// Copyright 2018 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "src/torque/declarable.h" #include #include #include "src/torque/ast.h" #include "src/torque/global-context.h" #include "src/torque/type-inference.h" #include "src/torque/type-visitor.h" namespace v8 { namespace internal { namespace torque { DEFINE_CONTEXTUAL_VARIABLE(CurrentScope) QualifiedName QualifiedName::Parse(std::string qualified_name) { std::vector qualifications; while (true) { size_t namespace_delimiter_index = qualified_name.find("::"); if (namespace_delimiter_index == std::string::npos) break; qualifications.push_back( qualified_name.substr(0, namespace_delimiter_index)); qualified_name = qualified_name.substr(namespace_delimiter_index + 2); } return QualifiedName(qualifications, qualified_name); } std::ostream& operator<<(std::ostream& os, const QualifiedName& name) { for (const std::string& qualifier : name.namespace_qualification) { os << qualifier << "::"; } return os << name.name; } std::ostream& operator<<(std::ostream& os, const Callable& m) { os << "callable " << m.ReadableName() << "("; if (m.signature().implicit_count != 0) { os << "implicit "; TypeVector implicit_parameter_types( m.signature().parameter_types.types.begin(), m.signature().parameter_types.types.begin() + m.signature().implicit_count); os << implicit_parameter_types << ")("; TypeVector explicit_parameter_types( m.signature().parameter_types.types.begin() + m.signature().implicit_count, m.signature().parameter_types.types.end()); os << explicit_parameter_types; } else { os << m.signature().parameter_types; } os << "): " << *m.signature().return_type; return os; } std::ostream& operator<<(std::ostream& os, const Builtin& b) { os << "builtin " << *b.signature().return_type << " " << b.ReadableName() << b.signature().parameter_types; return os; } std::ostream& operator<<(std::ostream& os, const RuntimeFunction& b) { os << "runtime function " << *b.signature().return_type << " " << b.ReadableName() << b.signature().parameter_types; return os; } std::ostream& operator<<(std::ostream& os, const GenericCallable& g) { os << "generic " << g.name() << "<"; PrintCommaSeparatedList(os, g.generic_parameters(), [](const GenericParameter& identifier) { return identifier.name->value; }); os << ">"; return os; } SpecializationRequester::SpecializationRequester(SourcePosition position, Scope* scope, std::string name) : position(position), name(std::move(name)) { // Skip scopes that are not related to template specializations, they might be // stack-allocated and not live for long enough. while (scope && scope->GetSpecializationRequester().IsNone()) scope = scope->ParentScope(); this->scope = scope; } std::vector Scope::Lookup(const QualifiedName& name) { if (name.namespace_qualification.size() >= 1 && name.namespace_qualification[0] == "") { return GlobalContext::GetDefaultNamespace()->Lookup( name.DropFirstNamespaceQualification()); } std::vector result; if (ParentScope()) { result = ParentScope()->Lookup(name); } for (Declarable* declarable : LookupShallow(name)) { result.push_back(declarable); } return result; } base::Optional TypeConstraint::IsViolated(const Type* type) const { if (upper_bound && !type->IsSubtypeOf(*upper_bound)) { if (type->IsTopType()) { return TopType::cast(type)->reason(); } else { return { ToString("expected ", *type, " to be a subtype of ", **upper_bound)}; } } return base::nullopt; } base::Optional FindConstraintViolation( const std::vector& types, const std::vector& constraints) { DCHECK_EQ(constraints.size(), types.size()); for (size_t i = 0; i < types.size(); ++i) { if (auto violation = constraints[i].IsViolated(types[i])) { return {"Could not instantiate generic, " + *violation + "."}; } } return base::nullopt; } std::vector ComputeConstraints( Scope* scope, const GenericParameters& parameters) { CurrentScope::Scope scope_scope(scope); std::vector result; for (const GenericParameter& parameter : parameters) { if (parameter.constraint) { result.push_back(TypeConstraint::SubtypeConstraint( TypeVisitor::ComputeType(*parameter.constraint))); } else { result.push_back(TypeConstraint::Unconstrained()); } } return result; } TypeArgumentInference GenericCallable::InferSpecializationTypes( const TypeVector& explicit_specialization_types, const std::vector>& arguments) { const std::vector& parameters = declaration()->parameters.types; CurrentScope::Scope generic_scope(ParentScope()); TypeArgumentInference inference(generic_parameters(), explicit_specialization_types, parameters, arguments); if (!inference.HasFailed()) { if (auto violation = FindConstraintViolation(inference.GetResult(), Constraints())) { inference.Fail(*violation); } } return inference; } base::Optional GenericCallable::CallableBody() { if (auto* decl = TorqueMacroDeclaration::DynamicCast(declaration())) { return decl->body; } else if (auto* decl = TorqueBuiltinDeclaration::DynamicCast(declaration())) { return decl->body; } else { return base::nullopt; } } bool Namespace::IsDefaultNamespace() const { return this == GlobalContext::GetDefaultNamespace(); } bool Namespace::IsTestNamespace() const { return name() == kTestNamespaceName; } const Type* TypeAlias::Resolve() const { if (!type_) { CurrentScope::Scope scope_activator(ParentScope()); CurrentSourcePosition::Scope position_activator(Position()); TypeDeclaration* decl = *delayed_; if (being_resolved_) { std::stringstream s; s << "Cannot create type " << decl->name->value << " due to circular dependencies."; ReportError(s.str()); } type_ = TypeVisitor::ComputeType(decl); } return *type_; } } // namespace torque } // namespace internal } // namespace v8