalReferenceDecoder* external_reference_decoder_; List deserialized_large_objects_; DISALLOW_COPY_AND_ASSIGN(Deserializer); }; class CodeAddressMap; // There can be only one serializer per V8 process. class Serializer : public SerializerDeserializer { public: Serializer(Isolate* isolate, SnapshotByteSink* sink); ~Serializer(); virtual void VisitPointers(Object** start, Object** end) OVERRIDE; void FinalizeAllocation(); Vector FinalAllocationChunks(int space) const { if (space == LO_SPACE) { return Vector(&large_objects_total_size_, 1); } else { DCHECK_EQ(0, pending_chunk_[space]); // No pending chunks. return completed_chunks_[space].ToConstVector(); } } Isolate* isolate() const { return isolate_; } BackReferenceMap* back_reference_map() { return &back_reference_map_; } RootIndexMap* root_index_map() { return &root_index_map_; } protected: class ObjectSerializer : public ObjectVisitor { public: ObjectSerializer(Serializer* serializer, Object* o, SnapshotByteSink* sink, HowToCode how_to_code, WhereToPoint where_to_point) : serializer_(serializer), object_(HeapObject::cast(o)), sink_(sink), reference_representation_(how_to_code + where_to_point), bytes_processed_so_far_(0), code_object_(o->IsCode()), code_has_been_output_(false) { } void Serialize(); void VisitPointers(Object** start, Object** end); void VisitEmbeddedPointer(RelocInfo* target); void VisitExternalReference(Address* p); void VisitExternalReference(RelocInfo* rinfo); void VisitCodeTarget(RelocInfo* target); void VisitCodeEntry(Address entry_address); void VisitCell(RelocInfo* rinfo); void VisitRuntimeEntry(RelocInfo* reloc); // Used for seralizing the external strings that hold the natives source. void VisitExternalOneByteString( v8::String::ExternalOneByteStringResource** resource); // We can't serialize a heap with external two byte strings. void VisitExternalTwoByteString( v8::String::ExternalStringResource** resource) { UNREACHABLE(); } private: void SerializePrologue(AllocationSpace space, int size, Map* map); enum ReturnSkip { kCanReturnSkipInsteadOfSkipping, kIgnoringReturn }; // This function outputs or skips the raw data between the last pointer and // up to the current position. It optionally can just return the number of // bytes to skip instead of performing a skip instruction, in case the skip // can be merged into the next instruction. int OutputRawData(Address up_to, ReturnSkip return_skip = kIgnoringReturn); // External strings are serialized in a way to resemble sequential strings. void SerializeExternalString(); Serializer* serializer_; HeapObject* object_; SnapshotByteSink* sink_; int reference_representation_; int bytes_processed_so_far_; bool code_object_; bool code_has_been_output_; }; virtual void SerializeObject(HeapObject* o, HowToCode how_to_code, WhereToPoint where_to_point, int skip) = 0; void PutRoot(int index, HeapObject* object, HowToCode how, WhereToPoint where, int skip); void SerializeBackReference(BackReference back_reference, HowToCode how_to_code, WhereToPoint where_to_point, int skip); void InitializeAllocators(); // This will return the space for an object. static AllocationSpace SpaceOfObject(HeapObject* object); BackReference AllocateLargeObject(int size); BackReference Allocate(AllocationSpace space, int size); int EncodeExternalReference(Address addr) { return external_reference_encoder_->Encode(addr); } // GetInt reads 4 bytes at once, requiring padding at the end. void Pad(); // Some roots should not be serialized, because their actual value depends on // absolute addresses and they are reset after deserialization, anyway. bool ShouldBeSkipped(Object** current); // We may not need the code address map for logging for every instance // of the serializer. Initialize it on demand. void InitializeCodeAddressMap(); inline uint32_t max_chunk_size(int space) const { DCHECK_LE(0, space); DCHECK_LT(space, kNumberOfSpaces); return max_chunk_size_[space]; } Isolate* isolate_; SnapshotByteSink* sink_; ExternalReferenceEncoder* external_reference_encoder_; BackReferenceMap back_reference_map_; RootIndexMap root_index_map_; friend class ObjectSerializer; friend class Deserializer; private: CodeAddressMap* code_address_map_; // Objects from the same space are put into chunks for bulk-allocation // when deserializing. We have to make sure that each chunk fits into a // page. So we track the chunk size in pending_chunk_ of a space, but // when it exceeds a page, we complete the current chunk and start a new one. uint32_t pending_chunk_[kNumberOfPreallocatedSpaces]; List completed_chunks_[kNumberOfPreallocatedSpaces]; uint32_t max_chunk_size_[kNumberOfPreallocatedSpaces]; // We map serialized large objects to indexes for back-referencing. uint32_t large_objects_total_size_; uint32_t seen_large_objects_index_; DISALLOW_COPY_AND_ASSIGN(Serializer); }; class PartialSerializer : public Serializer { public: PartialSerializer(Isolate* isolate, Serializer* startup_snapshot_serializer, SnapshotByteSink* sink) : Serializer(isolate, sink), startup_serializer_(startup_snapshot_serializer) { InitializeCodeAddressMap(); } // Serialize the objects reachable from a single object pointer. void Serialize(Object** o); virtual void SerializeObject(HeapObject* o, HowToCode how_to_code, WhereToPoint where_to_point, int skip) OVERRIDE; private: int PartialSnapshotCacheIndex(HeapObject* o); bool ShouldBeInThePartialSnapshotCache(HeapObject* o) { // Scripts should be referred only through shared function infos. We can't // allow them to be part of the partial snapshot because they contain a // unique ID, and deserializing several partial snapshots containing script // would cause dupes. DCHECK(!o->IsScript()); return o->IsName() || o->IsSharedFunctionInfo() || o->IsHeapNumber() || o->IsCode() || o->IsScopeInfo() || o->map() == startup_serializer_->isolate()->heap()->fixed_cow_array_map(); } Serializer* startup_serializer_; DISALLOW_COPY_AND_ASSIGN(PartialSerializer); }; class StartupSerializer : public Serializer { public: StartupSerializer(Isolate* isolate, SnapshotByteSink* sink) : Serializer(isolate, sink), root_index_wave_front_(0) { // Clear the cache of objects used by the partial snapshot. After the // strong roots have been serialized we can create a partial snapshot // which will repopulate the cache with objects needed by that partial // snapshot. isolate->set_serialize_partial_snapshot_cache_length(0); InitializeCodeAddressMap(); } // The StartupSerializer has to serialize the root array, which is slightly // different. virtual void VisitPointers(Object** start, Object** end) OVERRIDE; // Serialize the current state of the heap. The order is: // 1) Strong references. // 2) Partial snapshot cache. // 3) Weak references (e.g. the string table). virtual void SerializeStrongReferences(); virtual void SerializeObject(HeapObject* o, HowToCode how_to_code, WhereToPoint where_to_point, int skip) OVERRIDE; void SerializeWeakReferences(); void Serialize() { SerializeStrongReferences(); SerializeWeakReferences(); Pad(); } private: intptr_t root_index_wave_front_; DISALLOW_COPY_AND_ASSIGN(StartupSerializer); }; class CodeSerializer : public Serializer { public: static ScriptData* Serialize(Isolate* isolate, Handle info, Handle source); MUST_USE_RESULT static MaybeHandle Deserialize( Isolate* isolate, ScriptData* data, Handle source); static const int kSourceObjectIndex = 0; static const int kCodeStubsBaseIndex = 1; String* source() const { DCHECK(!AllowHeapAllocation::IsAllowed()); return source_; } List* stub_keys() { return &stub_keys_; } int num_internalized_strings() const { return num_internalized_strings_; } private: CodeSerializer(Isolate* isolate, SnapshotByteSink* sink, String* source, Code* main_code) : Serializer(isolate, sink), source_(source), main_code_(main_code), num_internalized_strings_(0) { back_reference_map_.AddSourceString(source); } virtual void SerializeObject(HeapObject* o, HowToCode how_to_code, WhereToPoint where_to_point, int skip) OVERRIDE; void SerializeBuiltin(int builtin_index, HowToCode how_to_code, WhereToPoint where_to_point); void SerializeIC(Code* ic, HowToCode how_to_code, WhereToPoint where_to_point); void SerializeCodeStub(uint32_t stub_key, HowToCode how_to_code, WhereToPoint where_to_point); void SerializeSourceObject(HowToCode how_to_code, WhereToPoint where_to_point); void SerializeGeneric(HeapObject* heap_object, HowToCode how_to_code, WhereToPoint where_to_point); int AddCodeStubKey(uint32_t stub_key); DisallowHeapAllocation no_gc_; String* source_; Code* main_code_; int num_internalized_strings_; List stub_keys_; DISALLOW_COPY_AND_ASSIGN(CodeSerializer); }; // Wrapper around ScriptData to provide code-serializer-specific functionality. class SerializedCodeData { public: // Used by when consuming. explicit SerializedCodeData(ScriptData* data, String* source) : script_data_(data), owns_script_data_(false) { DisallowHeapAllocation no_gc; CHECK(IsSane(source)); } // Used when producing. SerializedCodeData(const List& payload, CodeSerializer* cs); ~SerializedCodeData() { if (owns_script_data_) delete script_data_; } // Return ScriptData object and relinquish ownership over it to the caller. ScriptData* GetScriptData() { ScriptData* result = script_data_; script_data_ = NULL; DCHECK(owns_script_data_); owns_script_data_ = false; return result; } class Reservation { public: uint32_t chunk_size() const { return ChunkSizeBits::decode(reservation); } bool is_last_chunk() const { return IsLastChunkBits::decode(reservation); } private: uint32_t reservation; DISALLOW_COPY_AND_ASSIGN(Reservation); }; int NumInternalizedStrings() const { return GetHeaderValue(kNumInternalizedStringsOffset); } Vector Reservations() const { return Vector(reinterpret_cast( script_data_->data() + kHeaderSize), GetHeaderValue(kReservationsOffset)); } Vector CodeStubKeys() const { int reservations_size = GetHeaderValue(kReservationsOffset) * kInt32Size; const byte* start = script_data_->data() + kHeaderSize + reservations_size; return Vector(reinterpret_cast(start), GetHeaderValue(kNumCodeStubKeysOffset)); } const byte* Payload() const { int reservations_size = GetHeaderValue(kReservationsOffset) * kInt32Size; int code_stubs_size = GetHeaderValue(kNumCodeStubKeysOffset) * kInt32Size; return script_data_->data() + kHeaderSize + reservations_size + code_stubs_size; } int PayloadLength() const { int payload_length = GetHeaderValue(kPayloadLengthOffset); DCHECK_EQ(script_data_->data() + script_data_->length(), Payload() + payload_length); return payload_length; } private: void SetHeaderValue(int offset, int value) { reinterpret_cast(const_cast(script_data_->data()))[offset] = value; } int GetHeaderValue(int offset) const { return reinterpret_cast(script_data_->data())[offset]; } bool IsSane(String* source); int CheckSum(String* source); // The data header consists of int-sized entries: // [0] version hash // [1] number of internalized strings // [2] number of code stub keys // [3] payload length // [4..10] reservation sizes for spaces from NEW_SPACE to PROPERTY_CELL_SPACE. static const int kCheckSumOffset = 0; static const int kNumInternalizedStringsOffset = 1; static const int kReservationsOffset = 2; static const int kNumCodeStubKeysOffset = 3; static const int kPayloadLengthOffset = 4; static const int kHeaderSize = (kPayloadLengthOffset + 1) * kIntSize; class ChunkSizeBits : public BitField {}; class IsLastChunkBits : public BitField {}; // Following the header, we store, in sequential order // - code stub keys // - serialization payload ScriptData* script_data_; bool owns_script_data_; }; } } // namespace v8::internal #endif // V8_SERIALIZE_H_