// Copyright 2011 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "src/utils.h" #include #include #include "src/base/functional.h" #include "src/base/logging.h" #include "src/base/platform/platform.h" namespace v8 { namespace internal { SimpleStringBuilder::SimpleStringBuilder(int size) { buffer_ = Vector::New(size); position_ = 0; } void SimpleStringBuilder::AddString(const char* s) { AddSubstring(s, StrLength(s)); } void SimpleStringBuilder::AddSubstring(const char* s, int n) { DCHECK(!is_finalized() && position_ + n <= buffer_.length()); DCHECK(static_cast(n) <= strlen(s)); MemCopy(&buffer_[position_], s, n * kCharSize); position_ += n; } void SimpleStringBuilder::AddPadding(char c, int count) { for (int i = 0; i < count; i++) { AddCharacter(c); } } void SimpleStringBuilder::AddDecimalInteger(int32_t value) { uint32_t number = static_cast(value); if (value < 0) { AddCharacter('-'); number = static_cast(-value); } int digits = 1; for (uint32_t factor = 10; digits < 10; digits++, factor *= 10) { if (factor > number) break; } position_ += digits; for (int i = 1; i <= digits; i++) { buffer_[position_ - i] = '0' + static_cast(number % 10); number /= 10; } } char* SimpleStringBuilder::Finalize() { DCHECK(!is_finalized() && position_ <= buffer_.length()); // If there is no space for null termination, overwrite last character. if (position_ == buffer_.length()) { position_--; // Print ellipsis. for (int i = 3; i > 0 && position_ > i; --i) buffer_[position_ - i] = '.'; } buffer_[position_] = '\0'; // Make sure nobody managed to add a 0-character to the // buffer while building the string. DCHECK(strlen(buffer_.start()) == static_cast(position_)); position_ = -1; DCHECK(is_finalized()); return buffer_.start(); } std::ostream& operator<<(std::ostream& os, FeedbackVectorSlot slot) { return os << "#" << slot.id_; } size_t hash_value(BailoutId id) { base::hash h; return h(id.id_); } std::ostream& operator<<(std::ostream& os, BailoutId id) { return os << id.id_; } void PrintF(const char* format, ...) { va_list arguments; va_start(arguments, format); base::OS::VPrint(format, arguments); va_end(arguments); } void PrintF(FILE* out, const char* format, ...) { va_list arguments; va_start(arguments, format); base::OS::VFPrint(out, format, arguments); va_end(arguments); } void PrintPID(const char* format, ...) { base::OS::Print("[%d] ", base::OS::GetCurrentProcessId()); va_list arguments; va_start(arguments, format); base::OS::VPrint(format, arguments); va_end(arguments); } void PrintIsolate(void* isolate, const char* format, ...) { base::OS::Print("[%d:%p] ", base::OS::GetCurrentProcessId(), isolate); va_list arguments; va_start(arguments, format); base::OS::VPrint(format, arguments); va_end(arguments); } int SNPrintF(Vector str, const char* format, ...) { va_list args; va_start(args, format); int result = VSNPrintF(str, format, args); va_end(args); return result; } int VSNPrintF(Vector str, const char* format, va_list args) { return base::OS::VSNPrintF(str.start(), str.length(), format, args); } void StrNCpy(Vector dest, const char* src, size_t n) { base::OS::StrNCpy(dest.start(), dest.length(), src, n); } void Flush(FILE* out) { fflush(out); } char* ReadLine(const char* prompt) { char* result = NULL; char line_buf[256]; int offset = 0; bool keep_going = true; fprintf(stdout, "%s", prompt); fflush(stdout); while (keep_going) { if (fgets(line_buf, sizeof(line_buf), stdin) == NULL) { // fgets got an error. Just give up. if (result != NULL) { DeleteArray(result); } return NULL; } int len = StrLength(line_buf); if (len > 1 && line_buf[len - 2] == '\\' && line_buf[len - 1] == '\n') { // When we read a line that ends with a "\" we remove the escape and // append the remainder. line_buf[len - 2] = '\n'; line_buf[len - 1] = 0; len -= 1; } else if ((len > 0) && (line_buf[len - 1] == '\n')) { // Since we read a new line we are done reading the line. This // will exit the loop after copying this buffer into the result. keep_going = false; } if (result == NULL) { // Allocate the initial result and make room for the terminating '\0' result = NewArray(len + 1); } else { // Allocate a new result with enough room for the new addition. int new_len = offset + len + 1; char* new_result = NewArray(new_len); // Copy the existing input into the new array and set the new // array as the result. MemCopy(new_result, result, offset * kCharSize); DeleteArray(result); result = new_result; } // Copy the newly read line into the result. MemCopy(result + offset, line_buf, len * kCharSize); offset += len; } DCHECK(result != NULL); result[offset] = '\0'; return result; } char* ReadCharsFromFile(FILE* file, int* size, int extra_space, bool verbose, const char* filename) { if (file == NULL || fseek(file, 0, SEEK_END) != 0) { if (verbose) { base::OS::PrintError("Cannot read from file %s.\n", filename); } return NULL; } // Get the size of the file and rewind it. *size = static_cast(ftell(file)); rewind(file); char* result = NewArray(*size + extra_space); for (int i = 0; i < *size && feof(file) == 0;) { int read = static_cast(fread(&result[i], 1, *size - i, file)); if (read != (*size - i) && ferror(file) != 0) { fclose(file); DeleteArray(result); return NULL; } i += read; } return result; } char* ReadCharsFromFile(const char* filename, int* size, int extra_space, bool verbose) { FILE* file = base::OS::FOpen(filename, "rb"); char* result = ReadCharsFromFile(file, size, extra_space, verbose, filename); if (file != NULL) fclose(file); return result; } byte* ReadBytes(const char* filename, int* size, bool verbose) { char* chars = ReadCharsFromFile(filename, size, 0, verbose); return reinterpret_cast(chars); } static Vector SetVectorContents(char* chars, int size, bool* exists) { if (!chars) { *exists = false; return Vector::empty(); } chars[size] = '\0'; *exists = true; return Vector(chars, size); } Vector ReadFile(const char* filename, bool* exists, bool verbose) { int size; char* result = ReadCharsFromFile(filename, &size, 1, verbose); return SetVectorContents(result, size, exists); } Vector ReadFile(FILE* file, bool* exists, bool verbose) { int size; char* result = ReadCharsFromFile(file, &size, 1, verbose, ""); return SetVectorContents(result, size, exists); } int WriteCharsToFile(const char* str, int size, FILE* f) { int total = 0; while (total < size) { int write = static_cast(fwrite(str, 1, size - total, f)); if (write == 0) { return total; } total += write; str += write; } return total; } int AppendChars(const char* filename, const char* str, int size, bool verbose) { FILE* f = base::OS::FOpen(filename, "ab"); if (f == NULL) { if (verbose) { base::OS::PrintError("Cannot open file %s for writing.\n", filename); } return 0; } int written = WriteCharsToFile(str, size, f); fclose(f); return written; } int WriteChars(const char* filename, const char* str, int size, bool verbose) { FILE* f = base::OS::FOpen(filename, "wb"); if (f == NULL) { if (verbose) { base::OS::PrintError("Cannot open file %s for writing.\n", filename); } return 0; } int written = WriteCharsToFile(str, size, f); fclose(f); return written; } int WriteBytes(const char* filename, const byte* bytes, int size, bool verbose) { const char* str = reinterpret_cast(bytes); return WriteChars(filename, str, size, verbose); } void StringBuilder::AddFormatted(const char* format, ...) { va_list arguments; va_start(arguments, format); AddFormattedList(format, arguments); va_end(arguments); } void StringBuilder::AddFormattedList(const char* format, va_list list) { DCHECK(!is_finalized() && position_ <= buffer_.length()); int n = VSNPrintF(buffer_ + position_, format, list); if (n < 0 || n >= (buffer_.length() - position_)) { position_ = buffer_.length(); } else { position_ += n; } } #if V8_TARGET_ARCH_IA32 || V8_TARGET_ARCH_X87 static void MemMoveWrapper(void* dest, const void* src, size_t size) { memmove(dest, src, size); } // Initialize to library version so we can call this at any time during startup. static MemMoveFunction memmove_function = &MemMoveWrapper; // Defined in codegen-ia32.cc. MemMoveFunction CreateMemMoveFunction(Isolate* isolate); // Copy memory area to disjoint memory area. void MemMove(void* dest, const void* src, size_t size) { if (size == 0) return; // Note: here we rely on dependent reads being ordered. This is true // on all architectures we currently support. (*memmove_function)(dest, src, size); } #elif V8_OS_POSIX && V8_HOST_ARCH_ARM void MemCopyUint16Uint8Wrapper(uint16_t* dest, const uint8_t* src, size_t chars) { uint16_t* limit = dest + chars; while (dest < limit) { *dest++ = static_cast(*src++); } } MemCopyUint8Function memcopy_uint8_function = &MemCopyUint8Wrapper; MemCopyUint16Uint8Function memcopy_uint16_uint8_function = &MemCopyUint16Uint8Wrapper; // Defined in codegen-arm.cc. MemCopyUint8Function CreateMemCopyUint8Function(Isolate* isolate, MemCopyUint8Function stub); MemCopyUint16Uint8Function CreateMemCopyUint16Uint8Function( Isolate* isolate, MemCopyUint16Uint8Function stub); #elif V8_OS_POSIX && V8_HOST_ARCH_MIPS MemCopyUint8Function memcopy_uint8_function = &MemCopyUint8Wrapper; // Defined in codegen-mips.cc. MemCopyUint8Function CreateMemCopyUint8Function(Isolate* isolate, MemCopyUint8Function stub); #endif static bool g_memcopy_functions_initialized = false; void init_memcopy_functions(Isolate* isolate) { if (g_memcopy_functions_initialized) return; g_memcopy_functions_initialized = true; #if V8_TARGET_ARCH_IA32 || V8_TARGET_ARCH_X87 MemMoveFunction generated_memmove = CreateMemMoveFunction(isolate); if (generated_memmove != NULL) { memmove_function = generated_memmove; } #elif V8_OS_POSIX && V8_HOST_ARCH_ARM memcopy_uint8_function = CreateMemCopyUint8Function(isolate, &MemCopyUint8Wrapper); memcopy_uint16_uint8_function = CreateMemCopyUint16Uint8Function(isolate, &MemCopyUint16Uint8Wrapper); #elif V8_OS_POSIX && V8_HOST_ARCH_MIPS memcopy_uint8_function = CreateMemCopyUint8Function(isolate, &MemCopyUint8Wrapper); #endif } bool DoubleToBoolean(double d) { // NaN, +0, and -0 should return the false object IeeeDoubleArchType u; u.d = d; if (u.bits.exp == 2047) { // Detect NaN for IEEE double precision floating point. if ((u.bits.man_low | u.bits.man_high) != 0) return false; } if (u.bits.exp == 0) { // Detect +0, and -0 for IEEE double precision floating point. if ((u.bits.man_low | u.bits.man_high) == 0) return false; } return true; } } // namespace internal } // namespace v8