// Copyright 2017 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #ifndef V8_WASM_BASELINE_IA32_LIFTOFF_ASSEMBLER_IA32_H_ #define V8_WASM_BASELINE_IA32_LIFTOFF_ASSEMBLER_IA32_H_ #include "src/wasm/baseline/liftoff-assembler.h" #include "src/codegen/assembler.h" #include "src/wasm/value-type.h" namespace v8 { namespace internal { namespace wasm { #define REQUIRE_CPU_FEATURE(name, ...) \ if (!CpuFeatures::IsSupported(name)) { \ bailout("no " #name); \ return __VA_ARGS__; \ } \ CpuFeatureScope feature(this, name); namespace liftoff { // ebp-4 holds the stack marker, ebp-8 is the instance parameter, first stack // slot is located at ebp-16. constexpr int32_t kConstantStackSpace = 8; constexpr int32_t kFirstStackSlotOffset = kConstantStackSpace + LiftoffAssembler::kStackSlotSize; inline Operand GetStackSlot(uint32_t index) { int32_t offset = index * LiftoffAssembler::kStackSlotSize; return Operand(ebp, -kFirstStackSlotOffset - offset); } inline MemOperand GetHalfStackSlot(uint32_t index, RegPairHalf half) { int32_t half_offset = half == kLowWord ? 0 : LiftoffAssembler::kStackSlotSize / 2; int32_t offset = index * LiftoffAssembler::kStackSlotSize - half_offset; return Operand(ebp, -kFirstStackSlotOffset - offset); } // TODO(clemensh): Make this a constexpr variable once Operand is constexpr. inline Operand GetInstanceOperand() { return Operand(ebp, -8); } static constexpr LiftoffRegList kByteRegs = LiftoffRegList::FromBits()>(); inline void Load(LiftoffAssembler* assm, LiftoffRegister dst, Register base, int32_t offset, ValueType type) { Operand src(base, offset); switch (type) { case kWasmI32: assm->mov(dst.gp(), src); break; case kWasmI64: assm->mov(dst.low_gp(), src); assm->mov(dst.high_gp(), Operand(base, offset + 4)); break; case kWasmF32: assm->movss(dst.fp(), src); break; case kWasmF64: assm->movsd(dst.fp(), src); break; default: UNREACHABLE(); } } inline void Store(LiftoffAssembler* assm, Register base, int32_t offset, LiftoffRegister src, ValueType type) { Operand dst(base, offset); switch (type) { case kWasmI32: assm->mov(dst, src.gp()); break; case kWasmI64: assm->mov(dst, src.low_gp()); assm->mov(Operand(base, offset + 4), src.high_gp()); break; case kWasmF32: assm->movss(dst, src.fp()); break; case kWasmF64: assm->movsd(dst, src.fp()); break; default: UNREACHABLE(); } } inline void push(LiftoffAssembler* assm, LiftoffRegister reg, ValueType type) { switch (type) { case kWasmI32: assm->push(reg.gp()); break; case kWasmI64: assm->push(reg.high_gp()); assm->push(reg.low_gp()); break; case kWasmF32: assm->AllocateStackSpace(sizeof(float)); assm->movss(Operand(esp, 0), reg.fp()); break; case kWasmF64: assm->AllocateStackSpace(sizeof(double)); assm->movsd(Operand(esp, 0), reg.fp()); break; default: UNREACHABLE(); } } template inline void SpillRegisters(LiftoffAssembler* assm, Regs... regs) { for (LiftoffRegister r : {LiftoffRegister(regs)...}) { if (assm->cache_state()->is_used(r)) assm->SpillRegister(r); } } inline void SignExtendI32ToI64(Assembler* assm, LiftoffRegister reg) { assm->mov(reg.high_gp(), reg.low_gp()); assm->sar(reg.high_gp(), 31); } // Get a temporary byte register, using {candidate} if possible. // Might spill, but always keeps status flags intact. inline Register GetTmpByteRegister(LiftoffAssembler* assm, Register candidate) { if (candidate.is_byte_register()) return candidate; // {GetUnusedRegister()} may insert move instructions to spill registers to // the stack. This is OK because {mov} does not change the status flags. return assm->GetUnusedRegister(liftoff::kByteRegs).gp(); } inline void MoveStackValue(LiftoffAssembler* assm, const Operand& src, const Operand& dst) { if (assm->cache_state()->has_unused_register(kGpReg)) { Register tmp = assm->cache_state()->unused_register(kGpReg).gp(); assm->mov(tmp, src); assm->mov(dst, tmp); } else { // No free register, move via the stack. assm->push(src); assm->pop(dst); } } constexpr DoubleRegister kScratchDoubleReg = xmm7; constexpr int kSubSpSize = 6; // 6 bytes for "sub esp, " } // namespace liftoff int LiftoffAssembler::PrepareStackFrame() { int offset = pc_offset(); sub_sp_32(0); DCHECK_EQ(liftoff::kSubSpSize, pc_offset() - offset); return offset; } void LiftoffAssembler::PatchPrepareStackFrame(int offset, uint32_t stack_slots) { uint32_t bytes = liftoff::kConstantStackSpace + kStackSlotSize * stack_slots; DCHECK_LE(bytes, kMaxInt); // We can't run out of space, just pass anything big enough to not cause the // assembler to try to grow the buffer. constexpr int kAvailableSpace = 64; Assembler patching_assembler( AssemblerOptions{}, ExternalAssemblerBuffer(buffer_start_ + offset, kAvailableSpace)); #if V8_OS_WIN if (bytes > kStackPageSize) { // Generate OOL code (at the end of the function, where the current // assembler is pointing) to do the explicit stack limit check (see // https://docs.microsoft.com/en-us/previous-versions/visualstudio/ // visual-studio-6.0/aa227153(v=vs.60)). // At the function start, emit a jump to that OOL code (from {offset} to // {pc_offset()}). int ool_offset = pc_offset() - offset; patching_assembler.jmp_rel(ool_offset); DCHECK_GE(liftoff::kSubSpSize, patching_assembler.pc_offset()); patching_assembler.Nop(liftoff::kSubSpSize - patching_assembler.pc_offset()); // Now generate the OOL code. AllocateStackSpace(bytes); // Jump back to the start of the function (from {pc_offset()} to {offset + // kSubSpSize}). int func_start_offset = offset + liftoff::kSubSpSize - pc_offset(); jmp_rel(func_start_offset); return; } #endif patching_assembler.sub_sp_32(bytes); DCHECK_EQ(liftoff::kSubSpSize, patching_assembler.pc_offset()); } void LiftoffAssembler::FinishCode() {} void LiftoffAssembler::AbortCompilation() {} void LiftoffAssembler::LoadConstant(LiftoffRegister reg, WasmValue value, RelocInfo::Mode rmode) { switch (value.type()) { case kWasmI32: TurboAssembler::Move(reg.gp(), Immediate(value.to_i32(), rmode)); break; case kWasmI64: { DCHECK(RelocInfo::IsNone(rmode)); int32_t low_word = value.to_i64(); int32_t high_word = value.to_i64() >> 32; TurboAssembler::Move(reg.low_gp(), Immediate(low_word)); TurboAssembler::Move(reg.high_gp(), Immediate(high_word)); break; } case kWasmF32: TurboAssembler::Move(reg.fp(), value.to_f32_boxed().get_bits()); break; case kWasmF64: TurboAssembler::Move(reg.fp(), value.to_f64_boxed().get_bits()); break; default: UNREACHABLE(); } } void LiftoffAssembler::LoadFromInstance(Register dst, uint32_t offset, int size) { DCHECK_LE(offset, kMaxInt); mov(dst, liftoff::GetInstanceOperand()); DCHECK_EQ(4, size); mov(dst, Operand(dst, offset)); } void LiftoffAssembler::LoadTaggedPointerFromInstance(Register dst, uint32_t offset) { LoadFromInstance(dst, offset, kTaggedSize); } void LiftoffAssembler::SpillInstance(Register instance) { mov(liftoff::GetInstanceOperand(), instance); } void LiftoffAssembler::FillInstanceInto(Register dst) { mov(dst, liftoff::GetInstanceOperand()); } void LiftoffAssembler::LoadTaggedPointer(Register dst, Register src_addr, Register offset_reg, uint32_t offset_imm, LiftoffRegList pinned) { STATIC_ASSERT(kTaggedSize == kInt32Size); Load(LiftoffRegister(dst), src_addr, offset_reg, offset_imm, LoadType::kI32Load, pinned); } void LiftoffAssembler::Load(LiftoffRegister dst, Register src_addr, Register offset_reg, uint32_t offset_imm, LoadType type, LiftoffRegList pinned, uint32_t* protected_load_pc, bool is_load_mem) { DCHECK_EQ(type.value_type() == kWasmI64, dst.is_pair()); // Wasm memory is limited to a size <2GB, so all offsets can be encoded as // immediate value (in 31 bits, interpreted as signed value). // If the offset is bigger, we always trap and this code is not reached. // Note: We shouldn't have memories larger than 2GiB on 32-bit, but if we // did, we encode {offset_im} as signed, and it will simply wrap around. Operand src_op = offset_reg == no_reg ? Operand(src_addr, bit_cast(offset_imm)) : Operand(src_addr, offset_reg, times_1, offset_imm); if (protected_load_pc) *protected_load_pc = pc_offset(); switch (type.value()) { case LoadType::kI32Load8U: movzx_b(dst.gp(), src_op); break; case LoadType::kI32Load8S: movsx_b(dst.gp(), src_op); break; case LoadType::kI64Load8U: movzx_b(dst.low_gp(), src_op); xor_(dst.high_gp(), dst.high_gp()); break; case LoadType::kI64Load8S: movsx_b(dst.low_gp(), src_op); liftoff::SignExtendI32ToI64(this, dst); break; case LoadType::kI32Load16U: movzx_w(dst.gp(), src_op); break; case LoadType::kI32Load16S: movsx_w(dst.gp(), src_op); break; case LoadType::kI64Load16U: movzx_w(dst.low_gp(), src_op); xor_(dst.high_gp(), dst.high_gp()); break; case LoadType::kI64Load16S: movsx_w(dst.low_gp(), src_op); liftoff::SignExtendI32ToI64(this, dst); break; case LoadType::kI32Load: mov(dst.gp(), src_op); break; case LoadType::kI64Load32U: mov(dst.low_gp(), src_op); xor_(dst.high_gp(), dst.high_gp()); break; case LoadType::kI64Load32S: mov(dst.low_gp(), src_op); liftoff::SignExtendI32ToI64(this, dst); break; case LoadType::kI64Load: { // Compute the operand for the load of the upper half. Operand upper_src_op = offset_reg == no_reg ? Operand(src_addr, bit_cast(offset_imm + 4)) : Operand(src_addr, offset_reg, times_1, offset_imm + 4); // The high word has to be mov'ed first, such that this is the protected // instruction. The mov of the low word cannot segfault. mov(dst.high_gp(), upper_src_op); mov(dst.low_gp(), src_op); break; } case LoadType::kF32Load: movss(dst.fp(), src_op); break; case LoadType::kF64Load: movsd(dst.fp(), src_op); break; default: UNREACHABLE(); } } void LiftoffAssembler::Store(Register dst_addr, Register offset_reg, uint32_t offset_imm, LiftoffRegister src, StoreType type, LiftoffRegList pinned, uint32_t* protected_store_pc, bool is_store_mem) { DCHECK_EQ(type.value_type() == kWasmI64, src.is_pair()); // Wasm memory is limited to a size <2GB, so all offsets can be encoded as // immediate value (in 31 bits, interpreted as signed value). // If the offset is bigger, we always trap and this code is not reached. Operand dst_op = offset_reg == no_reg ? Operand(dst_addr, bit_cast(offset_imm)) : Operand(dst_addr, offset_reg, times_1, offset_imm); if (protected_store_pc) *protected_store_pc = pc_offset(); switch (type.value()) { case StoreType::kI64Store8: src = src.low(); V8_FALLTHROUGH; case StoreType::kI32Store8: // Only the lower 4 registers can be addressed as 8-bit registers. if (src.gp().is_byte_register()) { mov_b(dst_op, src.gp()); } else { // We know that {src} is not a byte register, so the only pinned byte // registers (beside the outer {pinned}) are {dst_addr} and potentially // {offset_reg}. LiftoffRegList pinned_byte = pinned | LiftoffRegList::ForRegs(dst_addr); if (offset_reg != no_reg) pinned_byte.set(offset_reg); Register byte_src = GetUnusedRegister(liftoff::kByteRegs, pinned_byte).gp(); mov(byte_src, src.gp()); mov_b(dst_op, byte_src); } break; case StoreType::kI64Store16: src = src.low(); V8_FALLTHROUGH; case StoreType::kI32Store16: mov_w(dst_op, src.gp()); break; case StoreType::kI64Store32: src = src.low(); V8_FALLTHROUGH; case StoreType::kI32Store: mov(dst_op, src.gp()); break; case StoreType::kI64Store: { // Compute the operand for the store of the upper half. Operand upper_dst_op = offset_reg == no_reg ? Operand(dst_addr, bit_cast(offset_imm + 4)) : Operand(dst_addr, offset_reg, times_1, offset_imm + 4); // The high word has to be mov'ed first, such that this is the protected // instruction. The mov of the low word cannot segfault. mov(upper_dst_op, src.high_gp()); mov(dst_op, src.low_gp()); break; } case StoreType::kF32Store: movss(dst_op, src.fp()); break; case StoreType::kF64Store: movsd(dst_op, src.fp()); break; default: UNREACHABLE(); } } void LiftoffAssembler::LoadCallerFrameSlot(LiftoffRegister dst, uint32_t caller_slot_idx, ValueType type) { liftoff::Load(this, dst, ebp, kSystemPointerSize * (caller_slot_idx + 1), type); } void LiftoffAssembler::MoveStackValue(uint32_t dst_index, uint32_t src_index, ValueType type) { if (needs_reg_pair(type)) { liftoff::MoveStackValue(this, liftoff::GetHalfStackSlot(src_index, kLowWord), liftoff::GetHalfStackSlot(dst_index, kLowWord)); liftoff::MoveStackValue(this, liftoff::GetHalfStackSlot(src_index, kHighWord), liftoff::GetHalfStackSlot(dst_index, kHighWord)); } else { liftoff::MoveStackValue(this, liftoff::GetStackSlot(src_index), liftoff::GetStackSlot(dst_index)); } } void LiftoffAssembler::Move(Register dst, Register src, ValueType type) { DCHECK_NE(dst, src); DCHECK_EQ(kWasmI32, type); mov(dst, src); } void LiftoffAssembler::Move(DoubleRegister dst, DoubleRegister src, ValueType type) { DCHECK_NE(dst, src); if (type == kWasmF32) { movss(dst, src); } else { DCHECK_EQ(kWasmF64, type); movsd(dst, src); } } void LiftoffAssembler::Spill(uint32_t index, LiftoffRegister reg, ValueType type) { RecordUsedSpillSlot(index); Operand dst = liftoff::GetStackSlot(index); switch (type) { case kWasmI32: mov(dst, reg.gp()); break; case kWasmI64: mov(liftoff::GetHalfStackSlot(index, kLowWord), reg.low_gp()); mov(liftoff::GetHalfStackSlot(index, kHighWord), reg.high_gp()); break; case kWasmF32: movss(dst, reg.fp()); break; case kWasmF64: movsd(dst, reg.fp()); break; default: UNREACHABLE(); } } void LiftoffAssembler::Spill(uint32_t index, WasmValue value) { RecordUsedSpillSlot(index); Operand dst = liftoff::GetStackSlot(index); switch (value.type()) { case kWasmI32: mov(dst, Immediate(value.to_i32())); break; case kWasmI64: { int32_t low_word = value.to_i64(); int32_t high_word = value.to_i64() >> 32; mov(liftoff::GetHalfStackSlot(index, kLowWord), Immediate(low_word)); mov(liftoff::GetHalfStackSlot(index, kHighWord), Immediate(high_word)); break; } default: // We do not track f32 and f64 constants, hence they are unreachable. UNREACHABLE(); } } void LiftoffAssembler::Fill(LiftoffRegister reg, uint32_t index, ValueType type) { Operand src = liftoff::GetStackSlot(index); switch (type) { case kWasmI32: mov(reg.gp(), src); break; case kWasmI64: mov(reg.low_gp(), liftoff::GetHalfStackSlot(index, kLowWord)); mov(reg.high_gp(), liftoff::GetHalfStackSlot(index, kHighWord)); break; case kWasmF32: movss(reg.fp(), src); break; case kWasmF64: movsd(reg.fp(), src); break; default: UNREACHABLE(); } } void LiftoffAssembler::FillI64Half(Register reg, uint32_t index, RegPairHalf half) { mov(reg, liftoff::GetHalfStackSlot(index, half)); } void LiftoffAssembler::emit_i32_add(Register dst, Register lhs, Register rhs) { if (lhs != dst) { lea(dst, Operand(lhs, rhs, times_1, 0)); } else { add(dst, rhs); } } void LiftoffAssembler::emit_i32_add(Register dst, Register lhs, int32_t imm) { if (lhs != dst) { lea(dst, Operand(lhs, imm)); } else { add(dst, Immediate(imm)); } } void LiftoffAssembler::emit_i32_sub(Register dst, Register lhs, Register rhs) { if (dst != rhs) { // Default path. if (dst != lhs) mov(dst, lhs); sub(dst, rhs); } else if (lhs == rhs) { // Degenerate case. xor_(dst, dst); } else { // Emit {dst = lhs + -rhs} if dst == rhs. neg(dst); add(dst, lhs); } } namespace liftoff { template void EmitCommutativeBinOp(LiftoffAssembler* assm, Register dst, Register lhs, Register rhs) { if (dst == rhs) { (assm->*op)(dst, lhs); } else { if (dst != lhs) assm->mov(dst, lhs); (assm->*op)(dst, rhs); } } template void EmitCommutativeBinOpImm(LiftoffAssembler* assm, Register dst, Register lhs, int32_t imm) { if (dst != lhs) assm->mov(dst, lhs); (assm->*op)(dst, imm); } } // namespace liftoff void LiftoffAssembler::emit_i32_mul(Register dst, Register lhs, Register rhs) { liftoff::EmitCommutativeBinOp<&Assembler::imul>(this, dst, lhs, rhs); } namespace liftoff { enum class DivOrRem : uint8_t { kDiv, kRem }; template void EmitInt32DivOrRem(LiftoffAssembler* assm, Register dst, Register lhs, Register rhs, Label* trap_div_by_zero, Label* trap_div_unrepresentable) { constexpr bool needs_unrepresentable_check = is_signed && div_or_rem == DivOrRem::kDiv; constexpr bool special_case_minus_1 = is_signed && div_or_rem == DivOrRem::kRem; DCHECK_EQ(needs_unrepresentable_check, trap_div_unrepresentable != nullptr); // For division, the lhs is always taken from {edx:eax}. Thus, make sure that // these registers are unused. If {rhs} is stored in one of them, move it to // another temporary register. // Do all this before any branch, such that the code is executed // unconditionally, as the cache state will also be modified unconditionally. liftoff::SpillRegisters(assm, eax, edx); if (rhs == eax || rhs == edx) { LiftoffRegList unavailable = LiftoffRegList::ForRegs(eax, edx, lhs); Register tmp = assm->GetUnusedRegister(kGpReg, unavailable).gp(); assm->mov(tmp, rhs); rhs = tmp; } // Check for division by zero. assm->test(rhs, rhs); assm->j(zero, trap_div_by_zero); Label done; if (needs_unrepresentable_check) { // Check for {kMinInt / -1}. This is unrepresentable. Label do_div; assm->cmp(rhs, -1); assm->j(not_equal, &do_div); assm->cmp(lhs, kMinInt); assm->j(equal, trap_div_unrepresentable); assm->bind(&do_div); } else if (special_case_minus_1) { // {lhs % -1} is always 0 (needs to be special cased because {kMinInt / -1} // cannot be computed). Label do_rem; assm->cmp(rhs, -1); assm->j(not_equal, &do_rem); assm->xor_(dst, dst); assm->jmp(&done); assm->bind(&do_rem); } // Now move {lhs} into {eax}, then zero-extend or sign-extend into {edx}, then // do the division. if (lhs != eax) assm->mov(eax, lhs); if (is_signed) { assm->cdq(); assm->idiv(rhs); } else { assm->xor_(edx, edx); assm->div(rhs); } // Move back the result (in {eax} or {edx}) into the {dst} register. constexpr Register kResultReg = div_or_rem == DivOrRem::kDiv ? eax : edx; if (dst != kResultReg) assm->mov(dst, kResultReg); if (special_case_minus_1) assm->bind(&done); } } // namespace liftoff void LiftoffAssembler::emit_i32_divs(Register dst, Register lhs, Register rhs, Label* trap_div_by_zero, Label* trap_div_unrepresentable) { liftoff::EmitInt32DivOrRem( this, dst, lhs, rhs, trap_div_by_zero, trap_div_unrepresentable); } void LiftoffAssembler::emit_i32_divu(Register dst, Register lhs, Register rhs, Label* trap_div_by_zero) { liftoff::EmitInt32DivOrRem( this, dst, lhs, rhs, trap_div_by_zero, nullptr); } void LiftoffAssembler::emit_i32_rems(Register dst, Register lhs, Register rhs, Label* trap_div_by_zero) { liftoff::EmitInt32DivOrRem( this, dst, lhs, rhs, trap_div_by_zero, nullptr); } void LiftoffAssembler::emit_i32_remu(Register dst, Register lhs, Register rhs, Label* trap_div_by_zero) { liftoff::EmitInt32DivOrRem( this, dst, lhs, rhs, trap_div_by_zero, nullptr); } void LiftoffAssembler::emit_i32_and(Register dst, Register lhs, Register rhs) { liftoff::EmitCommutativeBinOp<&Assembler::and_>(this, dst, lhs, rhs); } void LiftoffAssembler::emit_i32_and(Register dst, Register lhs, int32_t imm) { liftoff::EmitCommutativeBinOpImm<&Assembler::and_>(this, dst, lhs, imm); } void LiftoffAssembler::emit_i32_or(Register dst, Register lhs, Register rhs) { liftoff::EmitCommutativeBinOp<&Assembler::or_>(this, dst, lhs, rhs); } void LiftoffAssembler::emit_i32_or(Register dst, Register lhs, int32_t imm) { liftoff::EmitCommutativeBinOpImm<&Assembler::or_>(this, dst, lhs, imm); } void LiftoffAssembler::emit_i32_xor(Register dst, Register lhs, Register rhs) { liftoff::EmitCommutativeBinOp<&Assembler::xor_>(this, dst, lhs, rhs); } void LiftoffAssembler::emit_i32_xor(Register dst, Register lhs, int32_t imm) { liftoff::EmitCommutativeBinOpImm<&Assembler::xor_>(this, dst, lhs, imm); } namespace liftoff { inline void EmitShiftOperation(LiftoffAssembler* assm, Register dst, Register src, Register amount, void (Assembler::*emit_shift)(Register), LiftoffRegList pinned) { pinned.set(dst); pinned.set(src); pinned.set(amount); // If dst is ecx, compute into a tmp register first, then move to ecx. if (dst == ecx) { Register tmp = assm->GetUnusedRegister(kGpReg, pinned).gp(); assm->mov(tmp, src); if (amount != ecx) assm->mov(ecx, amount); (assm->*emit_shift)(tmp); assm->mov(ecx, tmp); return; } // Move amount into ecx. If ecx is in use, move its content to a tmp register // first. If src is ecx, src is now the tmp register. Register tmp_reg = no_reg; if (amount != ecx) { if (assm->cache_state()->is_used(LiftoffRegister(ecx)) || pinned.has(LiftoffRegister(ecx))) { tmp_reg = assm->GetUnusedRegister(kGpReg, pinned).gp(); assm->mov(tmp_reg, ecx); if (src == ecx) src = tmp_reg; } assm->mov(ecx, amount); } // Do the actual shift. if (dst != src) assm->mov(dst, src); (assm->*emit_shift)(dst); // Restore ecx if needed. if (tmp_reg.is_valid()) assm->mov(ecx, tmp_reg); } } // namespace liftoff void LiftoffAssembler::emit_i32_shl(Register dst, Register src, Register amount, LiftoffRegList pinned) { liftoff::EmitShiftOperation(this, dst, src, amount, &Assembler::shl_cl, pinned); } void LiftoffAssembler::emit_i32_sar(Register dst, Register src, Register amount, LiftoffRegList pinned) { liftoff::EmitShiftOperation(this, dst, src, amount, &Assembler::sar_cl, pinned); } void LiftoffAssembler::emit_i32_shr(Register dst, Register src, Register amount, LiftoffRegList pinned) { liftoff::EmitShiftOperation(this, dst, src, amount, &Assembler::shr_cl, pinned); } void LiftoffAssembler::emit_i32_shr(Register dst, Register src, int amount) { if (dst != src) mov(dst, src); DCHECK(is_uint5(amount)); shr(dst, amount); } bool LiftoffAssembler::emit_i32_clz(Register dst, Register src) { Label nonzero_input; Label continuation; test(src, src); j(not_zero, &nonzero_input, Label::kNear); mov(dst, Immediate(32)); jmp(&continuation, Label::kNear); bind(&nonzero_input); // Get most significant bit set (MSBS). bsr(dst, src); // CLZ = 31 - MSBS = MSBS ^ 31. xor_(dst, 31); bind(&continuation); return true; } bool LiftoffAssembler::emit_i32_ctz(Register dst, Register src) { Label nonzero_input; Label continuation; test(src, src); j(not_zero, &nonzero_input, Label::kNear); mov(dst, Immediate(32)); jmp(&continuation, Label::kNear); bind(&nonzero_input); // Get least significant bit set, which equals number of trailing zeros. bsf(dst, src); bind(&continuation); return true; } bool LiftoffAssembler::emit_i32_popcnt(Register dst, Register src) { if (!CpuFeatures::IsSupported(POPCNT)) return false; CpuFeatureScope scope(this, POPCNT); popcnt(dst, src); return true; } namespace liftoff { template inline void OpWithCarry(LiftoffAssembler* assm, LiftoffRegister dst, LiftoffRegister lhs, LiftoffRegister rhs) { // First, compute the low half of the result, potentially into a temporary dst // register if {dst.low_gp()} equals {rhs.low_gp()} or any register we need to // keep alive for computing the upper half. LiftoffRegList keep_alive = LiftoffRegList::ForRegs(lhs.high_gp(), rhs); Register dst_low = keep_alive.has(dst.low_gp()) ? assm->GetUnusedRegister(kGpReg, keep_alive).gp() : dst.low_gp(); if (dst_low != lhs.low_gp()) assm->mov(dst_low, lhs.low_gp()); (assm->*op)(dst_low, rhs.low_gp()); // Now compute the upper half, while keeping alive the previous result. keep_alive = LiftoffRegList::ForRegs(dst_low, rhs.high_gp()); Register dst_high = keep_alive.has(dst.high_gp()) ? assm->GetUnusedRegister(kGpReg, keep_alive).gp() : dst.high_gp(); if (dst_high != lhs.high_gp()) assm->mov(dst_high, lhs.high_gp()); (assm->*op_with_carry)(dst_high, rhs.high_gp()); // If necessary, move result into the right registers. LiftoffRegister tmp_result = LiftoffRegister::ForPair(dst_low, dst_high); if (tmp_result != dst) assm->Move(dst, tmp_result, kWasmI64); } template inline void OpWithCarryI(LiftoffAssembler* assm, LiftoffRegister dst, LiftoffRegister lhs, int32_t imm) { // First, compute the low half of the result, potentially into a temporary dst // register if {dst.low_gp()} equals any register we need to // keep alive for computing the upper half. LiftoffRegList keep_alive = LiftoffRegList::ForRegs(lhs.high_gp()); Register dst_low = keep_alive.has(dst.low_gp()) ? assm->GetUnusedRegister(kGpReg, keep_alive).gp() : dst.low_gp(); if (dst_low != lhs.low_gp()) assm->mov(dst_low, lhs.low_gp()); (assm->*op)(dst_low, Immediate(imm)); // Now compute the upper half, while keeping alive the previous result. keep_alive = LiftoffRegList::ForRegs(dst_low); Register dst_high = keep_alive.has(dst.high_gp()) ? assm->GetUnusedRegister(kGpReg, keep_alive).gp() : dst.high_gp(); if (dst_high != lhs.high_gp()) assm->mov(dst_high, lhs.high_gp()); // Top half of the immediate sign extended, either 0 or -1. int32_t sign_extend = imm < 0 ? -1 : 0; (assm->*op_with_carry)(dst_high, sign_extend); // If necessary, move result into the right registers. LiftoffRegister tmp_result = LiftoffRegister::ForPair(dst_low, dst_high); if (tmp_result != dst) assm->Move(dst, tmp_result, kWasmI64); } } // namespace liftoff void LiftoffAssembler::emit_i64_add(LiftoffRegister dst, LiftoffRegister lhs, LiftoffRegister rhs) { liftoff::OpWithCarry<&Assembler::add, &Assembler::adc>(this, dst, lhs, rhs); } void LiftoffAssembler::emit_i64_add(LiftoffRegister dst, LiftoffRegister lhs, int32_t imm) { liftoff::OpWithCarryI<&Assembler::add, &Assembler::adc>(this, dst, lhs, imm); } void LiftoffAssembler::emit_i64_sub(LiftoffRegister dst, LiftoffRegister lhs, LiftoffRegister rhs) { liftoff::OpWithCarry<&Assembler::sub, &Assembler::sbb>(this, dst, lhs, rhs); } void LiftoffAssembler::emit_i64_mul(LiftoffRegister dst, LiftoffRegister lhs, LiftoffRegister rhs) { // Idea: // [ lhs_hi | lhs_lo ] * [ rhs_hi | rhs_lo ] // = [ lhs_hi * rhs_lo | ] (32 bit mul, shift 32) // + [ lhs_lo * rhs_hi | ] (32 bit mul, shift 32) // + [ lhs_lo * rhs_lo ] (32x32->64 mul, shift 0) // For simplicity, we move lhs and rhs into fixed registers. Register dst_hi = edx; Register dst_lo = eax; Register lhs_hi = ecx; Register lhs_lo = dst_lo; Register rhs_hi = dst_hi; Register rhs_lo = esi; // Spill all these registers if they are still holding other values. liftoff::SpillRegisters(this, dst_hi, dst_lo, lhs_hi, rhs_lo); // Move lhs and rhs into the respective registers. ParallelRegisterMoveTuple reg_moves[]{ {LiftoffRegister::ForPair(lhs_lo, lhs_hi), lhs, kWasmI64}, {LiftoffRegister::ForPair(rhs_lo, rhs_hi), rhs, kWasmI64}}; ParallelRegisterMove(ArrayVector(reg_moves)); // First mul: lhs_hi' = lhs_hi * rhs_lo. imul(lhs_hi, rhs_lo); // Second mul: rhi_hi' = rhs_hi * lhs_lo. imul(rhs_hi, lhs_lo); // Add them: lhs_hi'' = lhs_hi' + rhs_hi' = lhs_hi * rhs_lo + rhs_hi * lhs_lo. add(lhs_hi, rhs_hi); // Third mul: edx:eax (dst_hi:dst_lo) = eax * esi (lhs_lo * rhs_lo). mul(rhs_lo); // Add lhs_hi'' to dst_hi. add(dst_hi, lhs_hi); // Finally, move back the temporary result to the actual dst register pair. LiftoffRegister dst_tmp = LiftoffRegister::ForPair(dst_lo, dst_hi); if (dst != dst_tmp) Move(dst, dst_tmp, kWasmI64); } bool LiftoffAssembler::emit_i64_divs(LiftoffRegister dst, LiftoffRegister lhs, LiftoffRegister rhs, Label* trap_div_by_zero, Label* trap_div_unrepresentable) { return false; } bool LiftoffAssembler::emit_i64_divu(LiftoffRegister dst, LiftoffRegister lhs, LiftoffRegister rhs, Label* trap_div_by_zero) { return false; } bool LiftoffAssembler::emit_i64_rems(LiftoffRegister dst, LiftoffRegister lhs, LiftoffRegister rhs, Label* trap_div_by_zero) { return false; } bool LiftoffAssembler::emit_i64_remu(LiftoffRegister dst, LiftoffRegister lhs, LiftoffRegister rhs, Label* trap_div_by_zero) { return false; } namespace liftoff { inline bool PairContains(LiftoffRegister pair, Register reg) { return pair.low_gp() == reg || pair.high_gp() == reg; } inline LiftoffRegister ReplaceInPair(LiftoffRegister pair, Register old_reg, Register new_reg) { if (pair.low_gp() == old_reg) { return LiftoffRegister::ForPair(new_reg, pair.high_gp()); } if (pair.high_gp() == old_reg) { return LiftoffRegister::ForPair(pair.low_gp(), new_reg); } return pair; } inline void Emit64BitShiftOperation( LiftoffAssembler* assm, LiftoffRegister dst, LiftoffRegister src, Register amount, void (TurboAssembler::*emit_shift)(Register, Register), LiftoffRegList pinned) { // Temporary registers cannot overlap with {dst}. pinned.set(dst); constexpr size_t kMaxRegMoves = 3; base::SmallVector reg_moves; // If {dst} contains {ecx}, replace it by an unused register, which is then // moved to {ecx} in the end. Register ecx_replace = no_reg; if (PairContains(dst, ecx)) { ecx_replace = assm->GetUnusedRegister(kGpReg, pinned).gp(); dst = ReplaceInPair(dst, ecx, ecx_replace); // If {amount} needs to be moved to {ecx}, but {ecx} is in use (and not part // of {dst}, hence overwritten anyway), move {ecx} to a tmp register and // restore it at the end. } else if (amount != ecx && (assm->cache_state()->is_used(LiftoffRegister(ecx)) || pinned.has(LiftoffRegister(ecx)))) { ecx_replace = assm->GetUnusedRegister(kGpReg, pinned).gp(); reg_moves.emplace_back(ecx_replace, ecx, kWasmI32); } reg_moves.emplace_back(dst, src, kWasmI64); reg_moves.emplace_back(ecx, amount, kWasmI32); assm->ParallelRegisterMove(VectorOf(reg_moves)); // Do the actual shift. (assm->*emit_shift)(dst.high_gp(), dst.low_gp()); // Restore {ecx} if needed. if (ecx_replace != no_reg) assm->mov(ecx, ecx_replace); } } // namespace liftoff void LiftoffAssembler::emit_i64_shl(LiftoffRegister dst, LiftoffRegister src, Register amount, LiftoffRegList pinned) { liftoff::Emit64BitShiftOperation(this, dst, src, amount, &TurboAssembler::ShlPair_cl, pinned); } void LiftoffAssembler::emit_i64_sar(LiftoffRegister dst, LiftoffRegister src, Register amount, LiftoffRegList pinned) { liftoff::Emit64BitShiftOperation(this, dst, src, amount, &TurboAssembler::SarPair_cl, pinned); } void LiftoffAssembler::emit_i64_shr(LiftoffRegister dst, LiftoffRegister src, Register amount, LiftoffRegList pinned) { liftoff::Emit64BitShiftOperation(this, dst, src, amount, &TurboAssembler::ShrPair_cl, pinned); } void LiftoffAssembler::emit_i64_shr(LiftoffRegister dst, LiftoffRegister src, int amount) { if (dst != src) Move(dst, src, kWasmI64); DCHECK(is_uint6(amount)); ShrPair(dst.high_gp(), dst.low_gp(), amount); } void LiftoffAssembler::emit_i32_to_intptr(Register dst, Register src) { // This is a nop on ia32. } void LiftoffAssembler::emit_f32_add(DoubleRegister dst, DoubleRegister lhs, DoubleRegister rhs) { if (CpuFeatures::IsSupported(AVX)) { CpuFeatureScope scope(this, AVX); vaddss(dst, lhs, rhs); } else if (dst == rhs) { addss(dst, lhs); } else { if (dst != lhs) movss(dst, lhs); addss(dst, rhs); } } void LiftoffAssembler::emit_f32_sub(DoubleRegister dst, DoubleRegister lhs, DoubleRegister rhs) { if (CpuFeatures::IsSupported(AVX)) { CpuFeatureScope scope(this, AVX); vsubss(dst, lhs, rhs); } else if (dst == rhs) { movss(liftoff::kScratchDoubleReg, rhs); movss(dst, lhs); subss(dst, liftoff::kScratchDoubleReg); } else { if (dst != lhs) movss(dst, lhs); subss(dst, rhs); } } void LiftoffAssembler::emit_f32_mul(DoubleRegister dst, DoubleRegister lhs, DoubleRegister rhs) { if (CpuFeatures::IsSupported(AVX)) { CpuFeatureScope scope(this, AVX); vmulss(dst, lhs, rhs); } else if (dst == rhs) { mulss(dst, lhs); } else { if (dst != lhs) movss(dst, lhs); mulss(dst, rhs); } } void LiftoffAssembler::emit_f32_div(DoubleRegister dst, DoubleRegister lhs, DoubleRegister rhs) { if (CpuFeatures::IsSupported(AVX)) { CpuFeatureScope scope(this, AVX); vdivss(dst, lhs, rhs); } else if (dst == rhs) { movss(liftoff::kScratchDoubleReg, rhs); movss(dst, lhs); divss(dst, liftoff::kScratchDoubleReg); } else { if (dst != lhs) movss(dst, lhs); divss(dst, rhs); } } namespace liftoff { enum class MinOrMax : uint8_t { kMin, kMax }; template inline void EmitFloatMinOrMax(LiftoffAssembler* assm, DoubleRegister dst, DoubleRegister lhs, DoubleRegister rhs, MinOrMax min_or_max) { Label is_nan; Label lhs_below_rhs; Label lhs_above_rhs; Label done; // We need one tmp register to extract the sign bit. Get it right at the // beginning, such that the spilling code is not accidentially jumped over. Register tmp = assm->GetUnusedRegister(kGpReg).gp(); #define dop(name, ...) \ do { \ if (sizeof(type) == 4) { \ assm->name##s(__VA_ARGS__); \ } else { \ assm->name##d(__VA_ARGS__); \ } \ } while (false) // Check the easy cases first: nan (e.g. unordered), smaller and greater. // NaN has to be checked first, because PF=1 implies CF=1. dop(ucomis, lhs, rhs); assm->j(parity_even, &is_nan, Label::kNear); // PF=1 assm->j(below, &lhs_below_rhs, Label::kNear); // CF=1 assm->j(above, &lhs_above_rhs, Label::kNear); // CF=0 && ZF=0 // If we get here, then either // a) {lhs == rhs}, // b) {lhs == -0.0} and {rhs == 0.0}, or // c) {lhs == 0.0} and {rhs == -0.0}. // For a), it does not matter whether we return {lhs} or {rhs}. Check the sign // bit of {rhs} to differentiate b) and c). dop(movmskp, tmp, rhs); assm->test(tmp, Immediate(1)); assm->j(zero, &lhs_below_rhs, Label::kNear); assm->jmp(&lhs_above_rhs, Label::kNear); assm->bind(&is_nan); // Create a NaN output. dop(xorp, dst, dst); dop(divs, dst, dst); assm->jmp(&done, Label::kNear); assm->bind(&lhs_below_rhs); DoubleRegister lhs_below_rhs_src = min_or_max == MinOrMax::kMin ? lhs : rhs; if (dst != lhs_below_rhs_src) dop(movs, dst, lhs_below_rhs_src); assm->jmp(&done, Label::kNear); assm->bind(&lhs_above_rhs); DoubleRegister lhs_above_rhs_src = min_or_max == MinOrMax::kMin ? rhs : lhs; if (dst != lhs_above_rhs_src) dop(movs, dst, lhs_above_rhs_src); assm->bind(&done); } } // namespace liftoff void LiftoffAssembler::emit_f32_min(DoubleRegister dst, DoubleRegister lhs, DoubleRegister rhs) { liftoff::EmitFloatMinOrMax(this, dst, lhs, rhs, liftoff::MinOrMax::kMin); } void LiftoffAssembler::emit_f32_max(DoubleRegister dst, DoubleRegister lhs, DoubleRegister rhs) { liftoff::EmitFloatMinOrMax(this, dst, lhs, rhs, liftoff::MinOrMax::kMax); } void LiftoffAssembler::emit_f32_copysign(DoubleRegister dst, DoubleRegister lhs, DoubleRegister rhs) { static constexpr int kF32SignBit = 1 << 31; Register scratch = GetUnusedRegister(kGpReg).gp(); Register scratch2 = GetUnusedRegister(kGpReg, LiftoffRegList::ForRegs(scratch)).gp(); Movd(scratch, lhs); // move {lhs} into {scratch}. and_(scratch, Immediate(~kF32SignBit)); // clear sign bit in {scratch}. Movd(scratch2, rhs); // move {rhs} into {scratch2}. and_(scratch2, Immediate(kF32SignBit)); // isolate sign bit in {scratch2}. or_(scratch, scratch2); // combine {scratch2} into {scratch}. Movd(dst, scratch); // move result into {dst}. } void LiftoffAssembler::emit_f32_abs(DoubleRegister dst, DoubleRegister src) { static constexpr uint32_t kSignBit = uint32_t{1} << 31; if (dst == src) { TurboAssembler::Move(liftoff::kScratchDoubleReg, kSignBit - 1); Andps(dst, liftoff::kScratchDoubleReg); } else { TurboAssembler::Move(dst, kSignBit - 1); Andps(dst, src); } } void LiftoffAssembler::emit_f32_neg(DoubleRegister dst, DoubleRegister src) { static constexpr uint32_t kSignBit = uint32_t{1} << 31; if (dst == src) { TurboAssembler::Move(liftoff::kScratchDoubleReg, kSignBit); Xorps(dst, liftoff::kScratchDoubleReg); } else { TurboAssembler::Move(dst, kSignBit); Xorps(dst, src); } } bool LiftoffAssembler::emit_f32_ceil(DoubleRegister dst, DoubleRegister src) { if (CpuFeatures::IsSupported(SSE4_1)) { CpuFeatureScope feature(this, SSE4_1); roundss(dst, src, kRoundUp); return true; } return false; } bool LiftoffAssembler::emit_f32_floor(DoubleRegister dst, DoubleRegister src) { if (CpuFeatures::IsSupported(SSE4_1)) { CpuFeatureScope feature(this, SSE4_1); roundss(dst, src, kRoundDown); return true; } return false; } bool LiftoffAssembler::emit_f32_trunc(DoubleRegister dst, DoubleRegister src) { if (CpuFeatures::IsSupported(SSE4_1)) { CpuFeatureScope feature(this, SSE4_1); roundss(dst, src, kRoundToZero); return true; } return false; } bool LiftoffAssembler::emit_f32_nearest_int(DoubleRegister dst, DoubleRegister src) { if (CpuFeatures::IsSupported(SSE4_1)) { CpuFeatureScope feature(this, SSE4_1); roundss(dst, src, kRoundToNearest); return true; } return false; } void LiftoffAssembler::emit_f32_sqrt(DoubleRegister dst, DoubleRegister src) { Sqrtss(dst, src); } void LiftoffAssembler::emit_f64_add(DoubleRegister dst, DoubleRegister lhs, DoubleRegister rhs) { if (CpuFeatures::IsSupported(AVX)) { CpuFeatureScope scope(this, AVX); vaddsd(dst, lhs, rhs); } else if (dst == rhs) { addsd(dst, lhs); } else { if (dst != lhs) movsd(dst, lhs); addsd(dst, rhs); } } void LiftoffAssembler::emit_f64_sub(DoubleRegister dst, DoubleRegister lhs, DoubleRegister rhs) { if (CpuFeatures::IsSupported(AVX)) { CpuFeatureScope scope(this, AVX); vsubsd(dst, lhs, rhs); } else if (dst == rhs) { movsd(liftoff::kScratchDoubleReg, rhs); movsd(dst, lhs); subsd(dst, liftoff::kScratchDoubleReg); } else { if (dst != lhs) movsd(dst, lhs); subsd(dst, rhs); } } void LiftoffAssembler::emit_f64_mul(DoubleRegister dst, DoubleRegister lhs, DoubleRegister rhs) { if (CpuFeatures::IsSupported(AVX)) { CpuFeatureScope scope(this, AVX); vmulsd(dst, lhs, rhs); } else if (dst == rhs) { mulsd(dst, lhs); } else { if (dst != lhs) movsd(dst, lhs); mulsd(dst, rhs); } } void LiftoffAssembler::emit_f64_div(DoubleRegister dst, DoubleRegister lhs, DoubleRegister rhs) { if (CpuFeatures::IsSupported(AVX)) { CpuFeatureScope scope(this, AVX); vdivsd(dst, lhs, rhs); } else if (dst == rhs) { movsd(liftoff::kScratchDoubleReg, rhs); movsd(dst, lhs); divsd(dst, liftoff::kScratchDoubleReg); } else { if (dst != lhs) movsd(dst, lhs); divsd(dst, rhs); } } void LiftoffAssembler::emit_f64_min(DoubleRegister dst, DoubleRegister lhs, DoubleRegister rhs) { liftoff::EmitFloatMinOrMax(this, dst, lhs, rhs, liftoff::MinOrMax::kMin); } void LiftoffAssembler::emit_f64_copysign(DoubleRegister dst, DoubleRegister lhs, DoubleRegister rhs) { static constexpr int kF32SignBit = 1 << 31; // On ia32, we cannot hold the whole f64 value in a gp register, so we just // operate on the upper half (UH). Register scratch = GetUnusedRegister(kGpReg).gp(); Register scratch2 = GetUnusedRegister(kGpReg, LiftoffRegList::ForRegs(scratch)).gp(); Pextrd(scratch, lhs, 1); // move UH of {lhs} into {scratch}. and_(scratch, Immediate(~kF32SignBit)); // clear sign bit in {scratch}. Pextrd(scratch2, rhs, 1); // move UH of {rhs} into {scratch2}. and_(scratch2, Immediate(kF32SignBit)); // isolate sign bit in {scratch2}. or_(scratch, scratch2); // combine {scratch2} into {scratch}. movsd(dst, lhs); // move {lhs} into {dst}. Pinsrd(dst, scratch, 1); // insert {scratch} into UH of {dst}. } void LiftoffAssembler::emit_f64_max(DoubleRegister dst, DoubleRegister lhs, DoubleRegister rhs) { liftoff::EmitFloatMinOrMax(this, dst, lhs, rhs, liftoff::MinOrMax::kMax); } void LiftoffAssembler::emit_f64_abs(DoubleRegister dst, DoubleRegister src) { static constexpr uint64_t kSignBit = uint64_t{1} << 63; if (dst == src) { TurboAssembler::Move(liftoff::kScratchDoubleReg, kSignBit - 1); Andpd(dst, liftoff::kScratchDoubleReg); } else { TurboAssembler::Move(dst, kSignBit - 1); Andpd(dst, src); } } void LiftoffAssembler::emit_f64_neg(DoubleRegister dst, DoubleRegister src) { static constexpr uint64_t kSignBit = uint64_t{1} << 63; if (dst == src) { TurboAssembler::Move(liftoff::kScratchDoubleReg, kSignBit); Xorpd(dst, liftoff::kScratchDoubleReg); } else { TurboAssembler::Move(dst, kSignBit); Xorpd(dst, src); } } bool LiftoffAssembler::emit_f64_ceil(DoubleRegister dst, DoubleRegister src) { REQUIRE_CPU_FEATURE(SSE4_1, true); roundsd(dst, src, kRoundUp); return true; } bool LiftoffAssembler::emit_f64_floor(DoubleRegister dst, DoubleRegister src) { REQUIRE_CPU_FEATURE(SSE4_1, true); roundsd(dst, src, kRoundDown); return true; } bool LiftoffAssembler::emit_f64_trunc(DoubleRegister dst, DoubleRegister src) { REQUIRE_CPU_FEATURE(SSE4_1, true); roundsd(dst, src, kRoundToZero); return true; } bool LiftoffAssembler::emit_f64_nearest_int(DoubleRegister dst, DoubleRegister src) { REQUIRE_CPU_FEATURE(SSE4_1, true); roundsd(dst, src, kRoundToNearest); return true; } void LiftoffAssembler::emit_f64_sqrt(DoubleRegister dst, DoubleRegister src) { Sqrtsd(dst, src); } namespace liftoff { // Used for float to int conversions. If the value in {converted_back} equals // {src} afterwards, the conversion succeeded. template inline void ConvertFloatToIntAndBack(LiftoffAssembler* assm, Register dst, DoubleRegister src, DoubleRegister converted_back, LiftoffRegList pinned) { if (std::is_same::value) { // f64 if (std::is_signed::value) { // f64 -> i32 assm->cvttsd2si(dst, src); assm->Cvtsi2sd(converted_back, dst); } else { // f64 -> u32 assm->Cvttsd2ui(dst, src, liftoff::kScratchDoubleReg); assm->Cvtui2sd(converted_back, dst, assm->GetUnusedRegister(kGpReg, pinned).gp()); } } else { // f32 if (std::is_signed::value) { // f32 -> i32 assm->cvttss2si(dst, src); assm->Cvtsi2ss(converted_back, dst); } else { // f32 -> u32 assm->Cvttss2ui(dst, src, liftoff::kScratchDoubleReg); assm->Cvtui2ss(converted_back, dst, assm->GetUnusedRegister(kGpReg, pinned).gp()); } } } template inline bool EmitTruncateFloatToInt(LiftoffAssembler* assm, Register dst, DoubleRegister src, Label* trap) { if (!CpuFeatures::IsSupported(SSE4_1)) { assm->bailout("no SSE4.1"); return true; } CpuFeatureScope feature(assm, SSE4_1); LiftoffRegList pinned = LiftoffRegList::ForRegs(src, dst); DoubleRegister rounded = pinned.set(assm->GetUnusedRegister(kFpReg, pinned)).fp(); DoubleRegister converted_back = pinned.set(assm->GetUnusedRegister(kFpReg, pinned)).fp(); if (std::is_same::value) { // f64 assm->roundsd(rounded, src, kRoundToZero); } else { // f32 assm->roundss(rounded, src, kRoundToZero); } ConvertFloatToIntAndBack(assm, dst, rounded, converted_back, pinned); if (std::is_same::value) { // f64 assm->ucomisd(converted_back, rounded); } else { // f32 assm->ucomiss(converted_back, rounded); } // Jump to trap if PF is 0 (one of the operands was NaN) or they are not // equal. assm->j(parity_even, trap); assm->j(not_equal, trap); return true; } } // namespace liftoff bool LiftoffAssembler::emit_type_conversion(WasmOpcode opcode, LiftoffRegister dst, LiftoffRegister src, Label* trap) { switch (opcode) { case kExprI32ConvertI64: if (dst.gp() != src.low_gp()) mov(dst.gp(), src.low_gp()); return true; case kExprI32SConvertF32: return liftoff::EmitTruncateFloatToInt(this, dst.gp(), src.fp(), trap); case kExprI32UConvertF32: return liftoff::EmitTruncateFloatToInt(this, dst.gp(), src.fp(), trap); case kExprI32SConvertF64: return liftoff::EmitTruncateFloatToInt(this, dst.gp(), src.fp(), trap); case kExprI32UConvertF64: return liftoff::EmitTruncateFloatToInt(this, dst.gp(), src.fp(), trap); case kExprI32ReinterpretF32: Movd(dst.gp(), src.fp()); return true; case kExprI64SConvertI32: if (dst.low_gp() != src.gp()) mov(dst.low_gp(), src.gp()); if (dst.high_gp() != src.gp()) mov(dst.high_gp(), src.gp()); sar(dst.high_gp(), 31); return true; case kExprI64UConvertI32: if (dst.low_gp() != src.gp()) mov(dst.low_gp(), src.gp()); xor_(dst.high_gp(), dst.high_gp()); return true; case kExprI64ReinterpretF64: // Push src to the stack. AllocateStackSpace(8); movsd(Operand(esp, 0), src.fp()); // Pop to dst. pop(dst.low_gp()); pop(dst.high_gp()); return true; case kExprF32SConvertI32: cvtsi2ss(dst.fp(), src.gp()); return true; case kExprF32UConvertI32: { LiftoffRegList pinned = LiftoffRegList::ForRegs(dst, src); Register scratch = GetUnusedRegister(kGpReg, pinned).gp(); Cvtui2ss(dst.fp(), src.gp(), scratch); return true; } case kExprF32ConvertF64: cvtsd2ss(dst.fp(), src.fp()); return true; case kExprF32ReinterpretI32: Movd(dst.fp(), src.gp()); return true; case kExprF64SConvertI32: Cvtsi2sd(dst.fp(), src.gp()); return true; case kExprF64UConvertI32: { LiftoffRegList pinned = LiftoffRegList::ForRegs(dst, src); Register scratch = GetUnusedRegister(kGpReg, pinned).gp(); Cvtui2sd(dst.fp(), src.gp(), scratch); return true; } case kExprF64ConvertF32: cvtss2sd(dst.fp(), src.fp()); return true; case kExprF64ReinterpretI64: // Push src to the stack. push(src.high_gp()); push(src.low_gp()); // Pop to dst. movsd(dst.fp(), Operand(esp, 0)); add(esp, Immediate(8)); return true; default: return false; } } void LiftoffAssembler::emit_i32_signextend_i8(Register dst, Register src) { Register byte_reg = liftoff::GetTmpByteRegister(this, src); if (byte_reg != src) mov(byte_reg, src); movsx_b(dst, byte_reg); } void LiftoffAssembler::emit_i32_signextend_i16(Register dst, Register src) { movsx_w(dst, src); } void LiftoffAssembler::emit_i64_signextend_i8(LiftoffRegister dst, LiftoffRegister src) { Register byte_reg = liftoff::GetTmpByteRegister(this, src.low_gp()); if (byte_reg != src.low_gp()) mov(byte_reg, src.low_gp()); movsx_b(dst.low_gp(), byte_reg); liftoff::SignExtendI32ToI64(this, dst); } void LiftoffAssembler::emit_i64_signextend_i16(LiftoffRegister dst, LiftoffRegister src) { movsx_w(dst.low_gp(), src.low_gp()); liftoff::SignExtendI32ToI64(this, dst); } void LiftoffAssembler::emit_i64_signextend_i32(LiftoffRegister dst, LiftoffRegister src) { if (dst.low_gp() != src.low_gp()) mov(dst.low_gp(), src.low_gp()); liftoff::SignExtendI32ToI64(this, dst); } void LiftoffAssembler::emit_jump(Label* label) { jmp(label); } void LiftoffAssembler::emit_jump(Register target) { jmp(target); } void LiftoffAssembler::emit_cond_jump(Condition cond, Label* label, ValueType type, Register lhs, Register rhs) { if (rhs != no_reg) { switch (type) { case kWasmI32: cmp(lhs, rhs); break; default: UNREACHABLE(); } } else { DCHECK_EQ(type, kWasmI32); test(lhs, lhs); } j(cond, label); } namespace liftoff { // Setcc into dst register, given a scratch byte register (might be the same as // dst). Never spills. inline void setcc_32_no_spill(LiftoffAssembler* assm, Condition cond, Register dst, Register tmp_byte_reg) { assm->setcc(cond, tmp_byte_reg); assm->movzx_b(dst, tmp_byte_reg); } // Setcc into dst register (no contraints). Might spill. inline void setcc_32(LiftoffAssembler* assm, Condition cond, Register dst) { Register tmp_byte_reg = GetTmpByteRegister(assm, dst); setcc_32_no_spill(assm, cond, dst, tmp_byte_reg); } } // namespace liftoff void LiftoffAssembler::emit_i32_eqz(Register dst, Register src) { test(src, src); liftoff::setcc_32(this, equal, dst); } void LiftoffAssembler::emit_i32_set_cond(Condition cond, Register dst, Register lhs, Register rhs) { cmp(lhs, rhs); liftoff::setcc_32(this, cond, dst); } void LiftoffAssembler::emit_i64_eqz(Register dst, LiftoffRegister src) { // Compute the OR of both registers in the src pair, using dst as scratch // register. Then check whether the result is equal to zero. if (src.low_gp() == dst) { or_(dst, src.high_gp()); } else { if (src.high_gp() != dst) mov(dst, src.high_gp()); or_(dst, src.low_gp()); } liftoff::setcc_32(this, equal, dst); } namespace liftoff { inline Condition cond_make_unsigned(Condition cond) { switch (cond) { case kSignedLessThan: return kUnsignedLessThan; case kSignedLessEqual: return kUnsignedLessEqual; case kSignedGreaterThan: return kUnsignedGreaterThan; case kSignedGreaterEqual: return kUnsignedGreaterEqual; default: return cond; } } } // namespace liftoff void LiftoffAssembler::emit_i64_set_cond(Condition cond, Register dst, LiftoffRegister lhs, LiftoffRegister rhs) { // Get the tmp byte register out here, such that we don't conditionally spill // (this cannot be reflected in the cache state). Register tmp_byte_reg = liftoff::GetTmpByteRegister(this, dst); // For signed i64 comparisons, we still need to use unsigned comparison for // the low word (the only bit carrying signedness information is the MSB in // the high word). Condition unsigned_cond = liftoff::cond_make_unsigned(cond); Label setcc; Label cont; // Compare high word first. If it differs, use if for the setcc. If it's // equal, compare the low word and use that for setcc. cmp(lhs.high_gp(), rhs.high_gp()); j(not_equal, &setcc, Label::kNear); cmp(lhs.low_gp(), rhs.low_gp()); if (unsigned_cond != cond) { // If the condition predicate for the low differs from that for the high // word, emit a separete setcc sequence for the low word. liftoff::setcc_32_no_spill(this, unsigned_cond, dst, tmp_byte_reg); jmp(&cont); } bind(&setcc); liftoff::setcc_32_no_spill(this, cond, dst, tmp_byte_reg); bind(&cont); } namespace liftoff { template void EmitFloatSetCond(LiftoffAssembler* assm, Condition cond, Register dst, DoubleRegister lhs, DoubleRegister rhs) { Label cont; Label not_nan; // Get the tmp byte register out here, such that we don't conditionally spill // (this cannot be reflected in the cache state). Register tmp_byte_reg = GetTmpByteRegister(assm, dst); (assm->*cmp_op)(lhs, rhs); // If PF is one, one of the operands was Nan. This needs special handling. assm->j(parity_odd, ¬_nan, Label::kNear); // Return 1 for f32.ne, 0 for all other cases. if (cond == not_equal) { assm->mov(dst, Immediate(1)); } else { assm->xor_(dst, dst); } assm->jmp(&cont, Label::kNear); assm->bind(¬_nan); setcc_32_no_spill(assm, cond, dst, tmp_byte_reg); assm->bind(&cont); } } // namespace liftoff void LiftoffAssembler::emit_f32_set_cond(Condition cond, Register dst, DoubleRegister lhs, DoubleRegister rhs) { liftoff::EmitFloatSetCond<&Assembler::ucomiss>(this, cond, dst, lhs, rhs); } void LiftoffAssembler::emit_f64_set_cond(Condition cond, Register dst, DoubleRegister lhs, DoubleRegister rhs) { liftoff::EmitFloatSetCond<&Assembler::ucomisd>(this, cond, dst, lhs, rhs); } void LiftoffAssembler::StackCheck(Label* ool_code, Register limit_address) { cmp(esp, Operand(limit_address, 0)); j(below_equal, ool_code); } void LiftoffAssembler::CallTrapCallbackForTesting() { PrepareCallCFunction(0, GetUnusedRegister(kGpReg).gp()); CallCFunction(ExternalReference::wasm_call_trap_callback_for_testing(), 0); } void LiftoffAssembler::AssertUnreachable(AbortReason reason) { TurboAssembler::AssertUnreachable(reason); } void LiftoffAssembler::PushRegisters(LiftoffRegList regs) { LiftoffRegList gp_regs = regs & kGpCacheRegList; while (!gp_regs.is_empty()) { LiftoffRegister reg = gp_regs.GetFirstRegSet(); push(reg.gp()); gp_regs.clear(reg); } LiftoffRegList fp_regs = regs & kFpCacheRegList; unsigned num_fp_regs = fp_regs.GetNumRegsSet(); if (num_fp_regs) { AllocateStackSpace(num_fp_regs * kStackSlotSize); unsigned offset = 0; while (!fp_regs.is_empty()) { LiftoffRegister reg = fp_regs.GetFirstRegSet(); movsd(Operand(esp, offset), reg.fp()); fp_regs.clear(reg); offset += sizeof(double); } DCHECK_EQ(offset, num_fp_regs * sizeof(double)); } } void LiftoffAssembler::PopRegisters(LiftoffRegList regs) { LiftoffRegList fp_regs = regs & kFpCacheRegList; unsigned fp_offset = 0; while (!fp_regs.is_empty()) { LiftoffRegister reg = fp_regs.GetFirstRegSet(); movsd(reg.fp(), Operand(esp, fp_offset)); fp_regs.clear(reg); fp_offset += sizeof(double); } if (fp_offset) add(esp, Immediate(fp_offset)); LiftoffRegList gp_regs = regs & kGpCacheRegList; while (!gp_regs.is_empty()) { LiftoffRegister reg = gp_regs.GetLastRegSet(); pop(reg.gp()); gp_regs.clear(reg); } } void LiftoffAssembler::DropStackSlotsAndRet(uint32_t num_stack_slots) { DCHECK_LT(num_stack_slots, (1 << 16) / kSystemPointerSize); // 16 bit immediate ret(static_cast(num_stack_slots * kSystemPointerSize)); } void LiftoffAssembler::CallC(wasm::FunctionSig* sig, const LiftoffRegister* args, const LiftoffRegister* rets, ValueType out_argument_type, int stack_bytes, ExternalReference ext_ref) { AllocateStackSpace(stack_bytes); int arg_bytes = 0; for (ValueType param_type : sig->parameters()) { liftoff::Store(this, esp, arg_bytes, *args++, param_type); arg_bytes += ValueTypes::MemSize(param_type); } DCHECK_LE(arg_bytes, stack_bytes); constexpr Register kScratch = eax; constexpr Register kArgumentBuffer = ecx; constexpr int kNumCCallArgs = 1; mov(kArgumentBuffer, esp); PrepareCallCFunction(kNumCCallArgs, kScratch); // Pass a pointer to the buffer with the arguments to the C function. ia32 // does not use registers here, so push to the stack. mov(Operand(esp, 0), kArgumentBuffer); // Now call the C function. CallCFunction(ext_ref, kNumCCallArgs); // Move return value to the right register. const LiftoffRegister* next_result_reg = rets; if (sig->return_count() > 0) { DCHECK_EQ(1, sig->return_count()); constexpr Register kReturnReg = eax; if (kReturnReg != next_result_reg->gp()) { Move(*next_result_reg, LiftoffRegister(kReturnReg), sig->GetReturn(0)); } ++next_result_reg; } // Load potential output value from the buffer on the stack. if (out_argument_type != kWasmStmt) { liftoff::Load(this, *next_result_reg, esp, 0, out_argument_type); } add(esp, Immediate(stack_bytes)); } void LiftoffAssembler::CallNativeWasmCode(Address addr) { wasm_call(addr, RelocInfo::WASM_CALL); } void LiftoffAssembler::CallIndirect(wasm::FunctionSig* sig, compiler::CallDescriptor* call_descriptor, Register target) { // Since we have more cache registers than parameter registers, the // {LiftoffCompiler} should always be able to place {target} in a register. DCHECK(target.is_valid()); if (FLAG_untrusted_code_mitigations) { RetpolineCall(target); } else { call(target); } } void LiftoffAssembler::CallRuntimeStub(WasmCode::RuntimeStubId sid) { // A direct call to a wasm runtime stub defined in this module. // Just encode the stub index. This will be patched at relocation. wasm_call(static_cast
(sid), RelocInfo::WASM_STUB_CALL); } void LiftoffAssembler::AllocateStackSlot(Register addr, uint32_t size) { AllocateStackSpace(size); mov(addr, esp); } void LiftoffAssembler::DeallocateStackSlot(uint32_t size) { add(esp, Immediate(size)); } void LiftoffStackSlots::Construct() { for (auto& slot : slots_) { const LiftoffAssembler::VarState& src = slot.src_; switch (src.loc()) { case LiftoffAssembler::VarState::kStack: if (src.type() == kWasmF64) { DCHECK_EQ(kLowWord, slot.half_); asm_->push(liftoff::GetHalfStackSlot(slot.src_index_, kHighWord)); } asm_->push(liftoff::GetHalfStackSlot(slot.src_index_, slot.half_)); break; case LiftoffAssembler::VarState::kRegister: if (src.type() == kWasmI64) { liftoff::push( asm_, slot.half_ == kLowWord ? src.reg().low() : src.reg().high(), kWasmI32); } else { liftoff::push(asm_, src.reg(), src.type()); } break; case LiftoffAssembler::VarState::kIntConst: // The high word is the sign extension of the low word. asm_->push(Immediate(slot.half_ == kLowWord ? src.i32_const() : src.i32_const() >> 31)); break; } } } #undef REQUIRE_CPU_FEATURE } // namespace wasm } // namespace internal } // namespace v8 #endif // V8_WASM_BASELINE_IA32_LIFTOFF_ASSEMBLER_IA32_H_